1 | #! @PERL@ -w
|
---|
2 | #
|
---|
3 | # This code helps in creating nanotube structures by specifying a unit cell and some
|
---|
4 | # multiplicative factors which are used to first generate a rectangular sheet, then
|
---|
5 | # rolling it up for the tube and again for the torus. All intermediate steps may be
|
---|
6 | # supplied by file and then only later geometries are created.
|
---|
7 | #
|
---|
8 | # The hows and whys are explained in the comments before each section.
|
---|
9 | #
|
---|
10 | # \author Frederik Heber
|
---|
11 | # \date 15.06.07
|
---|
12 |
|
---|
13 | use POSIX;
|
---|
14 |
|
---|
15 | our $pi = 3.1415926535; # no pi in perl
|
---|
16 | our $MYEPSILON = 1e-13; # machine precision
|
---|
17 |
|
---|
18 | our @vectorA1;
|
---|
19 | our @vectorA2;
|
---|
20 | our @vectorA3;
|
---|
21 | our @vector = ( \@vectorA1, \@vectorA2, \@vectorA3);
|
---|
22 | our @betrag;
|
---|
23 | our @RecivectorA1;
|
---|
24 | our @RecivectorA2;
|
---|
25 | our @RecivectorA3;
|
---|
26 | our @Recivector = ( \@RecivectorA1, \@RecivectorA2, \@RecivectorA3);
|
---|
27 | our @TubevectorA1;
|
---|
28 | our @TubevectorA2;
|
---|
29 | our @TubevectorA3;
|
---|
30 | our @Tubevector = ( \@TubevectorA1, \@TubevectorA2, \@TubevectorA3);
|
---|
31 | our @Tubebetrag = (0,0,0);
|
---|
32 | our @TubevectorInverseA1;
|
---|
33 | our @TubevectorInverseA2;
|
---|
34 | our @TubevectorInverseA3;
|
---|
35 | our @TubevectorInverse = ( \@TubevectorInverseA1, \@TubevectorInverseA2, \@TubevectorInverseA3);
|
---|
36 | our @TubebetragInverse = (0,0,0);
|
---|
37 | our @sheetnr;
|
---|
38 | our @buffer;
|
---|
39 | our @buffer2;
|
---|
40 | our @buffer3;
|
---|
41 |
|
---|
42 | # ++++++++ Functions +++++++++++++++++++++++++++
|
---|
43 |
|
---|
44 | # Convertes units using the unit programme
|
---|
45 | # \param $unit unit
|
---|
46 | # \param $SrcUnit source unit name
|
---|
47 | # \param $DstUnit destination unit name
|
---|
48 | # \return converted unit
|
---|
49 | sub UnitConversion
|
---|
50 | {
|
---|
51 | local ($unit, $SrcUnit, $DstUnit) = ($_[0], $_[1], $_[2]); # make local variables from given parameters
|
---|
52 | $return = `units \'$unit, $SrcUnit,\' \'$DstUnit\' | head -n 1 | awk -F"* " {'print $2'}`;
|
---|
53 | return $return; # return value
|
---|
54 | }
|
---|
55 |
|
---|
56 | # Adds commentary stuff (needed for further levels) to xyz files
|
---|
57 | # \param $filename file name
|
---|
58 | # \param $atomicnumber number of atoms in cell
|
---|
59 | sub AddAtomicNumber
|
---|
60 | {
|
---|
61 | local ($filename, $atomicnumber) = ($_[0], $_[1]);
|
---|
62 | our @vector;
|
---|
63 | our @Recivector;
|
---|
64 | our @sheetnr;
|
---|
65 | my $date = `date`;
|
---|
66 | chomp($date);
|
---|
67 | # fill buffer
|
---|
68 | open(file1,$filename);
|
---|
69 | @buffer = <file1>;
|
---|
70 | close(file1);
|
---|
71 |
|
---|
72 | # open for writing and prepend
|
---|
73 | open(file2,">$filename");
|
---|
74 | print file2 "$atomicnumber\n"; # atomic number
|
---|
75 | print file2 "\tgenerated with Nanotube creator on $date\n"; # ... and comment
|
---|
76 | print file2 @buffer; # append buffer
|
---|
77 |
|
---|
78 | # Add primitive vectors as comment
|
---|
79 | print file2 "\n****************************************\n\n";
|
---|
80 | print file2 "Primitive vectors\n";
|
---|
81 | print file2 "a(1) = $vector[0][0]\t$vector[0][1]\t $vector[0][2]\n";
|
---|
82 | print file2 "a(2) = $vector[1][0]\t$vector[1][1]\t $vector[1][2]\n";
|
---|
83 | print file2 "a(3) = $vector[2][0]\t$vector[2][1]\t $vector[2][2]\n";
|
---|
84 | print file2 "\nVolume = ".$volume."\n";
|
---|
85 | print file2 "\nReciprocal Vectors\n";
|
---|
86 | print file2 "b(1) = $Recivector[0][0]\t$Recivector[0][1]\t$Recivector[0][2]\t\n";
|
---|
87 | print file2 "b(2) = $Recivector[1][0]\t$Recivector[1][1]\t$Recivector[1][2]\t\n";
|
---|
88 | print file2 "b(3) = $Recivector[2][0]\t$Recivector[2][1]\t$Recivector[2][2]\t\n";
|
---|
89 |
|
---|
90 | close(file2); # close file
|
---|
91 | }
|
---|
92 |
|
---|
93 | # Transposes a 3x3 matrix
|
---|
94 | # \param **matrixref
|
---|
95 | sub Transpose
|
---|
96 | {
|
---|
97 | local ($matrixref) = @_;
|
---|
98 | for (my $i=0;$i<3;$i++) {
|
---|
99 | for (my $j=0;$j<$i;$j++) {
|
---|
100 | my $tmp = ${${$matrixref}[$i]}[$j];
|
---|
101 | ${${$matrixref}[$i]}[$j] = ${${$matrixref}[$j]}[$i];
|
---|
102 | ${${$matrixref}[$j]}[$i] = $tmp;
|
---|
103 | }
|
---|
104 | }
|
---|
105 | }
|
---|
106 |
|
---|
107 | # Adds some more commentary stuff to xyz files
|
---|
108 | sub AddSheetInfo
|
---|
109 | {
|
---|
110 | local ($filename, $majoraxis, $minoraxis, $noaxis, $n, $m, $radius, $length) = @_;
|
---|
111 | # open for writing and prepend
|
---|
112 | open(file2,">>$filename");
|
---|
113 |
|
---|
114 | # Add primitive vectors as comment
|
---|
115 | print file2 "\n****************************************\n\n";
|
---|
116 | print file2 "Axis $majoraxis\t$minoraxis\t$noaxis\n";
|
---|
117 | print file2 "(n,m) $n $m\n";
|
---|
118 | print file2 "factors $radius $length\n";
|
---|
119 | close(file2);
|
---|
120 | }
|
---|
121 |
|
---|
122 | # Reads either value from stdin or recognizes if old value shall be used again by simple return key.
