source: src/vector.cpp@ 33d774

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 33d774 was c94eeb, checked in by Tillmann Crueger <crueger@…>, 15 years ago

Replaced several double* that were used as Matrixes with actuall matrix objects

  • Property mode set to 100644
File size: 18.8 KB
Line 
1/** \file vector.cpp
2 *
3 * Function implementations for the class vector.
4 *
5 */
6
7#include "Helpers/MemDebug.hpp"
8
9#include "vector.hpp"
10#include "Matrix.hpp"
11#include "verbose.hpp"
12#include "World.hpp"
13#include "Helpers/Assert.hpp"
14#include "Helpers/fast_functions.hpp"
15#include "Exceptions/MathException.hpp"
16
17#include <iostream>
18#include <gsl/gsl_blas.h>
19
20
21using namespace std;
22
23
24/************************************ Functions for class vector ************************************/
25
26/** Constructor of class vector.
27 */
28Vector::Vector()
29{
30 content = gsl_vector_calloc (NDIM);
31};
32
33/**
34 * Copy constructor
35 */
36
37Vector::Vector(const Vector& src)
38{
39 content = gsl_vector_alloc(NDIM);
40 gsl_vector_memcpy(content, src.content);
41}
42
43/** Constructor of class vector.
44 */
45Vector::Vector(const double x1, const double x2, const double x3)
46{
47 content = gsl_vector_alloc(NDIM);
48 gsl_vector_set(content,0,x1);
49 gsl_vector_set(content,1,x2);
50 gsl_vector_set(content,2,x3);
51};
52
53Vector::Vector(gsl_vector *_content) :
54 content(_content)
55{}
56
57/**
58 * Assignment operator
59 */
60Vector& Vector::operator=(const Vector& src){
61 // check for self assignment
62 if(&src!=this){
63 gsl_vector_memcpy(content, src.content);
64 }
65 return *this;
66}
67
68/** Desctructor of class vector.
69 */
70Vector::~Vector() {
71 gsl_vector_free(content);
72};
73
74/** Calculates square of distance between this and another vector.
75 * \param *y array to second vector
76 * \return \f$| x - y |^2\f$
77 */
78double Vector::DistanceSquared(const Vector &y) const
79{
80 double res = 0.;
81 for (int i=NDIM;i--;)
82 res += (at(i)-y[i])*(at(i)-y[i]);
83 return (res);
84};
85
86/** Calculates distance between this and another vector.
87 * \param *y array to second vector
88 * \return \f$| x - y |\f$
89 */
90double Vector::distance(const Vector &y) const
91{
92 return (sqrt(DistanceSquared(y)));
93};
94
95Vector Vector::getClosestPoint(const Vector &point) const{
96 // the closest point to a single point space is always the single point itself
97 return *this;
98}
99
100/** Calculates distance between this and another vector in a periodic cell.
101 * \param *y array to second vector
102 * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
103 * \return \f$| x - y |\f$
104 */
105double Vector::PeriodicDistance(const Vector &y, const double * const cell_size) const
106{
107 double res = distance(y), tmp;
108 Matrix matrix;
109 Vector Shiftedy, TranslationVector;
110 int N[NDIM];
111 matrix.at(0,0) = cell_size[0];
112 matrix.at(1,0) = cell_size[1];
113 matrix.at(2,0) = cell_size[3];
114 matrix.at(0,1) = cell_size[1];
115 matrix.at(1,1) = cell_size[2];
116 matrix.at(2,1) = cell_size[4];
117 matrix.at(0,2) = cell_size[3];
118 matrix.at(1,2) = cell_size[4];
119 matrix.at(2,2) = cell_size[5];
120 // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
121 for (N[0]=-1;N[0]<=1;N[0]++)
122 for (N[1]=-1;N[1]<=1;N[1]++)
123 for (N[2]=-1;N[2]<=1;N[2]++) {
124 // create the translation vector
125 TranslationVector.Zero();
126 for (int i=NDIM;i--;)
127 TranslationVector[i] = (double)N[i];
128 TranslationVector.MatrixMultiplication(matrix);
129 // add onto the original vector to compare with
130 Shiftedy = y + TranslationVector;
131 // get distance and compare with minimum so far
132 tmp = distance(Shiftedy);
133 if (tmp < res) res = tmp;
134 }
135 return (res);
136};
137
138/** Calculates distance between this and another vector in a periodic cell.
