source: doc/userguide/userguide.xml@ c4c20a

Last change on this file since c4c20a was 9bce96, checked in by Frederik Heber <heber@…>, 10 years ago

DOCU: Fixed all missing links in userguide.

  • each section now has a linkname.
  • Property mode set to 100644
File size: 118.9 KB
Line 
1<?xml version="1.0" encoding="UTF-8"?>
2<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN"
3 "http://www.oasis-open.org/docbook/xml/4.5/docbookx.dtd" [
4<!ENTITY molecuilder_logo SYSTEM "pictures/molecuilder_logo.png" NDATA PNG>
5<!ENTITY dialog_box SYSTEM "pictures/dialog_box.png" NDATA PNG>
6<!ENTITY dialog_add-atom_tooltip SYSTEM "pictures/dialog_add-atom_tooltip.png" NDATA PNG>
7<!ENTITY dialog_complex SYSTEM "pictures/dialog_complex.png" NDATA PNG>
8<!ENTITY dialog_exit SYSTEM "pictures/dialog_exit.png" NDATA PNG>
9<!ENTITY example_basic_view SYSTEM "pictures/example_basic_view.png" NDATA PNG>
10]>
11<book version="5.0" xmlns="http://docbook.org/ns/docbook"
12 xmlns:xlink="http://www.w3.org/1999/xlink"
13 xmlns:xi="http://www.w3.org/2001/XInclude"
14 xmlns:svg="http://www.w3.org/2000/svg"
15 xmlns:m="http://www.w3.org/1998/Math/MathML"
16 xmlns:html="http://www.w3.org/1999/xhtml"
17 xmlns:db="http://docbook.org/ns/docbook">
18 <info>
19 <title>MoleCuilder - a Molecule Builder</title>
20
21 <author>
22 <personname><firstname>Frederik</firstname><surname>Heber</surname></personname>
23
24 <affiliation>
25 <orgname>heber@ins.uni-bonn.de</orgname>
26 </affiliation>
27 </author>
28
29 <pubdate>07/03/14</pubdate>
30 </info>
31
32 <chapter>
33 <title>Introduction</title>
34
35 <figure>
36 <title>MoleCuilder logo depicting a tesselated buckyball and a benzene
37 molecule</title>
38
39 <mediaobject>
40 <imageobject>
41 <imagedata entityref="molecuilder_logo" scalefit="1" width="100%"/>
42 </imageobject>
43 </mediaobject>
44 </figure>
45
46 <section xml:id='whatis'>
47 <title xml:id='whatis.title'>What is MoleCuilder?</title>
48
49 <para>In Short,<command> MoleCuilder</command> is a concatenation of
50 molecule and builder.</para>
51
52 <para>In more words, molecular dynamics simulations are frequently
53 employed to simulate material behavior under stress, chemical reactions
54 such as of cementitious materials, or folding pathways and docking
55 procedures of bio proteins. Even if the computational load, due to the
56 large number of atoms, is very demanding, nonetheless they may serve as
57 a starting point, e.g. extracting parameters for a coarser model.
58 However, what is on the other hand the starting point of molecular
59 dynamics simulations? It is the coordinate and element of each atom
60 combined with potential functions that model the interactions.</para>
61
62 <para>MoleCuilder allows to fully construct such a starting point:
63 letting the user construct atomic and molecular geometries by a simple
64 point&amp;click approach, a CAD-pendant on the nanoscale. Creating
65 suitable empirical potentials by fitting parameters to ab-initio
66 calculations within hours. Specific emphasis is placed on a
67 simple-to-use interface, allowing for the quick-and-dirty building of
68 molecular systems, and on scriptability. Eventually, not a single, but
69 many, related molecular systems have to be created.</para>
70
71 <section xml:id='installation'>
72 <title xml:id='installation.title'>Installation requirements</title>
73
74 <para>For installations requirements and instructions we refer to the
75 internal documentation of MoleCuilder, created via doxgen from the
76 source code.</para>
77 </section>
78
79 <section xml:id='license'>
80 <title xml:id='license.title'>License</title>
81
82 <para>As long as no other license statement is given, MoleCuilder is
83 free for user under the GNU Public License (GPL) Version 2 (see
84 <uri>www.gnu.de/documents/gpl-2.0.de.html</uri>).</para>
85 </section>
86
87 <section xml:id='disclaimer'>
88 <title xml:id='disclaimer.title'>Disclaimer</title>
89
90 <para>We quote section 11 from the GPLv2 license:</para>
91
92 <remark>Because the program is licensed free of charge, there is not
93 warranty for the program, to the extent permitted by applicable law.
94 Except when otherwise stated in writing in the copyright holders
95 and/or other parties provide the program "as is" without warranty of
96 any kind, either expressed or implied. Including, but not limited to,
97 the implied warranties of merchantability and fitness for a particular
98 purpose. The entire risk as to the quality and performance of the
99 program is with you. Should the program prove defective, you assume
100 the cost of all necessary servicing, repair, or correction.</remark>
101 </section>
102
103 <section xml:id='feedback'>
104 <title xml:id='feedback.title'>Feedback</title>
105
106 <para>If you encounter any bugs, errors, or would like to submit
107 feature request, please use the email address provided at the very
108 beginning of this user guide. The author is especially thankful for
109 any description of all related events prior to occurrence of the
110 error, saved "session scripts" (see below) and auxiliary files. Please
111 mind sensible space restrictions of email attachments.</para>
112 </section>
113
114 <section xml:id='notation'>
115 <title xml:id='notation.title'>Notation</title>
116
117 <para>We briefly explain a few specific wordings associated with the
118 program:</para>
119
120 <itemizedlist>
121 <listitem>
122 <para><emphasis>Action</emphasis> is a command that allows for
123 undoing and redoing, i.e. a single atomic procedure for
124 manipulating the molecular system.</para>
125 </listitem>
126
127 <listitem>
128 <para>Selection refers to a subsets from the set of instances of a
129 particular type, e.g. atoms.</para>
130 </listitem>
131
132 <listitem>
133 <para>Shape means a specific region of the domain that can be
134 described in the way of constructive geometry, i.e. as the
135 intersection, negation, and combination of primitives such as
136 spheres or cylinders.</para>
137 </listitem>
138 </itemizedlist>
139 </section>
140
141 <section xml:id='completeness'>
142 <title xml:id='completeness.title'>Completeness</title>
143
144 <para>This documentation takes quite some effort to write. Hence, the
145 described features and especially the actions herein are settled with
146 respect to their functionality, while newer features or actions are
147 probably missing. This should be a clear sign to you that these are
148 probably not safe to use yet. If you nonetheless require them and thus
149 should acquire some familiarity with the code itself. This suggests
150 changing to the developer documentation which is maintained along with
151 the source code with <productname>doxygen</productname>.</para>
152 </section>
153 </section>
154 </chapter>
155
156 <chapter>
157 <title>Features</title>
158
159 <para>Basically, <command>MoleCuilder</command> parses geometries from
160 files, manipulates them and stores them again in files. The manipulation
161 can be done either via a command-line interface or via the graphical user
162 interface.</para>
163
164 <section xml:id='concepts'>
165 <title xml:id='concepts.title'>Concepts</title>
166
167 <para>In general, we divide the molecular systems into three different
168 components or scales.</para>
169
170 <orderedlist>
171 <listitem>
172 <para>Atoms</para>
173
174 <para>Atoms are the undividable objects of the molecular systems.
175 They have an element <quote>Z</quote> and three coordinates
176 <quote>(x,y,z)</quote>.</para>
177 </listitem>
178
179 <listitem>
180 <para>Molecules</para>
181
182 <para>Molecules are bound conglomeration of atoms. They contain a
183 number of atoms and a specific center in the domain such that its
184 atoms are placed relative to this center. Also, they may have a
185 bounding box, i.e. a subdomain that contains all of the atoms in the
186 molecule.</para>
187
188 <para>Note that the molecular structure of the system, i.e. the
189 bonding graph, is determined by MoleCuilder and used to dissect the
190 system into distinct molecules automatically.</para>
191 </listitem>
192
193 <listitem>
194 <para>Clusters</para>
195
196 <para>Clusters are unbound conglomeration of atoms. Clusters serves
197 as groups of atoms for specific operations that would be to
198 restricted if they worked on just molecules.</para>
199 </listitem>
200
201 <listitem>
202 <para>Domain</para>
203
204 <para>The domain refers to the simulation domain. It is
205 parallelepiped in <inlineequation>
206 <m:math display="inline">
207 <m:mi>\mathbb{R}^3</m:mi>
208 </m:math>
209 </inlineequation>where either periodic, wrapped, or open boundary
210 conditions apply. The domain contains all atoms, i.e. the box
211 containing all atoms.</para>
212 </listitem>
213 </orderedlist>
214 </section>
215
216 <section xml:id='interfaces'>
217 <title xml:id='interfaces.title'>Interfaces</title>
218
219 <para>MoleCuilder has four different interfaces: Command-line, text
220 menu, graphical user interface, and python interface.</para>
221
222 <orderedlist>
223 <listitem>
224 <para>Command-Line</para>
225
226 <para>The command-line interface allows to use MoleCuilder
227 non-interactively via a terminal session. The program is executed by
228 expanding the shell command with a number of commands including all
229 required options that are executed one after the other. After
230 execution of the last command, the program quits. The command-line
231 interface usually works on a specific file that is given as input,
232 manipulated, analysed, ... via the sequence of commands and
233 eventually all changes are stored in the this file. Hence, the input
234 file acts as the state of the starting configuration that is
235 modified via MoleCuilder.</para>
236 </listitem>
237
238 <listitem>
239 <para>Text menu</para>
240
241 <para>The text-menu is similar to the command-line interface with
242 the exception that it allows for interactive sessions. Commands are
243 chosen from a text menu and executed directly after selection by the
244 user.</para>
245 </listitem>
246
247 <listitem>
248 <para>Graphical interface</para>
249
250 <para>The graphical interface is based on Qt. It features a full
251 graphical representation of the simulation domain with atoms and
252 their bonds. It allows manipulation in point&amp;click fashion.
253 Commands are selected from pull-down menus and dialogs are used to
254 query the user for all required parameters to such a command.</para>
255 </listitem>
256
257 <listitem>
258 <para>Python interface</para>
259
260 <para>The last interface is accessible only within the python
261 programming language. MoleCuilder can be loaded as a module and its
262 commands can be executed with either the python interpreter
263 interactively or via python scripts non-interactively. Note that
264 this allows auxiliary calculations to be performed in pythons whose
265 results may be used as parameters in subsequent commands.</para>
266 </listitem>
267 </orderedlist>
268 </section>
269
270 <section xml:id='fileformats'>
271 <title xml:id='fileformats.title'>Known File formats</title>
272
273 <para>We briefly the file formats MoleCuilder can parse and
274 store.</para>
275
276 <itemizedlist>
277 <listitem>
278 <para>XYZ, <filename>.xyz</filename> (simplest of all formats,
279 line-wise element and three coordinates with two line header, number
280 of lines and a comment line)</para>
281 </listitem>
282
283 <listitem>
284 <para><link xlink:href="http://www.mpqc.org/"><productname>MPQC
285 </productname></link>, <filename>.in</filename></para>
286 </listitem>
287
288 <listitem>
289 <para><link xlink:href="http://www.pdb.org/">PDB</link>, <filename>
290 .pdb</filename></para>
291 </listitem>
292
293 <listitem>
294 <para><productname>ESPACK</productname>, <filename>.conf</filename>
295 (electronic structure package by Institute for Numerical Simulation,
296 University of Bonn, code not in circulation)</para>
297 </listitem>
298
299 <listitem>
300 <para><link xlink:href="http://www.psicode.org/"><productname>PSI4
301 </productname></link>, <filename>.psi</filename></para>
302 </listitem>
303
304 <listitem>
305 <para><link xlink:href="http://www.tremolo-x.org/"><productname>
306 TREMOLO</productname></link>, <filename>.data</filename></para>
307 </listitem>
308
309 <listitem>
310 <para>XML, <filename>.xml</filename> (XML as read by
311 <link xlink:href="http://www.scafacos.org/">ScaFaCoS</link>
312 project)</para>
313 </listitem>
314 </itemizedlist>
315
316 <para>These are identified via their suffixes and can be converted from
317 one into another (with loss of all data not in the intersection of
318 stored properties of the two involved file formats).</para>
319 </section>
320 </chapter>
321
322 <chapter>
323 <title>Interfaces</title>
324
325 <para>In this chapter, we explain the intention and use of the four
326 interfaces.</para>
327
328 <para>We give the most extensive explanation of the command-line
329 interface, all subsequent interfaces are explained in highlighting their
330 differences with respect to the command-line interface. This is because
331 the command-line lends itself very well to representation in this textual
332 user guide. Although some images of the graphical interface are given
333 below, they would blow the size of the guide out of proportion.</para>
334
335 <para>In any case, you should make yourself familiar with at least one of
336 the interactive (text menu, GUI) and one of the non-interactive
337 (command-line, python) interfaces to use MoleCuilder to is full potential:
338 The interactive interface gives you the immediate feedback in constructing
339 "synthesis" (build) chains (of commands) for constructing your specific
340 molecular system in the computer. The non-interactive interface lends
341 itself to quick creation of related systems that differ only by specific
342 parameters you have modified in the script (command-line can be used in
343 shell scripts, python itself is a scripted language). Also, the
344 non-interactive interfaces are used for storing sessions which helps you
345 in documentation your experiments and lateron understanding of what has
346 been done.</para>
347
348 <section xml:id='command-line-interface'>
349 <title xml:id='command-line-interface.title'>Command-line interface</title>
350
351 <para>The command-line interface reads options and commands from the
352 command line and executes them sequentially. This may be for example:
353 Open an empty file, add 2 hydrogen atoms and add 1 oxygen atom, choose a
354 simulation box, fill the box with this given "filler" molecule, save the
355 file. This enables the use of MoleCuilder in simple script-files to
356 create a whole range of geometries that only differ in a few parameters
357 automatically.</para>
358
359 <para>Traditionally, <command>MoleCuilder</command> operates on a single
360 configuration file - the state - which may also store additional
361 information depending on the chosen file format such as parameters for
362 ab-initio computations. An example for the above procedure is given
363 below:</para>
364
365 <programlisting>
366 ./molecuilder \
367 -i sample.xyz \
368 --add-atom H \
369 --domain-position "0.,0.,0." \
370 ...