|
---|
123 | # \param $_[0] old value
|
---|
124 | # \return either old value or newly entered one
|
---|
125 | sub GetValue
|
---|
126 | {
|
---|
127 | $input = <INPUT>;
|
---|
128 | chomp $input;
|
---|
129 | if ($input) {
|
---|
130 | return $input;
|
---|
131 | } else {
|
---|
132 | print $_[0]."\n";
|
---|
133 | return $_[0];
|
---|
134 | }
|
---|
135 | }
|
---|
136 |
|
---|
137 | # approximatively finds the greatest common divisor of two real numbers.
|
---|
138 | # \param @array 3x3 matrix with row unit cell vectors
|
---|
139 | # \param $axis1 major axis number
|
---|
140 | # \param $axis2 minor axis number
|
---|
141 | # \return approximative greatest common divisor
|
---|
142 | # taken from http://www.perlmonks.org/?node_id=56906
|
---|
143 | sub gcf {
|
---|
144 | my ($x, $y) = @_;
|
---|
145 | ($x, $y) = ($y, $x % $y) while $y;
|
---|
146 | return $x;
|
---|
147 | }
|
---|
148 |
|
---|
149 | # Evaluates scalar product
|
---|
150 | # \param vector array 1
|
---|
151 | # \param vector array 2
|
---|
152 | # \return skp
|
---|
153 | sub skp
|
---|
154 | {
|
---|
155 | my ($vec1ref, $vec2ref) = (@_);
|
---|
156 | my $result = 0;
|
---|
157 | for (my $i=0;$i<3;$i++) {
|
---|
158 | #print ${$vec1ref}[$i]." * ".${$vec2ref}[$i]."\n";
|
---|
159 | $result += ${$vec1ref}[$i] * ${$vec2ref}[$i];
|
---|
160 | }
|
---|
161 | return $result;
|
---|
162 | }
|
---|
163 |
|
---|
164 | # Calculate norm with help of skp()
|
---|
165 | sub norm
|
---|
166 | {
|
---|
167 | return sqrt(skp(@_));
|
---|
168 | }
|
---|
169 |
|
---|
170 | # Evaluates projection of one vector onto another
|
---|
171 | # \param $vec1ref reference to 3 vector upon which is projected
|
---|
172 | # \param $vec2ref reference to 3 vector which is projected
|
---|
173 | # \return projection factor
|
---|
174 | sub projection
|
---|
175 | {
|
---|
176 | my ($vec1ref, $vec2ref) = (@_);
|
---|
177 | return skp(@_)/skp($vec1ref, $vec1ref);
|
---|
178 | }
|
---|
179 |
|
---|
180 | # Matrix transformation
|
---|
181 | # \param $matrixref reference to 3x3 matrix A
|
---|
182 | # \param $vectorref reference to 3 vector b
|
---|
183 | # \return reference to resulting 3 vector Ab = x
|
---|
184 | sub MatrixTrafo
|
---|
185 | {
|
---|
186 | my ($matrixref, $vectorref) = @_;
|
---|
187 | @return = (0,0,0);
|
---|
188 | for (my $i=0;$i<3;$i++) {
|
---|
189 | for (my $j=0;$j<3;$j++) {
|
---|
190 | #print ${${$matrixref}[$i]}[$j]." * ".${$vectorref}[$i]."\n";
|
---|
191 | $return[$j] += ${${$matrixref}[$i]}[$j] * ${$vectorref}[$i];
|
---|
192 | }
|
---|
193 | }
|
---|
194 | return @return;
|
---|
195 | }
|
---|
196 |
|
---|
197 | # Fixed GramSchmidt-Orthogonalization for 3 vectors
|
---|
198 | # \param @orthvector reference to 3x3 matrix
|
---|
199 | # \param @orthbetrag reference to 3 vector with vector magnitudes
|
---|
200 | # \param @axis major-, minor- and noaxis for specific order for the GramSchmidt procedure
|
---|
201 | sub Orthogonalize
|
---|
202 | {
|
---|
203 | local ($orthvector, $orthbetrag, $axis) = @_;
|
---|
204 | local $betrag1;
|
---|
205 | local $betrag2;
|
---|
206 |
|
---|
207 | # orthogonalize axis[0] vector
|
---|
208 | #print "Orthvectors: ${${$orthvector}[0]}[0]\t${${$orthvector}[0]}[1]\t${${$orthvector}[0]}[2]\n";
|
---|
209 | #print "Orthbetrag: ${$orthbetrag}[0]\n";
|
---|
210 | #print "OrthAxis: ${$axis}[0]\t${$axis}[1]\t${$axis}[2]\n";
|
---|
211 | $betrag1 = projection(${$orthvector}[${$axis}[1]],${$orthvector}[${$axis}[0]]);
|
---|
212 | for (my $k=0;$k<3;$k++) {
|
---|
213 | ${${$orthvector}[$axis[0]]}[$k] -= ${${$orthvector}[$axis[1]]}[$k]*$betrag1;
|
---|
214 | }
|
---|
215 | # orthogonalize axis[2] vector
|
---|
216 | $betrag1 = projection(${$orthvector}[${$axis}[0]],${$orthvector}[${$axis}[2]]);
|
---|
217 | $betrag2 = projection(${$orthvector}[${$axis}[1]],${$orthvector}[${$axis}[2]]);
|
---|
218 | for (my $k=0;$k<3;$k++) {
|
---|
219 | ${${$orthvector}[${$axis}[2]]}[$k] -= ${${$orthvector}[${$axis}[0]]}[$k]*$betrag1 + ${${$orthvector}[${$axis}[1]]}[$k]*$betrag2;
|
---|
220 | }
|
---|
221 | }
|
---|
222 |
|
---|
223 | # calculate scalar product of vectors and store.