139 * \param *y array to second vector
140 * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
141 * \return \f$| x - y |^2\f$
142 */
143double Vector::PeriodicDistanceSquared(const Vector &y, const double * const cell_size) const
144{
145 double res = DistanceSquared(y), tmp;
146 Matrix matrix;
147 Vector Shiftedy, TranslationVector;
148 int N[NDIM];
149 matrix.at(0,0) = cell_size[0];
150 matrix.at(1,0) = cell_size[1];
151 matrix.at(2,0) = cell_size[3];
152 matrix.at(0,1) = cell_size[1];
153 matrix.at(1,1) = cell_size[2];
154 matrix.at(2,1) = cell_size[4];
155 matrix.at(0,2) = cell_size[3];
156 matrix.at(1,2) = cell_size[4];
157 matrix.at(2,2) = cell_size[5];
158 // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
159 for (N[0]=-1;N[0]<=1;N[0]++)
160 for (N[1]=-1;N[1]<=1;N[1]++)
161 for (N[2]=-1;N[2]<=1;N[2]++) {
162 // create the translation vector
163 TranslationVector.Zero();
164 for (int i=NDIM;i--;)
165 TranslationVector[i] = (double)N[i];
166 TranslationVector.MatrixMultiplication(matrix);
167 // add onto the original vector to compare with
168 Shiftedy = y + TranslationVector;
169 // get distance and compare with minimum so far
170 tmp = DistanceSquared(Shiftedy);
171 if (tmp < res) res = tmp;
172 }
173 return (res);
174};
175
176/** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix.
177 * \param *out ofstream for debugging messages
178 * Tries to translate a vector into each adjacent neighbouring cell.
179 */
180void Vector::KeepPeriodic(const double * const _matrix)
181{
182 Matrix matrix = Matrix(_matrix);
183 // int N[NDIM];
184 // bool flag = false;
185 //vector Shifted, TranslationVector;
186 // Log() << Verbose(1) << "Begin of KeepPeriodic." << endl;
187 // Log() << Verbose(2) << "Vector is: ";
188 // Output(out);
189 // Log() << Verbose(0) << endl;
190 MatrixMultiplication(matrix.invert());
191 for(int i=NDIM;i--;) { // correct periodically
192 if (at(i) < 0) { // get every coefficient into the interval [0,1)
193 at(i) += ceil(at(i));
194 } else {
195 at(i) -= floor(at(i));
196 }
197 }
198 MatrixMultiplication(matrix);
199 // Log() << Verbose(2) << "New corrected vector is: ";
200 // Output(out);
201 // Log() << Verbose(0) << endl;
202 // Log() << Verbose(1) << "End of KeepPeriodic." << endl;
203};
204
205/** Calculates scalar product between this and another vector.
206 * \param *y array to second vector
207 * \return \f$\langle x, y \rangle\f$
208 */
209double Vector::ScalarProduct(const Vector &y) const
210{
211 double res = 0.;
212 gsl_blas_ddot(content, y.content, &res);
213 return (res);
214};
215
216
217/** Calculates VectorProduct between this and another vector.
218 * -# returns the Product in place of vector from which it was initiated
219 * -# ATTENTION: Only three dim.