371 </programlisting>
372
373 <para>The first argument is the executable itself. Second, there is a
374 slew of arguments -- one per line split with a backslash telling the
375 shell that the line still continues -- consisting of the input action and
376 an arbitrarily named file <filename>sample.xyz</filename>, which may be
377 empty and whose file format is chosen by the given extension. The third
378 is the add-atom action following by an option that gives the position in
379 the domain where to add the "H"ydrogen atom. An action is always
380 introduced via a double hyphen and its full name (containing just
381 non-capital letters and hyphens) or a single hyphen and a single letter
382 for its shortform, e.g. -a for adding an atom to the system. It is
383 followed by a fixed number of options. Most of these have default values
384 and in this do not have to be specified. If not enough options are given
385 or invalid values have been entered, an error message is printed stating
386 the name of the first missing or invalid option value.</para>
387
388 <note>
389 <para>Note that not all action have shortforms and it is best practice
390 to have the full action name instead of its shortform to make the
391 command-line understable to you in years to come.</para>
392 </note>
393
394 <section xml:id='preliminaries'>
395 <title xml:id='preliminaries.title'>Preliminaries</title>
396
397 <para>Some preliminary remarks are in order which we have gathered
398 here on how these actions work in general.</para>
399
400 <para>Below we first delve into some details about secondary structure
401 such as selections, shapes, and randomization required to specify
402 subsets of atoms and molecules you wish to manipulate. Then, we have
403 ordered the subsequent details on the manipulation depending on the
404 scale they act upon - single atoms, multiple atoms organised as
405 molecules, and all atoms organised by their containing domain.</para>
406
407 <para>In the following we will always give a command to illustrate the
408 procedure but just the necessary parts, i.e. "..." implies to prepend
409 it with the executable and input command for a specific configuration
410 file, for storing the manipulated state of the molecular system. Note
411 that</para>
412
413 <programlisting>./molecuilder --help</programlisting>
414
415 <para>will always give you a list of all available actions and also a
416 brief explanation on how to properly enter values of a specific type,
417 e.g. an element, a vector, or a list of numbers. Details to a specific
418 action can be requested when its full name is known, e.g. for
419 "add-atom",</para>
420
421 <programlisting>./molecuilder --help --actionname add-atom</programlisting>
422
423 <para>which fills you in on each option to the action: its full name,
424 its expected type, and a possibly present default value, and a brief
425 description of the option.</para>
426
427 <para>An Action can be undone and redone, e.g. undo adding an atom as
428 follows,</para>
429
430 <programlisting>... --add-atom H --domain-position "0,0,0" --undo</programlisting>
431
432 <para>and redo as follows</para>
433
434 <programlisting>... --add-atom H --domain-position "0,0,0" --undo --redo</programlisting>
435
436 <para>With the non-interactive interfaces this may seem rather
437 superfluous but it comes in very handy in the interactive ones. Also
438 this tells you that actions are placed in a queue, i.e. a history,
439 that undo and redo manipulate.</para>
440 </section>
441
442 <section xml:id='fileparsers'>
443 <title xml:id='fileparsers.title'>File parsers</title>
444
445 <para>We have already given a list of all known file formats, see
446 <link linkend="fileformats">File formats</link>. Next, we explain how these
447 file formats are picked and manipulated.</para>
448
449 <section xml:id='fileparsers.parsing'>
450 <title xml:id='fileparsers.parsing.title'>Parsing files</title>
451
452 <para>We already discussed that the command-line interface works
453 state-based and hence you should supply it with a file to work
454 on.</para>
455
456 <programlisting>... --input water.data</programlisting>
457
458 <para>This will load all information, especially atoms with their
459 element and position, from the file <filename>water.data</filename>
460 into the state. All changes will eventually be stored to this file,
461 or to files with the prefix <filename>water</filename> and suffixes
462 of desired file formats, e.g. <filename>water.in</filename> if you
463 specified <productname>MPQC</productname>.</para>
464
465 <programlisting>... --load morewater.xyz</programlisting>
466
467 <para>This will load another file <filename>water.xyz</filename>,
468 however changes will still be written to files prefixed with
469 <filename>water</filename>. Note that now already two state files
470 will stored, <filename>water.data</filename> and
471 <filename>water.xyz</filename> as these two different file formats
472 have been used.</para>
473 </section>
474
475 <section xml:id='fileparsers.set-output'>
476 <title xml:id='fileparsers.set-output.tile'>Adding output file
477 formats</title>
478
479 <para>We already know that loading a file also picks a file format
480 by its suffix. We may add further file formats to which the state of
481 the molecular system on program exit.</para>
482
483 <programlisting>... --set-output mpqc tremolo</programlisting>
484
485 <para>This will store the final state of the molecular systems as
486 <productname>MPQC</productname> and as
487 <productname>TREMOLO</productname> configuration file.</para>
488 </section>
489
490 <section xml:id='fileparsers.output-as'>
491 <title xml:id='fileparsers.output-as.title'>Output the current
492 molecular system</title>
493
494 <para>This will store the current World, i.e. all its atoms, to a
495 given file, where the output format is determined from the file
496 suffix.</para>
497
498 <programlisting>... --output-as world.xyz</programlisting>
499 </section>
500
501 <section xml:id='fileparsers.save-selected-molecules'>
502 <title xml:id='fileparsers.save-selected-molecules.title'>Output
503 the current molecular system</title>
504
505 <para>This will store all atoms contained in the currently selected
506 molecules to file. This is different to "store-saturated-fragment"
507 as it will not saturate dangling bonds because only whole molecules,
508 i.e. whose bond graph is connected, will be stored.</para>
509
510 <programlisting>... --save-selected-molecules waters.pdb
511 </programlisting>
512 </section>
513
514 <section xml:id='fileparsers.bond-file'>
515 <title xml:id='fileparsers.bond-file.title'>Load extra bond
516 information</title>
517
518 <para>For some parsers bond information is stored not with the atoms
519 coordinates but in an extra file. This action parses such a file.</para>
520
521 <programlisting>... --bond-file water.dbond
522 </programlisting>
523 </section>
524 </section>
525
526 <section xml:id='selections'>
527 <title xml:id='selections.title'>Selections and unselections</title>
528
529 <para>In order to tell MoleCuilder on what subset of atoms a specific
530 Action is to be performed, there are <emphasis>selection
531 actions</emphasis>. Note that a selection per se does not change
532 anything in the state of the molecular system in any way.</para>
533
534 <para>Selections either work on atoms, on molecules, or on shapes
535 (this we explain lateron). A given selection is maintained from the
536 execution of the selection action to the end of program or until
537 modified by another selection applied on the same type (atom,
538 molecule, shape).</para>
539
540 <para>We only give a brief list on the kind of selections per type,
541 each action is executed either as follows, exemplified by selecting
542 all atoms.</para>
543
544 <programlisting>.... --select-all-atoms</programlisting>
545
546 <para>or, exemplified by unselecting the last molecule,</para>
547
548 <programlisting>... --unselect-molecule-by-order -1</programlisting>
549
550 <itemizedlist>
551 <listitem>
552 <para>Atoms</para>
553
554 <itemizedlist>
555 <listitem>
556 <para>All</para>
557 <programlisting>
558 ... --select-all-atoms
559 </programlisting>
560 </listitem>
561
562 <listitem>
563 <para>None</para>
564 <programlisting>
565 ... --unselect-all-atoms
566 </programlisting>
567 <programlisting>
568 ... --clear-atom-selection
569 </programlisting>
570 </listitem>
571
572 <listitem>
573 <para>Invert selection</para>
574 <programlisting>
575 ... --invert-atoms
576 </programlisting>
577 </listitem>
578
579 <listitem>
580 <para>By Element (all hydrogen atoms, all sulphur atoms,
581 ...)</para>
582 <programlisting>
583 ... --select-atom-by-element 1
584 </programlisting>
585 <programlisting>
586 ... --unselect-atom-by-element 1
587 </programlisting>
588 </listitem>
589
590 <listitem>
591 <para>By Id (atom with id 76)</para>
592 <programlisting>
593 ... --select-atom-by-id 76
594 </programlisting>
595 <programlisting>
596 ... --unselect-atom-by-id 76
597 </programlisting>
598 </listitem>
599
600 <listitem>
601 <para>By Order (the first (1), the second, ... the last
602 created(-1), the last but one)</para>
603 <programlisting>
604 ... --select-atom-by-order 1
605 </programlisting>
606 <programlisting>
607 ... --unselect-atom-by-order -2
608 </programlisting>
609 </listitem>
610
611 <listitem>
612 <para>By Shape (specific region of the domain)</para>
613 <programlisting>
614 ... --select-atom-inside-volume
615 </programlisting>
616 <programlisting>
617 ... --unselect-atoms-inside-volume
618 </programlisting>
619 </listitem>
620
621 <listitem>
622 <para>By Molecule (all atoms belonging to currently selected
623 molecules)</para>
624 <programlisting>
625 ... --select-molecules-atoms
626 </programlisting>
627 <programlisting>
628 ... --unselect-molecules-atoms
629 </programlisting>
630 </listitem>
631 </itemizedlist>
632 </listitem>
633
634 <listitem>
635 <para>Molecules</para>
636
637 <itemizedlist>
638 <listitem>
639 <para>All</para>
640 <programlisting>
641 ... --select-all-molecules
642 </programlisting>
643 </listitem>
644
645 <listitem>
646 <para>None</para>
647 <programlisting>
648 ... --unselect-all-molecules
649 </programlisting>
650 <programlisting>
651 ... --clear-molecule-selection
652 </programlisting>
653 </listitem>
654
655 <listitem>
656 <para>Invert selection</para>
657 <programlisting>
658 ... --invert-molecules
659 </programlisting>
660 </listitem>
661
662 <listitem>
663 <para>By Id (molecule with id 4)</para>
664 <programlisting>
665 ... --select-molecule-by-id 2
666 </programlisting>
667 <programlisting>
668 ... --unselect-molecule-by-id 2
669 </programlisting>
670 </listitem>
671
672 <listitem>
673 <para>By Order (first created molecule, second created
674 molecule, ...)</para>
675 <programlisting>
676 ... --select-molecule-by-order 2
677 </programlisting>
678 <programlisting>
679 ... --unselect-molecule-by-order -2
680 </programlisting>
681 </listitem>
682
683 <listitem>
684 <para>By Formula (molecule with H2O as formula)</para>
685 <programlisting>
686 ... --select-molecules-by-formula "H2O"
687 </programlisting>
688 <programlisting>
689 ... --unselect-molecules-by-formula "H2O"
690 </programlisting>
691 </listitem>
692
693 <listitem>
694 <para>By Name (molecule named "water4")</para>
695 <programlisting>
696 ... --select-molecules-by-name "water4"
697 </programlisting>
698 <programlisting>
699 ... --unselect-molecules-by-name "water4"
700 </programlisting>
701 </listitem>
702
703 <listitem>
704 <para>By Atom (all molecules for which at least one atom is
705 currently selected)</para>
706 <programlisting>
707 ... --select-atoms-molecules
708 </programlisting>
709 <programlisting>
710 ... --unselect-atoms-molecules
711 </programlisting>
712 </listitem>
713 </itemizedlist>
714 </listitem>
715
716 <listitem>
717 <para>Shapes</para>
718
719 <itemizedlist>
720 <listitem>
721 <para>All</para>
722 <programlisting>
723 ... --select-all-shapes
724 </programlisting>
725 </listitem>
726
727 <listitem>
728 <para>None</para>
729 <programlisting>
730 ... --unselect-all-shapes
731 </programlisting>
732 </listitem>
733
734 <listitem>
735 <para>By Name (shape name "sphere1")</para>
736 <programlisting>
737 ... --select-shape-by-name "sphere1"
738 </programlisting>
739 <programlisting>
740 ... --unselect-shape-by-name "sphere1"
741 </programlisting>
742 </listitem>
743 </itemizedlist>
744 </listitem>
745
746 </itemizedlist>
747
748 <remark>Note that an unselected instance (e.g. an atom) remains
749 unselected upon further unselection and vice versa with
750 selection.</remark>
751
752 <para>These above selections work then in conjunction with other
753 actions and make them very powerful, e.g. you can remove all atoms
754 inside a sphere by a selecting the spherical shape and subsequently
755 selecting all atoms inside the shape and then removing them.</para>
756 </section>
757
758 <section xml:id='shapes'>
759 <title xml:id='shapes.title'>Shapes</title>
760
761 <para>Shapes are specific regions of the domain. There are just a few
762 so-called <emphasis>primitive</emphasis> shapes such as cuboid,
763 sphere, cylinder, the whole domain, none of it. However, these can be
764 combined via boolean operations such as and, or, and not. This
765 approach is called <emphasis>constructive geometry</emphasis>. E.g. by
766 combining a sphere with the negated (not) of a smaller sphere, we
767 obtain a spherical surface of specific thickness.</para>
768
769 <section xml:id='shapes.create-shape'>
770 <title xml:id='shapes.create-shape.title'>Creating shapes</title>
771
772 <para>Primitive shapes can be created as follows,</para>
773
774 <programlisting>
775 ... --create-shape \
776 --shape-type sphere \
777 --shape-name "sphere1" \
778 --stretch "2,2,2" \
779 --translation "5,5,5"
780 </programlisting>
781
782 <para>This will create a sphere of radius 2 (initial radius is 1)
783 with name "sphere1" that is centered at (5,5,5). Other primitives at
784 cuboid and cylinder, where a rotation can be specified as
785 follows.</para>
786
787 <programlisting>
788 ... --create-shape \
789 --shape-type cuboid \
790 --shape-name "box" \
791 --stretch "1,2,2" \
792 --translation "5,5,5" \
793 --angle-x "90"
794 </programlisting>
795 </section>
796
797 <section xml:id='shapes.combine-shapes'>
798 <title xml:id='shapes.combine-shapes.title'>Combining shapes</title>
799
800 <para>Any two shapes can be combined by boolean operations as follows</para>
801
802 <programlisting>
803 ... --combine-shapes \
804 --shape-name "combinedshape" \
805 --shape-op "AND" \
806 </programlisting>
807
808 <para>This will combine two currently selected shapes vis the "AND" operation
809 and create a new shape called "combinedshape". Note that the two old shapes
810 are still present after this operation. We briefly explain each operation:
811 </para>
812 <itemizedlist>
813 <listitem>
814 <para><emphasis>AND</emphasis> combines two currently selected shapes
815 into a new shape that only consists of the volume where shapes overlap.</para>
816 </listitem>
817 <listitem>
818 <para><emphasis>OR</emphasis> combines two currently selected shapes
819 into a new shape that consists of all the volume where that either shape
820 occupies.</para>
821 </listitem>
822 <listitem>
823 <para><emphasis>NOT</emphasis> creates the inverse to a currently selected
824 single shape that contains the volume with respect to the simulation domain
825 that the present one does not.</para>
826 </listitem>
827 </itemizedlist>
828 </section>
829
830 <section xml:id='shapes.remove-shape'>
831 <title xml:id='shapes.remove-shape.title'>Removing shapes</title>
832
833 <para>Removing a shape is as simple as removing an atom.</para>
834
835 <programlisting>... --remove-shape </programlisting>
836
837 <para>This removes the currently selected shapes.</para>
838 </section>
839
840 <section xml:id='shapes.manipulation'>
841 <title xml:id='shapes.manipulation.title'>Manipulating shapes</title>
842
843 <para>Shapes can be stretched, scaled, rotated, and translated to
844 modify primitives or combined primitive shapes. As you have seen
845 this manipulation could have occurred already at creation but also
846 later on. We just the list examples of the various manipulations
847 below, each works on the currently selected shapes.</para>
848
849 <programlisting>
850 ... --stretch-shapes "1,1,2" \
851 --stretch-center "5,5,5"
852 </programlisting>
853
854 <para>This stretches the shapes relative to the center at (5,5,5)
855 (default is origin) by a factor of 2 in the z direction.</para>
856
857 <programlisting>
858 ... --rotate-shapes \
859 --center "10,2,2" \
860 --angle-x 90 \
861 --angle-y 0 \
862 --angle-z 0
863 </programlisting>
864
865 <para>This way all selected shapes are rotated by 90 degrees around
866 the x axis with respect to the center at (10,2,2).</para>
867
868 <programlisting>... --translate-shapes "5,0,0" </programlisting>
869
870 <para>This translates all selected shapes by 5 along the x
871 axis.</para>
872 </section>
873 </section>
874
875 <section xml:id='randomization'>
876 <title xml:id='randomization.title'>Randomization</title>
877
878 <para>Some operations require randomness as input, e.g. when filling a
879 domain with molecules these may be randomly translated and rotated.