|
---|
224 | # \param $vector reference to 3x3 matrix with row vectors
|
---|
225 | # \param $betrag reference to 3 vector for found magnitudes
|
---|
226 | sub DetermineVectorLengths
|
---|
227 | {
|
---|
228 | local ($vector, $betrag) = @_;
|
---|
229 | for (my $i=0; $i<3; $i++) {
|
---|
230 | ${$betrag}[$i] = skp(${$vector}[$i],${$vector}[$i]);
|
---|
231 | print "\t$i: ${$betrag}[$i]";
|
---|
232 | }
|
---|
233 | }
|
---|
234 |
|
---|
235 | # Add two vectors
|
---|
236 | # \param $vec1ref reference to first vector
|
---|
237 | # \param $vec2ref reference to second vector
|
---|
238 | # \return reference to vector sum
|
---|
239 | sub VectorAdd
|
---|
240 | {
|
---|
241 | my ($vec1ref, $vec2ref) = @_;
|
---|
242 | @return = (0,0,0);
|
---|
243 | for (my $k=0;$k<3;$k++) {
|
---|
244 | $return[$k] = ${$vec1ref}[$k] + ${$vec2ref}[$k];
|
---|
245 | }
|
---|
246 | return @return;
|
---|
247 | }
|
---|
248 |
|
---|
249 | # Determines the inverse of a 3x3 matrix
|
---|
250 | # \param $matrix1ref matrix to be inverted
|
---|
251 | # \param $matrix2ref inverted matrix on exit
|
---|
252 | # formula taken from Wikipedia (Regulaere Matrix)
|
---|
253 | sub MatrixInversion
|
---|
254 | {
|
---|
255 | local ($matrix1ref,$matrix2ref) = @_;
|
---|
256 | my $det = Det($matrix1ref);
|
---|
257 | #print "Determinant is $det\n";
|
---|
258 | ${${$matrix2ref}[0]}[0] = (${${$matrix1ref}[1]}[1]*${${$matrix1ref}[2]}[2] - ${${$matrix1ref}[1]}[2]*${${$matrix1ref}[2]}[1])/$det;
|
---|
259 | ${${$matrix2ref}[1]}[0] = (${${$matrix1ref}[0]}[2]*${${$matrix1ref}[2]}[1] - ${${$matrix1ref}[0]}[1]*${${$matrix1ref}[2]}[2])/$det;
|
---|
260 | ${${$matrix2ref}[2]}[0] = (${${$matrix1ref}[0]}[1]*${${$matrix1ref}[1]}[2] - ${${$matrix1ref}[0]}[2]*${${$matrix1ref}[1]}[1])/$det;
|
---|
261 | ${${$matrix2ref}[0]}[1] = (${${$matrix1ref}[1]}[2]*${${$matrix1ref}[2]}[0] - ${${$matrix1ref}[1]}[0]*${${$matrix1ref}[2]}[2])/$det;
|
---|
262 | ${${$matrix2ref}[1]}[1] = (${${$matrix1ref}[0]}[0]*${${$matrix1ref}[2]}[2] - ${${$matrix1ref}[0]}[2]*${${$matrix1ref}[2]}[0])/$det;
|
---|
263 | ${${$matrix2ref}[2]}[1] = (${${$matrix1ref}[0]}[2]*${${$matrix1ref}[1]}[0] - ${${$matrix1ref}[0]}[0]*${${$matrix1ref}[1]}[2])/$det;
|
---|
264 | ${${$matrix2ref}[0]}[2] = (${${$matrix1ref}[1]}[0]*${${$matrix1ref}[2]}[1] - ${${$matrix1ref}[1]}[1]*${${$matrix1ref}[2]}[0])/$det;
|
---|
265 | ${${$matrix2ref}[1]}[2] = (${${$matrix1ref}[0]}[1]*${${$matrix1ref}[2]}[0] - ${${$matrix1ref}[0]}[0]*${${$matrix1ref}[2]}[1])/$det;
|
---|
266 | ${${$matrix2ref}[2]}[2] = (${${$matrix1ref}[0]}[0]*${${$matrix1ref}[1]}[1] - ${${$matrix1ref}[0]}[1]*${${$matrix1ref}[1]}[0])/$det;
|
---|
267 |
|
---|
268 | print "Checking inverse ... ";
|
---|
269 | my $flag = 0;
|
---|
270 | for (my $i=0;$i<3;$i++) {
|
---|
271 | for (my $j=0;$j<3;$j++) {
|
---|
272 | my $tmp = 0;
|
---|
273 | for (my $k=0;$k<3;$k++) {
|
---|
274 | $tmp += ${${$matrix1ref}[$i]}[$k]*${${$matrix2ref}[$j]}[$k];
|
---|
275 | }
|
---|
276 | if ($flag == 0) {
|
---|
277 | if ($i == $j) {
|
---|
278 | $flag = fabs(1 - $tmp) > $MYEPSILON ? 1 : 0;
|
---|
279 | } else {
|
---|
280 | $flag = fabs($tmp) > $MYEPSILON ? 1 : 0;
|
---|
281 | }
|
---|
282 | }
|
---|
283 | #print "$tmp";
|
---|
284 | #if ($j != 2) { print ","; }
|
---|
285 | #else { print "\n"; }
|
---|
286 | }
|
---|
287 | #if ($i != 2) { print ")\t("; }
|
---|
288 | #else { print ")\n"; }
|
---|
289 | }
|
---|
290 | if ($flag == 0) { print "ok\n"; } else { print "false\n"; }
|
---|
291 | }
|
---|
292 |
|
---|
293 | # Evaluates determinant of 3x3 matrix
|
---|
294 | # \param $matrixref matrix whose determinant is to be calculated
|
---|
295 | sub Det
|
---|
296 | {
|
---|
297 | local ($matrixref) = @_;
|
---|
298 | my $return = 0;
|
---|
299 | $return = ${${$matrixref}[0]}[0] * (${${$matrixref}[1]}[1]*${${$matrixref}[2]}[2] - ${${$matrixref}[1]}[2]*${${$matrixref}[2]}[1])
|
---|
300 | - ${${$matrixref}[1]}[1] * (${${$matrixref}[0]}[0]*${${$matrixref}[2]}[2] - ${${$matrixref}[0]}[2]*${${$matrixref}[2]}[0])
|
---|
301 | + ${${$matrixref}[2]}[2] * (${${$matrixref}[0]}[0]*${${$matrixref}[1]}[1] - ${${$matrixref}[0]}[1]*${${$matrixref}[1]}[0]);
|
---|
302 | return $return;
|
---|
303 | }
|
---|
304 |
|
---|
305 | # Parse for a pattern and return line split up by spaces
|
---|
306 | sub ParseFor
|
---|
307 | {
|
---|
308 | my ($pattern, $arrayref) = @_;
|
---|
309 | my $line;
|
---|
310 | foreach $line (@{$arrayref}) {
|
---|
311 | if ($line =~ /$pattern/) {
|
---|
312 | return (split(/\s+/,$line));
|
---|
313 | }
|
---|
314 | }
|
---|
315 | }
|
---|
316 |
|
---|
317 | # Reads contents of a file into an line-by-line array
|
---|
318 | # \param filename
|
---|
319 | # \return reference to array
|
---|
320 | sub ReadFile
|
---|
321 | {
|
---|
322 | open(FILE,$_[0]);
|
---|
323 | @storage = <FILE>;
|
---|
324 | close(FILE);
|
---|
325 | return @storage;
|
---|
326 | }
|
---|
327 |
|
---|
328 | # A sheet, specified by axis[0] and axis[1] with vectors in $matrixref, is diametered
|
---|
329 | # \param $matrixref reference to 3x3 matrix with row vectors
|
---|
330 | # \param $axis reference to 3 vector with permutation of axis indices [0,1,2]
|
---|
331 | # \param $lengthfactor factor for axis[0]
|
---|
332 | # \param $radiusfactor factor for axis[1]
|
---|
333 | # \return biggest diameter of sheet
|
---|
334 | sub DetermineBiggestDiameter
|
---|
335 | {
|
---|
336 | local ($matrixref, $axis, $lengthfactor, $radiusfactor) = @_;
|
---|
337 | # get greatest diameter of new sheet
|
---|
338 | my @diameter = (0,0);
|
---|
339 | for(my $i=0;$i<3;$i++) {
|
---|
340 | $diameter[0] += (${${$matrixref}[${$axis}[0]]}[$i]*${$lengthfactor}-${${$matrixref}[${$axis}[1]]}[$i]*${$radiusfactor})
|
---|
341 | *(${${$matrixref}[${$axis}[0]]}[$i]*${$lengthfactor}-${${$matrixref}[${$axis}[1]]}[$i]*${$radiusfactor});
|
---|
342 | $diameter[1] += (${${$matrixref}[${$axis}[0]]}[$i]*${$lengthfactor}+${${$matrixref}[${$axis}[1]]}[$i]*${$radiusfactor})
|
---|
343 | *(${${$matrixref}[${$axis}[0]]}[$i]*${$lengthfactor}+${${$matrixref}[${$axis}[1]]}[$i]*${$radiusfactor});
|
---|
344 | }
|
---|
345 | if (($diameter[0] - $diameter[1]) > $MYEPSILON) {
|
---|
346 | $biggest = 0;
|
---|
347 | } else {
|
---|
348 | $biggest = 1;
|
---|
349 | }
|
---|
350 | @diameter = (sqrt($diameter[0]),sqrt($diameter[1]));
|
---|
351 | printf("\n\nMajor diameter of the sheet is %5.5f, minor diameter is %5.5f.\n",$diameter[$biggest],$diameter[($biggest+1)%2]);
|
---|
352 |
|
---|
353 | return $diameter[$biggest];
|
---|
354 | }
|
---|
355 |
|
---|
356 |
|
---|
357 | # ++++++++ Beginning +++++++++++++++++++++++++++
|
---|
358 |
|
---|
359 | print "Nanotube Creator.\n=================\n\n"; # Welcome msg
|
---|
360 |
|
---|
361 | my $file;
|
---|
362 |
|
---|
363 | # Read command line arguments
|
---|
364 | if (!$ARGV[1]) {
|
---|
365 | print "Nanotubes <file> <status>\n\t<file> is the basis used for the various xyz files that are created.\n\t<status> is either None, Cell, Sheet or Tube,\n\t\t whether the given file does not yet exist, specifies a unit cell, a sheet or a tube.\n";
|
---|
366 | exit 255;
|
---|
367 | } else {
|
---|
368 | $file = $ARGV[0];
|
---|
369 | $stage = $ARGV[1];
|
---|
370 | $file =~ s/(.*)\..*/$1/;
|
---|
371 | print "I will use \'$file' as base for the filenames.\n\n";
|
---|
372 |
|
---|
373 | }
|
---|
374 |
|
---|
375 | # for text input
|
---|
376 | open(INPUT,'-');
|
---|
377 |
|
---|
378 | # Get primitive vectors, either ...
