Ignore:
Timestamp:
Nov 25, 2009, 3:29:18 PM (16 years ago)
Author:
Frederik Heber <heber@…>
Children:
3aa635
Parents:
edf611
Message:

Multi-Candidate-Add included and incorporated class Info into boundary.cpp, tesselation.cpp and tesselationhelpers.cpp

  • class Info incorporation:
    • (almost) all functions of boundary.cpp, tesselation.cpp and tesselationhelpers.cpp now begins with class Info FunctionName(func);
File:
1 edited

Legend:

Unmodified
Added
Removed
  • molecuilder/src/tesselationhelpers.cpp

    redf611 rbe2997  
    88#include <fstream>
    99
     10#include "info.hpp"
    1011#include "linkedcell.hpp"
    1112#include "log.hpp"
     
    1516#include "verbose.hpp"
    1617
    17 double DetGet(gsl_matrix * const A, const int inPlace) {
     18double DetGet(gsl_matrix * const A, const int inPlace)
     19{
     20        Info FunctionInfo(__func__);
    1821  /*
    1922  inPlace = 1 => A is replaced with the LU decomposed copy.
     
    4548void GetSphere(Vector * const center, const Vector &a, const Vector &b, const Vector &c, const double RADIUS)
    4649{
     50        Info FunctionInfo(__func__);
    4751  gsl_matrix *A = gsl_matrix_calloc(3,3);
    4852  double m11, m12, m13, m14;
     
    111115    const double HalfplaneIndicator, const double AlternativeIndicator, const double alpha, const double beta, const double gamma, const double RADIUS, const double Umkreisradius)
    112116{
     117        Info FunctionInfo(__func__);
    113118  Vector TempNormal, helper;
    114119  double Restradius;
    115120  Vector OtherCenter;
    116   Log() << Verbose(3) << "Begin of GetCenterOfSphere.\n";
    117121  Center->Zero();
    118122  helper.CopyVector(&a);
     
    128132  Center->Scale(1./(sin(2.*alpha) + sin(2.*beta) + sin(2.*gamma)));
    129133  NewUmkreismittelpunkt->CopyVector(Center);
    130   Log() << Verbose(4) << "Center of new circumference is " << *NewUmkreismittelpunkt << ".\n";
     134  Log() << Verbose(1) << "Center of new circumference is " << *NewUmkreismittelpunkt << ".\n";
    131135  // Here we calculated center of circumscribing circle, using barycentric coordinates
    132   Log() << Verbose(4) << "Center of circumference is " << *Center << " in direction " << *Direction << ".\n";
     136  Log() << Verbose(1) << "Center of circumference is " << *Center << " in direction " << *Direction << ".\n";
    133137
    134138  TempNormal.CopyVector(&a);
     
    154158  TempNormal.Normalize();
    155159  Restradius = sqrt(RADIUS*RADIUS - Umkreisradius*Umkreisradius);
    156   Log() << Verbose(4) << "Height of center of circumference to center of sphere is " << Restradius << ".\n";
     160  Log() << Verbose(1) << "Height of center of circumference to center of sphere is " << Restradius << ".\n";
    157161  TempNormal.Scale(Restradius);
    158   Log() << Verbose(4) << "Shift vector to sphere of circumference is " << TempNormal << ".\n";
     162  Log() << Verbose(1) << "Shift vector to sphere of circumference is " << TempNormal << ".\n";
    159163
    160164  Center->AddVector(&TempNormal);
    161   Log() << Verbose(0) << "Center of sphere of circumference is " << *Center << ".\n";
     165  Log() << Verbose(1) << "Center of sphere of circumference is " << *Center << ".\n";
    162166  GetSphere(&OtherCenter, a, b, c, RADIUS);
    163   Log() << Verbose(0) << "OtherCenter of sphere of circumference is " << OtherCenter << ".\n";
    164   Log() << Verbose(3) << "End of GetCenterOfSphere.\n";
     167  Log() << Verbose(1) << "OtherCenter of sphere of circumference is " << OtherCenter << ".\n";
    165168};
    166169
     