880 Random values are obtained by a random number generator that consists
881 of two parts: engine and distribution. The engine yields a uniform set
882 of random numbers in a specific interval, the distribution modifies
883 them, e.g. to become gaussian.</para>
884
885 <para>There are several Actions to modify the specific engine and
886 distribution and their parameters. One example usage is that with the
887 aforementioned filling of the domain molecules are rotated randomly.
888 If you specify a random number generator that randomly just spills out
889 values 0,1,2,3, then the randomness is just the orientation of the
890 molecule with respect to a specific axis: x,y,z. (rotation is at most
891 360 degrees and 0,1,2,3 act as divisor, hence rotation angle is always
892 a multiple of 90 degrees).</para>
893
894 <programlisting>
895 ... --set-random-number-distribution "uniform_int" \
896 --random-number-distribution-parameters "p=1"
897 </programlisting>
898
899 <para>This changes the distribution to "uniform_int", i.e. integer
900 numbers distributed uniformly.</para>
901
902 <programlisting>
903 ... --set-random-number-engine "mt19937" \
904 --random-numner-engine-parameters "seed=10"
905 </programlisting>
906
907 <para>Specifying the seed allows you to obtain the same sequence of
908 random numbers for testing purposes.</para>
909 </section>
910
911 <section xml:id='atoms'>
912 <title xml:id='atoms.title'>Manipulate atoms</title>
913
914 <para>Here, we explain in detail how to add, remove atoms, change its
915 element type, scale the bond in between or measure the bond length or
916 angle.</para>
917
918 <section xml:id='atoms.add-atom'>
919 <title xml:id='atoms.add-atom.title'>Adding atoms</title>
920
921 <para>Adding an atom to the domain requires the element of the atom
922 and its coordinates as follows,</para>
923
924 <programlisting>
925 ... --add-atom O \
926 --domain-position "2.,3.,2.35"
927 </programlisting>
928
929 <para>where the element is given via its chemical symbol and the
930 vector gives the position within the domain</para>
931 </section>
932
933 <section xml:id='atoms.remove-atom'>
934 <title xml:id='atoms.remove-atom.title'>Removing atoms</title>
935
936 <para>Removing atom(s) does not need any option and operates on the
937 currently selected ones.</para>
938
939 <programlisting>... --remove-atom</programlisting>
940 </section>
941
942 <section xml:id='atoms.translate-atom'>
943 <title xml:id='atoms.translate-atom.title'>Translating atoms</title>
944
945 <para>In order to translate the current selected subset of atoms you
946 specify a translation vector.</para>
947
948 <programlisting>
949 ... --translate-atoms "-1,0,0" \
950 --periodic 0
951 </programlisting>
952
953 <para>This translate all atoms by "-1" along the x axis and does not
954 mind the boundary conditions, i.e. might shift atoms outside of the
955 domain.</para>
956 </section>
957
958 <section xml:id='atoms.change-element'>
959 <title xml:id='atoms.change-element.title'>Changing an atoms element
960 </title>
961
962 <para>You can easily turn lead or silver into gold, by selecting the
963 silver atom and calling the change element action.</para>
964
965 <programlisting>... --change-element Au</programlisting>
966 </section>
967 </section>
968
969 <section xml:id='bond'>
970 <title xml:id='bond.title'>Bond-related manipulation</title>
971
972 <para>Atoms can also be manipulated with respect to the bonds.
973 <remark>Note that with bonds we always mean covalent bonds.</remark>
974 First, we explain how to modify the bond structure itself, then we go
975 in the details of using the bond information to change bond distance
976 and angles.</para>
977
978 <section xml:id='bond.create-adjacency'>
979 <title xml:id='bond.create-adjacency.title'>Creating a bond graph
980 </title>
981
982 <para>In case you have loaded a configuration file with no bond
983 information, e.g. XYZ, it is necessary to create the bond graph.
984 This is done by a heuristic distance criterion.</para>
985
986 <programlisting>... --create-adjacency</programlisting>
987
988 <para>This uses by default a criterion based on van-der-Waals radii,
989 i.e. if we look at two atoms indexed by "a" and "b"</para>
990
991 <equation>
992 <title>V(a) + V(b) - \tau &lt; R_{ab} &lt; V(a) + V(b) +
993 \tau</title>
994
995 <m:math display="block">
996 <m:mi>where V(.) is the lookup table for the radii for a given
997 element and \tau is a threshold value, set to 0.4.</m:mi>
998 </m:math>
999 </equation>
1000
1001 <para>As a second option, you may load a file containing bond table
1002 information.</para>
1003
1004 <programlisting>... --bond-table table.dat</programlisting>
1005
1006 <para>which would parse a file <filename>table.dat</filename> for a
1007 table giving typical bond distances between elements a and b. These
1008 are used in the above criterion as <inlineequation>
1009 <m:math display="inline">
1010 <m:mi>V(a,b)</m:mi>
1011 </m:math>
1012 </inlineequation> in place of <inlineequation>
1013 <m:math display="inline">
1014 <m:mi>V(a)+V(b)</m:mi>
1015 </m:math>
1016 </inlineequation>.</para>
1017 </section>
1018
1019 <section xml:id='bond.destroy-adjacency'>
1020 <title xml:id='bond.destroy-adjacency.title'>Destroying the bond
1021 graph</title>
1022
1023 <para>The bond graph can be removed completely (and all bonds along
1024 with it).</para>
1025
1026 <programlisting>... --destroy-adjacency</programlisting>
1027 </section>
1028
1029 <section xml:id='bond.correct-bonddegree'>
1030 <title xml:id='bond.correct-bonddegree.title'>Correcting bond
1031 degrees</title>
1032
1033 <para>Typically, after loading an input file bond information, e.g.
1034 a PDB file, the bond graph is complete but we lack the weights. That
1035 is we do not know whether a bond is single, double, triple, ...
1036 This action corrects the bond degree by enforcing charge neutrality
1037 among the connected atoms.
1038 </para>
1039 <para>This action is in fact quadratically scaling in the number of
1040 atoms. Hence, for large systems this may take longer than expected.
1041 </para>
1042
1043 <programlisting>... --correct-bonddegree</programlisting>
1044 </section>
1045
1046 <section xml:id='bond.depth-first-search'>
1047 <title xml:id='bond.depth-first-search.title'>Analysing a bond
1048 graph</title>
1049
1050 <para>You can perform a depth-first search analysis that reveals
1051 cycles and other graph-related information.</para>
1052
1053 <programlisting>... --depth-first-search</programlisting>
1054 </section>
1055
1056 <section xml:id='bond.subgraph-dissection'>
1057 <title xml:id='bond.subgraph-dissection.title'>Dissecting the
1058 molecular system into molecules</title>
1059
1060 <para>The bond graph information can be used to recognize the
1061 molecule within the system. Imagine you have just loaded a PDB file
1062 containing bond information. However, initially all atoms are dumped
1063 into the same molecule. Before you can start manipulating, you need
1064 to dissect the system into individual molecules. Note that this is
1065 just structural information and does not change the state of the
1066 system.</para>
1067
1068 <programlisting>... --subgraph-dissection</programlisting>
1069
1070 <para>This analyses the bond graph and splits the single molecule up
1071 into individual (new) ones that each contain a single connected
1072 subgraph, hence the naming.</para>
1073 </section>
1074
1075 <section xml:id='bond.update-molecules'>
1076 <title xml:id='bond.update-molecules.title'>Updating molecule
1077 structure</title>
1078
1079 <para>When the bond information has changed, new molecules might
1080 have formed, this action updates all the molecules by scanning
1081 the connectedness of the bond grapf of the molecular system.
1082 </para>
1083
1084 <programlisting>... --update-molecules</programlisting>
1085 </section>
1086
1087 <section xml:id='bond.add-bond'>
1088 <title xml:id='bond.add-bond.title'>Adding a bond manually</title>
1089
1090 <para>When the automatically created adjacency or bond graph
1091 contains faulty bonds or lacks some, you can add them manually.
1092 First, you must have selected two atoms.</para>
1093
1094 <programlisting>... --add-bond</programlisting>
1095 </section>
1096
1097 <section xml:id='bond.remove-bond'>
1098 <title xml:id='bond.remove-bond.title'>Removing a bond manually
1099 </title>
1100
1101 <para>In much the same way as adding a bond, you can also remove a
1102 bond.</para>
1103
1104 <programlisting>... --remove-bond</programlisting>
1105 </section>
1106
1107 <section xml:id='bond.save-bonds'>
1108 <title xml:id='bond.save-bonds.title'>Saving bond information
1109 </title>
1110
1111 <para>Bond information can be saved to a file in <link
1112 xlink:href="http://www.molecuilder.com/"><productname>TREMOLO
1113 </productname></link>'s dbond style.</para>
1114
1115 <programlisting>... --save-bonds system.dbonds</programlisting>
1116
1117 <para>Similarly is the following Action which saves the bond
1118 information as a simple list of one atomic id per line and in
1119 the same line, separated by spaces, the ids of all atoms connected
1120 to it.</para>
1121
1122 <programlisting>... --save-adjacency system.adj</programlisting>
1123
1124 </section>
1125
1126 <section xml:id='bond.stretch-bond'>
1127 <title xml:id='bond.stretch-bond.title'>Stretching a bond</title>
1128
1129 <para>Stretching a bond actually refers to translation of the
1130 associated pair of atoms. However, this action will keep the rest of
1131 the molecule to which both atoms belong to invariant as well.</para>
1132
1133 <programlisting>... --stretch-bond 1.2</programlisting>
1134
1135 <para>This scales the original bond distance to the new bond
1136 distance 1.2, shifting the right hand side and the left hand side of
1137 the molecule accordingly.</para>
1138
1139 <warning>
1140 <para>this fails with aromatic rings (but you can always
1141 undo).</para>
1142 </warning>
1143 </section>
1144
1145 <section xml:id='bond.change-bond-angle'>
1146 <title xml:id='bond.change-bond-angle.title'>Changing a bond angle
1147 </title>
1148
1149 <para>In the same way as stretching a bond, you can change the angle
1150 in between two bonds. This works if exactly three atoms are selected
1151 and two pairs are bonded.</para>
1152
1153 <programlisting>... --change-bond-angle 90</programlisting>
1154
1155 <para>This will change the angle from its value to 90 degree by
1156 translating the two outer atoms of this triangle (the atom connected
1157 to both others is the axis of the rotation).</para>
1158 </section>
1159 </section>
1160
1161 <section xml:id='molecule'>
1162 <title xml:id='molecule.title'>Manipulate molecules</title>
1163
1164 <para>Molecules are agglomerations of atoms that are bonded. Hence,
1165 the actions working on molecules differ from those working on atoms.