220 * \param *y array to vector with which to calculate crossproduct
221 * \return \f$ x \times y \f&
222 */
223void Vector::VectorProduct(const Vector &y)
224{
225 Vector tmp;
226 for(int i=NDIM;i--;)
227 tmp[i] = at((i+1)%NDIM)*y[(i+2)%NDIM] - at((i+2)%NDIM)*y[(i+1)%NDIM];
228 (*this) = tmp;
229};
230
231
232/** projects this vector onto plane defined by \a *y.
233 * \param *y normal vector of plane
234 * \return \f$\langle x, y \rangle\f$
235 */
236void Vector::ProjectOntoPlane(const Vector &y)
237{
238 Vector tmp;
239 tmp = y;
240 tmp.Normalize();
241 tmp.Scale(ScalarProduct(tmp));
242 *this -= tmp;
243};
244
245/** Calculates the minimum distance of this vector to the plane.
246 * \sa Vector::GetDistanceVectorToPlane()
247 * \param *out output stream for debugging
248 * \param *PlaneNormal normal of plane
249 * \param *PlaneOffset offset of plane
250 * \return distance to plane
251 */
252double Vector::DistanceToSpace(const Space &space) const
253{
254 return space.distance(*this);
255};
256
257/** Calculates the projection of a vector onto another \a *y.
258 * \param *y array to second vector
259 */
260void Vector::ProjectIt(const Vector &y)
261{
262 (*this) += (-ScalarProduct(y))*y;
263};
264
265/** Calculates the projection of a vector onto another \a *y.
266 * \param *y array to second vector
267 * \return Vector
268 */
269Vector Vector::Projection(const Vector &y) const
270{
271 Vector helper = y;
272 helper.Scale((ScalarProduct(y)/y.NormSquared()));
273
274 return helper;
275};
276
277/** Calculates norm of this vector.
278 * \return \f$|x|\f$
279 */
280double Vector::Norm() const
281{
282 return (sqrt(NormSquared()));
283};
284
285/** Calculates squared norm of this vector.
286 * \return \f$|x|^2\f$
287 */
288double Vector::NormSquared() const
289{
290 return (ScalarProduct(*this));
291};
292
293/** Normalizes this vector.
294 */
295void Vector::Normalize()
296{
297 double factor = Norm();
298 (*this) *= 1/factor;
299};
300
301/** Zeros all components of this vector.
302 */
303void Vector::Zero()
304{
305 at(0)=at(1)=at(2)=0;
306};
307
308/** Zeros all components of this vector.
309 */
310void Vector::One(const double one)
311{
312 at(0)=at(1)=at(2)=one;
313};
314
315/** Checks whether vector has all components zero.
316 * @return true - vector is zero, false - vector is not
317 */
318bool Vector::IsZero() const
319{
320 return (fabs(at(0))+fabs(at(1))+fabs(at(2)) < MYEPSILON);
321};
322
323/** Checks whether vector has length of 1.
324 * @return true - vector is normalized, false - vector is not
325 */
326bool Vector::IsOne() const
327{
328 return (fabs(Norm() - 1.) < MYEPSILON);
329};
330
331/** Checks whether vector is normal to \a *normal.
332 * @return true - vector is normalized, false - vector is not
333 */
334bool Vector::IsNormalTo(const Vector &normal) const
335{
336 if (ScalarProduct(normal) < MYEPSILON)
337 return true;
338 else
339 return false;
340};
341
342/** Checks whether vector is normal to \a *normal.
343 * @return true - vector is normalized, false - vector is not
344 */
345bool Vector::IsEqualTo(const Vector &a) const
346{
347 bool status = true;
348 for (int i=0;i<NDIM;i++) {
349 if (fabs(at(i) - a[i]) > MYEPSILON)
350 status = false;
351 }
352 return status;
353};
354
355/** Calculates the angle between this and another vector.
356 * \param *y array to second vector
357 * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
358 */
359double Vector::Angle(const Vector &y) const
360{
361 double norm1 = Norm(), norm2 = y.Norm();
362 double angle = -1;
363 if ((fabs(norm1) > MYEPSILON) && (fabs(norm2) > MYEPSILON))
364 angle = this->ScalarProduct(y)/norm1/norm2;
365 // -1-MYEPSILON occured due to numerical imprecision, catch ...