|
---|
379 | if ($stage !~ /[Nn]on/) {
|
---|
380 | # ... from end of cell file
|
---|
381 | print "Opening ".$file.".Cell.xyz to read primitive vectors in lines beginning with a(i) = ...\n";
|
---|
382 | open(CELL, $file.".Cell.xyz");
|
---|
383 | @buffer = <CELL>;
|
---|
384 | local $flag = 3; # Marks whether vectors were found or not
|
---|
385 | for($i=0; $i<@buffer; $i++) {
|
---|
386 | #print "SEEK: $buffer[$i]";
|
---|
387 | if ($buffer[$i] =~ /a\(1\) /) {
|
---|
388 | ($name, $equal, @vectorA1) = split(/\s+/,$buffer[$i]);
|
---|
389 | print "$name was found: ($vector[0][0], $vector[0][1], $vector[0][2])\n";
|
---|
390 | $flag--;
|
---|
391 | } elsif ($buffer[$i] =~ /a\(2\) /) {
|
---|
392 | ($name, $equal, @vectorA2) = split(/\s+/,$buffer[$i]);
|
---|
393 | print "$name was found: ($vector[1][0], $vector[1][1], $vector[1][2])\n";
|
---|
394 | $flag--;
|
---|
395 | } elsif ($buffer[$i] =~ /a\(3\) /) {
|
---|
396 | ($name, $equal, @vectorA3) = split(/\s+/,$buffer[$i]);
|
---|
397 | print "$name was found: ($vector[2][0], $vector[2][1], $vector[2][2])\n";
|
---|
398 | $flag--;
|
---|
399 | }
|
---|
400 | }
|
---|
401 | # parse number of atems in unit cell
|
---|
402 | $numbercell = $buffer[0]; # number of atoms is first number in first line
|
---|
403 | chomp $numbercell;
|
---|
404 | print "\nThere are $numbercell atoms in the unit cell.\n";
|
---|
405 |
|
---|
406 | if ($flag != 0) { $stage = "None"; } # Set to None if vectors could not be found
|
---|
407 | }
|
---|
408 |
|
---|
409 | if ($stage =~ /[Nn]on/) {
|
---|
410 | # ... or from INPUT
|
---|
411 | # give some explanation to help imagination
|
---|
412 | print "You will give the unit cell of the given substance.\nAfterwards, the programme will create a Sheet, a Tube and a Torus, each with their own xyz-file named accordingly.\n\n";
|
---|
413 |
|
---|
414 | print "Enter 1st primitive vector (x z y): ";
|
---|
415 | $line = <INPUT>;
|
---|
416 | chomp($line);
|
---|
417 | @vectorA1 = split(/\s+/,$line);
|
---|
418 | print "Enter 2nd primitive vector (x z y): ";
|
---|
419 | $line = <INPUT>;
|
---|
420 | chomp($line);
|
---|
421 | @vectorA2 = split(/\s+/,$line);
|
---|
422 | print "Enter 3rd primitive vector (x z y): ";
|
---|
423 | $line = <INPUT>;
|
---|
424 | chomp($line);
|
---|
425 | @vectorA3 = split(/\s+/,$line);
|
---|
426 | }
|
---|
427 |
|
---|
428 | print "Cell vectors: (@{$vector[0]})\t(@{$vector[1]})\t(@{$vector[2]})\n";
|
---|
429 |
|
---|
430 | # Calculate some remaining stuff which comes at the end of the xyz file
|
---|
431 | # volume is determinant of primitive vectors seen as a matrix (column vectors)
|
---|
432 | $volume = Det(\@vector);
|
---|
433 | print "Volume is $volume\n";
|
---|
434 | MatrixInversion(\@vector, \@Recivector);
|
---|
435 | print "Reciprocal cell vectors: (@{$Recivector[0]})\t(@{$Recivector[1]})\t(@{$Recivector[2]})\n";
|
---|
436 | $Recivolume = Det(\@Recivector);
|
---|
437 |
|
---|
438 |
|
---|
439 | # ============ CELL ===========================
|
---|
440 | # The cell is simply created by transforming relative coordinates within the cell
|
---|
441 | # into cartesian ones using the unit cell vectors.
