source: src/molecules.cpp@ da5355

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since da5355 was df2fca, checked in by Frederik Heber <heber@…>, 17 years ago

FragmentMolecule(): abstractized AssignKeySetsToFragments() and shifted some memory deallocation around

MoleculeLeafClass::AssignKeySetsToFragments() now does the splitting up of the keysets into FragmentList[] array
some memory dealloaction (ListOfLocalAtoms) was shifted up a bit, closer to where it's not needed anymore.
some comments changed and some more output included

  • Property mode set to 100644
File size: 174.6 KB
Line 
1/** \file molecules.cpp
2 *
3 * Functions for the class molecule.
4 *
5 */
6
7#include "molecules.hpp"
8
9/************************************* Other Functions *************************************/
10
11/** Determines sum of squared distances of \a X to all \a **vectors.
12 * \param *x reference vector
13 * \param *params
14 * \return sum of square distances
15 */
16double LSQ (const gsl_vector * x, void * params)
17{
18 double sum = 0.;
19 struct LSQ_params *par = (struct LSQ_params *)params;
20 vector **vectors = par->vectors;
21 int num = par->num;
22
23 for (int i=0;i<num;i++) {
24 for(int j=0;j<NDIM;j++)
25 sum += (gsl_vector_get(x,j) - (vectors[i])->x[j])*(gsl_vector_get(x,j) - (vectors[i])->x[j]);
26 }
27
28 return sum;
29};
30
31/************************************* Functions for class molecule *********************************/
32
33/** Constructor of class molecule.
34 * Initialises molecule list with correctly referenced start and end, and sets molecule::last_atom to zero.
35 */
36molecule::molecule(periodentafel *teil)
37{
38 // init atom chain list
39 start = new atom;
40 end = new atom;
41 start->father = NULL;
42 end->father = NULL;
43 link(start,end);
44 // init bond chain list
45 first = new bond(start, end, 1, -1);
46 last = new bond(start, end, 1, -1);
47 link(first,last);
48 // other stuff
49 last_atom = 0;
50 elemente = teil;
51 AtomCount = 0;
52 BondCount = 0;
53 NoNonBonds = 0;
54 NoNonHydrogen = 0;
55 NoCyclicBonds = 0;
56 ListOfBondsPerAtom = NULL;
57 NumberOfBondsPerAtom = NULL;
58 ElementCount = 0;
59 for(int i=0;i<MAX_ELEMENTS;i++)
60 ElementsInMolecule[i] = 0;
61 cell_size[0] = cell_size[2] = cell_size[5]= 20.;
62 cell_size[1] = cell_size[3] = cell_size[4]= 0.;
63};
64
65/** Destructor of class molecule.
66 * Initialises molecule list with correctly referenced start and end, and sets molecule::last_atom to zero.
67 */
68molecule::~molecule()
69{
70 if (ListOfBondsPerAtom != NULL)
71 for(int i=0;i<AtomCount;i++)
72 Free((void **)&ListOfBondsPerAtom[i], "molecule::~molecule: ListOfBondsPerAtom[i]");
73 Free((void **)&ListOfBondsPerAtom, "molecule::~molecule: ListOfBondsPerAtom");
74 Free((void **)&NumberOfBondsPerAtom, "molecule::~molecule: NumberOfBondsPerAtom");
75 CleanupMolecule();
76 delete(first);
77 delete(last);
78 delete(end);
79 delete(start);
80};
81
82/** Adds given atom \a *pointer from molecule list.
83 * Increases molecule::last_atom and gives last number to added atom and names it according to its element::abbrev and molecule::AtomCount
84 * \param *pointer allocated and set atom
85 * \return true - succeeded, false - atom not found in list
86 */
87bool molecule::AddAtom(atom *pointer)
88{
89 if (pointer != NULL) {
90 pointer->sort = &pointer->nr;
91 pointer->nr = last_atom++; // increase number within molecule
92 AtomCount++;
93 if (pointer->type != NULL) {
94 if (ElementsInMolecule[pointer->type->Z] == 0)
95 ElementCount++;
96 ElementsInMolecule[pointer->type->Z]++; // increase number of elements
97 if (pointer->type->Z != 1)
98 NoNonHydrogen++;
99 if (pointer->Name == NULL) {
100 Free((void **)&pointer->Name, "molecule::AddAtom: *pointer->Name");
101 pointer->Name = (char *) Malloc(sizeof(char)*6, "molecule::AddAtom: *pointer->Name");
102 sprintf(pointer->Name, "%2s%02d", pointer->type->symbol, pointer->nr+1);
103 }
104 }
105 return add(pointer, end);
106 } else
107 return false;
108};
109
110/** Adds a copy of the given atom \a *pointer from molecule list.
111 * Increases molecule::last_atom and gives last number to added atom.
112 * \param *pointer allocated and set atom
113 * \return true - succeeded, false - atom not found in list
114 */
115atom * molecule::AddCopyAtom(atom *pointer)
116{
117 if (pointer != NULL) {
118 atom *walker = new atom();
119 walker->type = pointer->type; // copy element of atom
120 walker->x.CopyVector(&pointer->x); // copy coordination
121 walker->v.CopyVector(&pointer->v); // copy velocity
122 walker->FixedIon = pointer->FixedIon;
123 walker->sort = &walker->nr;
124 walker->nr = last_atom++; // increase number within molecule
125 walker->father = pointer; //->GetTrueFather();
126 walker->Name = (char *) Malloc(sizeof(char)*strlen(pointer->Name)+1, "molecule::AddCopyAtom: *Name");
127 strcpy (walker->Name, pointer->Name);
128 add(walker, end);
129 if ((pointer->type != NULL) && (pointer->type->Z != 1))
130 NoNonHydrogen++;
131 AtomCount++;
132 return walker;
133 } else
134 return NULL;
135};
136
137/** Adds a Hydrogen atom in replacement for the given atom \a *partner in bond with a *origin.
138 * Here, we have to distinguish between single, double or triple bonds as stated by \a BondDegree, that each demand
139 * a different scheme when adding \a *replacement atom for the given one.