    174177void GetCenterofCircumcircle(Vector * const Center, const Vector &a, const Vector &b, const Vector &c)
    175178{
     179        Info FunctionInfo(__func__);
    176180  Vector helper;
    177181  double alpha, beta, gamma;
     
    186190  beta = M_PI - SideC.Angle(&SideA);
    187191  gamma = M_PI - SideA.Angle(&SideB);
    188   //Log() << Verbose(3) << "INFO: alpha = " << alpha/M_PI*180. << ", beta = " << beta/M_PI*180. << ", gamma = " << gamma/M_PI*180. << "." << endl;
     192  //Log() << Verbose(1) << "INFO: alpha = " << alpha/M_PI*180. << ", beta = " << beta/M_PI*180. << ", gamma = " << gamma/M_PI*180. << "." << endl;
    189193  if (fabs(M_PI - alpha - beta - gamma) > HULLEPSILON) {
    190194    eLog() << Verbose(1) << "GetCenterofCircumcircle: Sum of angles " << (alpha+beta+gamma)/M_PI*180. << " > 180 degrees by " << fabs(M_PI - alpha - beta - gamma)/M_PI*180. << "!" << endl;
     
    219223double GetPathLengthonCircumCircle(const Vector &CircleCenter, const Vector &CirclePlaneNormal, const double CircleRadius, const Vector &NewSphereCenter, const Vector &OldSphereCenter, const Vector &NormalVector, const Vector &SearchDirection)
    220224{
     225        Info FunctionInfo(__func__);
    221226  Vector helper;
    222227  double radius, alpha;
     
    236241  if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON)  // acos is not unique on [0, 2.*M_PI), hence extra check to decide between two half intervals
    237242    alpha = 2.*M_PI - alpha;
    238   //Log() << Verbose(2) << "INFO: RelativeNewSphereCenter is " << helper << ", RelativeOldSphereCenter is " << OldSphereCenter << " and resulting angle is " << alpha << "." << endl;
     243  //Log() << Verbose(1) << "INFO: RelativeNewSphereCenter is " << helper << ", RelativeOldSphereCenter is " << OldSphereCenter << " and resulting angle is " << alpha << "." << endl;
    239244  radius = helper.Distance(&OldSphereCenter);
    240245  helper.ProjectOntoPlane(&NormalVector);
    241246  // check whether new center is somewhat away or at least right over the current baseline to prevent intersecting triangles
    242247  if ((radius > HULLEPSILON) || (helper.Norm() < HULLEPSILON)) {
    243     //Log() << Verbose(2) << "INFO: Distance between old and new center is " << radius << " and between new center and baseline center is " << helper.Norm() << "." << endl;
     248    //Log() << Verbose(1) << "INFO: Distance between old and new center is " << radius << " and between new center and baseline center is " << helper.Norm() << "." << endl;
    244249    return alpha;
    245250  } else {
     
    264269double MinIntersectDistance(const gsl_vector * x, void *params)
    265270{
     271        Info FunctionInfo(__func__);
    266272  double retval = 0;
    267273  struct Intersection *I = (struct Intersection *)params;
     
    284290
    285291  retval = HeightA.ScalarProduct(&HeightA) + HeightB.ScalarProduct(&HeightB);
    286   //Log() << Verbose(2) << "MinIntersectDistance called, result: " << retval << endl;
     292  //Log() << Verbose(1) << "MinIntersectDistance called, result: " << retval << endl;
    287293
    288294  return retval;
     
    304310bool existsIntersection(const Vector &point1, const Vector &point2, const Vector &point3, const Vector &point4)
    305311{
     312        Info FunctionInfo(__func__);
    306313  bool result;
    307314
     
    351358
    352359        if (status == GSL_SUCCESS) {
    353           Log() << Verbose(2) << "converged to minimum" <<  endl;
     360          Log() << Verbose(1) << "converged to minimum" <<  endl;
    354361        }
    355362    } while (status == GSL_CONTINUE && iter < 100);
     
