1 | /** \file vector.cpp
|
---|
2 | *
|
---|
3 | * Function implementations for the class vector.
|
---|
4 | *
|
---|
5 | */
|
---|
6 |
|
---|
7 | #include "molecules.hpp"
|
---|
8 |
|
---|
9 |
|
---|
10 | /************************************ Functions for class vector ************************************/
|
---|
11 |
|
---|
12 | /** Constructor of class vector.
|
---|
13 | */
|
---|
14 | vector::vector() { x[0] = x[1] = x[2] = 0.; };
|
---|
15 |
|
---|
16 | /** Desctructor of class vector.
|
---|
17 | */
|
---|
18 | vector::~vector() {};
|
---|
19 |
|
---|
20 | /** Calculates distance between this and another vector.
|
---|
21 | * \param *y array to second vector
|
---|
22 | * \return \f$| x - y |^2\f$
|
---|
23 | */
|
---|
24 | double vector::Distance(const vector *y) const
|
---|
25 | {
|
---|
26 | double res = 0.;
|
---|
27 | for (int i=0;i<NDIM;i++)
|
---|
28 | res += (x[i]-y->x[i])*(x[i]-y->x[i]);
|
---|
29 | return (res);
|
---|
30 | };
|
---|
31 |
|
---|
32 | /** Calculates distance between this and another vector in a periodic cell.
|
---|
33 | * \param *y array to second vector
|
---|
34 | * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
|
---|
35 | * \return \f$| x - y |^2\f$
|
---|
36 | */
|
---|
37 | double vector::PeriodicDistance(const vector *y, const double *cell_size) const
|
---|
38 | {
|
---|
39 | double res = Distance(y), tmp, matrix[NDIM*NDIM];
|
---|
40 | vector Shiftedy, TranslationVector;
|
---|
41 | int N[NDIM];
|
---|
42 | matrix[0] = cell_size[0];
|
---|
43 | matrix[1] = cell_size[1];
|
---|
44 | matrix[2] = cell_size[3];
|
---|
45 | matrix[3] = cell_size[1];
|
---|
46 | matrix[4] = cell_size[2];
|
---|
47 | matrix[5] = cell_size[4];
|
---|
48 | matrix[6] = cell_size[3];
|
---|
49 | matrix[7] = cell_size[4];
|
---|
50 | matrix[8] = cell_size[5];
|
---|
51 | // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
|
---|
52 | for (N[0]=-1;N[0]<=1;N[0]++)
|
---|
53 | for (N[1]=-1;N[1]<=1;N[1]++)
|
---|
54 | for (N[2]=-1;N[2]<=1;N[2]++) {
|
---|
55 | // create the translation vector
|
---|
56 | TranslationVector.Zero();
|
---|
57 | for (int i=0;i<NDIM;i++)
|
---|
58 | TranslationVector.x[i] = (double)N[i];
|
---|
59 | TranslationVector.MatrixMultiplication(matrix);
|
---|
60 | // add onto the original vector to compare with
|
---|
61 | Shiftedy.CopyVector(y);
|
---|
62 | Shiftedy.AddVector(&TranslationVector);
|
---|
63 | // get distance and compare with minimum so far
|
---|
64 | tmp = Distance(&Shiftedy);
|
---|
65 | if (tmp < res) res = tmp;
|
---|
66 | }
|
---|
67 | return (res);
|
---|
68 | };
|
---|
69 |
|
---|
70 | /** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix.
|
---|
71 | * \param *out ofstream for debugging messages
|
---|
72 | * Tries to translate a vector into each adjacent neighbouring cell.
|
---|
73 | */
|
---|
74 | void vector::KeepPeriodic(ofstream *out, double *matrix)
|
---|
75 | {
|
---|
76 | // int N[NDIM];
|
---|
77 | // bool flag = false;
|
---|
78 | //vector Shifted, TranslationVector;
|
---|
79 | vector TestVector;
|
---|
80 | // *out << Verbose(1) << "Begin of KeepPeriodic." << endl;
|
---|
81 | // *out << Verbose(2) << "Vector is: ";
|
---|
82 | // Output(out);
|
---|
83 | // *out << endl;
|
---|
84 | TestVector.CopyVector(this);
|
---|
85 | TestVector.InverseMatrixMultiplication(matrix);
|
---|
86 | for(int i=0;i<NDIM;i++) { // correct periodically
|
---|
87 | if (TestVector.x[i] < 0) { // get every coefficient into the interval [0,1)
|
---|
88 | TestVector.x[i] += ceil(TestVector.x[i]);
|
---|
89 | } else {
|
---|
90 | TestVector.x[i] -= floor(TestVector.x[i]);
|
---|
91 | }
|
---|
92 | }
|
---|
93 | TestVector.MatrixMultiplication(matrix);
|
---|
94 | CopyVector(&TestVector);
|
---|
95 | // *out << Verbose(2) << "New corrected vector is: ";
|
---|
96 | // Output(out);
|
---|
97 | // *out << endl;
|
---|
98 | // *out << Verbose(1) << "End of KeepPeriodic." << endl;
|
---|
99 | };
|
---|
100 |
|
---|
101 | /** Calculates scalar product between this and another vector.
