source: src/vector.cpp@ 260934

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 260934 was 14de469, checked in by Frederik Heber <heber@…>, 17 years ago

-initial commit
-Minimum set of files needed from ESPACK SVN repository
-Switch to three tantamount package parts instead of all relating to pcp (as at some time Ralf's might find inclusion as well)

  • Property mode set to 100644
File size: 22.3 KB
Line 
1/** \file vector.cpp
2 *
3 * Function implementations for the class vector.
4 *
5 */
6
7#include "molecules.hpp"
8
9
10/************************************ Functions for class vector ************************************/
11
12/** Constructor of class vector.
13 */
14vector::vector() { x[0] = x[1] = x[2] = 0.; };
15
16/** Desctructor of class vector.
17 */
18vector::~vector() {};
19
20/** Calculates distance between this and another vector.
21 * \param *y array to second vector
22 * \return \f$| x - y |^2\f$
23 */
24double vector::Distance(const vector *y) const
25{
26 double res = 0.;
27 for (int i=0;i<NDIM;i++)
28 res += (x[i]-y->x[i])*(x[i]-y->x[i]);
29 return (res);
30};
31
32/** Calculates distance between this and another vector in a periodic cell.
33 * \param *y array to second vector
34 * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
35 * \return \f$| x - y |^2\f$
36 */
37double vector::PeriodicDistance(const vector *y, const double *cell_size) const
38{
39 double res = Distance(y), tmp, matrix[NDIM*NDIM];
40 vector Shiftedy, TranslationVector;
41 int N[NDIM];
42 matrix[0] = cell_size[0];
43 matrix[1] = cell_size[1];
44 matrix[2] = cell_size[3];
45 matrix[3] = cell_size[1];
46 matrix[4] = cell_size[2];
47 matrix[5] = cell_size[4];
48 matrix[6] = cell_size[3];
49 matrix[7] = cell_size[4];
50 matrix[8] = cell_size[5];
51 // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
52 for (N[0]=-1;N[0]<=1;N[0]++)
53 for (N[1]=-1;N[1]<=1;N[1]++)
54 for (N[2]=-1;N[2]<=1;N[2]++) {
55 // create the translation vector
56 TranslationVector.Zero();
57 for (int i=0;i<NDIM;i++)
58 TranslationVector.x[i] = (double)N[i];
59 TranslationVector.MatrixMultiplication(matrix);
60 // add onto the original vector to compare with
61 Shiftedy.CopyVector(y);
62 Shiftedy.AddVector(&TranslationVector);
63 // get distance and compare with minimum so far
64 tmp = Distance(&Shiftedy);
65 if (tmp < res) res = tmp;
66 }
67 return (res);
68};
69
70/** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix.
71 * \param *out ofstream for debugging messages
72 * Tries to translate a vector into each adjacent neighbouring cell.
73 */
74void vector::KeepPeriodic(ofstream *out, double *matrix)
75{
76// int N[NDIM];
77// bool flag = false;
78 //vector Shifted, TranslationVector;
79 vector TestVector;
80 *out << Verbose(1) << "Begin of KeepPeriodic." << endl;
81 *out << Verbose(2) << "Vector is: ";
82 Output(out);
83 *out << endl;
84 TestVector.CopyVector(this);
85 TestVector.InverseMatrixMultiplication(matrix);
86 for(int i=0;i<NDIM;i++) { // correct periodically
87 if (TestVector.x[i] < 0) { // get every coefficient into the interval [0,1)
88 TestVector.x[i] += ceil(TestVector.x[i]);
89 } else {
90 TestVector.x[i] -= floor(TestVector.x[i]);
91 }
92 }
93 TestVector.MatrixMultiplication(matrix);
94 CopyVector(&TestVector);
95 *out << Verbose(2) << "New corrected vector is: ";
96 Output(out);
97 *out << endl;
98 *out << Verbose(1) << "End of KeepPeriodic." << endl;
99};
100
101/** Calculates scalar product between this and another vector.