    376383  t2 = HeightB.ScalarProduct(&SideB)/SideB.ScalarProduct(&SideB);
    377384
    378   Log() << Verbose(2) << "Intersection " << intersection << " is at "
     385  Log() << Verbose(1) << "Intersection " << intersection << " is at "
    379386    << t1 << " for (" << point1 << "," << point2 << ") and at "
    380387    << t2 << " for (" << point3 << "," << point4 << "): ";
    381388
    382389  if (((t1 >= 0) && (t1 <= 1)) && ((t2 >= 0) && (t2 <= 1))) {
    383     Log() << Verbose(0) << "true intersection." << endl;
     390    Log() << Verbose(1) << "true intersection." << endl;
    384391    result = true;
    385392  } else {
    386     Log() << Verbose(0) << "intersection out of region of interest." << endl;
     393    Log() << Verbose(1) << "intersection out of region of interest." << endl;
    387394    result = false;
    388395  }
     
    407414double GetAngle(const Vector &point, const Vector &reference, const Vector &OrthogonalVector)
    408415{
     416        Info FunctionInfo(__func__);
    409417  if (reference.IsZero())
    410418    return M_PI;
     
    418426  }
    419427
    420   Log() << Verbose(4) << "INFO: " << point << " has angle " << phi << " with respect to reference " << reference << "." << endl;
     428  Log() << Verbose(1) << "INFO: " << point << " has angle " << phi << " with respect to reference " << reference << "." << endl;
    421429
    422430  return phi;
     
    433441double CalculateVolumeofGeneralTetraeder(const Vector &a, const Vector &b, const Vector &c, const Vector &d)
    434442{
     443        Info FunctionInfo(__func__);
    435444  Vector Point, TetraederVector[3];
    436445  double volume;
     
    456465bool CheckLineCriteriaForDegeneratedTriangle(const BoundaryPointSet * const nodes[3])
    457466{
     467        Info FunctionInfo(__func__);
    458468  bool result = false;
    459469  int counter = 0;
     
    482492    }
    483493  if ((!result) && (counter > 1)) {
    484     Log() << Verbose(2) << "INFO: Degenerate triangle is ok, at least two, here " << counter << ", existing lines are used." << endl;
     494    Log() << Verbose(1) << "INFO: Degenerate triangle is ok, at least two, here " << counter << ", existing lines are used." << endl;
    485495    result = true;
    486496  }
     