|
---|
102 | * \param *y array to second vector
|
---|
103 | * \return \f$\langle x, y \rangle\f$
|
---|
104 | */
|
---|
105 | double vector::ScalarProduct(const vector *y) const
|
---|
106 | {
|
---|
107 | double res = 0.;
|
---|
108 | for (int i=0;i<NDIM;i++)
|
---|
109 | res += x[i]*y->x[i];
|
---|
110 | return (res);
|
---|
111 | };
|
---|
112 |
|
---|
113 | /** Calculates the projection of a vector onto another \a *y.
|
---|
114 | * \param *y array to second vector
|
---|
115 | * \return \f$\langle x, y \rangle\f$
|
---|
116 | */
|
---|
117 | double vector::Projection(const vector *y) const
|
---|
118 | {
|
---|
119 | return (ScalarProduct(y)/Norm()/y->Norm());
|
---|
120 | };
|
---|
121 |
|
---|
122 | /** Calculates norm of this vector.
|
---|
123 | * \return \f$|x|\f$
|
---|
124 | */
|
---|
125 | double vector::Norm() const
|
---|
126 | {
|
---|
127 | double res = 0.;
|
---|
128 | for (int i=0;i<NDIM;i++)
|
---|
129 | res += this->x[i]*this->x[i];
|
---|
130 | return (sqrt(res));
|
---|
131 | };
|
---|
132 |
|
---|
133 | /** Normalizes this vector.
|
---|
134 | */
|
---|
135 | void vector::Normalize()
|
---|
136 | {
|
---|
137 | double res = 0.;
|
---|
138 | for (int i=0;i<NDIM;i++)
|
---|
139 | res += this->x[i]*this->x[i];
|
---|
140 | res = 1./sqrt(res);
|
---|
141 | Scale(&res);
|
---|
142 | };
|
---|
143 |
|
---|
144 | /** Zeros all components of this vector.
|
---|
145 | */
|
---|
146 | void vector::Zero()
|
---|
147 | {
|
---|
148 | for (int i=0;i<NDIM;i++)
|
---|
149 | this->x[i] = 0.;
|
---|
150 | };
|
---|
151 |
|
---|
152 | /** Calculates the angle between this and another vector.
|
---|
153 | * \param *y array to second vector
|
---|
154 | * \return \f$\frac{\langle x, y \rangle}{|x||y|}\f$
|
---|
155 | */
|
---|
156 | double vector::Angle(vector *y) const
|
---|
157 | {
|
---|
158 | return (this->ScalarProduct(y)/(this->Norm()*y->Norm()));
|
---|
159 | };
|
---|
160 |
|
---|
161 | /** Rotates the vector around the axis given by \a *axis by an angle of \a alpha.
|
---|
162 | * \param *axis rotation axis
|
---|
163 | * \param alpha rotation angle in radian
|
---|
164 | */
|
---|
165 | void vector::RotateVector(const vector *axis, const double alpha)
|
---|
166 | {
|
---|
167 | vector a,y;
|
---|
168 | // normalise this vector with respect to axis
|
---|
169 | a.CopyVector(this);
|
---|
170 | a.Scale(Projection(axis));
|
---|
171 | SubtractVector(&a);
|
---|
172 | // construct normal vector
|
---|
173 | y.MakeNormalVector(axis,this);
|
---|
174 | y.Scale(Norm());
|
---|
175 | // scale normal vector by sine and this vector by cosine
|
---|
176 | y.Scale(sin(alpha));
|
---|
177 | Scale(cos(alpha));
|
---|
178 | // add scaled normal vector onto this vector
|
---|
179 | AddVector(&y);
|
---|
180 | // add part in axis direction
|
---|
181 | AddVector(&a);
|
---|
182 | };
|
---|
183 |
|
---|
184 | /** Prints a 3dim vector.
|
---|
185 | * prints no end of line.
|
---|
186 | * \param *out output stream
|
---|
187 | */
|
---|
188 | bool vector::Output(ofstream *out) const
|
---|
189 | {
|
---|
190 | if (out != NULL) {
|
---|
191 | *out << "(";
|
---|
192 | for (int i=0;i<NDIM;i++) {
|
---|
193 | *out << x[i];
|
---|
194 | if (i != 2)
|
---|
195 | *out << ",";
|
---|
196 | }
|
---|
197 | *out << ")";
|
---|
198 | return true;
|
---|
199 | } else
|
---|
200 | return false;
|
---|
201 | };
|
---|
202 |
|
---|
203 | ofstream& operator<<(ofstream& ost,vector& m)
|
---|
204 | {
|
---|
205 | m.Output(&ost);
|
---|
206 | return ost;
|
---|
207 | };
|
---|
208 |
|
---|
209 | /** Scales each atom coordinate by an individual \a factor.