140 * -# Single Bond: Simply add new atom with bond distance rescaled to typical hydrogen one
141 * -# Double Bond: Here, we need the **BondList of the \a *origin atom, by scanning for the other bonds instead of
142 * *Bond, we use the through these connected atoms to determine the plane they lie in, vector::MakeNormalVector().
143 * The orthonormal vector to this plane along with the vector in *Bond direction determines the plane the two
144 * replacing hydrogens shall lie in. Now, all remains to do is take the usual hydrogen double bond angle for the
145 * element of *origin and form the sin/cos admixture of both plane vectors for the new coordinates of the two
146 * hydrogens forming this angle with *origin.
147 * -# Triple Bond: The idea is to set up a tetraoid (C1-H1-H2-H3) (however the lengths \f$b\f$ of the sides of the base
148 * triangle formed by the to be added hydrogens are not equal to the typical bond distance \f$l\f$ but have to be
149 * determined from the typical angle \f$\alpha\f$ for a hydrogen triple connected to the element of *origin):
150 * We have the height \f$d\f$ as the vector in *Bond direction (from triangle C1-H1-H2).
151 * \f[ h = l \cdot \cos{\left (\frac{\alpha}{2} \right )} \qquad b = 2l \cdot \sin{\left (\frac{\alpha}{2} \right)} \quad \rightarrow \quad d = l \cdot \sqrt{\cos^2{\left (\frac{\alpha}{2} \right)}-\frac{1}{3}\cdot\sin^2{\left (\frac{\alpha}{2}\right )}}
152 * \f]
153 * vector::GetNormalVector() creates one orthonormal vector from this *Bond vector and vector::MakeNormalVector creates
154 * the third one from the former two vectors. The latter ones form the plane of the base triangle mentioned above.
155 * The lengths for these are \f$f\f$ and \f$g\f$ (from triangle H1-H2-(center of H1-H2-H3)) with knowledge that
156 * the median lines in an isosceles triangle meet in the center point with a ratio 2:1.
157 * \f[ f = \frac{b}{\sqrt{3}} \qquad g = \frac{b}{2}
158 * \f]
159 * as the coordination of all three atoms in the coordinate system of these three vectors:
160 * \f$\pmatrix{d & f & 0}\f$, \f$\pmatrix{d & -0.5 \cdot f & g}\f$ and \f$\pmatrix{d & -0.5 \cdot f & -g}\f$.
161 *
162 * \param *out output stream for debugging
163 * \param *Bond pointer to bond between \a *origin and \a *replacement
164 * \param *TopOrigin son of \a *origin of upper level molecule (the atom added to this molecule as a copy of \a *origin)
165 * \param *origin pointer to atom which acts as the origin for scaling the added hydrogen to correct bond length
166 * \param *replacement pointer to the atom which shall be copied as a hydrogen atom in this molecule
167 * \param **BondList list of bonds \a *replacement has (necessary to determine plane for double and triple bonds)
168 * \param NumBond number of bonds in \a **BondList
169 * \param isAngstroem whether the coordination of the given atoms is in AtomicLength (false) or Angstrom(true)
170 * \return number of atoms added, if < bond::BondDegree then something went wrong
171 * \todo double and triple bonds splitting (always use the tetraeder angle!)
172 */
173bool molecule::AddHydrogenReplacementAtom(ofstream *out, bond *TopBond, atom *BottomOrigin, atom *TopOrigin, atom *TopReplacement, bond **BondList, int NumBond, bool IsAngstroem)
174{
175 double bondlength; // bond length of the bond to be replaced/cut
176 double bondangle; // bond angle of the bond to be replaced/cut
177 double BondRescale; // rescale value for the hydrogen bond length
178 bool AllWentWell = true; // flag gathering the boolean return value of molecule::AddAtom and other functions, as return value on exit
179 bond *FirstBond = NULL, *SecondBond = NULL; // Other bonds in double bond case to determine "other" plane
180 atom *FirstOtherAtom = NULL, *SecondOtherAtom = NULL, *ThirdOtherAtom = NULL; // pointer to hydrogen atoms to be added
181 int i; // loop variable
182 double b,l,d,f,g, alpha, factors[NDIM]; // hold temporary values in triple bond case for coordination determination
183 vector OrthoVector1, OrthoVector2; // temporary vectors in coordination construction
184 vector InBondVector; // vector in direction of *Bond
185 bond *Binder = NULL;
186 double *matrix;
187
188// *out << Verbose(3) << "Begin of AddHydrogenReplacementAtom." << endl;
189 // create vector in direction of bond
190 InBondVector.CopyVector(&TopReplacement->x);
191 InBondVector.SubtractVector(&TopOrigin->x);
192 bondlength = InBondVector.Norm();
193
194 // is greater than typical bond distance? Then we have to correct periodically
195 // the problem is not the H being out of the box, but InBondVector have the wrong direction
196 // due to TopReplacement or Origin being on the wrong side!
197 if (bondlength > BondDistance) {
198// *out << Verbose(4) << "InBondVector is: ";
199// InBondVector.Output(out);
200// *out << endl;
201 OrthoVector1.Zero();
202 for (int i=0;i<NDIM;i++) {
203 l = TopReplacement->x.x[i] - TopOrigin->x.x[i];
204 if (fabs(l) > BondDistance) { // is component greater than bond distance
205 OrthoVector1.x[i] = (l < 0) ? -1. : +1.;
206 } // (signs are correct, was tested!)