1166 Joining two molecules can only be accomplished by adding a bond in
1167 between, and in the reverse fashion splitting a molecule by removing
1168 all bonds in between. Actions below mostly deal with copying
1169 molecules. Removing of molecules is done via selecting the molecule's
1170 atoms and removing them, which removes the atoms as well.</para>
1171
1172 <note>
1173 <para>Initially when you load a file via the input action all atoms
1174 are placed in a single molecule despite any present bond
1175 information, see <link linkend="fragmentation">Dissecting the
1176 molecular system into molecules</link></para>
1177 </note>
1178
1179 <section xml:id='molecule.copy'>
1180 <title xml:id='molecule.copy.title'>Copy molecules</title>
1181
1182 <para>A basic operation is to duplicate a molecule. This works on a
1183 single, currently selected molecule. Afterwards, we elaborate on a
1184 more complex manner of copying, filling a specific shape with
1185 molecules.</para>
1186
1187 <programlisting>
1188 ... --copy-molecule \
1189 --position "10,10,10"
1190 </programlisting>
1191
1192 <para>This action copies the selected molecule and inserts it at the
1193 position (10,10,10) in the domain with respect to the molecule's
1194 center. In effect, it copies all the atoms of the original molecule
1195 and adds new bonds in between these copied atoms such that their
1196 bond subgraphs are identical.</para>
1197 </section>
1198
1199 <section xml:id='molecule.change-molname'>
1200 <title xml:id='molecule.change-molname.title'>Change a molecules
1201 name</title>
1202
1203 <para>You can change the name of a molecule which is important for
1204 selection.</para>
1205
1206 <programlisting>... -change-molname "test</programlisting>
1207
1208 <para>This will change the name of the (only) selected molecule to
1209 "test".</para>
1210
1211 <para>Connected with this is the default name an unknown molecule
1212 gets.</para>
1213
1214 <programlisting>... --default-molname test</programlisting>
1215
1216 <para>This will change the default name of a molecule to
1217 "test".</para>
1218
1219 <note>
1220 <para>Note that a molecule loaded from file gets the filename
1221 (without suffix) as its name.</para>
1222 </note>
1223 </section>
1224
1225 <section xml:id='molecule.rotate-around-self'>
1226 <title xml:id='molecule.rotate-around-self.title'>Rotate around self
1227 </title>
1228
1229 <para>You can rotate a molecule around its own axis.</para>
1230
1231 <programlisting>
1232 ... --rotate-around-self "90" \
1233 --axis "0,0,1"
1234 </programlisting>
1235
1236 <para>This rotates the molecule around the z axis by 90 degrees as
1237 if the origin were at its center of origin.</para>
1238 </section>
1239
1240 <section xml:id='molecule.rotate-around-origin'>
1241 <title xml:id='molecule.rotate-around-origin.title'>Rotate around
1242 origin</title>
1243
1244 <para>In the same manner the molecule can be rotated around an
1245 external origin.</para>
1246
1247 <programlisting>
1248 ... --rotate-around-origin 90 \
1249 --position "0,0,1"\
1250 </programlisting>
1251
1252 <para>This rotates the molecule around an axis from the origin to
1253 the position (0,0,1), i.e. around the z axis, by 90 degrees.</para>
1254 </section>
1255
1256 <section xml:id='molecule.rotate-to-principal-axis-system'>
1257 <title xml:id='molecule.rotate-to-principal-axis-system.title'>
1258 Rotate to principal axis system</title>
1259
1260 <para>The principal axis system is given by an ellipsoid that mostly
1261 matches the molecules shape. The principal axis system can be just
1262 simply determined by</para>
1263
1264 <programlisting>... --principal-axis-system</programlisting>
1265
1266 <para>To rotate the molecule around itself to align with this system
1267 do as follows.</para>
1268
1269 <programlisting>... --rotate-to-principal-axis-system "0,0,1"
1270 </programlisting>
1271
1272 <para>This rotates the molecule in such a manner that the ellipsoids
1273 largest axis is aligned with the z axis. <remark>Note that "0,0,-1"
1274 would align anti-parallel.</remark></para>
1275 </section>
1276
1277 <section xml:id='molecule.verlet-integration'>
1278 <title xml:id='molecule.verlet-integration.title'>Perform verlet
1279 integration</title>
1280
1281 <para>Atoms not only have a position, but each instance also stores
1282 velocity and a force vector. These can be used in a velocity verlet
1283 integration step. Velocity verlet is a often employed time
1284 integration algorithm in molecular dynamics simulations.</para>
1285
1286 <programlisting>
1287 ... --verlet-integration \
1288 --deltat 0.1 \
1289 --keep-fixed-CenterOfMass 0
1290 </programlisting>
1291
1292 <para>This will integrate with a timestep of <inlineequation>
1293 <m:math display="inline">
1294 <m:mi>\Delta_t = 0.1</m:mi>
1295 </m:math>
1296 </inlineequation>and correcting forces and velocities such that
1297 the sum over all atoms is zero.</para>
1298 </section>
1299
1300 <section xml:id='molecule.force-annealing'>
1301 <title xml:id='molecule.force-annealing.title'>Anneal the atomic
1302 forces</title>
1303
1304 <para>This will shift the atoms in a such a way as to decrease (or
1305 anneal) the forces acting upon them.</para>
1306
1307 <para>Forces may either be already present for the set of atoms by
1308 some other way (e.g. from a prior fragmentation calculation) or,
1309 as shown here, from an external file. We anneal the forces for
1310 one step with a certain initial step width of 0.5 atomic time
1311 units and do not create a new timestep for each optimization
1312 step.</para>
1313
1314 <programlisting>
1315 ... --force-annealing \
1316 --forces-file test.forces \
1317 --deltat 0.5 \
1318 --steps 1 \
1319 --output-every-step 0
1320 </programlisting>
1321 </section>
1322
1323 <section xml:id='molecule.linear-interpolation-of-trajectories'>
1324 <title xml:id='molecule.linear-interpolation-of-trajectories.title'>
1325 Linear interpolation between configurations</title>
1326
1327 <para>This is similar to verlet-integration, only that it performs
1328 a linear integration irrespective of the acting atomic forces.
1329 </para>
1330
1331 <para>The following call will produce an interpolation between the
1332 configurations in time step 0 and time step 1 with 98 intermediate
1333 steps, i.e. current step 1 will end up in time step 99. In this
1334 case an idential mapping is used to associated atoms in start and
1335 end configuration.</para>
1336
1337 <programlisting>
1338 ... --linear-interpolation-of-trajectories \
1339 --start-step 0 \
1340 --end-step 1 \
1341 --interpolation-steps 100 \
1342 --id-mapping 1
1343 </programlisting>
1344 </section>
1345 </section>
1346
1347 <section xml:id='domain'>
1348 <title xml:id='domain.title'>Manipulate domain</title>
1349
1350 <para>Here, we elaborate on how to duplicate all the atoms inside the
1351 domain, how the scale the coordinate system, how to center the atoms
1352 with respect to certain points, how to realign them by given
1353 constraints, how to mirror and most importantly how to specify the
1354 domain.</para>
1355
1356 <section xml:id='domain.change-box'>
1357 <title xml:id='domain.change-box.title'>Changing the domain</title>
1358
1359 <para>The domain is specified by a symmetric 3x3 matrix. The
1360 eigenvalues (diagonal entries in case of a diagonal matrix) give the
1361 length of the edges, additional entries specify transformations of
1362 the box such that it becomes a more general parallelepiped.</para>
1363
1364 <programlisting>... change-box "20,0,20,0,0,20"</programlisting>
1365
1366 <para>As the domain matrix is symmetric, six values suffice to fully
1367 specify it. We have to give the six components of the lower diagonal
1368 matrix. Here, we change the box to a cuboid of equal edge length of
1369 20.</para>
1370 </section>
1371
1372 <section xml:id='domain.bound-in-box'>
1373 <title xml:id='domain.bound-in-box.title'>Bound atoms inside box
1374 </title>
1375
1376 <para>The following applies the current boundary conditions to the
1377 atoms. In case of periodic or wrapped boundary conditions the atoms
1378 will be periodically translated to be inside the domain
1379 again.</para>
1380
1381 <programlisting>... --bound-in-box</programlisting>
1382 </section>
1383
1384 <section xml:id='domain.center-in-box'>
1385 <title xml:id='domain.center-in-box.title'>Center atoms inside the
1386 domain</title>
1387
1388 <para>This is a combination of changing the box and bounding the
1389 atoms inside it.</para>
1390
1391 <programlisting>... --center-in-box "20,0,20,0,0,"</programlisting>
1392 </section>
1393
1394 <section xml:id='domain.center-edge'>
1395 <title xml:id='domain.center-edge.title'>Center the atoms at an
1396 edge</title>
1397
1398 <para>MoleCuilder can calculate the minimum box (parallel to the
1399 cardinal axis) all atoms would fit in and translate all atoms in
1400 such a way that the lower, left, front edge of this minimum is at
1401 the origin (0,0,0).</para>
1402
1403 <programlisting>... --center-edge</programlisting>
1404 </section>
1405
1406 <section xml:id='domain.add-empty-boundary'>
1407 <title xml:id='domain.add-empty-boundary.title'>Extending the
1408 boundary by adding an empty boundary</title>
1409
1410 <para>In the same manner as above a minimum box is determined that
1411 is subsequently expanded by a boundary of the given additional
1412 thickness. This applies to either side.</para>
1413
1414 <programlisting>... --add-empty-boundary "5,5,5"</programlisting>
1415
1416 <para>This will enlarge the box in such a way that every atom is at
1417 least by a distance of 5 away from the boundary of the domain (in
1418 the infinity norm).</para>
1419 </section>
1420
1421 <section xml:id='domain.scale-box'>
1422 <title xml:id='domain.scale-box.title'>Scaling the box</title>
1423
1424 <para>You can enlarge the domain by simple scaling factors.</para>
1425
1426 <programlisting>... --scale-box "1,1,2.5"</programlisting>
1427
1428 <para>Here, the domain is stretched in the z direction by a factor
1429 of 2.5.</para>
1430 </section>
1431
1432 <section xml:id='domain.repeat-box'>
1433 <title xml:id='domain.repeat-box.title'>Repeating the box</title>
1434
1435 <para>Under periodic boundary conditions often only the minimal
1436 periodic cell is stored. If need be, multiple images can be easily
1437 added to the current state of the system by repeating the box, i.e.
1438 the box along with all contained atoms is copied and placed
1439 adjacently.</para>
1440
1441 <programlisting>... --repeat-box "1,2,2"</programlisting>
1442
1443 <para>This will create a 2x2 grid of the current domain, replicating
1444 it along the y and z direction along with all atoms. If the domain
1445 contained before a single water molecule, we will now have four of
1446 them.</para>
1447 </section>
1448
1449 <section xml:id='domain.set-boundary-conditions'>
1450 <title xml:id='domain.set-boundary-conditions.title'>Change the
1451 boundary conditions</title>
1452
1453 <para>Various boundary conditions can be applied that affect how
1454 certain Actions work, e.g. translate-atoms. We briefly give a list
1455 of all possible conditions:</para>
1456 <itemizedlist>
1457 <listitem>
1458 <para>Wrap</para>
1459 <para>Coordinates are wrapped to the other side of the domain,
1460 i.e. periodic boundary conditions.</para>
1461 </listitem>
1462 <listitem>
1463 <para>Bounce</para>
1464 <para>Coordinates are bounced back into the domain, i.e. they
1465 are reflected from the domain walls.</para>
1466 </listitem>
1467 <listitem>
1468 <para>Ignore</para>
1469 <para>No boundary conditions apply.</para>
1470 </listitem>
1471 </itemizedlist>
1472
1473 <para>The following will set the boundary conditions to periodic.
1474 </para>
1475
1476 <programlisting>... --set-boundary-conditions "Wrap Wrap Wrap"
1477 </programlisting>
1478 </section>
1479 </section>
1480
1481 <section xml:id='filling'>
1482 <title xml:id='filling.title'>Filling</title>
1483
1484 <para>Filling a specific part of the domain with one type of
1485 molecule, e.g. a water molecule, is the more advanced type of
1486 copying of a molecule (see copy-molecule) and we need several
1487 ingredients.</para>
1488
1489 <para>First, we need to specify the part of the domain. This is done
1490 via a shape. We have already learned how to create and select
1491 shapes. The currently selected shape will serve as the fill-in
1492 region.</para>
1493
1494 <para>Then, they are three types of filling, domain, volume, and
1495 surface. The domain is filled with a regular grid of fill-in points.