|
---|
210 | * \param *factor pointer to scaling factor
|
---|
211 | */
|
---|
212 | void vector::Scale(double **factor)
|
---|
213 | {
|
---|
214 | for (int i=0;i<NDIM;i++)
|
---|
215 | this->x[i] *= (*factor)[i];
|
---|
216 | };
|
---|
217 |
|
---|
218 | void vector::Scale(double *factor)
|
---|
219 | {
|
---|
220 | for (int i=0;i<NDIM;i++)
|
---|
221 | this->x[i] *= *factor;
|
---|
222 | };
|
---|
223 |
|
---|
224 | void vector::Scale(double factor)
|
---|
225 | {
|
---|
226 | for (int i=0;i<NDIM;i++)
|
---|
227 | this->x[i] *= factor;
|
---|
228 | };
|
---|
229 |
|
---|
230 | /** Translate atom by given vector.
|
---|
231 | * \param trans[] translation vector.
|
---|
232 | */
|
---|
233 | void vector::Translate(const vector *trans)
|
---|
234 | {
|
---|
235 | for (int i=0;i<NDIM;i++)
|
---|
236 | x[i] += trans->x[i];
|
---|
237 | };
|
---|
238 |
|
---|
239 | /** Do a matrix multiplication.
|
---|
240 | * \param *matrix NDIM_NDIM array
|
---|
241 | */
|
---|
242 | void vector::MatrixMultiplication(double *M)
|
---|
243 | {
|
---|
244 | vector C;
|
---|
245 | // do the matrix multiplication
|
---|
246 | C.x[0] = M[0]*x[0]+M[3]*x[1]+M[6]*x[2];
|
---|
247 | C.x[1] = M[1]*x[0]+M[4]*x[1]+M[7]*x[2];
|
---|
248 | C.x[2] = M[2]*x[0]+M[5]*x[1]+M[8]*x[2];
|
---|
249 | // transfer the result into this
|
---|
250 | for (int i=0;i<NDIM;i++)
|
---|
251 | x[i] = C.x[i];
|
---|
252 | };
|
---|
253 |
|
---|
254 | /** Do a matrix multiplication with \a *matrix' inverse.
|
---|
255 | * \param *matrix NDIM_NDIM array
|
---|
256 | */
|
---|
257 | void vector::InverseMatrixMultiplication(double *A)
|
---|
258 | {
|
---|
259 | vector C;
|
---|
260 | double B[NDIM*NDIM];
|
---|
261 | double detA = RDET3(A);
|
---|
262 | double detAReci;
|
---|
263 |
|
---|
264 | // calculate the inverse B
|
---|
265 | if (fabs(detA) > MYEPSILON) {; // RDET3(A) yields precisely zero if A irregular
|
---|
266 | detAReci = 1./detA;
|
---|
267 | B[0] = detAReci*RDET2(A[4],A[5],A[7],A[8]); // A_11
|
---|
268 | B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]); // A_12
|
---|
269 | B[2] = detAReci*RDET2(A[1],A[2],A[4],A[5]); // A_13
|
---|
270 | B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]); // A_21
|
---|
271 | B[4] = detAReci*RDET2(A[0],A[2],A[6],A[8]); // A_22
|
---|
272 | B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]); // A_23
|
---|
273 | B[6] = detAReci*RDET2(A[3],A[4],A[6],A[7]); // A_31
|
---|
274 | B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]); // A_32
|
---|
275 | B[8] = detAReci*RDET2(A[0],A[1],A[3],A[4]); // A_33
|
---|
276 |
|
---|
277 | // do the matrix multiplication
|
---|
278 | C.x[0] = B[0]*x[0]+B[3]*x[1]+B[6]*x[2];
|
---|
279 | C.x[1] = B[1]*x[0]+B[4]*x[1]+B[7]*x[2];
|
---|
280 | C.x[2] = B[2]*x[0]+B[5]*x[1]+B[8]*x[2];
|
---|
281 | // transfer the result into this
|
---|
282 | for (int i=0;i<NDIM;i++)
|
---|
283 | x[i] = C.x[i];
|
---|
284 | } else {
|
---|
285 | cerr << "ERROR: inverse of matrix does not exists!" << endl;
|
---|
286 | }
|
---|
287 | };
|
---|
288 |
|
---|
289 |
|
---|
290 | /** Creates this vector as the b y *factors' components scaled linear combination of the given three.
|
---|
291 | * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
|
---|
292 | * \param *x1 first vector
|
---|
293 | * \param *x2 second vector
|
---|
294 | * \param *x3 third vector
|
---|
295 | * \param *factors three-component vector with the factor for each given vector
|
---|
296 | */
|
---|
297 | void vector::LinearCombinationOfVectors(const vector *x1, const vector *x2, const vector *x3, double *factors)
|
---|
298 | {
|
---|
299 | for(int i=0;i<NDIM;i++)
|
---|
300 | x[i] = factors[0]*x1->x[i] + factors[1]*x2->x[i] + factors[2]*x3->x[i];
|
---|
301 | };
|
---|
302 |
|
---|
303 | /** Mirrors atom against a given plane.