102 * \param *y array to second vector
103 * \return \f$\langle x, y \rangle\f$
104 */
105double vector::ScalarProduct(const vector *y) const
106{
107 double res = 0.;
108 for (int i=0;i<NDIM;i++)
109 res += x[i]*y->x[i];
110 return (res);
111};
112
113/** Calculates the projection of a vector onto another \a *y.
114 * \param *y array to second vector
115 * \return \f$\langle x, y \rangle\f$
116 */
117double vector::Projection(const vector *y) const
118{
119 return (ScalarProduct(y)/Norm()/y->Norm());
120};
121
122/** Calculates norm of this vector.
123 * \return \f$|x|\f$
124 */
125double vector::Norm() const
126{
127 double res = 0.;
128 for (int i=0;i<NDIM;i++)
129 res += this->x[i]*this->x[i];
130 return (sqrt(res));
131};
132
133/** Normalizes this vector.
134 */
135void vector::Normalize()
136{
137 double res = 0.;
138 for (int i=0;i<NDIM;i++)
139 res += this->x[i]*this->x[i];
140 res = 1./sqrt(res);
141 Scale(&res);
142};
143
144/** Zeros all components of this vector.
145 */
146void vector::Zero()
147{
148 for (int i=0;i<NDIM;i++)
149 this->x[i] = 0.;
150};
151
152/** Calculates the angle between this and another vector.
153 * \param *y array to second vector
154 * \return \f$\frac{\langle x, y \rangle}{|x||y|}\f$
155 */
156double vector::Angle(vector *y) const
157{
158 return (this->ScalarProduct(y)/(this->Norm()*y->Norm()));
159};
160
161/** Rotates the vector around the axis given by \a *axis by an angle of \a alpha.
162 * \param *axis rotation axis
163 * \param alpha rotation angle in radian
164 */
165void vector::RotateVector(const vector *axis, const double alpha)
166{
167 vector a,y;
168 // normalise this vector with respect to axis
169 a.CopyVector(this);
170 a.Scale(Projection(axis));
171 SubtractVector(&a);
172 // construct normal vector
173 y.MakeNormalVector(axis,this);
174 y.Scale(Norm());
175 // scale normal vector by sine and this vector by cosine
176 y.Scale(sin(alpha));
177 Scale(cos(alpha));
178 // add scaled normal vector onto this vector
179 AddVector(&y);
180 // add part in axis direction
181 AddVector(&a);
182};
183
184/** Prints a 3dim vector.
185 * prints no end of line.
186 * \param *out output stream
187 */
188bool vector::Output(ofstream *out) const
189{
190 if (out != NULL) {
191 *out << "(";
192 for (int i=0;i<NDIM;i++) {
193 *out << x[i];
194 if (i != 2)
195 *out << ",";
196 }
197 *out << ")";
198 return true;
199 } else
200 return false;
201};
202
203ofstream& operator<<(ofstream& ost,vector& m)
204{
205 m.Output(&ost);
206 return ost;
207};
208
209/** Scales each atom coordinate by an individual \a factor.
210 * \param *factor pointer to scaling factor
211 */
212void vector::Scale(double **factor)
213{
214 for (int i=0;i<NDIM;i++)
215 this->x[i] *= (*factor)[i];
216};
217
218void vector::Scale(double *factor)
219{
220 for (int i=0;i<NDIM;i++)
221 this->x[i] *= *factor;
222};
223
224void vector::Scale(double factor)
225{
226 for (int i=0;i<NDIM;i++)
227 this->x[i] *= factor;
228};
229
230/** Translate atom by given vector.
231 * \param trans[] translation vector.
232 */
233void vector::Translate(const vector *trans)
234{
235 for (int i=0;i<NDIM;i++)
236 x[i] += trans->x[i];
237};
238
239/** Do a matrix multiplication.