1496 A volume and a surface are filled by a set of equidistant points
1497 distributed within the volume or on the surface of a selected
1498 shape. Molecules will then be copied and translated points when they
1499 "fit".</para>
1500
1501 <para>The filler procedure checks each fill-in point whether there
1502 is enough space for the molecule. To know this, we require a cluster
1503 instead of a molecule. This is just a general agglomeration of atoms
1504 combined with a bounding box that contains all of them and serves as
1505 its minimal volume. I.e. we need this cluster. For this a number of
1506 atoms have to be specified, the minimum bounding box is generated
1507 automatically.</para>
1508
1509 <para>On top of that molecules can be selected whose volume is
1510 additionally excluded from the filling region.</para>
1511
1512 <section xml:id='filling.fill-regular-grid'>
1513 <title xml:id='filling.fill-regular-grid.title'>Fill the domain with
1514 molecules</title>
1515
1516 <para>The call to fill the volume of the selected shape with the
1517 selected atoms is then as follows,</para>
1518
1519 <programlisting>
1520 ... --fill-regular-grid \
1521 --mesh-size "5,5,5" \
1522 --mesh-offset ".5,.5,.5" \
1523 --DoRotate 1 \
1524 --min-distance 1. \
1525 --random-atom-displacement 0.05 \
1526 --random-molecule-displacement 0.4 \
1527 --tesselation-radius 2.5
1528 </programlisting>
1529
1530 <para>This generates a grid of 5x5x5 fill-in points within the
1531 sphere that are offset such as to lay centered within the sphere
1532 (offset per axis in [0,1]). Additionally, each molecule is rotated
1533 by random rotation matrix, each atom is translated randomly by at
1534 most 0.05, each molecule's center at most by 0.4. The selected
1535 molecules' volume is obtained by tesselating their surface and
1536 excluding every fill-in point whose distance to this surface does
1537 not exceed 1. We refer to our comments in
1538 <link linkend="randomization">Randomization</link>for details on
1539 changing the randomness.</para>
1540 </section>
1541
1542 <section xml:id='filling.fill-volume'>
1543 <title xml:id='filling.fill-volume.title'>Fill a shape's volume
1544 with molecules</title>
1545
1546 <para>More specifically than filling the whole domain with molecules,
1547 maybe except areas where other molecules already are, we also can
1548 fill only specific parts by selecting a shape and calling upon
1549 the following action:</para>
1550
1551 <programlisting>
1552 ... --fill-volume \
1553 --counts 12 \
1554 --min-distance 1. \
1555 --DoRotate 1 \
1556 --random-atom-displacement 0.05 \
1557 --random-molecule-displacement 0.4 \
1558 --tesselation-radius 2.5
1559 </programlisting>
1560 </section>
1561
1562 <section xml:id='filling.fill-surface'>
1563 <title xml:id='filling.fill-surface.title'>Fill a shape's surface
1564 with molecules</title>
1565
1566 <para>Filling a surface is very similar to filling its volume.
1567 Again the number of equidistant points has to be specified.
1568 However, randomness is constrained as the molecule is be aligned
1569 with the surface in a specific manner. The alignment axis refers
1570 to the largest principal axis of the filler molecule and will
1571 be aligned parallel to the surface normal at the fill-in point.
1572 </para>
1573
1574 <para>The call below fill in 12 points with a minimum distance
1575 between the instances of 1 angstroem. We allow for certain random
1576 displacements and use the z-axis for aligning the molecules on
1577 the surface.</para>
1578
1579 <programlisting>
1580 ... --fill-surface \
1581 --counts 12 \
1582 --min-distance 1. \
1583 --DoRotate 1 \
1584 --random-atom-displacement 0.05 \
1585 --random-molecule-displacement 0.4 \
1586 --Alignment-Axis "0,0,1"
1587 </programlisting>
1588 </section>
1589
1590 <section xml:id='filling.suspend-in-molecule'>
1591 <title xml:id='filling.suspend-in-molecule.title'>Suspend in molecule
1592 </title>
1593
1594 <para>Add a given molecule in the simulation domain in such a way
1595 that the total density is as desired.</para>
1596
1597 <programlisting>
1598 ... --suspend-in-molecule 1.
1599 </programlisting>
1600 </section>
1601
1602 <section xml:id='filling.fill-molecule'>
1603 <title xml:id='filling.fill-molecule.title'>Fill in molecule</title>
1604
1605 <para>This action will be soon be removed.</para>
1606
1607 <programlisting>
1608 ... --fill-molecule
1609 </programlisting>
1610 </section>
1611
1612 <section xml:id='filling.fill-void'>
1613 <title xml:id='filling.fill-void.title'>Fill void with molecule
1614 </title>
1615
1616 <para>This action will be soon be removed.</para>
1617
1618 <programlisting>
1619 ... --fill-void
1620 </programlisting>
1621 </section>
1622 </section>
1623
1624 <section xml:id='analysis'>
1625 <title xml:id='analysis.title'>Analysis</title>
1626
1627 <para></para>
1628
1629 <section xml:id='analysis.pair-correlation'>
1630 <title xml:id='analysis.pair-correlation.title'>Pair Correlation
1631 </title>
1632
1633 <para>Pair correlation checks for two given elements on the typical
1634 distance they can be found with respect to one another. E.g. for
1635 water one might be interested what is the typical distance for
1636 hydrogen and oxygen atoms.</para>
1637
1638 <programlisting>
1639 ... --pair-correlation \
1640 --elements 1 8 \
1641 --bin-start 0 \
1642 --bin-width 0.7 \
1643 --bin-end 10 \
1644 --output-file histogram.dat \
1645 --bin-output-file bins.dat \
1646 --periodic 0
1647 </programlisting>
1648
1649 <para>This will compile a histogram for the interval [0,10] in steps
1650 of 0.7 and increment a specific bin if the distance of one such pair
1651 of a hydrogen and an oxygen atom can be found within its distance
1652 interval.</para>
1653 </section>
1654
1655 <section xml:id='analysis.dipole-correlation'>
1656 <title xml:id='analysis.dipole-correlation.title'>Dipole Correlation
1657 </title>
1658
1659 <para>The dipole correlation is similar to the pair correlation, only
1660 that it correlates the orientation of dipoles in the molecular
1661 system with one another.</para>
1662 <para>Note that the dipole correlation works on the currently
1663 selected molecules, e.g. all water molecules if so selected.</para>
1664
1665 <programlisting>
1666 ... --dipole-correlation \
1667 --bin-start 0 \
1668 --bin-width 0.7 \
1669 --bin-end 10 \
1670 --output-file histogram.dat \
1671 --bin-output-file bins.dat \
1672 --periodic 0
1673 </programlisting>
1674 </section>
1675
1676 <section xml:id='analysis.dipole-angular-correlation'>
1677 <title xml:id='analysis.dipole-angular-correlation.title'>Dipole
1678 Angular Correlation</title>
1679
1680 <para>The dipole angular correlation looks at the angles of a
1681 dipole over time. It takes the orientation of a certain time step
1682 as the zero angle and bins all other orientations found in later
1683 time steps relative to it.
1684 </para>
1685 <para>Note that in contrast to the dipole correlation the dipole
1686 angular correlation works on the molecules determined by a formula.
1687 This is because selections do not work over time steps as molecules
1688 might change.
1689 </para>
1690
1691 <programlisting>
1692 ... --dipole-angular-correlation H2O \
1693 --bin-start 0 \
1694 --bin-width 5 \
1695 --bin-end 360 \
1696 --output-file histogram.dat \
1697 --bin-output-file bins.dat \
1698 --periodic 0 \
1699 --time-step-zero 0
1700 </programlisting>
1701 </section>
1702
1703 <section xml:id='analysis.point-correlation'>
1704 <title xml:id='analysis.point-correlation.title'>Point Correlation
1705 </title>
1706
1707 <para>Point correlation is very similar to pair correlation, only
1708 that it correlates not positions of atoms among one another but
1709 against a fixed, given point.</para>
1710
1711 <programlisting>
1712 ... --point-correlation \
1713 --elements 1 8 \
1714 --position "0,0,0" \
1715 --bin-start 0 \
1716 --bin-width 0.7 \
1717 --bin-end 10 \
1718 --output-file histogram.dat \
1719 --bin-output-file bins.dat \
1720 --periodic 0
1721 </programlisting>
1722
1723 <para>This would calculate the correlation of all hydrogen and
1724 oxygen atoms with respect to the origin.</para>
1725 </section>
1726
1727 <section xml:id='analysis.surface-correlation'>
1728 <title xml:id='analysis.surface-correlation.title'>Surface
1729 Correlation</title>
1730
1731 <para>The surface correlation calculates the distance of a set
1732 of atoms with respect to a tesselated surface.</para>
1733
1734 <programlisting>
1735 ... --surface-correlation \
1736 --elements 1 8 \
1737 --bin-start 0 \
1738 --bin-width 0.7 \
1739 --bin-end 10 \
1740 --output-file histogram.dat \
1741 --bin-output-file bins.dat \
1742 --periodic 0
1743 </programlisting>
1744 </section>
1745
1746 <section xml:id='analysis.molecullar-volume'>
1747 <title xml:id='analysis.molecullar-volume.title'>Molecular Volume
1748 </title>
1749
1750 <para>This simply calculates the volume that a selected molecule
1751 occupies. For this the molecular surface is determined via a
1752 tesselation. Note that this surface is minimal is that aspect
1753 that each node of the tesselation consists of an atom of the
1754 molecule.</para>
1755
1756 <programlisting>... --molecular-volume</programlisting>
1757 </section>
1758
1759 </section>
1760
1761 <section xml:id='fragmentation'>
1762 <title xml:id='fragmentation.title'>Fragmentation</title>
1763
1764 <para>Fragmentation refers to a so-called linear-scaling method called
1765 "Bond-Order diSSection in an ANOVA-like fashion" (BOSSANOVA),
1766 developed by <personname>Frederik Heber</personname>. In this section
1767 we briefly explain what the method does and how the associated actions
1768 work.</para>
1769
1770 <para>The central idea behind the BOSSANOVA scheme is to fragment the
1771 graph of the molecular system into connected subgraphs of a certain
1772 number of vertices (atoms). To give an example, loading a ethane atom
1773 with the chemical formula C2H6, fragmenting the molecule up to order 1
1774 means creating two fragments, both methane-like from either carbon
1775 atom including surrounding hydrogen atoms. Fragmenting up to order 2
1776 would return both the methane fragments and additionally the full
1777 ethane molecule as it resembles a fragment of order 2, namely
1778 containing two (non-hydrogen) atoms.</para>
1779
1780 <para>The reason for doing this is that usual ab-initio calculations
1781 of molecular systems via methods such as Density Functional Theory or
1782 Hartree-Fock scale at least as <inlineequation>
1783 <m:math display="inline">
1784 <m:mi>{\cal O}(M^3}</m:mi>
1785 </m:math>
1786 </inlineequation>with the number of atoms <inlineequation>
1787 <m:math display="inline">
1788 <m:mi>M</m:mi>
1789 </m:math>
1790 </inlineequation>. Hence, calculating the ground state energy of a
1791 number of fragment molecules scaling linearly with the number of atoms
1792 yields a linear-scaling methods. In the doctoral thesis of Frederik
1793 Heber, it is explained why this is a sensible ansatz mathematically
1794 and shown that it delivers a very good accuracy if electrons (and
1795 hence interactions) are in general localized.</para>
1796
1797 <para>Long-range interactions are artificially truncated, however,
1798 with this fragment ansatz. It can be obtained in a perturbation manner
1799 by sampling the resulting electronic and nuclei charge density on a
1800 grid, summing over all fragments, and solving the associated Poisson
1801 equation. Such a calculation is implemented via the solver
1802 <productname>vmg</productname> by Julian Iseringhausen that is
1803 contained in the <link xlink:href="http://www.scafacos.org/">
1804 <productname>ScaFaCoS</productname></link>.</para>
1805
1806 <para>Note that we treat hydrogen special (but can be switched off) as
1807 fragments are calculated as closed shell (total spin equals zero).
1808 Also, we use hydrogen to saturate any dangling bonds that occur as
1809 bonds are cut when fragmenting a molecule (this, too, can be switched
1810 off).</para>
1811
1812 <section xml:id='fragmentation.fragment-molecule'>
1813 <title xml:id='fragmentation.fragment-molecule.title'>Fragmenting a
1814 molecular system</title>
1815
1816 <para>For the current selection of atoms, all fragments consisting
1817 of these (sub)set of atoms are created in the following
1818 manner.</para>
1819
1820 <programlisting>
1821 ... --fragment-molecule "BondFragment" \
1822 --DoCyclesFull 1 \
1823 --distance 3. \
1824 --order 3 \
1825 --grid-level 5 \
1826 --output-types xyz mpqc
1827 </programlisting>
1828
1829 <para>We go through each of the options one after the other. During
1830 fragmentation some files are created storing state information, i.e.
1831 the vertex/atom indices per fragment and so on. These files all need
1832 a common prefix, here "BondFragment". Then, we specify that cycles
1833 should be treated fully. This compensates for electrons in aromatic
1834 rings being delocalized over the ring. If cycles in the graph,
1835 originating from aromatic rings, are always calculated fully, i.e.