|
---|
304 | * \param n[] normal vector of mirror plane.
|
---|
305 | */
|
---|
306 | void vector::Mirror(const vector *n)
|
---|
307 | {
|
---|
308 | double projection;
|
---|
309 | projection = ScalarProduct(n)/((vector *)n)->ScalarProduct(n); // remove constancy from n (keep as logical one)
|
---|
310 | // withdraw projected vector twice from original one
|
---|
311 | cout << Verbose(1) << "Vector: ";
|
---|
312 | Output((ofstream *)&cout);
|
---|
313 | cout << "\t";
|
---|
314 | for (int i=0;i<NDIM;i++)
|
---|
315 | x[i] -= 2.*projection*n->x[i];
|
---|
316 | cout << "Projected vector: ";
|
---|
317 | Output((ofstream *)&cout);
|
---|
318 | cout << endl;
|
---|
319 | };
|
---|
320 |
|
---|
321 | /** Calculates normal vector for three given vectors (being three points in space).
|
---|
322 | * Makes this vector orthonormal to the three given points, making up a place in 3d space.
|
---|
323 | * \param *y1 first vector
|
---|
324 | * \param *y2 second vector
|
---|
325 | * \param *y3 third vector
|
---|
326 | * \return true - success, vectors are linear independent, false - failure due to linear dependency
|
---|
327 | */
|
---|
328 | bool vector::MakeNormalVector(const vector *y1, const vector *y2, const vector *y3)
|
---|
329 | {
|
---|
330 | vector x1, x2;
|
---|
331 |
|
---|
332 | x1.CopyVector(y1);
|
---|
333 | x1.SubtractVector(y2);
|
---|
334 | x2.CopyVector(y3);
|
---|
335 | x2.SubtractVector(y2);
|
---|
336 | if ((x1.Norm()==0) || (x2.Norm()==0)) {
|
---|
337 | cout << Verbose(4) << "Given vectors are linear dependent." << endl;
|
---|
338 | return false;
|
---|
339 | }
|
---|
340 | cout << Verbose(4) << "relative, first plane coordinates:";
|
---|
341 | x1.Output((ofstream *)&cout);
|
---|
342 | cout << endl;
|
---|
343 | cout << Verbose(4) << "second plane coordinates:";
|
---|
344 | x2.Output((ofstream *)&cout);
|
---|
345 | cout << endl;
|
---|
346 |
|
---|
347 | this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]);
|
---|
348 | this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]);
|
---|
349 | this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]);
|
---|
350 | Normalize();
|
---|
351 |
|
---|
352 | return true;
|
---|
353 | };
|
---|
354 |
|
---|
355 |
|
---|
356 | /** Calculates orthonormal vector to two given vectors.
|
---|
357 | * Makes this vector orthonormal to two given vectors. This is very similar to the other
|
---|
358 | * vector::MakeNormalVector(), only there three points whereas here two difference
|
---|
359 | * vectors are given.
|
---|
360 | * \param *x1 first vector
|
---|
361 | * \param *x2 second vector
|
---|
362 | * \return true - success, vectors are linear independent, false - failure due to linear dependency
|
---|
363 | */
|
---|
364 | bool vector::MakeNormalVector(const vector *y1, const vector *y2)
|
---|
365 | {
|
---|
366 | vector x1,x2;
|
---|
367 | x1.CopyVector(y1);
|
---|
368 | x2.CopyVector(y2);
|
---|
369 | Zero();
|
---|
370 | if ((x1.Norm()==0) || (x2.Norm()==0)) {
|
---|
371 | cout << Verbose(4) << "Given vectors are linear dependent." << endl;
|
---|
372 | return false;
|
---|
373 | }
|
---|
374 | cout << Verbose(4) << "relative, first plane coordinates:";
|
---|
375 | x1.Output((ofstream *)&cout);
|
---|
376 | cout << endl;
|
---|
377 | cout << Verbose(4) << "second plane coordinates:";
|
---|
378 | x2.Output((ofstream *)&cout);
|
---|
379 | cout << endl;
|
---|
380 |
|
---|
381 | this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]);
|
---|
382 | this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]);
|
---|
383 | this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]);
|
---|
384 | Normalize();
|
---|
385 |
|
---|
386 | return true;
|
---|
387 | };
|
---|
388 |
|
---|
389 | /** Calculates orthonormal vector to one given vectors.
|
---|
390 | * Just subtracts the projection onto the given vector from this vector.