    489499
    490500
    491 /** Sort function for the candidate list.
    492  */
    493 bool SortCandidates(const CandidateForTesselation* candidate1, const CandidateForTesselation* candidate2)
    494 {
    495   Vector BaseLineVector, OrthogonalVector, helper;
    496   if (candidate1->BaseLine != candidate2->BaseLine) {  // sanity check
    497     eLog() << Verbose(1) << "sortCandidates was called for two different baselines: " << candidate1->BaseLine << " and " << candidate2->BaseLine << "." << endl;
    498     //return false;
    499     exit(1);
    500   }
    501   // create baseline vector
    502   BaseLineVector.CopyVector(candidate1->BaseLine->endpoints[1]->node->node);
    503   BaseLineVector.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
    504   BaseLineVector.Normalize();
    505 
    506   // create normal in-plane vector to cope with acos() non-uniqueness on [0,2pi] (note that is pointing in the "right" direction already, hence ">0" test!)
    507   helper.CopyVector(candidate1->BaseLine->endpoints[0]->node->node);
    508   helper.SubtractVector(candidate1->point->node);
    509   OrthogonalVector.CopyVector(&helper);
    510   helper.VectorProduct(&BaseLineVector);
    511   OrthogonalVector.SubtractVector(&helper);
    512   OrthogonalVector.Normalize();
    513 
    514   // calculate both angles and correct with in-plane vector
    515   helper.CopyVector(candidate1->point->node);
    516   helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
    517   double phi = BaseLineVector.Angle(&helper);
    518   if (OrthogonalVector.ScalarProduct(&helper) > 0) {
    519     phi = 2.*M_PI - phi;
    520   }
    521   helper.CopyVector(candidate2->point->node);
    522   helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
    523   double psi = BaseLineVector.Angle(&helper);
    524   if (OrthogonalVector.ScalarProduct(&helper) > 0) {
    525     psi = 2.*M_PI - psi;
    526   }
    527 
    528   Log() << Verbose(2) << *candidate1->point << " has angle " << phi << endl;
    529   Log() << Verbose(2) << *candidate2->point << " has angle " << psi << endl;
    530 
    531   // return comparison
    532   return phi < psi;
    533 };
     501///** Sort function for the candidate list.
     502// */
     503//bool SortCandidates(const CandidateForTesselation* candidate1, const CandidateForTesselation* candidate2)
     504//{
     505//      Info FunctionInfo(__func__);
     506//  Vector BaseLineVector, OrthogonalVector, helper;
     507//  if (candidate1->BaseLine != candidate2->BaseLine) {  // sanity check
     508//    eLog() << Verbose(1) << "sortCandidates was called for two different baselines: " << candidate1->BaseLine << " and " << candidate2->BaseLine << "." << endl;
     509//    //return false;
     510//    exit(1);
     511//  }
     512//  // create baseline vector
     513//  BaseLineVector.CopyVector(candidate1->BaseLine->endpoints[1]->node->node);
     514//  BaseLineVector.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
     515//  BaseLineVector.Normalize();
     516//
     517//  // create normal in-plane vector to cope with acos() non-uniqueness on [0,2pi] (note that is pointing in the "right" direction already, hence ">0" test!)
     518//  helper.CopyVector(candidate1->BaseLine->endpoints[0]->node->node);
     519//  helper.SubtractVector(candidate1->point->node);
     520//  OrthogonalVector.CopyVector(&helper);
     521//  helper.VectorProduct(&BaseLineVector);
     522//  OrthogonalVector.SubtractVector(&helper);
     523//  OrthogonalVector.Normalize();
     524//
     525//  // calculate both angles and correct with in-plane vector
     526//  helper.CopyVector(candidate1->point->node);
     527//  helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
     528//  double phi = BaseLineVector.Angle(&helper);
     529//  if (OrthogonalVector.ScalarProduct(&helper) > 0) {
     530//    phi = 2.*M_PI - phi;
     531//  }
     532//  helper.CopyVector(candidate2->point->node);
     533//  helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
     534//  double psi = BaseLineVector.Angle(&helper);
     535//  if (OrthogonalVector.ScalarProduct(&helper) > 0) {
     536//    psi = 2.*M_PI - psi;
     537//  }
     538//
     539//  Log() << Verbose(1) << *candidate1->point << " has angle " << phi << endl;
     540//  Log() << Verbose(1) << *candidate2->point << " has angle " << psi << endl;
     541//
     542//  // return comparison
     543//  return phi < psi;
     544//};
    534545
    535546/**
     
    543554TesselPoint* FindSecondClosestPoint(const Vector* Point, const LinkedCell* const LC)
    544555{
     556        Info FunctionInfo(__func__);
    545557  TesselPoint* closestPoint = NULL;
    546558  TesselPoint* secondClosestPoint = NULL;
     
    553565  for(int i=0;i<NDIM;i++) // store indices of this cell
    554566    N[i] = LC->n[i];
    555   Log() << Verbose(2) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
     567  Log() << Verbose(1) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
    556568
    557569  LC->GetNeighbourBounds(Nlower, Nupper);
    558   //Log() << Verbose(0) << endl;
     570  //Log() << Verbose(1) << endl;
    559571  for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
    560572    for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
    561573      for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
    562574        const LinkedNodes *List = LC->GetCurrentCell();
    563         //Log() << Verbose(3) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;
     575        //Log() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;
    564576        if (List != NULL) {
    565577          for (LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
     