1836 the whole ring becomes a fragment, we partially overcome these
1837 issues. This does however not work indefinitely and accuracy of the
1838 approximation is limited (<inlineequation>
1839 <m:math display="inline">
1840 <m:mi>&gt;10^{-4}</m:mi>
1841 </m:math>
1842 </inlineequation>) in systems with many interconnected aromatic
1843 rings, such as graphene. Next, we give a distance cutoff of 3 used
1844 in bond graph creation. Then, we specify the maximum order, i.e. the
1845 maximum number of (non-hydrogen) atoms per fragment, here 3. The
1846 higher this number the more expensive the calculation becomes
1847 (because substantially more fragments are created) but also the more
1848 accurate. The grid level refers to the part where long-range Coulomb
1849 interactions are calculated. This is done via solving the associated
1850 Poisson equation with a multigrid solver. As input the solver
1851 requires the density which is sampled on a cartesian grid whose
1852 resolution these parameter defines (<inlineequation>
1853 <m:math display="inline">
1854 <m:mi>2^{\mathrm{level}}</m:mi>
1855 </m:math>
1856 </inlineequation>). And finally, we give the output file formats,
1857 i.e. which file formats are used for writing each fragment
1858 configuration (prefix is "BondFragment", remember?). Here, we use
1859 XYZ (mainly for checking the configurations visually) and MPQC,
1860 which is a very robust Hartree-Fock solver. We refer to the
1861 discussion of the <link linkend="fileparsers">Parsers</link> above
1862 on how to change the parameters of the ab-initio calculation.</para>
1863
1864 <para>After having written all fragment configuration files, you
1865 need to calculate each fragment, grab the resulting energy (and
1866 force vectors) and place them into a result file manually. This at
1867 least is necessary if you have specified output-types above. If not,
1868 the fragments are not written to file but stored internally. Read
1869 on.</para>
1870 </section>
1871
1872 <section xml:id='fragmentation.fragment-automation'>
1873 <title xml:id='fragmentation.fragment-automation.title'>Calculating
1874 fragment energies automatically</title>
1875
1876 <para>Another way of doing this is enabled if you have
1877 <productname>JobMarket</productname> package. JobMarket implements a
1878 client/server ansatz, i.e. two (or more) independent programs are
1879 running (even on another computer but connected via an IP network),
1880 namely a server and at least one client. The server receives
1881 fragment configurations from MoleCuilder and assigns these to a
1882 client who is not busy. The client launches an executable that is
1883 specified in the work package he is assigned and gathers after
1884 calculation a number of values, samewise specified in the package.
1885 The results are gathered together by the server and can be requested
1886 from MoleCuilder once they are done. This essentially describe what
1887 is happening during the execution of this action.</para>
1888
1889 <para>Stored fragment jobs can also be parsed again, i.e. reversing
1890 the effect of having output-types specified in <link
1891 linkend="fragmentation.fragment-molecule">Fragmenting a molecule
1892 </link>.</para>
1893
1894 <programlisting>
1895 ... --parse-fragment-jobs \
1896 --fragment-jobs "BondFragment00.in" "BondFragment01.in" \
1897 --fragment-path "./" \
1898 --grid-level 5
1899 </programlisting>
1900
1901 <para>Here, we have specified two files, namely
1902 <filename>BondFragment00.in</filename> and
1903 <filename>BondFragment01.in</filename>, to be parsed from the path
1904 "./", i.e. the current directory. Also, we have specified to sample
1905 the electronic charge density obtained from the calculated ground
1906 state energy solution with a resolution of 5 (see fragment molecule
1907 and also below).</para>
1908
1909 <para>This allows for automated and parallel calculation of all
1910 fragment energies and forces directly within MoleCuilder. The
1911 FragmentationAutomation action takes the fragment configurations
1912 from an internal storage wherein they are placed if in
1913 FragmentMolecule no output-types have been specified.</para>
1914
1915 <programlisting>
1916 ... --fragment-automation \
1917 --fragment-executable mpqc \
1918 --fragment-resultfile BondFragment_results.dat \
1919 --DoLongrange 1 \
1920 --DoValenceOnly 1 \
1921 --grid-level 5 \
1922 --interpolation-degree 3 \
1923 --near-field-cells 4 \
1924 --server-address 127.0.0.1 \
1925 --server-port 1025
1926 </programlisting>
1927
1928 <para>Again, we go through each of the action's options step by
1929 step.</para>
1930
1931 <para>The executable is required if you do not have a patched
1932 version of <productname>MPQC</productname> that may directly act as
1933 a client to JobMarket's server. All calculated results are placed in
1934 the result file. If none is given, they are instead again placed in
1935 an internal storage for later access.</para>
1936
1937 <note>
1938 <para>Long-calculations are only possible with a client that knows
1939 how to handle VMG jobs. If you encounter failures, then it is most
1940 likely that you do not have a suitable client.</para>
1941 </note>
1942
1943 <para>In the next line, we have all options related to calculation
1944 of long-range interactions. We only sample valence charges on the
1945 grid, i.e. not core electrons and the nuclei charge is reduces
1946 respectively. This avoids problems with sampling highly localized
1947 charges on the grid and is in general recommended. Next, there
1948 follow parameters for the multi grid solver, namely the resolution
1949 of the grid, see under fragmenting the molecule, the interpolation
1950 degree and the number of near field cells. A grid level of 6 is
1951 recommended but costly in terms of memory, the other values are at
1952 their recommend values.</para>
1953
1954 <para>In the last line, parameters are given on how to access the
1955 JobMarket server, namely it address and its port.</para>
1956 </section>
1957
1958 <section xml:id='fragmentation.analyse-fragment-results'>
1959 <title xml:id='fragmentation.analyse-fragment-results.title'>
1960 Analyse fragment results</title>
1961
1962 <para>After the energies and force vectors of each fragment have
1963 been calculated, they need to be summed up to an approximation for
1964 the energy and force vectors of the whole molecular system. This is
1965 done by calling this action.</para>
1966
1967 <programlisting>
1968 ... --analyse-fragment-results \
1969 --fragment-prefix "BondFragment" \
1970 --fragment-resultfile BondFragment_results.dat \
1971 --store-grids 1
1972 </programlisting>
1973
1974 <para>The purpose of the prefix should already be known to you, same
1975 with the result file that is the file parsed by MoleCuilder. The
1976 last option states that the sampled charge densities and the
1977 calculated potential from the long-range calculations should be
1978 stored with the summed up energies and forces. Note that this makes
1979 the resulting files substantially larger (Hundreds of megabyte or
1980 even gigabytes). Fragment energies and forces are stored in
1981 so-called internal homology containers. These are explained in the
1982 next section.</para>
1983
1984 <para>Note that this action sets the force vector if these have been
1985 calculated for the fragment. Hence, a
1986 <link linkend="molecule.verlet-integration">verlet integration</link>
1987 is possible afterwards.</para>
1988 </section>
1989
1990 <section xml:id='fragmentation.store-saturated-fragment'>
1991 <title xml:id='fragmentation.store-saturated-fragment.title'>Store
1992 a saturated fragment</title>
1993
1994 <para>After the energies and force vectors of each fragment have
1995 been calculated, they need to be summed up to an approximation for
1996 the energy and force vectors of the whole molecular system. This is
1997 done by calling this action.</para>
1998
1999 <para>This will store the currently selected atoms as a fragment
2000 where all dangling bonds (by atoms that are connected in the bond
2001 graph but have not been selected as well) are saturated with
2002 additional hydrogen atoms. The output formats are set to just xyz.
2003 </para>
2004
2005 <programlisting>
2006 ... --store-saturated-fragment \
2007 --DoSaturate 1 \
2008 --output-types xyz
2009 </programlisting>
2010 </section>
2011 </section>
2012
2013 <section xml:id='homology'>
2014 <title xml:id='homology.title'>Homologies</title>
2015
2016 <para>After a fragmentation procedure has been performed fully, what
2017 to do with the results? The forces can be used already but what about
2018 the energies? The energy value is basically the function evaluation of
2019 the Born-Oppenheimer surface. For molecular dynamics simulations
2020 continuous ab-initio calculations to evaluate the Born-Oppenheimer
2021 surface is not feasible. Instead usually empirical potential functions
2022 are fitted as to resemble the Born-Oppenheimer surface to a sufficient
2023 degree.</para>
2024
2025 <para>One frequent method is the many-body expansion of said surface
2026 which is basically nothing else than the fragment ansatz described
2027 above. Potential functions resemble a specific term in this many-body
2028 expansion. These are discussed in the next section.</para>
2029
2030 <para>For each of these terms all homologous fragments (i.e. having
2031 the same atoms with respect to the present elements and bonded in the
2032 same way), differing only in the coordinate of each atom, are just a
2033 sampling or a function evaluation of this term of the many-body
2034 expansion with respect to varying nuclei coordinates. Hence, it is
2035 appropriate to use these function evaluations in a non-linear
2036 regression procedure. That is, we want to tune the parameter of the
2037 empirical potential function in such a way as to most closely obtain
2038 the same function evaluation as the ab-initio calculation did with the
2039 same nuclear coordinates. Usually, this is done in a least-square
2040 sense, minimising the euclidean norm.</para>
2041
2042 <para>Homologies are then nothing else but containers for a specific
2043 type of fragment of all the different, calculated configurations (i.e.
2044 varying nuclear coordinates of the same fragment).</para>
2045
2046 <para>Now, we explain the actions that parse and store
2047 homologies.</para>
2048
2049 <programlisting>... --parse-homologies homologies.dat</programlisting>
2050
2051 <para>This parses the all homologies contained in the file
2052 <filename>homologies.dat</filename> and appends them to the homology
2053 container.</para>
2054
2055 <programlisting>... --save-homologies homologies.dat</programlisting>
2056
2057 <para>Complementary, this stores the current contents of the homology
2058 container, overwriting the file
2059 <filename>homologies.dat</filename>.</para>
2060 </section>
2061
2062 <section xml:id='potentials'>
2063 <title xml:id='potentials.title'>Potentials</title>
2064
2065 <para>In much the same manner, we would now ask what are homology
2066 files or containers good for but with the just had explanation it
2067 should be clear: We fit potential function to these function
2068 evaluation of terms of the many-body expansion of the Born-Oppenheimer
2069 surface of the full system.</para>
2070
2071 <section xml:id='potentials.fit-potential'>
2072 <title xml:id='potentials.fit-potential.title'>Fitting empirical
2073 potentials</title>
2074
2075 <para>Let's take a look at an exemplary call to the fit potential
2076 action.</para>
2077
2078 <programlisting>
2079 ... --fit-potential \
2080 --fragment-charges 8 1 1 \
2081 --potential-charges 8 1 \
2082 --potential-type morse \
2083 --take-best-of 5
2084 </programlisting>
2085
2086 <para>Again, we look at each option in turn. The first is the
2087 charges or elements specifying the set of homologous fragments that
2088 we want to look at. Here, obviously we are interested in water
2089 molecules, consisting of a single oxygen and two hydrogen atoms.
2090 Next, we specify the nuclei coordinates of the potential. We give
2091 the type of the potential as morse, which requires a single distance
2092 or two nuclear coordinates, here between an oxygen and a hydrogen
2093 atom. Finally, we state that the non-linear regression should be
2094 done with five random starting positions and the set of parameters
2095 with the smallest L2 norm wins.</para>
2096
2097 <note>
2098 <para>Due to translational and rotational degrees of freedom for
2099 fragments smaller than 7 atoms, it is appropriate to look at the
2100 pair-wise distances and not at the absolute coordinates. Hence,
2101 the two atomic positions, here for oxygen and hydrogen, are
2102 converted to a single distance. If we had given an harmonic
2103 angular potential and three charges/element, 8 1 1, i.e. oxygen
2104 and two hydrogens, we would have obtained three distances.</para>
2105
2106 <para>MoleCuilder always adds a so-called constant potential to
2107 the fit containing only a single parameter, the energy offset.
2108 This offset compensates for the interaction energy associated with
2109 a fragment of order 1, e.g. a single hydrogen atom.</para>
2110 </note>
2111
2112 <para>Another way is using a file containing a specific set of
2113 potential functions, possibly even with initial values.</para>
2114
2115 <programlisting>
2116 ... --fit-potential \
2117 --fragment-charges 8 1 1 \
2118 --potential-file water.potentials \
2119 --set-threshold 1e-3 \
2120 --training-file test.dat
2121 </programlisting>
2122
2123 <para>Now, all empirical potential functions are summed up into a
2124 so-called compound potential over the combined set of parameters.
2125 These are now fitted simultaneously. For example, if the potential
2126 file <filename>water.potentials</filename> contains a harmonic bond
2127 potential between oxygen and hydrogen and another angular potential
2128 for the angle between hydrogen, oxygen, and hydrogen atom we would
2129 fit a still simple function approximating the energy of a single
2130 water molecule. Here, the threshold takes the place of the
2131 take-best-of option. Here, random starting parameters are used as
2132 long as the final L2 error is not below 1e-3. Also, all data used
2133 for training, i.e. the tuples consisting of the fragments nuclei
2134 coordinates and the associated energy value are written to the file
2135 <filename>test.dat</filename>. This allows for graphical or other
2136 type of analysis.</para>
2137
2138 <para>Note that you can combine the two ways, i.e. start with the
2139 first but give an empty potential file. The resulting parameters are
2140 stored in this way. Fit other potentials and give different file
2141 names for each. Eventually, you have to combine the file in a text
2142 editor at the moment.</para>
2143 </section>
2144
2145 <section xml:id='potentials.fit-particle-charges'>
2146 <title xml:id='potentials.fit-particle-charges.title'>Fitting
2147 particle charges</title>
2148
2149 <para>The above empirical potential just model the short-range
2150 behavior in the molecular fragment, namely the bonded interaction.