207 }
208 matrix = ReturnFullMatrixforSymmetric(cell_size);
209 OrthoVector1.MatrixMultiplication(matrix);
210 InBondVector.SubtractVector(&OrthoVector1); // subtract just the additional translation
211 Free((void **)&matrix, "molecule::AddHydrogenReplacementAtom: *matrix");
212 bondlength = InBondVector.Norm();
213// *out << Verbose(4) << "Corrected InBondVector is now: ";
214// InBondVector.Output(out);
215// *out << endl;
216 } // periodic correction finished
217
218 InBondVector.Normalize();
219 // get typical bond length and store as scale factor for later
220 BondRescale = TopOrigin->type->HBondDistance[TopBond->BondDegree-1];
221 if (BondRescale == -1) {
222 cerr << Verbose(3) << "WARNING: There is no typical bond distance for bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") of degree " << TopBond->BondDegree << "!" << endl;
223 BondRescale = bondlength;
224 } else {
225 if (!IsAngstroem)
226 BondRescale /= (1.*AtomicLengthToAngstroem);
227 }
228
229 // discern single, double and triple bonds
230 switch(TopBond->BondDegree) {
231 case 1:
232 FirstOtherAtom = new atom(); // new atom
233 FirstOtherAtom->type = elemente->FindElement(1); // element is Hydrogen
234 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
235 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
236 if (TopReplacement->type->Z == 1) { // neither rescale nor replace if it's already hydrogen
237 FirstOtherAtom->father = TopReplacement;
238 BondRescale = bondlength;
239 } else {
240 FirstOtherAtom->father = NULL; // if we replace hydrogen, we mark it as our father, otherwise we are just an added hydrogen with no father
241 }
242 InBondVector.Scale(&BondRescale); // rescale the distance vector to Hydrogen bond length
243 FirstOtherAtom->x.CopyVector(&TopOrigin->x); // set coordination to origin ...
244 FirstOtherAtom->x.AddVector(&InBondVector); // ... and add distance vector to replacement atom
245 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
246// *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
247// FirstOtherAtom->x.Output(out);
248// *out << endl;
249 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
250 Binder->Cyclic = false;
251 Binder->Type = TreeEdge;
252 break;
253 case 2:
254 // determine two other bonds (warning if there are more than two other) plus valence sanity check
255 for (i=0;i<NumBond;i++) {
256 if (BondList[i] != TopBond) {
257 if (FirstBond == NULL) {
258 FirstBond = BondList[i];
259 FirstOtherAtom = BondList[i]->GetOtherAtom(TopOrigin);
260 } else if (SecondBond == NULL) {
261 SecondBond = BondList[i];
262 SecondOtherAtom = BondList[i]->GetOtherAtom(TopOrigin);
263 } else {
264 *out << Verbose(3) << "WARNING: Detected more than four bonds for atom " << TopOrigin->Name;
265 }
266 }
267 }
268 if (SecondOtherAtom == NULL) { // then we have an atom with valence four, but only 3 bonds: one to replace and one which is TopBond (third is FirstBond)
269 SecondBond = TopBond;
270 SecondOtherAtom = TopReplacement;
271 }
272 if (FirstOtherAtom != NULL) { // then we just have this double bond and the plane does not matter at all
273// *out << Verbose(3) << "Regarding the double bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") to be constructed: Taking " << FirstOtherAtom->Name << " and " << SecondOtherAtom->Name << " along with " << TopOrigin->Name << " to determine orthogonal plane." << endl;
274
275 // determine the plane of these two with the *origin
276 AllWentWell = AllWentWell && OrthoVector1.MakeNormalVector(&TopOrigin->x, &FirstOtherAtom->x, &SecondOtherAtom->x);
277 } else {
278 OrthoVector1.GetOneNormalVector(&InBondVector);
279 }
280 //*out << Verbose(3)<< "Orthovector1: ";
281 //OrthoVector1.Output(out);
282 //*out << endl;
283 // orthogonal vector and bond vector between origin and replacement form the new plane
284 OrthoVector1.MakeNormalVector(&InBondVector);
285 OrthoVector1.Normalize();
286 //*out << Verbose(3) << "ReScaleCheck: " << OrthoVector1.Norm() << " and " << InBondVector.Norm() << "." << endl;
287
288 // create the two Hydrogens ...
289 FirstOtherAtom = new atom();
290 SecondOtherAtom = new atom();
291 FirstOtherAtom->type = elemente->FindElement(1);
292 SecondOtherAtom->type = elemente->FindElement(1);
293 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
294 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
295 SecondOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
296 SecondOtherAtom->FixedIon = TopReplacement->FixedIon;
297 FirstOtherAtom->father = NULL; // we are just an added hydrogen with no father
298 SecondOtherAtom->father = NULL; // we are just an added hydrogen with no father
299 bondangle = TopOrigin->type->HBondAngle[1];
300 if (bondangle == -1) {
301 *out << Verbose(3) << "WARNING: There is no typical bond angle for bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") of degree " << TopBond->BondDegree << "!" << endl;
302 bondangle = 0;
303 }
304 bondangle *= M_PI/180./2.;
305// *out << Verbose(3) << "ReScaleCheck: InBondVector ";
306// InBondVector.Output(out);
307// *out << endl;
308// *out << Verbose(3) << "ReScaleCheck: Orthovector ";
309// OrthoVector1.Output(out);
310// *out << endl;
311// *out << Verbose(3) << "Half the bond angle is " << bondangle << ", sin and cos of it: " << sin(bondangle) << ", " << cos(bondangle) << endl;
312 FirstOtherAtom->x.Zero();
313 SecondOtherAtom->x.Zero();
314 for(i=0;i<NDIM;i++) { // rotate by half the bond angle in both directions (InBondVector is bondangle = 0 direction)
315 FirstOtherAtom->x.x[i] = InBondVector.x[i] * cos(bondangle) + OrthoVector1.x[i] * (sin(bondangle));
316 SecondOtherAtom->x.x[i] = InBondVector.x[i] * cos(bondangle) + OrthoVector1.x[i] * (-sin(bondangle));
317 }
318 FirstOtherAtom->x.Scale(&BondRescale); // rescale by correct BondDistance
319 SecondOtherAtom->x.Scale(&BondRescale);
320 //*out << Verbose(3) << "ReScaleCheck: " << FirstOtherAtom->x.Norm() << " and " << SecondOtherAtom->x.Norm() << "." << endl;
321 for(i=0;i<NDIM;i++) { // and make relative to origin atom
322 FirstOtherAtom->x.x[i] += TopOrigin->x.x[i];
323 SecondOtherAtom->x.x[i] += TopOrigin->x.x[i];
324 }
325 // ... and add to molecule
326 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
327 AllWentWell = AllWentWell && AddAtom(SecondOtherAtom);
328// *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