|
---|
442 |
|
---|
443 | if ($stage =~ /[Nn]on/) {
|
---|
444 | # enter number of atoms in unit cell
|
---|
445 | print "\nHow many atoms are in the unit cell: ";
|
---|
446 | $numbercell = <INPUT>;
|
---|
447 | chomp($numbercell);
|
---|
448 |
|
---|
449 | # open unit cell file
|
---|
450 | open(XYZ,">$file".".Cell.xyz"); # for xyz output
|
---|
451 |
|
---|
452 | print "\nNext, you have to enter each atom in the cell as follows, e.g.\n";
|
---|
453 | print "Enter \'ChemicalSymbol X Y Z\' (relative to primitive vectors): C 0.5 0.25 0.5\n\n";
|
---|
454 | # Enter element and coordinates of each
|
---|
455 | for ($nr = 0; $nr < $numbercell; $nr++) {
|
---|
456 | do {
|
---|
457 | print "Enter for ".($nr+1)." atom \'ChemicalSymbol X Y Z\' (relative to primitive vectors): ";
|
---|
458 | ($name, @atom) = split(/\s+/,<INPUT>);
|
---|
459 | } while (@atom < 3);
|
---|
460 | my @x = MatrixTrafo(\@vector, \@atom);
|
---|
461 | print XYZ $name."\t".($x[0])."\t".($x[1])."\t".($x[2])."\n";
|
---|
462 | }
|
---|
463 |
|
---|
464 | close(XYZ);
|
---|
465 | AddAtomicNumber($file.".Cell.xyz", $numbercell); # prepend atomic number and comment
|
---|
466 | print "\nThere are $numbercell atoms in the created cell.\n";
|
---|
467 |
|
---|
468 | # Read cell file into buffer for later geometries
|
---|
469 | @buffer = ReadFile("<$file".".Cell.xyz");
|
---|
470 |
|
---|
471 | $stage = "Cell"
|
---|
472 | }
|
---|
473 |
|
---|
474 | # evaluate length of each unit cell vector
|
---|
475 | print "\nVektorbetraege: ";
|
---|
476 | DetermineVectorLengths(\@vector,\@betrag);
|
---|
477 |
|
---|
478 | # ============ SHEET ==========================
|
---|
479 | # The sheet is a bit more complex. We read the cell in cartesian coordinates
|
---|
480 | # from the file. Next, we have to rotate the unit cell vectors by the so called
|
---|
481 | # chiral angle. This gives a slanted and elongated section upon the sheet of
|
---|
482 | # periodically repeated original unit cells. It only matches up if the factors
|
---|
483 | # were all integer! (That's why the rotation is discrete and the chiral angle
|
---|
484 | # specified not as (cos alpha, sin alpha) but as (n,m)) Also, we want this
|
---|
485 | # section to be rectangular, thus we orthogonalize the original unit vectors
|
---|
486 | # to gain our (later) tube axis.
|
---|
487 | # By looking at the biggest possible diameter we know whose original cells to
|
---|
488 | # look at and check if their respective compounds (contained atoms) still reside
|
---|
489 | # in the rotated, elongated section we need for the later tube.
|
---|
490 | # Then in a for loop we go through every cell. By projecting the vector leading
|
---|
491 | # from the origin to the specific atom down onto the major and minor axis we
|
---|
492 | # know if it's still within the boundaries spanned by these rotated and elongated
|
---|
493 | # (radius-, length factor) unit vectors or not. If yes, its coordinates are
|
---|
494 | # written to file.
|
---|
495 |
|
---|
496 | if ($stage =~ /[Cc]ell/) {
|
---|
497 | # get radial axis of tube
|
---|
498 | print "\nSpecify the axis permutation that is going to be perpendicular to the sheet [tubeaxis, torusaxis, noaxis]: ";
|
---|
499 | $line = <INPUT>;
|
---|
500 | chomp($line);
|
---|
501 | if (!$line) {
|
---|
502 | $majoraxis = 0;
|
---|
503 | $minoraxis = 1;
|
---|
504 | $noaxis = 2;
|
---|
505 | } else {
|
---|
506 | ($majoraxis, $minoraxis, $noaxis) = split(/\s+/,$line);
|
---|
507 | }
|
---|
508 |
|
---|
509 | # find GCD for the two "longest" vector magnitudes
|
---|
510 | #if ($betrag[($noaxis+1)%3] < $betrag[($noaxis+2)%3]) {
|
---|
511 | # $majoraxis = ($noaxis+2)%3;
|
---|
512 | # $minoraxis = ($noaxis+1)%3;
|
---|
513 | #} else {
|
---|
514 | # $majoraxis = ($noaxis+1)%3;
|
---|
515 | # $minoraxis = ($noaxis+2)%3;
|
---|
516 | #}
|
---|
517 | #$gcf = ceil(1000*$betrag[$majoraxis])/gcf(ceil(1000*$betrag[$majoraxis]), ceil(1000*$betrag[$minoraxis])); # factor to a desired precision and round as they may not always match
|
---|
518 | #print "Major axis is $majoraxis, minor axis is $minoraxis and greatest common factor is $gcf: ".$betrag[$majoraxis]." == ".($betrag[$minoraxis]*$gcf)."\n";
|
---|
519 |
|
---|
520 | my $flag = 0;
|
---|
521 | do { # the discrete angle
|
---|
522 | print "\nNow specify the two natural numbers (n m) defining the chiral angle: ";
|
---|
523 | ($n,$m) = split(/\s+/,<INPUT>);
|
---|
524 | chomp($m);
|
---|
525 |
|
---|
526 | # Compute rotated cell vectors
|
---|
527 | for ($i=0; $i<3; $i++) {
|
---|
528 | $Tubevector[$majoraxis][$i] = $n*$vector[$majoraxis][$i] + $m*$vector[$minoraxis][$i];
|
---|
529 | $Tubevector[$minoraxis][$i] = -$m*$vector[$majoraxis][$i] + $n*$vector[$minoraxis][$i];
|
---|
530 | $Tubevector[$noaxis][$i] = $vector[$noaxis][$i];
|
---|
531 | }
|
---|
532 | print "\nTubevektorbetraege: ";
|
---|
533 | DetermineVectorLengths(\@Tubevector,\@Tubebetrag);
|
---|
534 |
|
---|
535 | # calculate angle and radius
|
---|
536 | $tubecircum = sqrt($Tubebetrag[$minoraxis]);
|
---|