240 * \param *matrix NDIM_NDIM array
241 */
242void vector::MatrixMultiplication(double *M)
243{
244 vector C;
245 // do the matrix multiplication
246 C.x[0] = M[0]*x[0]+M[3]*x[1]+M[6]*x[2];
247 C.x[1] = M[1]*x[0]+M[4]*x[1]+M[7]*x[2];
248 C.x[2] = M[2]*x[0]+M[5]*x[1]+M[8]*x[2];
249 // transfer the result into this
250 for (int i=0;i<NDIM;i++)
251 x[i] = C.x[i];
252};
253
254/** Do a matrix multiplication with \a *matrix' inverse.
255 * \param *matrix NDIM_NDIM array
256 */
257void vector::InverseMatrixMultiplication(double *A)
258{
259 vector C;
260 double B[NDIM*NDIM];
261 double detA = RDET3(A);
262 double detAReci;
263
264 // calculate the inverse B
265 if (fabs(detA) > MYEPSILON) {; // RDET3(A) yields precisely zero if A irregular
266 detAReci = 1./detA;
267 B[0] = detAReci*RDET2(A[4],A[5],A[7],A[8]); // A_11
268 B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]); // A_12
269 B[2] = detAReci*RDET2(A[1],A[2],A[4],A[5]); // A_13
270 B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]); // A_21
271 B[4] = detAReci*RDET2(A[0],A[2],A[6],A[8]); // A_22
272 B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]); // A_23
273 B[6] = detAReci*RDET2(A[3],A[4],A[6],A[7]); // A_31
274 B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]); // A_32
275 B[8] = detAReci*RDET2(A[0],A[1],A[3],A[4]); // A_33
276
277 // do the matrix multiplication
278 C.x[0] = B[0]*x[0]+B[3]*x[1]+B[6]*x[2];
279 C.x[1] = B[1]*x[0]+B[4]*x[1]+B[7]*x[2];
280 C.x[2] = B[2]*x[0]+B[5]*x[1]+B[8]*x[2];
281 // transfer the result into this
282 for (int i=0;i<NDIM;i++)
283 x[i] = C.x[i];
284 } else {
285 cerr << "ERROR: inverse of matrix does not exists!" << endl;
286 }
287};
288
289
290/** Creates this vector as the b y *factors' components scaled linear combination of the given three.
291 * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
292 * \param *x1 first vector
293 * \param *x2 second vector
294 * \param *x3 third vector
295 * \param *factors three-component vector with the factor for each given vector
296 */
297void vector::LinearCombinationOfVectors(const vector *x1, const vector *x2, const vector *x3, double *factors)
298{
299 for(int i=0;i<NDIM;i++)
300 x[i] = factors[0]*x1->x[i] + factors[1]*x2->x[i] + factors[2]*x3->x[i];
301};
302
303/** Mirrors atom against a given plane.
304 * \param n[] normal vector of mirror plane.
305 */
306void vector::Mirror(const vector *n)
307{
308 double projection;
309 projection = ScalarProduct(n)/((vector *)n)->ScalarProduct(n); // remove constancy from n (keep as logical one)
310 // withdraw projected vector twice from original one
311 cout << Verbose(1) << "Vector: ";
312 Output((ofstream *)&cout);
313 cout << "\t";
314 for (int i=0;i<NDIM;i++)
315 x[i] -= 2.*projection*n->x[i];
316 cout << "Projected vector: ";
317 Output((ofstream *)&cout);
318 cout << endl;
319};
320
321/** Calculates normal vector for three given vectors (being three points in space).
322 * Makes this vector orthonormal to the three given points, making up a place in 3d space.
323 * \param *y1 first vector
324 * \param *y2 second vector
325 * \param *y3 third vector
326 * \return true - success, vectors are linear independent, false - failure due to linear dependency
327 */
328bool vector::MakeNormalVector(const vector *y1, const vector *y2, const vector *y3)
329{
330 vector x1, x2;
331
332 x1.CopyVector(y1);
333 x1.SubtractVector(y2);
334 x2.CopyVector(y3);
335 x2.SubtractVector(y2);
336 if ((x1.Norm()==0) || (x2.Norm()==0)) {
337 cout << Verbose(4) << "Given vectors are linear dependent." << endl;
338 return false;
339 }
340 cout << Verbose(4) << "relative, first plane coordinates:";
341 x1.Output((ofstream *)&cout);
342 cout << endl;
343 cout << Verbose(4) << "second plane coordinates:";
344 x2.Output((ofstream *)&cout);
345 cout << endl;
346
347 this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]);
348 this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]);
349 this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]);
350 Normalize();
351
352 return true;
353};
354
355
356/** Calculates orthonormal vector to two given vectors.