329// FirstOtherAtom->x.Output(out);
330// *out << endl;
331// *out << Verbose(4) << "Added " << *SecondOtherAtom << " at: ";
332// SecondOtherAtom->x.Output(out);
333// *out << endl;
334 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
335 Binder->Cyclic = false;
336 Binder->Type = TreeEdge;
337 Binder = AddBond(BottomOrigin, SecondOtherAtom, 1);
338 Binder->Cyclic = false;
339 Binder->Type = TreeEdge;
340 break;
341 case 3:
342 // take the "usual" tetraoidal angle and add the three Hydrogen in direction of the bond (height of the tetraoid)
343 FirstOtherAtom = new atom();
344 SecondOtherAtom = new atom();
345 ThirdOtherAtom = new atom();
346 FirstOtherAtom->type = elemente->FindElement(1);
347 SecondOtherAtom->type = elemente->FindElement(1);
348 ThirdOtherAtom->type = elemente->FindElement(1);
349 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
350 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
351 SecondOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
352 SecondOtherAtom->FixedIon = TopReplacement->FixedIon;
353 ThirdOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
354 ThirdOtherAtom->FixedIon = TopReplacement->FixedIon;
355 FirstOtherAtom->father = NULL; // we are just an added hydrogen with no father
356 SecondOtherAtom->father = NULL; // we are just an added hydrogen with no father
357 ThirdOtherAtom->father = NULL; // we are just an added hydrogen with no father
358
359 // we need to vectors orthonormal the InBondVector
360 AllWentWell = AllWentWell && OrthoVector1.GetOneNormalVector(&InBondVector);
361// *out << Verbose(3) << "Orthovector1: ";
362// OrthoVector1.Output(out);
363// *out << endl;
364 AllWentWell = AllWentWell && OrthoVector2.MakeNormalVector(&InBondVector, &OrthoVector1);
365// *out << Verbose(3) << "Orthovector2: ";
366// OrthoVector2.Output(out);
367// *out << endl;
368
369 // create correct coordination for the three atoms
370 alpha = (TopOrigin->type->HBondAngle[2])/180.*M_PI/2.; // retrieve triple bond angle from database
371 l = BondRescale; // desired bond length
372 b = 2.*l*sin(alpha); // base length of isosceles triangle
373 d = l*sqrt(cos(alpha)*cos(alpha) - sin(alpha)*sin(alpha)/3.); // length for InBondvector
374 f = b/sqrt(3.); // length for OrthVector1
375 g = b/2.; // length for OrthVector2
376// *out << Verbose(3) << "Bond length and half-angle: " << l << ", " << alpha << "\t (b,d,f,g) = " << b << ", " << d << ", " << f << ", " << g << ", " << endl;
377// *out << Verbose(3) << "The three Bond lengths: " << sqrt(d*d+f*f) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g) << endl;
378 factors[0] = d;
379 factors[1] = f;
380 factors[2] = 0.;
381 FirstOtherAtom->x.LinearCombinationOfVectors(&InBondVector, &OrthoVector1, &OrthoVector2, factors);
382 factors[1] = -0.5*f;
383 factors[2] = g;
384 SecondOtherAtom->x.LinearCombinationOfVectors(&InBondVector, &OrthoVector1, &OrthoVector2, factors);
385 factors[2] = -g;
386 ThirdOtherAtom->x.LinearCombinationOfVectors(&InBondVector, &OrthoVector1, &OrthoVector2, factors);
387
388 // rescale each to correct BondDistance
389// FirstOtherAtom->x.Scale(&BondRescale);
390// SecondOtherAtom->x.Scale(&BondRescale);
391// ThirdOtherAtom->x.Scale(&BondRescale);
392
393 // and relative to *origin atom
394 FirstOtherAtom->x.AddVector(&TopOrigin->x);
395 SecondOtherAtom->x.AddVector(&TopOrigin->x);
396 ThirdOtherAtom->x.AddVector(&TopOrigin->x);
397
398 // ... and add to molecule
399 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
400 AllWentWell = AllWentWell && AddAtom(SecondOtherAtom);
401 AllWentWell = AllWentWell && AddAtom(ThirdOtherAtom);
402// *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
403// FirstOtherAtom->x.Output(out);
404// *out << endl;
405// *out << Verbose(4) << "Added " << *SecondOtherAtom << " at: ";
406// SecondOtherAtom->x.Output(out);
407// *out << endl;
408// *out << Verbose(4) << "Added " << *ThirdOtherAtom << " at: ";
409// ThirdOtherAtom->x.Output(out);
410// *out << endl;
411 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
412 Binder->Cyclic = false;
413 Binder->Type = TreeEdge;
414 Binder = AddBond(BottomOrigin, SecondOtherAtom, 1);
415 Binder->Cyclic = false;
416 Binder->Type = TreeEdge;
417 Binder = AddBond(BottomOrigin, ThirdOtherAtom, 1);
418 Binder->Cyclic = false;
419 Binder->Type = TreeEdge;
420 break;
421 default:
422 cerr << "ERROR: BondDegree does not state single, double or triple bond!" << endl;
423 AllWentWell = false;
424 break;
425 }
426
427// *out << Verbose(3) << "End of AddHydrogenReplacementAtom." << endl;
428 return AllWentWell;
429};
430
431/** Adds given atom \a *pointer from molecule list.
432 * Increases molecule::last_atom and gives last number to added atom.
433 * \param filename name and path of xyz file
434 * \return true - succeeded, false - file not found
435 */
436bool molecule::AddXYZFile(string filename)
437{
438 istringstream *input = NULL;
439 int NumberOfAtoms = 0; // atom number in xyz read
440 int i, j; // loop variables
441 atom *first = NULL; // pointer to added atom
442 char shorthand[3]; // shorthand for atom name
443 ifstream xyzfile; // xyz file
444 string line; // currently parsed line
445 double x[3]; // atom coordinates
446
447 xyzfile.open(filename.c_str());
448 if (!xyzfile)
449 return false;
450
451 getline(xyzfile,line,'\n'); // Read numer of atoms in file
452 input = new istringstream(line);
453 *input >> NumberOfAtoms;
454 cout << Verbose(0) << "Parsing " << NumberOfAtoms << " atoms in file." << endl;
455 getline(xyzfile,line,'\n'); // Read comment
456 cout << Verbose(1) << "Comment: " << line << endl;
457
458 for(i=0;i<NumberOfAtoms;i++){
459 first = new atom;
460 getline(xyzfile,line,'\n');
461 istringstream *item = new istringstream(line);
462 //istringstream input(line);
463 cout << Verbose(1) << "Reading: " << line << endl;
464 *item >> shorthand;
465 *item >> x[0];
466 *item >> x[1];
467 *item >> x[2];
468 first->type = elemente->FindElement(shorthand);
469 if (first->type == NULL) {
470 cerr << "Could not parse the element at line: '" << line << "', setting to H.";
471 first->type = elemente->FindElement(1);
472 }
473 for(j=0;j<NDIM;j++)
474 first->x.x[j] = x[j];
475 AddAtom(first); // add to molecule
476 delete(item);
477 }
478 xyzfile.close();
479 delete(input);
480 return true;
481};
482
483/** Creates a copy of this molecule.