537 | $tubelength = sqrt($Tubebetrag[$majoraxis]);
|
---|
538 | $skp = skp($vector[$majoraxis],$Tubevector[$majoraxis]);
|
---|
539 | $chiralangle = acos($skp/sqrt($betrag[$majoraxis]*$Tubebetrag[$majoraxis]))/$pi*180;
|
---|
540 |
|
---|
541 | print "\nGive integer factors for radius and length of tube: ";
|
---|
542 | $line = <INPUT>;
|
---|
543 | chomp($line);
|
---|
544 | ($radiusfactor, $lengthfactor) = split(/\s+/, $line);
|
---|
545 |
|
---|
546 | printf("\nThe chiral angle then is %5.5f degrees with tube radius %5.5f A and length %5.5f A, i.e. torus radius of %5.5f A.\n", $chiralangle, $tubecircum*$radiusfactor/$pi, $tubelength*$lengthfactor, $tubelength*$lengthfactor/$pi);
|
---|
547 |
|
---|
548 | print "Satisfied? ";
|
---|
549 | $flag = <INPUT>;
|
---|
550 | } while ($flag !~ /[yY]/);
|
---|
551 | } else {
|
---|
552 | # Read sheetnumbers from file
|
---|
553 | @buffer2 = ReadFile($file.".Sheet.xyz");
|
---|
554 | ($pattern, $majoraxis, $minoraxis, $noaxis) = ParseFor("Axis", \@buffer2);
|
---|
555 | ($pattern, $n, $m) = ParseFor("(n,m)", \@buffer2);
|
---|
556 | ($pattern, $radiusfactor, $lengthfactor) = ParseFor("factors", \@buffer2);
|
---|
557 |
|
---|
558 | # Compute rotated cell vectors
|
---|
559 | for ($i=0; $i<3; $i++) {
|
---|
560 | $Tubevector[$majoraxis][$i] = $n*$vector[$majoraxis][$i] + $m*$vector[$minoraxis][$i];
|
---|
561 | $Tubevector[$minoraxis][$i] = -$m*$vector[$majoraxis][$i] + $n*$vector[$minoraxis][$i];
|
---|
562 | $Tubevector[$noaxis][$i] = $vector[$noaxis][$i];
|
---|
563 | }
|
---|
564 | print "\nTubevektorbetraege: ";
|
---|
565 | DetermineVectorLengths(\@Tubevector,\@Tubebetrag);
|
---|
566 |
|
---|
567 | # calculate angle and radius
|
---|
568 | $tubecircum = sqrt($Tubebetrag[$minoraxis]);
|
---|
569 | $tubelength = sqrt($Tubebetrag[$majoraxis]);
|
---|
570 | $skp = skp($vector[$majoraxis],$Tubevector[$majoraxis]);
|
---|
571 | $chiralangle = acos($skp/sqrt($betrag[$majoraxis]*$Tubebetrag[$majoraxis]))/$pi*180;
|
---|
572 | printf("\nThe chiral angle then is %5.5f degrees with tube radius %5.5f A and length %5.5f A, i.e. torus radius of %5.5f A.\n", $chiralangle, $tubecircum*$radiusfactor/$pi, $tubelength*$lengthfactor, $tubelength*$lengthfactor/$pi);
|
---|
573 | }
|
---|
574 |
|
---|
575 | # Now for the rotated sheet we need orthogonal major and minor axis, but with major unchanged
|
---|
576 | @axis = ($majoraxis,$minoraxis,$noaxis);
|
---|
577 | Orthogonalize(\@Tubevector,\@Tubebetrag,\@axis);
|
---|
578 | # print new Tubebetraege
|
---|
579 | print "\nTubevektorbetraege after Orthogonalization: ";
|
---|
580 | DetermineVectorLengths(\@Tubevector,\@Tubebetrag);
|
---|
581 |
|
---|
582 | print "Tube vectors: (@{$Tubevector[0]})\t(@{$Tubevector[1]})\t(@{$Tubevector[2]})\n";
|
---|
583 | MatrixInversion(\@Tubevector, \@TubevectorInverse);
|
---|
584 | Transpose(\@TubevectorInverse);
|
---|
585 | Transpose(\@Recivector);
|
---|
586 | print "Inverted tube vectors: (@{$TubevectorInverse[0]})\t(@{$TubevectorInverse[1]})\t(@{$TubevectorInverse[2]})\n";
|
---|
587 |
|
---|
588 | # check touched original(!) cells in each direction (in a circle with biggest sheet diameter as radius)
|
---|
589 | $biggestdiameter = DetermineBiggestDiameter(\@Tubevector, \@axis, \$lengthfactor, \$radiusfactor);
|
---|
590 | for ($i=0;$i<3;$i++) {
|
---|
591 | $sheetnr[$i] = 0;
|
---|
592 | }
|
---|
593 | for ($i=0;$i<3;$i++) {
|
---|
594 | for ($j=0;$j<3;$j++) {
|
---|
595 | if (fabs($vector[$i][$j]) > $MYEPSILON) {
|
---|
596 | $tmp = ceil($biggestdiameter/fabs($vector[$i][$j]));
|
---|
597 | } else {
|
---|
598 | $tmp = 0;
|
---|
599 | }
|
---|
600 | $sheetnr[$j] = $sheetnr[$j] > $tmp ? $sheetnr[$j] : $tmp;
|
---|
601 | }
|
---|
602 | }
|
---|
603 | print "Maximum indices to regard: @sheetnr\n";
|
---|
604 | for ($i=0;$i<3;$i++) {
|
---|
605 | print "For axis $i: (".($vector[$i][0]*$sheetnr[$i])."\t".($vector[$i][1]*$sheetnr[$i])."\t".($vector[$i][2]*$sheetnr[$i]).") with ".sqrt($betrag[$i])."\n";
|
---|
606 | }
|
---|
607 |
|
---|
608 | if ($stage =~ /[Cc]ell/) {
|
---|
609 | # open sheet file
|
---|
610 | open(XYZ,">$file".".Sheet.xyz"); # for xyz output
|
---|
611 |
|
---|
612 | # Quicker: scan all atoms beforehand
|
---|
613 | for (my $nr = 0; $nr < $numbercell; $nr++) {
|
---|
614 | push (@names, "none"); # These two are necessary as with ($name, @atom) = split(..); the same variable would be used and thus overwritten!
|
---|
615 | push (@atoms, [0,0,0]); # They sort of allocate the necessary memory
|
---|
616 | ($names[$nr],$atoms[$nr][0],$atoms[$nr][1],$atoms[$nr][2]) = split(/\s+/, $buffer[2+$nr]); # take line by line
|
---|
617 | print "Prereading $names[$nr]_$nr\t@{$atoms[$nr]}\n";
|
---|
618 | }
|
---|
619 |
|
---|
620 | # Now create the sheet
|
---|
621 | $numbersheet = 0;
|
---|
622 | @index = (0,0,0);
|
---|
623 | @projection = (0,0,0);
|
---|
624 | for ($index[$majoraxis] = -$sheetnr[$majoraxis]; $index[$majoraxis] < $sheetnr[$majoraxis]; $index[$majoraxis]++) { # NOTE: minor axis may start from 0! Check on this later ...