|
---|
391 | * \param *x1 vector
|
---|
392 | * \return true - success, false - vector is zero
|
---|
393 | */
|
---|
394 | bool vector::MakeNormalVector(const vector *y1)
|
---|
395 | {
|
---|
396 | bool result = false;
|
---|
397 | vector x1;
|
---|
398 | x1.CopyVector(y1);
|
---|
399 | x1.Scale(x1.Projection(this));
|
---|
400 | SubtractVector(&x1);
|
---|
401 | for (int i=0;i<NDIM;i++)
|
---|
402 | result = result || (fabs(x[i]) > MYEPSILON);
|
---|
403 |
|
---|
404 | return result;
|
---|
405 | };
|
---|
406 |
|
---|
407 | /** Creates this vector as one of the possible orthonormal ones to the given one.
|
---|
408 | * Just scan how many components of given *vector are unequal to zero and
|
---|
409 | * try to get the skp of both to be zero accordingly.
|
---|
410 | * \param *vector given vector
|
---|
411 | * \return true - success, false - failure (null vector given)
|
---|
412 | */
|
---|
413 | bool vector::GetOneNormalVector(const vector *vector)
|
---|
414 | {
|
---|
415 | int Components[NDIM]; // contains indices of non-zero components
|
---|
416 | int Last = 0; // count the number of non-zero entries in vector
|
---|
417 | int j; // loop variables
|
---|
418 | double norm;
|
---|
419 |
|
---|
420 | cout << Verbose(4);
|
---|
421 | vector->Output((ofstream *)&cout);
|
---|
422 | cout << endl;
|
---|
423 | for (j=0;j<NDIM;j++)
|
---|
424 | Components[j] = -1;
|
---|
425 | // find two components != 0
|
---|
426 | for (j=0;j<NDIM;j++)
|
---|
427 | if (fabs(vector->x[j]) > MYEPSILON)
|
---|
428 | Components[Last++] = j;
|
---|
429 | cout << Verbose(4) << Last << " Components != 0: (" << Components[0] << "," << Components[1] << "," << Components[2] << ")" << endl;
|
---|
430 |
|
---|
431 | switch(Last) {
|
---|
432 | case 3: // threecomponent system
|
---|
433 | case 2: // two component system
|
---|
434 | norm = sqrt(1./(vector->x[Components[1]]*vector->x[Components[1]]) + 1./(vector->x[Components[0]]*vector->x[Components[0]]));
|
---|
435 | x[Components[2]] = 0.;
|
---|
436 | // in skp both remaining parts shall become zero but with opposite sign and third is zero
|
---|
437 | x[Components[1]] = -1./vector->x[Components[1]] / norm;
|
---|
438 | x[Components[0]] = 1./vector->x[Components[0]] / norm;
|
---|
439 | return true;
|
---|
440 | break;
|
---|
441 | case 1: // one component system
|
---|
442 | // set sole non-zero component to 0, and one of the other zero component pendants to 1
|
---|
443 | x[(Components[0]+2)%NDIM] = 0.;
|
---|
444 | x[(Components[0]+1)%NDIM] = 1.;
|
---|
445 | x[Components[0]] = 0.;
|
---|
446 | return true;
|
---|
447 | break;
|
---|
448 | default:
|
---|
449 | return false;
|
---|
450 | }
|
---|
451 | };
|
---|
452 |
|
---|
453 | /** Creates a new vector as the one with least square distance to a given set of \a vectors.
|
---|
454 | * \param *vectors set of vectors
|
---|
455 | * \param num number of vectors
|
---|
456 | * \return true if success, false if failed due to linear dependency
|
---|
457 | */
|
---|
458 | bool vector::LSQdistance(vector **vectors, int num)
|
---|
459 | {
|
---|
460 | int j;
|
---|
461 |
|
---|
462 | for (j=0;j<num;j++) {
|
---|
463 | cout << Verbose(1) << j << "th atom's vector: ";
|
---|
464 | (vectors[j])->Output((ofstream *)&cout);
|
---|
465 | cout << endl;
|
---|
466 | }
|
---|
467 |
|
---|
468 | int np = 3;
|
---|
469 | struct LSQ_params par;
|
---|
470 |
|
---|
471 | const gsl_multimin_fminimizer_type *T =
|
---|
472 | gsl_multimin_fminimizer_nmsimplex;
|
---|
473 | gsl_multimin_fminimizer *s = NULL;
|
---|
474 | gsl_vector *ss, *x;
|
---|
475 | gsl_multimin_function minex_func;
|
---|
476 |
|
---|
477 | size_t iter = 0, i;
|
---|
478 | int status;
|
---|
479 | double size;
|
---|
480 |
|
---|
481 | /* Initial vertex size vector */
|
---|
482 | ss = gsl_vector_alloc (np);
|
---|