484 * \return copy of molecule
485 */
486molecule *molecule::CopyMolecule()
487{
488 molecule *copy = new molecule(elemente);
489 atom *CurrentAtom = NULL;
490 atom *LeftAtom = NULL, *RightAtom = NULL;
491 atom *Walker = NULL;
492
493 // copy all atoms
494 Walker = start;
495 while(Walker->next != end) {
496 Walker = Walker->next;
497 CurrentAtom = copy->AddCopyAtom(Walker);
498 }
499
500 // copy all bonds
501 bond *Binder = first;
502 bond *NewBond = NULL;
503 while(Binder->next != last) {
504 Binder = Binder->next;
505 // get the pendant atoms of current bond in the copy molecule
506 LeftAtom = copy->start;
507 while (LeftAtom->next != copy->end) {
508 LeftAtom = LeftAtom->next;
509 if (LeftAtom->father == Binder->leftatom)
510 break;
511 }
512 RightAtom = copy->start;
513 while (RightAtom->next != copy->end) {
514 RightAtom = RightAtom->next;
515 if (RightAtom->father == Binder->rightatom)
516 break;
517 }
518 NewBond = copy->AddBond(LeftAtom, RightAtom, Binder->BondDegree);
519 NewBond->Cyclic = Binder->Cyclic;
520 if (Binder->Cyclic)
521 copy->NoCyclicBonds++;
522 NewBond->Type = Binder->Type;
523 }
524 // correct fathers
525 Walker = copy->start;
526 while(Walker->next != copy->end) {
527 Walker = Walker->next;
528 if (Walker->father->father == Walker->father) // same atom in copy's father points to itself
529 Walker->father = Walker; // set father to itself (copy of a whole molecule)
530 else
531 Walker->father = Walker->father->father; // set father to original's father
532 }
533 // copy values
534 copy->CountAtoms((ofstream *)&cout);
535 copy->CountElements();
536 if (first->next != last) { // if adjaceny list is present
537 copy->BondDistance = BondDistance;
538 copy->CreateListOfBondsPerAtom((ofstream *)&cout);
539 }
540
541 return copy;
542};
543
544/** Adds a bond to a the molecule specified by two atoms, \a *first and \a *second.
545 * Also updates molecule::BondCount and molecule::NoNonBonds.
546 * \param *first first atom in bond
547 * \param *second atom in bond
548 * \return pointer to bond or NULL on failure
549 */
550bond * molecule::AddBond(atom *atom1, atom *atom2, int degree=1)
551{
552 bond *Binder = NULL;
553 if ((atom1 != NULL) && (FindAtom(atom1->nr) != NULL) && (atom2 != NULL) && (FindAtom(atom2->nr) != NULL)) {
554 Binder = new bond(atom1, atom2, degree, BondCount++);
555 if ((atom1->type != NULL) && (atom1->type->Z != 1) && (atom2->type != NULL) && (atom2->type->Z != 1))
556 NoNonBonds++;
557 add(Binder, last);
558 } else {
559 cerr << Verbose(1) << "ERROR: Could not add bond between " << atom1->Name << " and " << atom2->Name << " as one or both are not present in the molecule." << endl;
560 }
561 return Binder;
562};
563
564/** Remove bond from bond chain list.
565 * \todo Function not implemented yet
566 * \param *pointer bond pointer
567 * \return true - bound found and removed, false - bond not found/removed
568 */
569bool molecule::RemoveBond(bond *pointer)
570{
571 //cerr << Verbose(1) << "molecule::RemoveBond: Function not implemented yet." << endl;
572 removewithoutcheck(pointer);
573 return true;
574};
575
576/** Remove every bond from bond chain list that atom \a *BondPartner is a constituent of.
577 * \todo Function not implemented yet
578 * \param *BondPartner atom to be removed
579 * \return true - bounds found and removed, false - bonds not found/removed
580 */
581bool molecule::RemoveBonds(atom *BondPartner)
582{
583 cerr << Verbose(1) << "molecule::RemoveBond: Function not implemented yet." << endl;
584 return false;
585};
586
587/** Sets the molecule::cell_size to the components of \a *dim (rectangular box)
588 * \param *dim vector class
589 */
590void molecule::SetBoxDimension(vector *dim)
591{
592 cell_size[0] = dim->x[0];
593 cell_size[1] = 0.;
594 cell_size[2] = dim->x[1];
595 cell_size[3] = 0.;
596 cell_size[4] = 0.;
597 cell_size[5] = dim->x[2];
598};
599
600/** Centers the edge of the atoms at (0,0,0).
601 * \param *out output stream for debugging
602 * \param *max coordinates of other edge, specifying box dimensions.
603 */
604void molecule::CenterEdge(ofstream *out, vector *max)
605{
606 vector *min = new vector;
607
608// *out << Verbose(3) << "Begin of CenterEdge." << endl;
609 atom *ptr = start->next; // start at first in list
610 if (ptr != end) { //list not empty?