357 * Makes this vector orthonormal to two given vectors. This is very similar to the other
358 * vector::MakeNormalVector(), only there three points whereas here two difference
359 * vectors are given.
360 * \param *x1 first vector
361 * \param *x2 second vector
362 * \return true - success, vectors are linear independent, false - failure due to linear dependency
363 */
364bool vector::MakeNormalVector(const vector *y1, const vector *y2)
365{
366 vector x1,x2;
367 x1.CopyVector(y1);
368 x2.CopyVector(y2);
369 Zero();
370 if ((x1.Norm()==0) || (x2.Norm()==0)) {
371 cout << Verbose(4) << "Given vectors are linear dependent." << endl;
372 return false;
373 }
374 cout << Verbose(4) << "relative, first plane coordinates:";
375 x1.Output((ofstream *)&cout);
376 cout << endl;
377 cout << Verbose(4) << "second plane coordinates:";
378 x2.Output((ofstream *)&cout);
379 cout << endl;
380
381 this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]);
382 this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]);
383 this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]);
384 Normalize();
385
386 return true;
387};
388
389/** Calculates orthonormal vector to one given vectors.
390 * Just subtracts the projection onto the given vector from this vector.
391 * \param *x1 vector
392 * \return true - success, false - vector is zero
393 */
394bool vector::MakeNormalVector(const vector *y1)
395{
396 bool result = false;
397 vector x1;
398 x1.CopyVector(y1);
399 x1.Scale(x1.Projection(this));
400 SubtractVector(&x1);
401 for (int i=0;i<NDIM;i++)
402 result = result || (fabs(x[i]) > MYEPSILON);
403
404 return result;
405};
406
407/** Creates this vector as one of the possible orthonormal ones to the given one.
408 * Just scan how many components of given *vector are unequal to zero and
409 * try to get the skp of both to be zero accordingly.
410 * \param *vector given vector
411 * \return true - success, false - failure (null vector given)
412 */
413bool vector::GetOneNormalVector(const vector *vector)
414{
415 int Components[NDIM]; // contains indices of non-zero components
416 int Last = 0; // count the number of non-zero entries in vector
417 int j; // loop variables
418 double norm;
419
420 cout << Verbose(4);
421 vector->Output((ofstream *)&cout);
422 cout << endl;
423 for (j=0;j<NDIM;j++)
424 Components[j] = -1;
425 // find two components != 0
426 for (j=0;j<NDIM;j++)
427 if (fabs(vector->x[j]) > MYEPSILON)
428 Components[Last++] = j;
429 cout << Verbose(4) << Last << " Components != 0: (" << Components[0] << "," << Components[1] << "," << Components[2] << ")" << endl;
430
431 switch(Last) {
432 case 3: // threecomponent system
433 case 2: // two component system
434 norm = sqrt(1./(vector->x[Components[1]]*vector->x[Components[1]]) + 1./(vector->x[Components[0]]*vector->x[Components[0]]));
435 x[Components[2]] = 0.;
436 // in skp both remaining parts shall become zero but with opposite sign and third is zero
437 x[Components[1]] = -1./vector->x[Components[1]] / norm;
438 x[Components[0]] = 1./vector->x[Components[0]] / norm;
439 return true;
440 break;
441 case 1: // one component system
442 // set sole non-zero component to 0, and one of the other zero component pendants to 1
443 x[(Components[0]+2)%NDIM] = 0.;
444 x[(Components[0]+1)%NDIM] = 1.;
445 x[Components[0]] = 0.;
446 return true;
447 break;
448 default:
449 return false;
450 }
451};
452
453/** Creates a new vector as the one with least square distance to a given set of \a vectors.