|
---|
625 | for ($index[$minoraxis] = 0; $index[$minoraxis] < $sheetnr[$minoraxis]; $index[$minoraxis]++) { # These are all the cells that need be checked on
|
---|
626 | #for ($index[$minoraxis] = -$sheetnr[$minoraxis]; $index[$minoraxis] <= $sheetnr[$minoraxis]; $index[$minoraxis]++) { # These are all the cells that need be checked on
|
---|
627 | # Calculate offset
|
---|
628 | @offset = MatrixTrafo(\@vector, \@index);
|
---|
629 |
|
---|
630 | # print "Now dealing with $numbercell atoms in unit cell at R = (@offset): ";
|
---|
631 | my @coord;
|
---|
632 | for (my $nr = 0; $nr < $numbercell; $nr++) {
|
---|
633 | # Create coordinates at atom site
|
---|
634 | @coord = VectorAdd($atoms[$nr], \@offset);
|
---|
635 |
|
---|
636 | # project down on major and minor Tubevectors and check for length if out of sheet
|
---|
637 | #@projection = MatrixTrafo(\@Recivector, \@coord);
|
---|
638 | #print "length: $lengthfactor\tradius: $radiusfactor\tdepth: 1\taxis: $majoraxis $minoraxis $noaxis\tEps: $MYEPSILON ";
|
---|
639 | #if ($numbersheet < 2) {
|
---|
640 | #if ((($projection[$majoraxis] + $MYEPSILON) >= 0) && ((1 - $projection[$majoraxis]) > $MYEPSILON) &&
|
---|
641 | # (($projection[$minoraxis] + $MYEPSILON) >= 0) && ((1 - $projection[$minoraxis]) > $MYEPSILON) &&
|
---|
642 | # (($projection[$noaxis] + $MYEPSILON) >= 0) && ((1 - $projection[$noaxis]) > $MYEPSILON)) { # check if within rotated cell
|
---|
643 | # $char = 'C';
|
---|
644 | #} else {
|
---|
645 | # $char = 'O';
|
---|
646 | #}
|
---|
647 | @projection = MatrixTrafo(\@TubevectorInverse, \@coord);
|
---|
648 | #print "projection: $projection[$majoraxis] $projection[$minoraxis] $projection[$noaxis]\n";
|
---|
649 | #print "Atom Nr. ".($numbersheet+1).": @projection\n";
|
---|
650 | if ((($projection[$majoraxis] + $MYEPSILON) >= 0) && (($lengthfactor - $projection[$majoraxis]) > $MYEPSILON) &&
|
---|
651 | (($projection[$minoraxis] + $MYEPSILON) >= 0) && (($radiusfactor - $projection[$minoraxis]) > $MYEPSILON) &&
|
---|
652 | (($projection[$noaxis] + $MYEPSILON) >= 0) && ((1 - $projection[$noaxis]) > $MYEPSILON)) { # check if within rotated cell
|
---|
653 | $numbersheet++;
|
---|
654 | print XYZ "$names[$nr]\t".($coord[0])."\t".($coord[1])."\t".($coord[2])."\n";
|
---|
655 | #print XYZ "$char\t".($coord[0])."\t".($coord[1])."\t".($coord[2])."\n";
|
---|
656 | #print "$nr,";
|
---|
657 | } #else {
|
---|
658 | #$numbersheet++;
|
---|
659 | #print XYZ "$char\t".($coord[0])."\t".($coord[1])."\t".($coord[2])."\n";
|
---|
660 | #print "#$nr#, ";
|
---|
661 | #}
|
---|
662 | }
|
---|
663 | #print "\n";
|
---|
664 | }
|
---|
665 | }
|
---|
666 |
|
---|
667 | close(XYZ);
|
---|
668 | AddAtomicNumber($file.".Sheet.xyz",$numbersheet); # prepend atomic number and comment
|
---|
669 | AddSheetInfo($file.".Sheet.xyz",$majoraxis,$minoraxis,$noaxis,$n,$m,$radiusfactor,$lengthfactor);
|
---|
670 | print "\nThere are $numbersheet atoms in the created sheet.\n";
|
---|
671 |
|
---|
672 | $stage = "Sheet";
|
---|
673 | }
|
---|
674 |
|
---|
675 | open (file3, $file.".Sheet.xyz");
|
---|
676 | @buffer2 = <file3>;
|
---|
677 | close(file3);
|
---|
678 | $numbersheet = $buffer2[0];
|
---|
679 | chomp($numbersheet);
|
---|
680 |
|
---|
681 | # ============ TUBE ===========================
|
---|
682 | # The tube starts with the rectangular (due to the orthogonalization) sheet
|
---|
683 | # just created (or read). Along the minor axis it is rolled up, i.e. projected
|
---|
684 | # from a 2d surface onto a cylindrical surface (x,y,z <-> r,alpha,z). The only
|
---|
685 | # thing that's a bit complex is that the sheet it not aligned along the cartesian
|
---|
686 | # axis but along major and minor. That's why we have to transform the atomic
|
---|
687 | # cartesian coordinates into the orthogonal tubevector base, do the rolling up
|
---|
688 | # there (and regard that minor and major axis must not necessarily be of equal
|
---|
689 | # length) and afterwards transform back again (where we need the $halfaxis due to
|
---|
690 | # the above possible inequality).
|
---|
691 |
|
---|
692 | if ($stage =~ /[Ss]heet/) {
|
---|
693 | # open tube file
|
---|
694 | open(XYZ,">$file".".Tube.xyz"); # for xyz output
|
---|
695 |
|
---|
696 | # Prepend begin
|
---|
697 | print XYZ "$buffer2[0]"; # write number of atoms ...
|
---|
698 | print XYZ "$buffer2[1]"; # ... and comment
|
---|
699 |
|
---|
700 | # determine center of gravity
|
---|
701 | # @cog = (0,0,0);
|
---|
702 | # for ($nr=0;$nr<$buffer2[0];$nr++) { # for each atom
|
---|
703 | # ($name, @atom) = split(/\s+/, $buffer2[2+$nr]);
|
---|
704 | # if (@atom >= 3) {
|
---|
705 | # for (my $i=0;$i<3;$i++) {
|
---|
706 | # $cog[$i] += $atom[$i];
|
---|
707 | # }
|
---|
708 | # }
|
---|
709 | # }
|
---|
710 | # for (my $i=0;$i<3;$i++) {
|
---|
711 | # $cog[$i] /= -$buffer2[0];
|
---|
712 | # }
|
---|
713 | # @cog_projected = MatrixTrafo(\@TubevectorInverse, \@cog);
|
---|
714 |
|
---|
715 | # print "\nCenter of Gravity at (@cog) and projected at (@cog_projected)\n";
|
---|
716 |
|
---|
717 | # determine half axis as tube vector not necessarily half same length
|
---|
718 | for (my $i=0;$i<3;$i++) {
|
---|
719 | $halfaxis[$i] = $radiusfactor*($tubecircum)/sqrt($Tubebetrag[$i]);
|
---|
720 | }
|
---|
721 | # Rolling up the sheet
|
---|
722 | my @x = (0,0,0);
|
---|
723 | print "\nRadiusfactor: $radiusfactor\t pi: $pi\taxis ($majoraxis,$minoraxis,$noaxis)\n";
|
---|
724 | for ($nr=0;$nr<$buffer2[0];$nr++) { # for each atom
|
---|
725 | ($name, @atom) = split(/\s+/, $buffer2[2+$nr]);
|
---|
726 | if (@atom >= 3) {
|
---|
727 | #printf("Atom $nr: (%5.2f,%5.2f,%5.2f)\t",$atom[0],$atom[1],$atom[2]);
|
---|
728 | # transform atom coordinates in cartesian system to the axis eigensystem
|
---|
729 | @x = MatrixTrafo(\@TubevectorInverse, \@atom);
|
---|
730 | #@x = VectorAdd(\@y, \@cog_projected);
|
---|
731 | #printf("projected: (%5.2f,%5.2f,%5.2f)\t",$x[0],$x[1],$x[2]);
|
---|
732 |
|
---|
733 | # roll up (project (x,y,z) on cylindrical coordinates (radius,arg,z))
|
---|
734 | $arg = 2*$pi*$x[$minoraxis]/($radiusfactor) - $pi; # is angle
|
---|
735 | $radius = 1/(2*$pi); # is length of sheet in units of axis vector, divide by pi to get radius (from circumference)
|
---|
736 | #printf("arg: %5.2f (c%2.2f,s%2.2f)\t",$arg, cos($arg), sin($arg));
|
---|
737 | $x[$minoraxis] = cos($arg)*$halfaxis[$minoraxis]*$radius; # due to the back-transformation from eigensystem to cartesian one
|
---|
738 | $x[$noaxis] = sin($arg)*$halfaxis[$noaxis]*$radius; # as both vectors are not normalized additional betrag has to be taken into account!