611 for (int i=0;i<NDIM;i++) {
612 max->x[i] = ptr->x.x[i];
613 min->x[i] = ptr->x.x[i];
614 }
615 while (ptr->next != end) { // continue with second if present
616 ptr = ptr->next;
617 //ptr->Output(1,1,out);
618 for (int i=0;i<NDIM;i++) {
619 max->x[i] = (max->x[i] < ptr->x.x[i]) ? ptr->x.x[i] : max->x[i];
620 min->x[i] = (min->x[i] > ptr->x.x[i]) ? ptr->x.x[i] : min->x[i];
621 }
622 }
623// *out << Verbose(4) << "Maximum is ";
624// max->Output(out);
625// *out << ", Minimum is ";
626// min->Output(out);
627// *out << endl;
628
629 for (int i=0;i<NDIM;i++) {
630 min->x[i] *= -1.;
631 max->x[i] += min->x[i];
632 }
633 Translate(min);
634 }
635 delete(min);
636// *out << Verbose(3) << "End of CenterEdge." << endl;
637};
638
639/** Centers the center of the atoms at (0,0,0).
640 * \param *out output stream for debugging
641 * \param *center return vector for translation vector
642 */
643void molecule::CenterOrigin(ofstream *out, vector *center)
644{
645 int Num = 0;
646 atom *ptr = start->next; // start at first in list
647
648 for(int i=0;i<NDIM;i++) // zero center vector
649 center->x[i] = 0.;
650
651 if (ptr != end) { //list not empty?
652 while (ptr->next != end) { // continue with second if present
653 ptr = ptr->next;
654 Num++;
655 center->AddVector(&ptr->x);
656 }
657 center->Scale(-1./Num); // divide through total number (and sign for direction)
658 Translate(center);
659 }
660};
661
662/** Centers the center of gravity of the atoms at (0,0,0).
663 * \param *out output stream for debugging
664 * \param *center return vector for translation vector
665 */
666void molecule::CenterGravity(ofstream *out, vector *center)
667{
668 double Num = 0;
669 atom *ptr = start->next; // start at first in list
670 vector tmp;
671
672 for(int i=0;i<NDIM;i++) // zero center vector
673 center->x[i] = 0.;
674
675 if (ptr != end) { //list not empty?
676 while (ptr->next != end) { // continue with second if present
677 ptr = ptr->next;
678 Num += ptr->type->mass;
679 tmp.CopyVector(&ptr->x);
680 tmp.Scale(ptr->type->mass); // scale by mass
681 center->AddVector(&tmp);
682 }
683 center->Scale(-1./Num); // divide through total mass (and sign for direction)
684 Translate(center);
685 }
686};
687
688/** Scales all atoms by \a *factor.
689 * \param *factor pointer to scaling factor
690 */
691void molecule::Scale(double **factor)
692{
693 atom *ptr = start;
694
695 while (ptr->next != end) {
696 ptr = ptr->next;
697 ptr->x.Scale(factor);
698 }
699};
700
701/** Translate all atoms by given vector.
702 * \param trans[] translation vector.
703 */
704void molecule::Translate(const vector *trans)
705{
706 atom *ptr = start;
707
708 while (ptr->next != end) {
709 ptr = ptr->next;
710 ptr->x.Translate(trans);
711 }
712};
713
714/** Mirrors all atoms against a given plane.
715 * \param n[] normal vector of mirror plane.
716 */
717void molecule::Mirror(const vector *n)
718{
719 atom *ptr = start;
720
721 while (ptr->next != end) {
722 ptr = ptr->next;
723 ptr->x.Mirror(n);
724 }
725};
726
727/** Determines center of gravity (yet not considering atom masses).
728 * \param CenterOfGravity reference to return vector
729 */
730void molecule::DetermineCenterOfGravity(vector &CenterOfGravity)
731{
732 atom *Walker = start;
733 bond *Binder = NULL;
734 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
735 double tmp;
736 bool flag;
737 vector TestVector, TranslationVector;
738
739 do {
740 CenterOfGravity.Zero();
741 flag = true;
742 while (Walker->next != end) {
743 Walker = Walker->next;
744#ifdef ADDHYDROGEN
745 if (Walker->type->Z != 1) {
746#endif
747 TestVector.CopyVector(&Walker->x);
748 TestVector.InverseMatrixMultiplication(matrix);
749 TranslationVector.Zero();
750 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {
751 Binder = ListOfBondsPerAtom[Walker->nr][i];
752 if (Walker->nr < Binder->GetOtherAtom(Walker)->nr) // otherwise we shift one to, the other fro and gain nothing
753 for (int j=0;j<NDIM;j++) {
754 tmp = Walker->x.x[j] - Binder->GetOtherAtom(Walker)->x.x[j];
755 if ((fabs(tmp)) > BondDistance) {
756 flag = false;
757 cout << Verbose(0) << "Hit: atom " << Walker->Name << " in bond " << *Binder << " has to be shifted due to " << tmp << "." << endl;
758 if (tmp > 0)
759 TranslationVector.x[j] -= 1.;
760 else
761 TranslationVector.x[j] += 1.;
762 }
763 }
764 }
765 TestVector.AddVector(&TranslationVector);
766 TestVector.MatrixMultiplication(matrix);
767 CenterOfGravity.AddVector(&TestVector);
768 cout << Verbose(1) << "Vector is: ";
769 TestVector.Output((ofstream *)&cout);
770 cout << endl;
771#ifdef ADDHYDROGEN
772 // now also change all hydrogens
773 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {
774 Binder = ListOfBondsPerAtom[Walker->nr][i];
775 if (Binder->GetOtherAtom(Walker)->type->Z == 1) {
776 TestVector.CopyVector(&Binder->GetOtherAtom(Walker)->x);
777 TestVector.InverseMatrixMultiplication(matrix);
778 TestVector.AddVector(&TranslationVector);
779 TestVector.MatrixMultiplication(matrix);
780 CenterOfGravity.AddVector(&TestVector);
781 cout << Verbose(1) << "Hydrogen Vector is: ";
782 TestVector.Output((ofstream *)&cout);
783 cout << endl;
784 }
785 }
786 }
787#endif
788 }
789 } while (!flag);
790 Free((void **)&matrix, "molecule::DetermineCenterOfGravity: *matrix");
791 CenterOfGravity.Scale(1./(double)AtomCount);
792};
793
794/** Align all atoms in such a manner that given vector \a *n is along z axis.
795 * \param n[] alignment vector.