454 * \param *vectors set of vectors
455 * \param num number of vectors
456 * \return true if success, false if failed due to linear dependency
457 */
458bool vector::LSQdistance(vector **vectors, int num)
459{
460 int j;
461
462 for (j=0;j<num;j++) {
463 cout << Verbose(1) << j << "th atom's vector: ";
464 (vectors[j])->Output((ofstream *)&cout);
465 cout << endl;
466 }
467
468 int np = 3;
469 struct LSQ_params par;
470
471 const gsl_multimin_fminimizer_type *T =
472 gsl_multimin_fminimizer_nmsimplex;
473 gsl_multimin_fminimizer *s = NULL;
474 gsl_vector *ss, *x;
475 gsl_multimin_function minex_func;
476
477 size_t iter = 0, i;
478 int status;
479 double size;
480
481 /* Initial vertex size vector */
482 ss = gsl_vector_alloc (np);
483 x = gsl_vector_alloc (np);
484
485 /* Set all step sizes to 1 */
486 gsl_vector_set_all (ss, 1.0);
487
488 /* Starting point */
489 par.vectors = vectors;
490 par.num = num;
491
492 for (i=0;i<NDIM;i++)
493 gsl_vector_set(x, i, (vectors[0]->x[i] - vectors[1]->x[i])/2.);
494
495 /* Initialize method and iterate */
496 minex_func.f = &LSQ;
497 minex_func.n = np;
498 minex_func.params = (void *)&par;
499
500 s = gsl_multimin_fminimizer_alloc (T, np);
501 gsl_multimin_fminimizer_set (s, &minex_func, x, ss);
502
503 do
504 {
505 iter++;
506 status = gsl_multimin_fminimizer_iterate(s);
507
508 if (status)
509 break;
510
511 size = gsl_multimin_fminimizer_size (s);
512 status = gsl_multimin_test_size (size, 1e-2);
513
514 if (status == GSL_SUCCESS)
515 {
516 printf ("converged to minimum at\n");
517 }
518
519 printf ("%5d ", (int)iter);
520 for (i = 0; i < (size_t)np; i++)
521 {
522 printf ("%10.3e ", gsl_vector_get (s->x, i));
523 }
524 printf ("f() = %7.3f size = %.3f\n", s->fval, size);
525 }
526 while (status == GSL_CONTINUE && iter < 100);
527
528 for (i=0;i<(size_t)np;i++)
529 this->x[i] = gsl_vector_get(s->x, i);
530 gsl_vector_free(x);
531 gsl_vector_free(ss);
532 gsl_multimin_fminimizer_free (s);
533
534 return true;
535};
536
537/** Adds vector \a *y componentwise.
538 * \param *y vector
539 */
540void vector::AddVector(const vector *y)
541{
542 for (int i=0;i<NDIM;i++)
543 this->x[i] += y->x[i];
544}
545
546/** Adds vector \a *y componentwise.
547 * \param *y vector
548 */
549void vector::SubtractVector(const vector *y)
550{
551 for (int i=0;i<NDIM;i++)
552 this->x[i] -= y->x[i];
553}
554
555/** Copy vector \a *y componentwise.
556 * \param *y vector
557 */
558void vector::CopyVector(const vector *y)
559{
560 for (int i=0;i<NDIM;i++)
561 this->x[i] = y->x[i];
562}
563
564
565/** Asks for position, checks for boundary.
566 * \param cell_size unitary size of cubic cell, coordinates must be within 0...cell_size
567 * \param check whether bounds shall be checked (true) or not (false)
568 */
569void vector::AskPosition(double *cell_size, bool check)
570{
571 char coords[3] = {'x','y','z'};
572 int j = -1;
573 for (int i=0;i<3;i++) {
574 j += i+1;
575 do {
576 cout << Verbose(0) << coords[i] << "[0.." << cell_size[j] << "]: ";
577 cin >> x[i];
578 } while (((x[i] < 0) || (x[i] >= cell_size[j])) && (check));
579 }
580};
581
582/** Solves a vectorial system consisting of two orthogonal statements and a norm statement.