483 | x = gsl_vector_alloc (np);
|
---|
484 |
|
---|
485 | /* Set all step sizes to 1 */
|
---|
486 | gsl_vector_set_all (ss, 1.0);
|
---|
487 |
|
---|
488 | /* Starting point */
|
---|
489 | par.vectors = vectors;
|
---|
490 | par.num = num;
|
---|
491 |
|
---|
492 | for (i=0;i<NDIM;i++)
|
---|
493 | gsl_vector_set(x, i, (vectors[0]->x[i] - vectors[1]->x[i])/2.);
|
---|
494 |
|
---|
495 | /* Initialize method and iterate */
|
---|
496 | minex_func.f = &LSQ;
|
---|
497 | minex_func.n = np;
|
---|
498 | minex_func.params = (void *)∥
|
---|
499 |
|
---|
500 | s = gsl_multimin_fminimizer_alloc (T, np);
|
---|
501 | gsl_multimin_fminimizer_set (s, &minex_func, x, ss);
|
---|
502 |
|
---|
503 | do
|
---|
504 | {
|
---|
505 | iter++;
|
---|
506 | status = gsl_multimin_fminimizer_iterate(s);
|
---|
507 |
|
---|
508 | if (status)
|
---|
509 | break;
|
---|
510 |
|
---|
511 | size = gsl_multimin_fminimizer_size (s);
|
---|
512 | status = gsl_multimin_test_size (size, 1e-2);
|
---|
513 |
|
---|
514 | if (status == GSL_SUCCESS)
|
---|
515 | {
|
---|
516 | printf ("converged to minimum at\n");
|
---|
517 | }
|
---|
518 |
|
---|
519 | printf ("%5d ", (int)iter);
|
---|
520 | for (i = 0; i < (size_t)np; i++)
|
---|
521 | {
|
---|
522 | printf ("%10.3e ", gsl_vector_get (s->x, i));
|
---|
523 | }
|
---|
524 | printf ("f() = %7.3f size = %.3f\n", s->fval, size);
|
---|
525 | }
|
---|
526 | while (status == GSL_CONTINUE && iter < 100);
|
---|
527 |
|
---|
528 | for (i=0;i<(size_t)np;i++)
|
---|
529 | this->x[i] = gsl_vector_get(s->x, i);
|
---|
530 | gsl_vector_free(x);
|
---|
531 | gsl_vector_free(ss);
|
---|
532 | gsl_multimin_fminimizer_free (s);
|
---|
533 |
|
---|
534 | return true;
|
---|
535 | };
|
---|
536 |
|
---|
537 | /** Adds vector \a *y componentwise.
|
---|
538 | * \param *y vector
|
---|
539 | */
|
---|
540 | void vector::AddVector(const vector *y)
|
---|
541 | {
|
---|
542 | for (int i=0;i<NDIM;i++)
|
---|
543 | this->x[i] += y->x[i];
|
---|
544 | }
|
---|
545 |
|
---|
546 | /** Adds vector \a *y componentwise.
|
---|
547 | * \param *y vector
|
---|
548 | */
|
---|
549 | void vector::SubtractVector(const vector *y)
|
---|
550 | {
|
---|
551 | for (int i=0;i<NDIM;i++)
|
---|
552 | this->x[i] -= y->x[i];
|
---|
553 | }
|
---|
554 |
|
---|
555 | /** Copy vector \a *y componentwise.
|
---|
556 | * \param *y vector
|
---|
557 | */
|
---|
558 | void vector::CopyVector(const vector *y)
|
---|
559 | {
|
---|
560 | for (int i=0;i<NDIM;i++)
|
---|
561 | this->x[i] = y->x[i];
|
---|
562 | }
|
---|
563 |
|
---|
564 |
|
---|
565 | /** Asks for position, checks for boundary.
|
---|
566 | * \param cell_size unitary size of cubic cell, coordinates must be within 0...cell_size
|
---|
567 | * \param check whether bounds shall be checked (true) or not (false)
|
---|
568 | */
|
---|
569 | void vector::AskPosition(double *cell_size, bool check)
|
---|
570 | {
|
---|
571 | char coords[3] = {'x','y','z'};
|
---|
572 | int j = -1;
|
---|
573 | for (int i=0;i<3;i++) {
|
---|
574 | j += i+1;
|
---|
575 | do {
|
---|
576 | cout << Verbose(0) << coords[i] << "[0.." << cell_size[j] << "]: ";
|
---|
577 | cin >> x[i];
|
---|
578 | } while (((x[i] < 0) || (x[i] >= cell_size[j])) && (check));
|
---|
579 | }
|
---|
580 | };
|
---|
581 |
|
---|
582 | /** Solves a vectorial system consisting of two orthogonal statements and a norm statement.
|
---|
583 | * This is linear system of equations to be solved, however of the three given (skp of this vector\
|
---|
584 | * with either of the three hast to be zero) only two are linear independent. The third equation
|
---|
585 | * is that the vector should be of magnitude 1 (orthonormal). This all leads to a case-based solution
|
---|
586 | * where very often it has to be checked whether a certain value is zero or not and thus forked into
|
---|
587 | * another case.