796 */
797void molecule::Align(vector *n)
798{
799 atom *ptr = start;
800 double alpha, tmp;
801 vector z_axis;
802 z_axis.x[0] = 0.;
803 z_axis.x[1] = 0.;
804 z_axis.x[2] = 1.;
805
806 // rotate on z-x plane
807 cout << Verbose(0) << "Begin of Aligning all atoms." << endl;
808 alpha = atan(-n->x[0]/n->x[2]);
809 cout << Verbose(1) << "Z-X-angle: " << alpha << " ... ";
810 while (ptr->next != end) {
811 ptr = ptr->next;
812 tmp = ptr->x.x[0];
813 ptr->x.x[0] = cos(alpha) * tmp + sin(alpha) * ptr->x.x[2];
814 ptr->x.x[2] = -sin(alpha) * tmp + cos(alpha) * ptr->x.x[2];
815 }
816 // rotate n vector
817 tmp = n->x[0];
818 n->x[0] = cos(alpha) * tmp + sin(alpha) * n->x[2];
819 n->x[2] = -sin(alpha) * tmp + cos(alpha) * n->x[2];
820 cout << Verbose(1) << "alignment vector after first rotation: ";
821 n->Output((ofstream *)&cout);
822 cout << endl;
823
824 // rotate on z-y plane
825 ptr = start;
826 alpha = atan(-n->x[1]/n->x[2]);
827 cout << Verbose(1) << "Z-Y-angle: " << alpha << " ... ";
828 while (ptr->next != end) {
829 ptr = ptr->next;
830 tmp = ptr->x.x[1];
831 ptr->x.x[1] = cos(alpha) * tmp + sin(alpha) * ptr->x.x[2];
832 ptr->x.x[2] = -sin(alpha) * tmp + cos(alpha) * ptr->x.x[2];
833 }
834 // rotate n vector (for consistency check)
835 tmp = n->x[1];
836 n->x[1] = cos(alpha) * tmp + sin(alpha) * n->x[2];
837 n->x[2] = -sin(alpha) * tmp + cos(alpha) * n->x[2];
838
839 cout << Verbose(1) << "alignment vector after second rotation: ";
840 n->Output((ofstream *)&cout);
841 cout << Verbose(1) << endl;
842 cout << Verbose(0) << "End of Aligning all atoms." << endl;
843};
844
845/** Removes atom from molecule list.
846 * \param *pointer atom to be removed
847 * \return true - succeeded, false - atom not found in list
848 */
849bool molecule::RemoveAtom(atom *pointer)
850{
851 if (ElementsInMolecule[pointer->type->Z] != 0) // this would indicate an error
852 ElementsInMolecule[pointer->type->Z]--; // decrease number of atom of this element
853 else
854 cerr << "ERROR: Atom " << pointer->Name << " is of element " << pointer->type->Z << " but the entry in the table of the molecule is 0!" << endl;
855 if (ElementsInMolecule[pointer->type->Z] == 0) // was last atom of this element?
856 ElementCount--;
857 return remove(pointer, start, end);
858};
859
860/** Removes every atom from molecule list.
861 * \return true - succeeded, false - atom not found in list
862 */
863bool molecule::CleanupMolecule()
864{
865 return (cleanup(start,end) && cleanup(first,last));
866};
867
868/** Finds an atom specified by its continuous number.
869 * \param Nr number of atom withim molecule
870 * \return pointer to atom or NULL
871 */
872atom * molecule::FindAtom(int Nr) const{
873 atom * walker = find(&Nr, start,end);
874 if (walker != NULL) {
875 //cout << Verbose(0) << "Found Atom Nr. " << walker->nr << endl;
876 return walker;
877 } else {
878 cout << Verbose(0) << "Atom not found in list." << endl;
879 return NULL;
880 }
881};
882
883/** Asks for atom number, and checks whether in list.
884 * \param *text question before entering
885 */
886atom * molecule::AskAtom(char *text)
887{
888 int No;
889 atom *ion = NULL;
890 do {
891 //cout << Verbose(0) << "============Atom list==========================" << endl;
892 //mol->Output((ofstream *)&cout);
893 //cout << Verbose(0) << "===============================================" << endl;
894 cout << Verbose(0) << text;
895 cin >> No;
896 ion = this->FindAtom(No);
897 } while (ion == NULL);
898 return ion;
899};
900
901/** Checks if given coordinates are within cell volume.
902 * \param *x array of coordinates
903 * \return true - is within, false - out of cell
904 */
905bool molecule::CheckBounds(const vector *x) const
906{
907 bool result = true;
908 int j =-1;
909 for (int i=0;i<3;i++) {
910 j += i+1;
911 result = result && ((x->x[i] >= 0) && (x->x[i] < cell_size[j]));
912 }
913 //return result;
914 return true; /// probably not gonna use the check no more
915};
916
917/** Calculates sum over least square distance to line hidden in \a *x.
918 * \param *x offset and direction vector
919 * \param *params pointer to lsq_params structure
920 * \return \f$ sum_i^N | y_i - (a + t_i b)|^2\f$
921 */
922double LeastSquareDistance (const gsl_vector * x, void * params)
923{
924 double res = 0, t;
925 vector a,b,c,d;
926 struct lsq_params *par = (struct lsq_params *)params;
927 atom *ptr = par->mol->start;
928
929 // initialize vectors
930 a.x[0] = gsl_vector_get(x,0);
931 a.x[1] = gsl_vector_get(x,1);
932 a.x[2] = gsl_vector_get(x,2);
933 b.x[0] = gsl_vector_get(x,3);
934 b.x[1] = gsl_vector_get(x,4);
935 b.x[2] = gsl_vector_get(x,5);
936 // go through all atoms
937 while (ptr != par->mol->end) {
938 ptr = ptr->next;
939 if (ptr->type == ((struct lsq_params *)params)->type) { // for specific type
940 c.CopyVector(&ptr->x); // copy vector to temporary one
941 c.SubtractVector(&a); // subtract offset vector
942 t = c.ScalarProduct(&b); // get direction parameter
943 d.CopyVector(&b); // and create vector
944 d.Scale(&t);
945 c.SubtractVector(&d); // ... yielding distance vector
946 res += d.ScalarProduct((const vector *)&d); // add squared distance
947 }
948 }
949 return res;
950};
951
952/** By minimizing the least square distance gains alignment vector.