583 * This is linear system of equations to be solved, however of the three given (skp of this vector\
584 * with either of the three hast to be zero) only two are linear independent. The third equation
585 * is that the vector should be of magnitude 1 (orthonormal). This all leads to a case-based solution
586 * where very often it has to be checked whether a certain value is zero or not and thus forked into
587 * another case.
588 * \param *x1 first vector
589 * \param *x2 second vector
590 * \param *y third vector
591 * \param alpha first angle
592 * \param beta second angle
593 * \param c norm of final vector
594 * \return a vector with \f$\langle x1,x2 \rangle=A\f$, \f$\langle x1,y \rangle = B\f$ and with norm \a c.
595 * \bug this is not yet working properly
596 */
597bool vector::SolveSystem(vector *x1, vector *x2, vector *y, double alpha, double beta, double c)
598{
599 double D1,D2,D3,E1,E2,F1,F2,F3,p,q=0., A, B1, B2, C;
600 double ang; // angle on testing
601 double sign[3];
602 int i,j,k;
603 A = cos(alpha) * x1->Norm() * c;
604 B1 = cos(beta + M_PI/2.) * y->Norm() * c;
605 B2 = cos(beta) * x2->Norm() * c;
606 C = c * c;
607 cout << Verbose(2) << "A " << A << "\tB " << B1 << "\tC " << C << endl;
608 int flag = 0;
609 if (fabs(x1->x[0]) < MYEPSILON) { // check for zero components for the later flipping and back-flipping
610 if (fabs(x1->x[1]) > MYEPSILON) {
611 flag = 1;
612 } else if (fabs(x1->x[2]) > MYEPSILON) {
613 flag = 2;
614 } else {
615 return false;
616 }
617 }
618 switch (flag) {
619 default:
620 case 0:
621 break;
622 case 2:
623 flip(&x1->x[0],&x1->x[1]);
624 flip(&x2->x[0],&x2->x[1]);
625 flip(&y->x[0],&y->x[1]);
626 //flip(&x[0],&x[1]);
627 flip(&x1->x[1],&x1->x[2]);
628 flip(&x2->x[1],&x2->x[2]);
629 flip(&y->x[1],&y->x[2]);
630 //flip(&x[1],&x[2]);
631 case 1:
632 flip(&x1->x[0],&x1->x[1]);
633 flip(&x2->x[0],&x2->x[1]);
634 flip(&y->x[0],&y->x[1]);
635 //flip(&x[0],&x[1]);
636 flip(&x1->x[1],&x1->x[2]);
637 flip(&x2->x[1],&x2->x[2]);
638 flip(&y->x[1],&y->x[2]);
639 //flip(&x[1],&x[2]);
640 break;
641 }
642 // now comes the case system
643 D1 = -y->x[0]/x1->x[0]*x1->x[1]+y->x[1];
644 D2 = -y->x[0]/x1->x[0]*x1->x[2]+y->x[2];
645 D3 = y->x[0]/x1->x[0]*A-B1;
646 cout << Verbose(2) << "D1 " << D1 << "\tD2 " << D2 << "\tD3 " << D3 << "\n";
647 if (fabs(D1) < MYEPSILON) {
648 cout << Verbose(2) << "D1 == 0!\n";
649 if (fabs(D2) > MYEPSILON) {
650 cout << Verbose(3) << "D2 != 0!\n";
651 x[2] = -D3/D2;
652 E1 = A/x1->x[0] + x1->x[2]/x1->x[0]*D3/D2;
653 E2 = -x1->x[1]/x1->x[0];
654 cout << Verbose(3) << "E1 " << E1 << "\tE2 " << E2 << "\n";
655 F1 = E1*E1 + 1.;
656 F2 = -E1*E2;
657 F3 = E1*E1 + D3*D3/(D2*D2) - C;
658 cout << Verbose(3) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
659 if (fabs(F1) < MYEPSILON) {
660 cout << Verbose(4) << "F1 == 0!\n";