366 //Log() << Verbose(2) << "INFO: acos(-1) = " << acos(-1) << ", acos(-1+MYEPSILON) = " << acos(-1+MYEPSILON) << ", acos(-1-MYEPSILON) = " << acos(-1-MYEPSILON) << "." << endl;
367 if (angle < -1)
368 angle = -1;
369 if (angle > 1)
370 angle = 1;
371 return acos(angle);
372};
373
374
375double& Vector::operator[](size_t i){
376 ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
377 return *gsl_vector_ptr (content, i);
378}
379
380const double& Vector::operator[](size_t i) const{
381 ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
382 return *gsl_vector_ptr (content, i);
383}
384
385double& Vector::at(size_t i){
386 return (*this)[i];
387}
388
389const double& Vector::at(size_t i) const{
390 return (*this)[i];
391}
392
393gsl_vector* Vector::get(){
394 return content;
395}
396
397/** Compares vector \a to vector \a b component-wise.
398 * \param a base vector
399 * \param b vector components to add
400 * \return a == b
401 */
402bool Vector::operator==(const Vector& b) const
403{
404 return IsEqualTo(b);
405};
406
407bool Vector::operator!=(const Vector& b) const
408{
409 return !IsEqualTo(b);
410}
411
412/** Sums vector \a to this lhs component-wise.
413 * \param a base vector
414 * \param b vector components to add
415 * \return lhs + a
416 */
417const Vector& Vector::operator+=(const Vector& b)
418{
419 this->AddVector(b);
420 return *this;
421};
422
423/** Subtracts vector \a from this lhs component-wise.
424 * \param a base vector
425 * \param b vector components to add
426 * \return lhs - a
427 */
428const Vector& Vector::operator-=(const Vector& b)
429{
430 this->SubtractVector(b);
431 return *this;
432};
433
434/** factor each component of \a a times a double \a m.
435 * \param a base vector
436 * \param m factor
437 * \return lhs.x[i] * m
438 */
439const Vector& operator*=(Vector& a, const double m)
440{
441 a.Scale(m);
442 return a;
443};
444
445/** Sums two vectors \a and \b component-wise.
446 * \param a first vector
447 * \param b second vector
448 * \return a + b
449 */
450Vector const Vector::operator+(const Vector& b) const
451{
452 Vector x = *this;
453 x.AddVector(b);
454 return x;
455};
456
457/** Subtracts vector \a from \b component-wise.
458 * \param a first vector
459 * \param b second vector
460 * \return a - b
461 */
462Vector const Vector::operator-(const Vector& b) const
463{
464 Vector x = *this;
465 x.SubtractVector(b);
466 return x;
467};
468
469Vector &Vector::operator*=(const Matrix &mat){
470 (*this) = mat*(*this);
471 return *this;
472}
473
474Vector operator*(const Matrix &mat,const Vector &vec){
475 gsl_vector *res = gsl_vector_calloc(NDIM);
476 gsl_blas_dgemv( CblasNoTrans, 1.0, mat.content, vec.content, 0.0, res);
477 return Vector(res);
478}
479
480
481/** Factors given vector \a a times \a m.
482 * \param a vector
483 * \param m factor
484 * \return m * a
485 */
486Vector const operator*(const Vector& a, const double m)
487{
488 Vector x(a);
489 x.Scale(m);
490 return x;
491};
492
493/** Factors given vector \a a times \a m.