    597609TesselPoint* FindClosestPoint(const Vector* Point, TesselPoint *&SecondPoint, const LinkedCell* const LC)
    598610{
     611        Info FunctionInfo(__func__);
    599612  TesselPoint* closestPoint = NULL;
    600613  SecondPoint = NULL;
     
    607620  for(int i=0;i<NDIM;i++) // store indices of this cell
    608621    N[i] = LC->n[i];
    609   Log() << Verbose(3) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
     622  Log() << Verbose(1) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
    610623
    611624  LC->GetNeighbourBounds(Nlower, Nupper);
    612   //Log() << Verbose(0) << endl;
     625  //Log() << Verbose(1) << endl;
    613626  for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
    614627    for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
    615628      for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
    616629        const LinkedNodes *List = LC->GetCurrentCell();
    617         //Log() << Verbose(3) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;
     630        //Log() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;
    618631        if (List != NULL) {
    619632          for (LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
     
    626639              distance = currentNorm;
    627640              closestPoint = (*Runner);
    628               //Log() << Verbose(2) << "INFO: New Nearest Neighbour is " << *closestPoint << "." << endl;
     641              //Log() << Verbose(1) << "INFO: New Nearest Neighbour is " << *closestPoint << "." << endl;
    629642            } else if (currentNorm < secondDistance) {
    630643              secondDistance = currentNorm;
    631644              SecondPoint = (*Runner);
    632               //Log() << Verbose(2) << "INFO: New Second Nearest Neighbour is " << *SecondPoint << "." << endl;
     645              //Log() << Verbose(1) << "INFO: New Second Nearest Neighbour is " << *SecondPoint << "." << endl;
    633646            }
    634647          }
     
    640653  // output
    641654  if (closestPoint != NULL) {
    642     Log() << Verbose(2) << "Closest point is " << *closestPoint;
     655    Log() << Verbose(1) << "Closest point is " << *closestPoint;
    643656    if (SecondPoint != NULL)
    644657      Log() << Verbose(0) << " and second closest is " << *SecondPoint;
     
    656669Vector * GetClosestPointBetweenLine(const BoundaryLineSet * const Base, const BoundaryLineSet * const OtherBase)
    657670{
     671        Info FunctionInfo(__func__);
    658672  // construct the plane of the two baselines (i.e. take both their directional vectors)
    659673  Vector Normal;
     
    666680  Normal.VectorProduct(&OtherBaseline);
    667681  Normal.Normalize();
    668   Log() << Verbose(4) << "First direction is " << Baseline << ", second direction is " << OtherBaseline << ", normal of intersection plane is " << Normal << "." << endl;
     682  Log() << Verbose(1) << "First direction is " << Baseline << ", second direction is " << OtherBaseline << ", normal of intersection plane is " << Normal << "." << endl;
    669683
    670684  // project one offset point of OtherBase onto this plane (and add plane offset vector)
     
    683697  Normal.CopyVector(Intersection);
    684698  Normal.SubtractVector(Base->endpoints[0]->node->node);
    685   Log() << Verbose(3) << "Found closest point on " << *Base << " at " << *Intersection << ", factor in line is " << fabs(Normal.ScalarProduct(&Baseline)/Baseline.NormSquared()) << "." << endl;
     699  Log() << Verbose(1) << "Found closest point on " << *Base << " at " << *Intersection << ", factor in line is " << fabs(Normal.ScalarProduct(&Baseline)/Baseline.NormSquared()) << "." << endl;
    686700
    687701  return Intersection;
     
    696710double DistanceToTrianglePlane(const Vector *x, const BoundaryTriangleSet * const triangle)
    697711{
     712        Info FunctionInfo(__func__);
    698713  double distance = 0.;
    699714  if (x == NULL) {
     
    712727void WriteVrmlFile(ofstream * const vrmlfile, const Tesselation * const Tess, const PointCloud * const cloud)
    713728{
     729        Info FunctionInfo(__func__);
    714730  TesselPoint *Walker = NULL;
    715731  int i;
     