|
---|
588 | * \param *x1 first vector
|
---|
589 | * \param *x2 second vector
|
---|
590 | * \param *y third vector
|
---|
591 | * \param alpha first angle
|
---|
592 | * \param beta second angle
|
---|
593 | * \param c norm of final vector
|
---|
594 | * \return a vector with \f$\langle x1,x2 \rangle=A\f$, \f$\langle x1,y \rangle = B\f$ and with norm \a c.
|
---|
595 | * \bug this is not yet working properly
|
---|
596 | */
|
---|
597 | bool vector::SolveSystem(vector *x1, vector *x2, vector *y, double alpha, double beta, double c)
|
---|
598 | {
|
---|
599 | double D1,D2,D3,E1,E2,F1,F2,F3,p,q=0., A, B1, B2, C;
|
---|
600 | double ang; // angle on testing
|
---|
601 | double sign[3];
|
---|
602 | int i,j,k;
|
---|
603 | A = cos(alpha) * x1->Norm() * c;
|
---|
604 | B1 = cos(beta + M_PI/2.) * y->Norm() * c;
|
---|
605 | B2 = cos(beta) * x2->Norm() * c;
|
---|
606 | C = c * c;
|
---|
607 | cout << Verbose(2) << "A " << A << "\tB " << B1 << "\tC " << C << endl;
|
---|
608 | int flag = 0;
|
---|
609 | if (fabs(x1->x[0]) < MYEPSILON) { // check for zero components for the later flipping and back-flipping
|
---|
610 | if (fabs(x1->x[1]) > MYEPSILON) {
|
---|
611 | flag = 1;
|
---|
612 | } else if (fabs(x1->x[2]) > MYEPSILON) {
|
---|
613 | flag = 2;
|
---|
614 | } else {
|
---|
615 | return false;
|
---|
616 | }
|
---|
617 | }
|
---|
618 | switch (flag) {
|
---|
619 | default:
|
---|
620 | case 0:
|
---|
621 | break;
|
---|
622 | case 2:
|
---|
623 | flip(&x1->x[0],&x1->x[1]);
|
---|
624 | flip(&x2->x[0],&x2->x[1]);
|
---|
625 | flip(&y->x[0],&y->x[1]);
|
---|
626 | //flip(&x[0],&x[1]);
|
---|
627 | flip(&x1->x[1],&x1->x[2]);
|
---|
628 | flip(&x2->x[1],&x2->x[2]);
|
---|
629 | flip(&y->x[1],&y->x[2]);
|
---|
630 | //flip(&x[1],&x[2]);
|
---|
631 | case 1:
|
---|
632 | flip(&x1->x[0],&x1->x[1]);
|
---|
633 | flip(&x2->x[0],&x2->x[1]);
|
---|
634 | flip(&y->x[0],&y->x[1]);
|
---|
635 | //flip(&x[0],&x[1]);
|
---|
636 | flip(&x1->x[1],&x1->x[2]);
|
---|
637 | flip(&x2->x[1],&x2->x[2]);
|
---|
638 | flip(&y->x[1],&y->x[2]);
|
---|
639 | //flip(&x[1],&x[2]);
|
---|
640 | break;
|
---|
641 | }
|
---|
642 | // now comes the case system
|
---|
643 | D1 = -y->x[0]/x1->x[0]*x1->x[1]+y->x[1];
|
---|
644 | D2 = -y->x[0]/x1->x[0]*x1->x[2]+y->x[2];
|
---|
645 | D3 = y->x[0]/x1->x[0]*A-B1;
|
---|
646 | cout << Verbose(2) << "D1 " << D1 << "\tD2 " << D2 << "\tD3 " << D3 << "\n";
|
---|
647 | if (fabs(D1) < MYEPSILON) {
|
---|
648 | cout << Verbose(2) << "D1 == 0!\n";
|
---|
649 | if (fabs(D2) > MYEPSILON) {
|
---|
650 | cout << Verbose(3) << "D2 != 0!\n";
|
---|
651 | x[2] = -D3/D2;
|
---|
652 | E1 = A/x1->x[0] + x1->x[2]/x1->x[0]*D3/D2;
|
---|
653 | E2 = -x1->x[1]/x1->x[0];
|
---|
654 | cout << Verbose(3) << "E1 " << E1 << "\tE2 " << E2 << "\n";
|
---|
655 | F1 = E1*E1 + 1.;
|
---|
656 | F2 = -E1*E2;
|
---|
657 | F3 = E1*E1 + D3*D3/(D2*D2) - C;
|
---|
658 | cout << Verbose(3) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
|
---|
659 | if (fabs(F1) < MYEPSILON) {
|
---|
660 | cout << Verbose(4) << "F1 == 0!\n";
|
---|
661 | cout << Verbose(4) << "Gleichungssystem linear\n";
|
---|
662 | x[1] = F3/(2.*F2);
|
---|
663 | } else {
|
---|
664 | p = F2/F1;
|
---|
665 | q = p*p - F3/F1;
|
---|
666 | cout << Verbose(4) << "p " << p << "\tq " << q << endl;
|
---|
667 | if (q < 0) {