494 * \param m factor
495 * \param a vector
496 * \return m * a
497 */
498Vector const operator*(const double m, const Vector& a )
499{
500 Vector x(a);
501 x.Scale(m);
502 return x;
503};
504
505ostream& operator<<(ostream& ost, const Vector& m)
506{
507 ost << "(";
508 for (int i=0;i<NDIM;i++) {
509 ost << m[i];
510 if (i != 2)
511 ost << ",";
512 }
513 ost << ")";
514 return ost;
515};
516
517
518void Vector::ScaleAll(const double *factor)
519{
520 for (int i=NDIM;i--;)
521 at(i) *= factor[i];
522};
523
524
525
526void Vector::Scale(const double factor)
527{
528 gsl_vector_scale(content,factor);
529};
530
531/** Given a box by its matrix \a *M and its inverse *Minv the vector is made to point within that box.
532 * \param *M matrix of box
533 * \param *Minv inverse matrix
534 */
535void Vector::WrapPeriodically(const double * const _M, const double * const _Minv)
536{
537 Matrix M = Matrix(_M);
538 Matrix Minv = Matrix(_Minv);
539 MatrixMultiplication(Minv);
540 // truncate to [0,1] for each axis
541 for (int i=0;i<NDIM;i++) {
542 //at(i) += 0.5; // set to center of box
543 while (at(i) >= 1.)
544 at(i) -= 1.;
545 while (at(i) < 0.)
546 at(i) += 1.;
547 }
548 MatrixMultiplication(M);
549};
550
551std::pair<Vector,Vector> Vector::partition(const Vector &rhs) const{
552 double factor = ScalarProduct(rhs)/rhs.NormSquared();
553 Vector res= factor * rhs;
554 return make_pair(res,(*this)-res);
555}
556
557std::pair<pointset,Vector> Vector::partition(const pointset &points) const{
558 Vector helper = *this;
559 pointset res;
560 for(pointset::const_iterator iter=points.begin();iter!=points.end();++iter){
561 pair<Vector,Vector> currPart = helper.partition(*iter);
562 res.push_back(currPart.first);
563 helper = currPart.second;
564 }
565 return make_pair(res,helper);
566}
567
568/** Do a matrix multiplication.
569 * \param *matrix NDIM_NDIM array
570 */
571void Vector::MatrixMultiplication(const Matrix &M)
572{
573 (*this) *= M;
574};
575
576/** Do a matrix multiplication with the \a *A' inverse.
577 * \param *matrix NDIM_NDIM array
578 */
579bool Vector::InverseMatrixMultiplication(const double * const A)
580{
581 /*
582 double B[NDIM*NDIM];
583 double detA = RDET3(A);
584 double detAReci;
585
586 // calculate the inverse B
587 if (fabs(detA) > MYEPSILON) {; // RDET3(A) yields precisely zero if A irregular
588 detAReci = 1./detA;
589 B[0] = detAReci*RDET2(A[4],A[5],A[7],A[8]); // A_11
590 B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]); // A_12
591 B[2] = detAReci*RDET2(A[1],A[2],A[4],A[5]); // A_13
592 B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]); // A_21
593 B[4] = detAReci*RDET2(A[0],A[2],A[6],A[8]); // A_22
594 B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]); // A_23
595 B[6] = detAReci*RDET2(A[3],A[4],A[6],A[7]); // A_31
596 B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]); // A_32
597 B[8] = detAReci*RDET2(A[0],A[1],A[3],A[4]); // A_33
598
599 MatrixMultiplication(B);
600
601 return true;
602 } else {
603 return false;
604 }
605 */
606 Matrix mat = Matrix(A);
607 try{
608 (*this) *= mat.invert();
609 return true;
610 }
611 catch(MathException &excpt){
612 return false;
613 }
614};
615
616
617/** Creates this vector as the b y *factors' components scaled linear combination of the given three.
618 * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
619 * \param *x1 first vector
620 * \param *x2 second vector
621 * \param *x3 third vector
622 * \param *factors three-component vector with the factor for each given vector
623 */
624void Vector::LinearCombinationOfVectors(const Vector &x1, const Vector &x2, const Vector &x3, const double * const factors)
625{
626 (*this) = (factors[0]*x1) +
627 (factors[1]*x2) +
628 (factors[2]*x3);
629};
630
631/** Calculates orthonormal vector to one given vectors.