    755771void IncludeSphereinRaster3D(ofstream * const rasterfile, const Tesselation * const Tess, const PointCloud * const cloud)
    756772{
     773        Info FunctionInfo(__func__);
    757774  Vector helper;
    758775
     
    783800void WriteRaster3dFile(ofstream * const rasterfile, const Tesselation * const Tess, const PointCloud * const cloud)
    784801{
     802        Info FunctionInfo(__func__);
    785803  TesselPoint *Walker = NULL;
    786804  int i;
     
    828846void WriteTecplotFile(ofstream * const tecplot, const Tesselation * const TesselStruct, const PointCloud * const cloud, const int N)
    829847{
     848        Info FunctionInfo(__func__);
    830849  if ((tecplot != NULL) && (TesselStruct != NULL)) {
    831850    // write header
     
    848867
    849868    // print atom coordinates
    850     Log() << Verbose(2) << "The following triangles were created:";
    851869    int Counter = 1;
    852870    TesselPoint *Walker = NULL;
     
    858876    *tecplot << endl;
    859877    // print connectivity
     878    Log() << Verbose(1) << "The following triangles were created:" << endl;
    860879    for (TriangleMap::const_iterator runner = TesselStruct->TrianglesOnBoundary.begin(); runner != TesselStruct->TrianglesOnBoundary.end(); runner++) {
    861       Log() << Verbose(0) << " " << runner->second->endpoints[0]->node->Name << "<->" << runner->second->endpoints[1]->node->Name << "<->" << runner->second->endpoints[2]->node->Name;
     880      Log() << Verbose(1) << " " << runner->second->endpoints[0]->node->Name << "<->" << runner->second->endpoints[1]->node->Name << "<->" << runner->second->endpoints[2]->node->Name << endl;
    862881      *tecplot << LookupList[runner->second->endpoints[0]->node->nr] << " " << LookupList[runner->second->endpoints[1]->node->nr] << " " << LookupList[runner->second->endpoints[2]->node->nr] << endl;
    863882    }
    864883    delete[] (LookupList);
    865     Log() << Verbose(0) << endl;
    866884  }
    867885};
     
    874892void CalculateConcavityPerBoundaryPoint(const Tesselation * const TesselStruct)
    875893{
     894        Info FunctionInfo(__func__);
    876895  class BoundaryPointSet *point = NULL;
    877896  class BoundaryLineSet *line = NULL;
    878897
    879   //Log() << Verbose(2) << "Begin of CalculateConcavityPerBoundaryPoint" << endl;
    880898  // calculate remaining concavity
    881899  for (PointMap::const_iterator PointRunner = TesselStruct->PointsOnBoundary.begin(); PointRunner != TesselStruct->PointsOnBoundary.end(); PointRunner++) {
     
    885903    for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++) {
    886904      line = LineRunner->second;
    887       //Log() << Verbose(2) << "INFO: Current line of point " << *point << " is " << *line << "." << endl;
     905      //Log() << Verbose(1) << "INFO: Current line of point " << *point << " is " << *line << "." << endl;
    888906      if (!line->CheckConvexityCriterion())
    889907        point->value += 1;
    890908    }
    891909  }
    892   //Log() << Verbose(2) << "End of CalculateConcavityPerBoundaryPoint" << endl;
    893910};
    894911
     
    901918bool CheckListOfBaselines(const Tesselation * const TesselStruct)
    902919{
     920        Info FunctionInfo(__func__);
    903921  LineMap::const_iterator testline;
    904922  bool result = false;
     
    908926  for (testline = TesselStruct->LinesOnBoundary.begin(); testline != TesselStruct->LinesOnBoundary.end(); testline++) {
    909927    if (testline->second->triangles.size() != 2) {
    910       Log() << Verbose(1) << *testline->second << "\t" << testline->second->triangles.size() << endl;
     928      Log() << Verbose(2) << *testline->second << "\t" << testline->second->triangles.size() << endl;
    911929      counter++;
    912930    }
Note: See TracChangeset for help on using the changeset viewer.