|
---|
668 | cout << Verbose(4) << "q < 0" << endl;
|
---|
669 | return false;
|
---|
670 | }
|
---|
671 | x[1] = p + sqrt(q);
|
---|
672 | }
|
---|
673 | x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
|
---|
674 | } else {
|
---|
675 | cout << Verbose(2) << "Gleichungssystem unterbestimmt\n";
|
---|
676 | return false;
|
---|
677 | }
|
---|
678 | } else {
|
---|
679 | E1 = A/x1->x[0]+x1->x[1]/x1->x[0]*D3/D1;
|
---|
680 | E2 = x1->x[1]/x1->x[0]*D2/D1 - x1->x[2];
|
---|
681 | cout << Verbose(2) << "E1 " << E1 << "\tE2 " << E2 << "\n";
|
---|
682 | F1 = E2*E2 + D2*D2/(D1*D1) + 1.;
|
---|
683 | F2 = -(E1*E2 + D2*D3/(D1*D1));
|
---|
684 | F3 = E1*E1 + D3*D3/(D1*D1) - C;
|
---|
685 | cout << Verbose(2) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
|
---|
686 | if (fabs(F1) < MYEPSILON) {
|
---|
687 | cout << Verbose(3) << "F1 == 0!\n";
|
---|
688 | cout << Verbose(3) << "Gleichungssystem linear\n";
|
---|
689 | x[2] = F3/(2.*F2);
|
---|
690 | } else {
|
---|
691 | p = F2/F1;
|
---|
692 | q = p*p - F3/F1;
|
---|
693 | cout << Verbose(3) << "p " << p << "\tq " << q << endl;
|
---|
694 | if (q < 0) {
|
---|
695 | cout << Verbose(3) << "q < 0" << endl;
|
---|
696 | return false;
|
---|
697 | }
|
---|
698 | x[2] = p + sqrt(q);
|
---|
699 | }
|
---|
700 | x[1] = (-D2 * x[2] - D3)/D1;
|
---|
701 | x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
|
---|
702 | }
|
---|
703 | switch (flag) { // back-flipping
|
---|
704 | default:
|
---|
705 | case 0:
|
---|
706 | break;
|
---|
707 | case 2:
|
---|
708 | flip(&x1->x[0],&x1->x[1]);
|
---|
709 | flip(&x2->x[0],&x2->x[1]);
|
---|
710 | flip(&y->x[0],&y->x[1]);
|
---|
711 | flip(&x[0],&x[1]);
|
---|
712 | flip(&x1->x[1],&x1->x[2]);
|
---|
713 | flip(&x2->x[1],&x2->x[2]);
|
---|
714 | flip(&y->x[1],&y->x[2]);
|
---|
715 | flip(&x[1],&x[2]);
|
---|
716 | case 1:
|
---|
717 | flip(&x1->x[0],&x1->x[1]);
|
---|
718 | flip(&x2->x[0],&x2->x[1]);
|
---|
719 | flip(&y->x[0],&y->x[1]);
|
---|
720 | //flip(&x[0],&x[1]);
|
---|
721 | flip(&x1->x[1],&x1->x[2]);
|
---|
722 | flip(&x2->x[1],&x2->x[2]);
|
---|
723 | flip(&y->x[1],&y->x[2]);
|
---|
724 | flip(&x[1],&x[2]);
|
---|
725 | break;
|
---|
726 | }
|
---|
727 | // one z component is only determined by its radius (without sign)
|
---|
728 | // thus check eight possible sign flips and determine by checking angle with second vector
|
---|
729 | for (i=0;i<8;i++) {
|
---|
730 | // set sign vector accordingly
|
---|
731 | for (j=2;j>=0;j--) {
|
---|
732 | k = (i & pot(2,j)) << j;
|
---|
733 | cout << Verbose(2) << "k " << k << "\tpot(2,j) " << pot(2,j) << endl;
|
---|
734 | sign[j] = (k == 0) ? 1. : -1.;
|
---|
735 | }
|
---|
736 | cout << Verbose(2) << i << ": sign matrix is " << sign[0] << "\t" << sign[1] << "\t" << sign[2] << "\n";
|
---|
737 | // apply sign matrix
|
---|
738 | for (j=0;j<NDIM;j++)
|
---|
739 | x[j] *= sign[j];
|
---|
740 | // calculate angle and check
|
---|
741 | ang = x2->Angle (this);
|
---|
742 | cout << Verbose(1) << i << "th angle " << ang << "\tbeta " << cos(beta) << " :\t";
|
---|
743 | if (fabs(ang - cos(beta)) < MYEPSILON) {
|
---|
744 | break;
|
---|
745 | }
|
---|
746 | // unapply sign matrix (is its own inverse)
|
---|
747 | for (j=0;j<NDIM;j++)
|
---|
748 | x[j] *= sign[j];
|
---|
749 | }
|
---|
750 | return true;
|
---|
751 | };
|
---|