|
---|
739 | #printf("rotated: (%5.2f,%5.2f,%5.2f)\n",$x[0],$x[1],$x[2]);
|
---|
740 | @atom = MatrixTrafo(\@Tubevector, \@x);
|
---|
741 | print XYZ $name."\t".$atom[0]."\t".$atom[1]."\t".$atom[2]."\n";
|
---|
742 | #print $name."\t".$atom[0]."\t".$atom[1]."\t".$atom[2]."\n";
|
---|
743 | } else {
|
---|
744 | print "Error reading atom Nr. $nr\n";
|
---|
745 | }
|
---|
746 | }
|
---|
747 | # append rest
|
---|
748 | for ($i=$nr+2;$i<@buffer2;$i++) {
|
---|
749 | print XYZ "$buffer2[$i]";
|
---|
750 | }
|
---|
751 | print XYZ "tubecircum $tubecircum\n";
|
---|
752 | close(XYZ);
|
---|
753 | print "\nThere are $numbersheet atoms in the created tube.\n";
|
---|
754 |
|
---|
755 | $stage = "Tube";
|
---|
756 | }
|
---|
757 |
|
---|
758 | # Read tubecircum from file
|
---|
759 | open (file3, "<$file".".Tube.xyz");
|
---|
760 | @buffer3 = <file3>;
|
---|
761 | close(file3);
|
---|
762 | ($pattern, $tubecircum) = ParseFor("tubecircum", \@buffer3);
|
---|
763 |
|
---|
764 |
|
---|
765 | # ============ TORUS ==========================
|
---|
766 | # The procedure for the torus is very much alike to the one used to make the
|
---|
767 | # tube. Only the projection is not from 2d surface onto a cylindrical one but
|
---|
768 | # from a cylindrial onto a torus surface
|
---|
769 | # (x,y,z) <-> (cos(s)*(R+r*cos(t)), sin(s)*(R+rcos(t)), r*sin(t)).
|
---|
770 | # Here t is the angle within the tube with radius r, s is the torus angle with
|
---|
771 | # radius R. We get R from the tubelength (that's why we need lengthfactor to
|
---|
772 | # make it long enough). And due to fact that we have it already upon a cylindrical
|
---|
773 | # surface, r*cos(t) and r*sin(t) already reside in $minoraxis and $noaxis.
|
---|
774 |
|
---|
775 | if ($stage =~ /[Tt]ube/) {
|
---|
776 |
|
---|
777 | # open torus file
|
---|
778 | open(XYZ,">$file".".Torus.xyz"); # for xyz output
|
---|
779 |
|
---|
780 | # Prepend begin
|
---|
781 | print XYZ "$buffer3[0]"; # write number of atoms ...
|
---|
782 | print XYZ "$buffer3[1]"; # ... and comment
|
---|
783 |
|
---|
784 | # determine center of gravity
|
---|
785 | # @cog = (0,0,0);
|
---|
786 | # for ($nr=0;$nr<$buffer3[0];$nr++) { # for each atom
|
---|
787 | # ($name, @atom) = split(/\s+/, $buffer3[2+$nr]);
|
---|
788 | # if (@atom >= 3) {
|
---|
789 | # for (my $i=0;$i<3;$i++) {
|
---|
790 | # $cog[$i] += $atom[$i];
|
---|
791 | # }
|
---|
792 | # }
|
---|
793 | # }
|
---|
794 | # for (my $i=0;$i<3;$i++) {
|
---|
795 | # $cog[$i] /= -$buffer3[0];
|
---|
796 | # }
|
---|
797 | # @ocog_projected = MatrixTrafo(\@TubevectorInverse, \@cog);
|
---|
798 |
|
---|
799 | # print "\nCenter of Gravity at (@cog) and projected at (@cog_projected)\n";
|
---|
800 |
|
---|
801 | # Determine half axis
|
---|
802 | for (my $i=0;$i<3;$i++) {
|
---|
803 | $halfaxis[$i] = ($tubelength)/sqrt($Tubebetrag[$i]);
|
---|
804 | }
|
---|
805 | # Rolling up the sheet
|
---|
806 | my @x = (0,0,0);
|
---|
807 | #print "\nRadiusfactor: $radiusfactor\t pi: $pi\taxis ($majoraxis,$minoraxis,$noaxis)\n";
|
---|
808 | for ($nr=0;$nr<$buffer3[0];$nr++) { # for each atom
|
---|
809 | ($name, @atom) = split(/\s+/, $buffer3[2+$nr]);
|
---|
810 | if (@atom >= 3) {
|
---|
811 | #printf("Atom $nr: (%5.2f,%5.2f,%5.2f)\t",$atom[0],$atom[1],$atom[2]);
|
---|
812 |
|
---|
813 | # transform atom coordinates in cartesian system to the axis eigensystem and shift into center of gravity
|
---|
814 | @x = MatrixTrafo(\@TubevectorInverse, \@atom);
|
---|
815 | #@x = VectorAdd(\@y, \@cog_projected);
|
---|
816 | #printf("projected: (%5.2f,%5.2f,%5.2f)\t",$x[0],$x[1],$x[2]);
|
---|
817 |
|
---|
818 | # roll up (project (x,z,y) on cylindrical coordinates (radius,arg,z))
|
---|
819 | $arg = 2*$pi*$x[$majoraxis]/($lengthfactor)-$pi; # is angle
|
---|
820 | $radius = ($lengthfactor/(2*$pi) + $x[$minoraxis]/$halfaxis[$minoraxis]); # is R + r*cos(t)
|
---|
821 | #printf("arg: %5.2f (c%2.2f,s%2.2f)\t",$arg, cos($arg), sin($arg));
|
---|
822 | $x[$majoraxis] = cos($arg)*$halfaxis[$majoraxis]*($radius); # as both vectors are not normalized additional betrag has to be taken into account!
|
---|
823 | $x[$minoraxis] = sin($arg)*$halfaxis[$minoraxis]*($radius); # due to the back-transformation from eigensystem to cartesian one
|
---|
824 | #printf("rotated: (%5.2f,%5.2f,%5.2f)\n",$x[0],$x[1],$x[2]);
|
---|
825 | @atom = MatrixTrafo(\@Tubevector, \@x);
|
---|
826 |
|
---|
827 | print XYZ $name."\t".$atom[0]."\t".$atom[1]."\t".$atom[2]."\n";
|
---|
828 | #print $name."\t".$atom[0]."\t".$atom[1]."\t".$atom[2]."\n";
|
---|
829 | } else {
|
---|
830 | print "Error reading atom Nr. $nr\n";
|
---|
831 | }
|
---|
832 | }
|
---|
833 |
|
---|
834 | # append rest
|
---|
835 | for ($i=$nr+2;$i<@buffer3;$i++) {
|
---|
836 | print XYZ "$buffer3[$i]";
|
---|
837 | }
|
---|
838 | print XYZ "tubecircum $tubecircum\n";
|
---|
839 | close(XYZ);
|
---|
840 |
|
---|
841 | $stage = "Torus";
|
---|
842 | }
|
---|
843 |
|
---|
844 | print "\nFinished with geometry $stage.\n";
|
---|
845 |
|
---|
846 | # close stdin and exit
|
---|
847 | close(INPUT);
|
---|
848 | exit 0;
|
---|
849 |
|
---|
850 | # ++++++++ This is the end +++++++++++++++++++++
|
---|