661 cout << Verbose(4) << "Gleichungssystem linear\n";
662 x[1] = F3/(2.*F2);
663 } else {
664 p = F2/F1;
665 q = p*p - F3/F1;
666 cout << Verbose(4) << "p " << p << "\tq " << q << endl;
667 if (q < 0) {
668 cout << Verbose(4) << "q < 0" << endl;
669 return false;
670 }
671 x[1] = p + sqrt(q);
672 }
673 x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
674 } else {
675 cout << Verbose(2) << "Gleichungssystem unterbestimmt\n";
676 return false;
677 }
678 } else {
679 E1 = A/x1->x[0]+x1->x[1]/x1->x[0]*D3/D1;
680 E2 = x1->x[1]/x1->x[0]*D2/D1 - x1->x[2];
681 cout << Verbose(2) << "E1 " << E1 << "\tE2 " << E2 << "\n";
682 F1 = E2*E2 + D2*D2/(D1*D1) + 1.;
683 F2 = -(E1*E2 + D2*D3/(D1*D1));
684 F3 = E1*E1 + D3*D3/(D1*D1) - C;
685 cout << Verbose(2) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
686 if (fabs(F1) < MYEPSILON) {
687 cout << Verbose(3) << "F1 == 0!\n";
688 cout << Verbose(3) << "Gleichungssystem linear\n";
689 x[2] = F3/(2.*F2);
690 } else {
691 p = F2/F1;
692 q = p*p - F3/F1;
693 cout << Verbose(3) << "p " << p << "\tq " << q << endl;
694 if (q < 0) {
695 cout << Verbose(3) << "q < 0" << endl;
696 return false;
697 }
698 x[2] = p + sqrt(q);
699 }
700 x[1] = (-D2 * x[2] - D3)/D1;
701 x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
702 }
703 switch (flag) { // back-flipping
704 default:
705 case 0:
706 break;
707 case 2:
708 flip(&x1->x[0],&x1->x[1]);
709 flip(&x2->x[0],&x2->x[1]);
710 flip(&y->x[0],&y->x[1]);
711 flip(&x[0],&x[1]);
712 flip(&x1->x[1],&x1->x[2]);
713 flip(&x2->x[1],&x2->x[2]);
714 flip(&y->x[1],&y->x[2]);
715 flip(&x[1],&x[2]);
716 case 1:
717 flip(&x1->x[0],&x1->x[1]);
718 flip(&x2->x[0],&x2->x[1]);
719 flip(&y->x[0],&y->x[1]);
720 //flip(&x[0],&x[1]);
721 flip(&x1->x[1],&x1->x[2]);
722 flip(&x2->x[1],&x2->x[2]);
723 flip(&y->x[1],&y->x[2]);
724 flip(&x[1],&x[2]);
725 break;
726 }
727 // one z component is only determined by its radius (without sign)
728 // thus check eight possible sign flips and determine by checking angle with second vector
729 for (i=0;i<8;i++) {
730 // set sign vector accordingly
731 for (j=2;j>=0;j--) {
732 k = (i & pot(2,j)) << j;
733 cout << Verbose(2) << "k " << k << "\tpot(2,j) " << pot(2,j) << endl;
734 sign[j] = (k == 0) ? 1. : -1.;
735 }
736 cout << Verbose(2) << i << ": sign matrix is " << sign[0] << "\t" << sign[1] << "\t" << sign[2] << "\n";
737 // apply sign matrix
738 for (j=0;j<NDIM;j++)
739 x[j] *= sign[j];
740 // calculate angle and check
741 ang = x2->Angle (this);
742 cout << Verbose(1) << i << "th angle " << ang << "\tbeta " << cos(beta) << " :\t";
743 if (fabs(ang - cos(beta)) < MYEPSILON) {
744 break;
745 }
746 // unapply sign matrix (is its own inverse)
747 for (j=0;j<NDIM;j++)
748 x[j] *= sign[j];
749 }
750 return true;
751};
Note: See TracBrowser for help on using the repository browser.