2151 In order to model the long-range interaction as well without solving
2152 for the electronic ground state in each time step, particle charges
2153 are used that capture to some degree the created dipoles due to
2154 charge transfer from one atom to another when bonded.</para>
2155
2156 <para>To allow least-squares regression of these partial charges we
2157 need the results of long-range calculations and the store-grids
2158 option (see above under <link linkend="fragmentation">Fragmentation
2159 </link>) must have been given. With these sampled charge density and
2160 Coulomb potential stored in the homology containers, we call this
2161 action as follows.</para>
2162
2163 <programlisting>
2164 ... --fit-particle-charges \
2165 --fragment-charges 8 1 1 \
2166 --potential-file water.potentials \
2167 --radius 0.2
2168 </programlisting>
2169
2170 <para>This will again use water molecule as homologous fragment
2171 "key" to request configurations from the container. Results are
2172 stored in <filename>water.potentials</filename>. The radius is used
2173 to mark the region directly around the nuclei from the fit
2174 procedure. As here the charges of the core electrons and the nuclei
2175 itself dominate, we however are only interested in a good
2176 approximation to the long-range potential, this mask radius allows
2177 to give the range of the excluded zone.</para>
2178 </section>
2179 </section>
2180
2181 <section xml:id='dynamics'>
2182 <title xml:id='dynamics.title'>Dynamics</title>
2183
2184 <para>For fitting potentials or charges we need many homologuous but
2185 different fragments, i.e. atoms with slightly different positions.
2186 How can we generate these?</para>
2187
2188 <para>One possibility is to use molecular dynamics. With the
2189 aforementioned fragmentation scheme we can quickly calculate not only
2190 energies but also forces if the chosen solver, such as
2191 <link xlink:href="http://www.mpqc.org/"><productname>MPQC
2192 </productname></link>, supports it. Integrating these forces
2193 discretely over time gives insight into vibrational features of a
2194 molecular system and allows to generate those positions for fitting
2195 potentials that describe these vibrations.</para>
2196
2197 <section xml:id='dynamics.molecular-dynamics'>
2198 <title xml:id='dynamics.molecular-dynamics.title'>Molecular dynamics
2199 </title>
2200
2201 <para>The molecular dynamics action is a so-called macro Action,
2202 i.e. it combines several other Actions into one, namely:</para>
2203 <itemizedlist>
2204 <listitem>
2205 <para>--verlet-integration</para>
2206 </listitem>
2207 <listitem>
2208 <para>--output</para>
2209 </listitem>
2210 <listitem>
2211 <para>--clear-fragment-results</para>
2212 </listitem>
2213 <listitem>
2214 <para>--destroy-adjacency</para>
2215 </listitem>
2216 <listitem>
2217 <para>--create-adjacency</para>
2218 </listitem>
2219 <listitem>
2220 <para>--update-molecules</para>
2221 </listitem>
2222 <listitem>
2223 <para>--fragment-molecule</para>
2224 </listitem>
2225 <listitem>
2226 <para>--fragment-automation</para>
2227 </listitem>
2228 <listitem>
2229 <para>--analyse-fragment-results</para>
2230 </listitem>
2231 </itemizedlist>
2232
2233 <para>The following will perform a molecular dynamics simulation
2234 for 100 time steps, each time step combining 0.5 atomic time units,
2235 i.e. 1.2 1e-17 s. The other options listed below will seem familiar
2236 to you if you have read about the other Actions listed above. Below
2237 we will not keep the bondgraph, i.e bonds and molecules may change
2238 over the simulation and hence also the created fragments per time
2239 step.
2240 </para>
2241
2242 <programlisting>
2243 ... --molecular-dynamics \
2244 --steps 100 \
2245 --keep-bondgraph 0 \
2246 --order 3 \
2247 --distance 3. \
2248 --deltat 0.5 \
2249 --keep-fixed-CenterOfMass 1 \
2250 --fragment-executable mpqc \
2251 </programlisting>
2252 </section>
2253
2254 <section xml:id='dynamics.optimize-structure'>
2255 <title xml:id='dynamics.optimize-structure.title'>Structure
2256 optimization</title>
2257
2258 <para>Structure optimization is also a macro Action, it basically
2259 combines the same Actions as molecular-dynamics does. However, it
2260 uses force-annealing instead of verlet-integration.</para>
2261
2262 <para>The following performs a structure optimization of the
2263 currently selected atoms (may also be a subset) for up to 100 time
2264 steps, where each time step ist 0.5 atomic time units. The time
2265 step here is the initial step with for annealing.
2266 </para>
2267
2268 <programlisting>
2269 ... --optimize-structure \
2270 --keep-bondgraph 1 \
2271 --output-every-step 1 \
2272 --steps 100 \
2273 --order 3 \
2274 --distance 3. \
2275 --deltat 0.5 \
2276 --keep-fixed-CenterOfMass 1 \
2277 --fragment-executable mpqc \
2278 </programlisting>
2279
2280 <para>Note that output-every-step will allow you to watch the
2281 optimization as each step is placed into a distinct time step.
2282 Otherwise only two time steps would be created: the initial and
2283 the final one containing the optimized structure.</para>
2284 </section>
2285
2286 <section xml:id='dynamics.set-world-time'>
2287 <title xml:id='dynamics.set-world-time.title'>Set the world's time
2288 step</title>
2289
2290 <para>In order to inspect or manipulate atoms and molecules at a
2291 certain time step, the World's time has to be set with the following
2292 Action.
2293 </para>
2294
2295 <para>This will set the World's time to the fifth step (counting
2296 starts at zero).</para>
2297
2298 <programlisting>... --set-world-time 4</programlisting>
2299 </section>
2300
2301 <section xml:id='dynamics.save-temperature'>
2302 <title xml:id='dynamics.save-temperature.title'>Save the
2303 temperature information</title>
2304
2305 <para>For each time step the temperature (i.e. the average velocity
2306 per atom times its mass) will be stored to a file.</para>
2307
2308 <programlisting>
2309 ... --save-temperature temperature.dat \
2310 </programlisting>
2311 </section>
2312 </section>
2313
2314 <section xml:id='dynamics.tesselation'>
2315 <title xml:id='dynamics.tesselation.title'>Tesselations</title>
2316
2317 <para>Tesselations obtain molecular surfaces (and volumes) by rolling
2318 a virtual sphere of a certain radii on a molecule until a closed
2319 surface of connected triangles is created.</para>
2320
2321 <section xml:id='dynamics.tesselation.nonconvex-envelope'>
2322 <title xml:id='dynamics.tesselation.nonconvex-envelope.title'>
2323 Non-convex envelope</title>
2324
2325 <para>This will create a non-convex envelope for a molecule.</para>
2326
2327 <programlisting>
2328 ... --nonconvex-envelope 6. \
2329 --nonconvex-file nonconvex.dat
2330 </programlisting>
2331
2332 <para>This tesselation file can be conveniently viewed with
2333 <productname>TecPlot</productname> or with one of the Tcl script
2334 in the util folder with <productname>VMD</productname>.</para>
2335 </section>
2336
2337 <section xml:id='dynamics.tesselation.convex-envelope'>
2338 <title xml:id='dynamics.tesselation.convex-envelope.title'>Convex
2339 envelope</title>
2340
2341 <para>This will create a convex envelope for a molecule.</para>
2342
2343 <programlisting>
2344 ... --convex-envelope 6. \
2345 --convex-file convex.dat
2346 </programlisting>
2347
2348 <para>This tesselation file can be conveniently viewed with
2349 <productname>TecPlot</productname> or with one of the Tcl script
2350 in the util folder with <productname>VMD</productname>.</para>
2351 </section>
2352 </section>
2353
2354 <section xml:id='various'>
2355 <title xml:id='various.title'>Various commands</title>
2356
2357 <para>Here, we gather all commands that do not fit into one of above
2358 categories for completeness.</para>
2359
2360 <section xml:id='various.verbose'>
2361 <title xml:id='various.verbose.title'>Changing verbosity</title>
2362
2363 <para>The verbosity level is the amount of stuff printed to screen.
2364 This information will in general help you to understand when
2365 something does not work. Mind the <emphasis>ERROR</emphasis> and
2366 <emphasis>WARNING</emphasis> messages in any case.</para>
2367
2368 <para>This sets the verbosity from default of 2 to 4,</para>
2369
2370 <programlisting>... --verbose 4</programlisting>
2371
2372 <para>or shorter,</para>
2373
2374 <programlisting>... -v 4</programlisting>
2375 </section>
2376
2377 <section xml:id='various.element-db'>
2378 <title xml:id='various.element-db.title'>Loading an element
2379 database</title>
2380
2381 <para>Element databases contain information on valency, van der
2382 Waals-radii and other information for each element.</para>
2383
2384 <para>This loads all element database from the current folder (in a
2385 unix environment):</para>
2386
2387 <programlisting>... --element-db ./</programlisting>
2388
2389 </section>
2390
2391 <section xml:id='various.fastparsing'>
2392 <title xml:id='various.fastparsing.title'>Fast parsing</title>
2393
2394 <para>Parsing all time steps from a given input file can take a
2395 while, especially for larger systems. If fast parsing is activated,
2396 only the first time step is loaded, all other are ignored.</para>
2397
2398 <programlisting>... --fastparsing 1</programlisting>
2399 </section>
2400
2401 <section xml:id='various.version'>
2402 <title xml:id='various.version.title'>Giving the version of the
2403 program</title>
2404
2405 <para>This prints the version information of the code, especially
2406 important when you request the fixing of bugs or implementation of
2407 features.</para>
2408
2409 <programlisting>... --version</programlisting>
2410 </section>
2411
2412 <section xml:id='various.warranty'>
2413 <title xml:id='various.warranty.title'>Giving warranty
2414 information</title>
2415
2416 <para>As follows warranty information is given,</para>
2417
2418 <programlisting>... --warranty</programlisting>
2419 </section>
2420
2421 <section xml:id='various.help-redistribute'>
2422 <title xml:id='various.help-redistribute.title'>Giving
2423 redistribution information</title>
2424
2425 <para>This gives information on the license and how to redistribute
2426 the program and its source code</para>
2427
2428 <programlisting>... --help-redistribute</programlisting>
2429 </section>
2430 </section>
2431
2432 <section xml:id='sessions'>
2433 <title xml:id='sessions.title'>Sessions</title>
2434
2435 <para>A session refers to the queue of actions you have executed.
2436 Together with the initial configuration (and all files required for
2437 actions in the queue) this might be seen as a clever way of storing
2438 the state of a molecular system. When proceeding in a try&amp;error
2439 fashion to construct a certain system, it is a good idea, to store the
2440 session at the point where your attempts start to deviate from one
2441 another.</para>
2442
2443 <section xml:id='sessions.store-session'>
2444 <title xml:id='sessions.store-session.title'>Storing a session
2445 </title>
2446
2447 <para>Storing sessions is simple,</para>
2448
2449 <programlisting>
2450 ... --store-session "session.py" \
2451 --session-type python
2452 </programlisting>
2453
2454 <para>Here, the session type is given as python (the other option is
2455 cli for in the manner of the command-line interface) and the written
2456 python script <filename>session.py</filename> can even be used with
2457 the python interface described below, i.e. it is a full python script
2458 (that however requires the so-called pyMoleCuilder module).</para>
2459 </section>
2460
2461 <section xml:id='sessions.load-session'>
2462 <title xml:id='sessions.load-session.title'>Loading a session</title>
2463
2464 <para>Loading a session only works for python scripts. This actually
2465 blurs the line between the command-line interface and the python
2466 interface a bit. But even more, MoleCuilder automatically executes a
2467 script called <filename>molecuilder.py</filename> if such a file is
2468 contained in the current directory.</para>
2469
2470 <programlisting>... --load-session "session.py"</programlisting>
2471
2472 <para>This will execute every action with its options contained in the
2473 script <filename>session.py</filename>.</para>
2474 </section>
2475 </section>
2476
2477 <section xml:id='various-specific'>
2478 <title xml:id='various-specific.title'>Various specific commands
2479 </title>
2480
2481 <para>In this (final) section of the action description we list a number
2482 Actions that are very specific to some purposes (or other programs).
2483 </para>
2484
2485 <section xml:id='various-specific.save-selected-atoms-as-exttypes'>
2486 <title xml:id='various-specific.save-selected-atoms-as-exttypes.title'>
2487 Saving exttypes of a set of atoms</title>
2488
2489 <para>This saves the atomic ids of all currently selected atoms in a
2490 <link xlink:href="http://www.tremolo-x.com/"><productname>TREMOLO
2491 </productname></link> exttypes file with the given name.</para>
2492
2493 <programlisting>
2494 ... --save-selected-atoms-as-exttypes \
2495 --filename test.exttypes </programlisting>
2496 </section>
2497
2498 <section xml:id='various-specific.set-parser-parameters'>
2499 <title xml:id='various-specific.set-parser-parameters.title'>Setting
2500 parser specific parameters</title>
2501
2502 <para>You can also tweak the parameters stored in this file easily.
2503 For example, <productname>MPQC</productname> stores various
2504 parameters modifying the specific ab-initio calculation performed.