632 * Just subtracts the projection onto the given vector from this vector.
633 * The removed part of the vector is Vector::Projection()
634 * \param *x1 vector
635 * \return true - success, false - vector is zero
636 */
637bool Vector::MakeNormalTo(const Vector &y1)
638{
639 bool result = false;
640 double factor = y1.ScalarProduct(*this)/y1.NormSquared();
641 Vector x1 = factor * y1;
642 SubtractVector(x1);
643 for (int i=NDIM;i--;)
644 result = result || (fabs(at(i)) > MYEPSILON);
645
646 return result;
647};
648
649/** Creates this vector as one of the possible orthonormal ones to the given one.
650 * Just scan how many components of given *vector are unequal to zero and
651 * try to get the skp of both to be zero accordingly.
652 * \param *vector given vector
653 * \return true - success, false - failure (null vector given)
654 */
655bool Vector::GetOneNormalVector(const Vector &GivenVector)
656{
657 int Components[NDIM]; // contains indices of non-zero components
658 int Last = 0; // count the number of non-zero entries in vector
659 int j; // loop variables
660 double norm;
661
662 for (j=NDIM;j--;)
663 Components[j] = -1;
664
665 // in two component-systems we need to find the one position that is zero
666 int zeroPos = -1;
667 // find two components != 0
668 for (j=0;j<NDIM;j++){
669 if (fabs(GivenVector[j]) > MYEPSILON)
670 Components[Last++] = j;
671 else
672 // this our zero Position
673 zeroPos = j;
674 }
675
676 switch(Last) {
677 case 3: // threecomponent system
678 // the position of the zero is arbitrary in three component systems
679 zeroPos = Components[2];
680 case 2: // two component system
681 norm = sqrt(1./(GivenVector[Components[1]]*GivenVector[Components[1]]) + 1./(GivenVector[Components[0]]*GivenVector[Components[0]]));
682 at(zeroPos) = 0.;
683 // in skp both remaining parts shall become zero but with opposite sign and third is zero
684 at(Components[1]) = -1./GivenVector[Components[1]] / norm;
685 at(Components[0]) = 1./GivenVector[Components[0]] / norm;
686 return true;
687 break;
688 case 1: // one component system
689 // set sole non-zero component to 0, and one of the other zero component pendants to 1
690 at((Components[0]+2)%NDIM) = 0.;
691 at((Components[0]+1)%NDIM) = 1.;
692 at(Components[0]) = 0.;
693 return true;
694 break;
695 default:
696 return false;
697 }
698};
699
700/** Adds vector \a *y componentwise.
701 * \param *y vector
702 */
703void Vector::AddVector(const Vector &y)
704{
705 gsl_vector_add(content, y.content);
706}
707
708/** Adds vector \a *y componentwise.
709 * \param *y vector
710 */
711void Vector::SubtractVector(const Vector &y)
712{
713 gsl_vector_sub(content, y.content);
714}
715
716/**
717 * Checks whether this vector is within the parallelepiped defined by the given three vectors and
718 * their offset.
719 *
720 * @param offest for the origin of the parallelepiped
721 * @param three vectors forming the matrix that defines the shape of the parallelpiped
722 */
723bool Vector::IsInParallelepiped(const Vector &offset, const double * const parallelepiped) const
724{
725 Vector a = (*this)-offset;
726 a.InverseMatrixMultiplication(parallelepiped);
727 bool isInside = true;
728
729 for (int i=NDIM;i--;)
730 isInside = isInside && ((a[i] <= 1) && (a[i] >= 0));
731
732 return isInside;
733}
734
735
736// some comonly used vectors
737const Vector zeroVec(0,0,0);
738const Vector e1(1,0,0);
739const Vector e2(0,1,0);
740const Vector e3(0,0,1);
Note: See TracBrowser for help on using the repository browser.