2505 For <link xlink:href="http://www.mpqc.org/"><productname>MPQC
2506 </productname></link> and
2507 <link xlink:href="http://www.psicode.org/"><productname>Psi4
2508 </productname></link> this can be modified as follows.</para>
2509
2510 <programlisting>
2511 ... --set-parser-parameters mpqc \
2512 --parser-parameters "theory=CLHF;basis=6-31*G;"
2513 </programlisting>
2514
2515 <para>This sets the ab-initio theory to closed-shell Hartree-Fock
2516 and the basis set to 6-31*G. Please check the
2517 <productname>MPQC</productname> manual on specific
2518 parameters.</para>
2519 </section>
2520
2521 <section xml:id='various-specific.set-tremolo-atomdata'>
2522 <title xml:id='various-specific.set-tremolo-atomdata.title'>Tremolo
2523 specific options and potential files</title>
2524
2525 <para><productname>TREMOLO</productname>'s configuration files start
2526 with a specific line telling the amount of information stored in the
2527 file. This file can be modified, e.g. to enforce storing of
2528 velocities and forces as well as the atoms positions and
2529 element.</para>
2530
2531 <programlisting>
2532 ... --set-tremolo-atomdata "ATOM id element u=3 v=3 F=3" \
2533 --reset 1
2534 </programlisting>
2535
2536 <para>This will not append but reset the old line and fill it with
2537 the given string.</para>
2538
2539 <para>One specific action is required when loading certain
2540 <productname>TREMOLO</productname> configuration files. These
2541 contain element notations that refer to parameterized names used in
2542 empirical potentials and molecular dynamics simulations and not the
2543 usual chemical symbols, such as H or O. We may load an auxiliary
2544 file that gives the required conversion from OH1 to H, which is the
2545 so-called potential file.</para>
2546
2547 <programlisting>... --parse-tremolo-potentials water.potentials</programlisting>
2548
2549 <para>This parses the lookup table from the file
2550 <filename>water.potentials</filename> and it can be used in
2551 following load actions.</para>
2552 </section>
2553 </section>
2554 </section>
2555
2556 <section xml:id='textmenu-interface'>
2557 <title xml:id='textmenu-interface.title'>Text menu</title>
2558
2559 <para>We now discuss how to use the text menu interface.</para>
2560
2561 <para>The text menu is very much the interface counterpart to the
2562 command-line interface. Both work in a terminal session.</para>
2563
2564 <para>In the text menu, actions can be selected from hierarchical lists.
2565 Note that the menus for the graphical interface are organized in the
2566 exactly same way. After an action has been chosen, the option values
2567 have to be entered one after the other. After the last option value has
2568 been given, the action is executed and the result printed to the
2569 screen.</para>
2570
2571 <para>With regards to the other functionality, it is very much the same
2572 as the command-line interface above.</para>
2573 </section>
2574
2575 <section xml:id='graphical-user-interface'>
2576 <title xml:id='graphical-user-interface.title'>Graphical user interface
2577 </title>
2578
2579 <para>The main point of the GUI is that it renders the atoms and
2580 molecules visually. These are represented by the common
2581 stick-and-ball-model. Single or multiple atoms and molecules can easily
2582 be accessed, activated and manipulated via tables. Changes made in the
2583 tables cause immediate update of the visual representation. Under the
2584 hood each of these manipulations is nothing but the call to an action,
2585 hence is fully undo- and redoable.</para>
2586
2587 <para>This is mostly helpful to design more advanced structures that are
2588 conceptually difficult to imagine without visual aid. At the end, a
2589 session may be stored and this script can then be used to construct
2590 various derived or slightly modified structures.</para>
2591
2592 <section xml:id='graphical-user-interface.basic-view'>
2593 <title xml:id='graphical-user-interface.basic-view.title'>Basic view
2594 </title>
2595
2596 <para>Let us first give an impression of the basic view of the gui
2597 after a molecule has been loaded.</para>
2598
2599 <figure>
2600 <title>Screenshot of the basic view of the GUI after loading a file
2601 with eight water molecules.</title>
2602
2603 <mediaobject>
2604 <imageobject>
2605 <imagedata entityref="example_basic_view" scalefit="1" width="100%"/>
2606 </imageobject>
2607 </mediaobject>
2608 </figure>
2609
2610 <section xml:id='graphical-user-interface.3d-view'>
2611 <title xml:id='graphical-user-interface.3d-view.title'>3D view
2612 </title>
2613
2614 <para>In the above figure, you see the stick-and-ball representation
2615 of the water molecules, the dreibein giving the positive axis
2616 direction and the cuboidal domain on a black background.</para>
2617 </section>
2618
2619 <section xml:id='graphical-user-interface.information-tabs'>
2620 <title xml:id='graphical-user-interface.information-tabs.title'>
2621 Information Tabs</title>
2622
2623 <para>Beneath this 3D view that you can rotate at will your mouse
2624 and zoom in and out with your scroll wheel, you find to the right a
2625 part containing two tabs named Atom and Molecule. Look at where the
2626 mouse pointer is. It has colored the atom underneath in cyan
2627 (although it's also an oxygen atom and should bne coloured in rose
2628 as the rest). You can inspect its properties in the tab Atom: Name,
2629 element, mass, charge, position and number of bonds. If you switch
2630 to the Molecule tab, you would see the properties of the water
2631 molecule this specific atom belongs to.</para>
2632 </section>
2633
2634 <section xml:id='graphical-user-interface.shape'>
2635 <title xml:id='graphical-user-interface.shape.title'>Shape section
2636 </title>
2637
2638 <para>Beneath these information tabs you find the shape sections.
2639 There you find a list of all currently created shapes and you can
2640 manipulate them via the buttons beneath this list.</para>
2641 </section>
2642
2643 <section xml:id='graphical-user-interface.timeline'>
2644 <title xml:id='graphical-user-interface.timeline.title'>Timeline
2645 </title>
2646
2647 <para>Directly below the 3D view there is a long slider. If a loaded
2648 file has multiple time step entries, this slider allows you to
2649 smoothly select one time frame after another. Sliding it with the
2650 mouse from left to right will reveal the animation that is hidden
2651 behind the distinct snapshots stored in the configuration
2652 file.</para>
2653 </section>
2654
2655 <section xml:id='graphical-user-interface.tables'>
2656 <title xml:id='graphical-user-interface.tables.title'>Selection
2657 tables</title>
2658
2659 <para>Underneath the time line there is another place for
2660 tabs.</para>
2661
2662 <para>The first is on molecules, listing all present molecules of
2663 the molecular system in a list view. If you click on a specific
2664 molecule, the one will get selected or unselected depending on its
2665 current selection state (see below for details on this with respect
2666 to the GUI).</para>
2667
2668 <para>The next tab enumerates all elements known to MoleCuilder
2669 where the ones are greyed out that are not present in the molecular
2670 system. Clicking on a present element will select all atoms of this
2671 specific element. A subsequent click unselects again.</para>
2672
2673 <para>Subsequent follow tabs on enumerating the fragments and their
2674 fragment energies if calculated and the homologies along with
2675 graphical depiction (via QWT) if present.</para>
2676 </section>
2677 </section>
2678
2679 <section xml:id='graphical-user-interface.selections'>
2680 <title xml:id='graphical-user-interface.selections.title'>Selections
2681 </title>
2682
2683 <para>Selections work generally always by selecting the respective
2684 action from the pull-down menu.</para>
2685
2686 <para>However, it may also be accessed directly. The row of icons
2687 above the 3D view has two icons depicting the selection of individual
2688 atoms or molecules. If either of them is selected, clicking with the
2689 left mouse button on an atom will either (un)select the atom or its
2690 associated molecule. Multiple atoms can be selected in this
2691 manner.</para>
2692
2693 <para>Also the selection tabs may be used by clicking on the name of a
2694 molecule as stated above or at an element.</para>
2695
2696 <para>Similarly, if shapes are present in the shape section, clicking
2697 them with select them and also cause a translucent visualization to
2698 appear in the 3D view. Note that this visualization is quite costly
2699 right now and not suited to complex shapes.</para>
2700 </section>
2701
2702 <section xml:id='graphical-user-interface.dialogs'>
2703 <title xml:id='graphical-user-interface.dialogs.title'>Dialogs</title>
2704
2705 <para>Most essential, however, to the GUI are the dialogs. Each action
2706 calls forth such a dialog even if no options are required (the
2707 execution of the action has at least to be confirmed). Each dialog
2708 consisting of queries for a particular option value. As each option
2709 value has a specific type, we briefly go into the details of how these
2710 queries look like.</para>
2711
2712 <note>
2713 <para>Each dialog's Ok is greyed out until all entered option values
2714 are valid.</para>
2715 </note>
2716
2717 <section xml:id='graphical-user-interface.dialogs.domain'>
2718 <title xml:id='graphical-user-interface.dialogs.domain.title'>Domain
2719 query</title>
2720
2721 <figure>
2722 <title>Screenshot of a dialog showing a domain query</title>
2723
2724 <mediaobject>
2725 <imageobject>
2726 <imagedata entityref="dialog_box" scalefit="1" width="100%"/>
2727 </imageobject>
2728 </mediaobject>
2729
2730 <para>In the domain query a 3x3 symmetric matrix has to be
2731 entered. In the above screenshots you notice that the only
2732 non-zero entries are on the main diagonal. Here, we have simply
2733 specified a cube of edge length 8. The ok button will be greyed
2734 out if the matrix is either singular or not symmetric.</para>
2735 </figure>
2736 </section>
2737
2738 <section xml:id='graphical-user-interface.dialogs.element'>
2739 <title xml:id='graphical-user-interface.dialogs.element.title'>
2740 Element query</title>
2741
2742 <figure>
2743 <title>Screenshot the add atom action containing an element
2744 query</title>
2745
2746 <mediaobject>
2747 <imageobject>
2748 <imagedata entityref="dialog_add-atom_tooltip" scalefit="1" width="100%"/>
2749 </imageobject>
2750 </mediaobject>
2751
2752 <para>Elements are picked from a pull-down box where all known
2753 elements are listed.</para>
2754
2755 <para>In this dialog you also notice that a tooltip is given,
2756 briefly explaining what the action does.</para>
2757 </figure>
2758 </section>
2759
2760 <section xml:id='graphical-user-interface.dialogs.action'>
2761 <title xml:id='graphical-user-interface.dialogs.action.title'>
2762 Complex query</title>
2763
2764 <figure>
2765 <title>Screenshot of a complex dialog consisting of multiple
2766 queries</title>
2767
2768 <mediaobject>
2769 <imageobject>
2770 <imagedata entityref="dialog_complex" scalefit="1" width="100%"/>
2771 </imageobject>
2772 </mediaobject>
2773
2774 <para>Here we show a more complex dialog. It queries for strings,
2775 for integer values (see the increase/decrease arrows), for
2776 booleans and for files (the "choose" buttons opens a file
2777 dialog).</para>
2778 </figure>
2779 </section>
2780
2781 <section xml:id='graphical-user-interface.dialogs.exit'>
2782 <title xml:id='graphical-user-interface.dialogs.exit.title'>Exit
2783 query</title>
2784
2785 <figure>
2786 <title>Screenshort showing the exit dialog</title>
2787
2788 <mediaobject>
2789 <imageobject>
2790 <imagedata entityref="dialog_exit" scalefit="1" width="100%"/>
2791 </imageobject>
2792 </mediaobject>
2793
2794 <para>Finally, we show the dialog that will pop up when exiting
2795 the graphical interface. It will ask whether it should store the
2796 current state of the system in the input file or not. You may
2797 cancel the exit, close without saving or save the current
2798 state.</para>
2799 </figure>
2800 </section>
2801 </section>
2802 </section>
2803
2804 <section xml:id='python-interface'>
2805 <title xml:id='python-interface.title'>Python interface</title>
2806
2807 <para>Last but not least we elaborate on the python interface. We have
2808 already discusses this interface to some extent. The current session,
2809 i.e. the queue of actions you have executed, can be stored as a python
2810 script and subsequently executed independently of the user interface it
2811 was created with. More general, MoleCuilder can execute arbitrary python
2812 scripts where prior to its execution a specific module is loaded by
2813 default enabling access to MoleCuilder's actions from inside the
2814 script.</para>
2815
2816 <para>MoleCuilder's python module is called pyMoleCuilder. it is
2817 essentially a library that can be imported into python just as any other
2818 module. Let us assume you have started the python interpreter and you
2819 have added the destination of the <filename>pyMoleCuilder</filename>
2820 library to the <varname>PYTHONPATH</varname> variable.</para>
2821
2822 <programlisting>import pyMoleCuilder as mol</programlisting>
2823
2824 <para>Subsequently, you can access the help via</para>
2825
2826 <programlisting>help(mol)</programlisting>
2827
2828 <para>This will list all of MoleCuilder's actions with their function
2829 signatures within python as contained in the module pyMoleCuilder named
2830 as mol in the scope of the currently running interpreter. Note that the
2831 function names are not the names you know from the command-line
2832 interface, they might be called
2833 <computeroutput>WorldChangeBox(...)</computeroutput> or alike.</para>
2834
2835 <para>Let's try it out.</para>
2836
2837 <programlisting>print mol.CommandVersion()</programlisting>
2838
2839 <para>This will state the current version of the library.</para>
2840
2841 <para>Go ahead and try out other commands. Refer to the documentation
2842 under the command-line interface and look up the function name via
2843 help.</para>
2844 </section>
2845 </chapter>
2846
2847 <chapter>
2848 <title>Conclusions</title>
2849
2850 <para>This ends this user guide.</para>
2851
2852 <para>We have given you a brief introduction to the aim of the program and
2853 how each of the four interfaces are to be used. The rest is up to
2854 you.</para>
2855
2856 <para>Tutorials and more information is available online, see <link
2857 xlink:href="http://www.molecuilder.com/">MoleCuilder's website</link>.
2858 </para>
2859
2860 <para>Be aware that in general knowing how the code works allows you to
2861 understand what's going wrong if something's going wrong.</para>
2862
2863 <section>
2864 <title>Thanks</title>
2865
2866 <para>Huge thanks go out to Saskia Metzler who was patient enough to let
2867 me sit next to her while riding ten hours in a bus to Berlin.</para>
2868 </section>
2869 </chapter>
2870</book>
Note: See TracBrowser for help on using the repository browser.