953 * \bug this is not yet working properly it seems
954 */
955void molecule::GetAlignVector(struct lsq_params * par) const
956{
957 int np = 6;
958
959 const gsl_multimin_fminimizer_type *T =
960 gsl_multimin_fminimizer_nmsimplex;
961 gsl_multimin_fminimizer *s = NULL;
962 gsl_vector *ss;
963 gsl_multimin_function minex_func;
964
965 size_t iter = 0, i;
966 int status;
967 double size;
968
969 /* Initial vertex size vector */
970 ss = gsl_vector_alloc (np);
971
972 /* Set all step sizes to 1 */
973 gsl_vector_set_all (ss, 1.0);
974
975 /* Starting point */
976 par->x = gsl_vector_alloc (np);
977 par->mol = this;
978
979 gsl_vector_set (par->x, 0, 0.0); // offset
980 gsl_vector_set (par->x, 1, 0.0);
981 gsl_vector_set (par->x, 2, 0.0);
982 gsl_vector_set (par->x, 3, 0.0); // direction
983 gsl_vector_set (par->x, 4, 0.0);
984 gsl_vector_set (par->x, 5, 1.0);
985
986 /* Initialize method and iterate */
987 minex_func.f = &LeastSquareDistance;
988 minex_func.n = np;
989 minex_func.params = (void *)par;
990
991 s = gsl_multimin_fminimizer_alloc (T, np);
992 gsl_multimin_fminimizer_set (s, &minex_func, par->x, ss);
993
994 do
995 {
996 iter++;
997 status = gsl_multimin_fminimizer_iterate(s);
998
999 if (status)
1000 break;
1001
1002 size = gsl_multimin_fminimizer_size (s);
1003 status = gsl_multimin_test_size (size, 1e-2);
1004
1005 if (status == GSL_SUCCESS)
1006 {
1007 printf ("converged to minimum at\n");
1008 }
1009
1010 printf ("%5d ", (int)iter);
1011 for (i = 0; i < (size_t)np; i++)
1012 {
1013 printf ("%10.3e ", gsl_vector_get (s->x, i));
1014 }
1015 printf ("f() = %7.3f size = %.3f\n", s->fval, size);
1016 }
1017 while (status == GSL_CONTINUE && iter < 100);
1018
1019 for (i=0;i<(size_t)np;i++)
1020 gsl_vector_set(par->x, i, gsl_vector_get(s->x, i));
1021 //gsl_vector_free(par->x);
1022 gsl_vector_free(ss);
1023 gsl_multimin_fminimizer_free (s);
1024};
1025
1026/** Prints molecule to *out.
1027 * \param *out output stream
1028 */
1029bool molecule::Output(ofstream *out)
1030{
1031 element *runner = elemente->start;
1032 atom *walker = NULL;
1033 int ElementNo, AtomNo;
1034 CountElements();
1035
1036 if (out == NULL) {
1037 return false;
1038 } else {
1039 *out << "#Ion_TypeNr._Nr.R[0] R[1] R[2] MoveType (0 MoveIon, 1 FixedIon)" << endl;
1040 ElementNo = 0;
1041 while (runner->next != elemente->end) { // go through every element
1042 runner = runner->next;
1043 if (ElementsInMolecule[runner->Z]) { // if this element got atoms
1044 ElementNo++;
1045 AtomNo = 0;
1046 walker = start;
1047 while (walker->next != end) { // go through every atom of this element
1048 walker = walker->next;
1049 if (walker->type == runner) { // if this atom fits to element
1050 AtomNo++;
1051 walker->Output(ElementNo, AtomNo, out);
1052 }
1053 }
1054 }
1055 }
1056 return true;
1057 }
1058};
1059
1060/** Outputs contents of molecule::ListOfBondsPerAtom.
1061 * \param *out output stream
1062 */
1063void molecule::OutputListOfBonds(ofstream *out) const
1064{
1065 *out << Verbose(2) << endl << "From Contents of ListOfBondsPerAtom, all non-hydrogen atoms:" << endl;
1066 atom *Walker = start;
1067 while (Walker->next != end) {
1068 Walker = Walker->next;
1069#ifdef ADDHYDROGEN
1070 if (Walker->type->Z != 1) { // regard only non-hydrogen
1071#endif
1072 *out << Verbose(2) << "Atom " << Walker->Name << " has Bonds: "<<endl;
1073 for(int j=0;j<NumberOfBondsPerAtom[Walker->nr];j++) {
1074 *out << Verbose(3) << *(ListOfBondsPerAtom)[Walker->nr][j] << endl;
1075 }
1076#ifdef ADDHYDROGEN
1077 }
1078#endif
1079 }
1080 *out << endl;
1081};
1082
1083/** Output of element before the actual coordination list.
1084 * \param *out stream pointer
1085 */
1086bool molecule::Checkout(ofstream *out) const
1087{
1088 return elemente->Checkout(out, ElementsInMolecule);
1089};
1090
1091/** Prints molecule to *out as xyz file.
1092 * \param *out output stream
1093 */
1094bool molecule::OutputXYZ(ofstream *out) const
1095{
1096 atom *walker = NULL;
1097 int No = 0;
1098 time_t now;
1099
1100 now = time((time_t *)NULL); // Get the system time and put it into 'now' as 'calender time'
1101 walker = start;
1102 while (walker->next != end) { // go through every atom and count
1103 walker = walker->next;
1104 No++;
1105 }
1106 if (out != NULL) {
1107 *out << No << "\n\tCreated by molecuilder on " << ctime(&now);
1108 walker = start;
1109 while (walker->next != end) { // go through every atom of this element
1110 walker = walker->next;
1111 walker->OutputXYZLine(out);
1112 }
1113 return true;
1114 } else
1115 return false;
1116};
1117
1118/** Brings molecule::AtomCount and atom::*Name up-to-date.
1119 * \param *out output stream for debugging
1120 */
1121void molecule::CountAtoms(ofstream *out)
1122{
1123 int i = 0;
1124 atom *Walker = start;
1125 while (Walker->next != end) {
1126 Walker = Walker->next;
1127 i++;
1128 }
1129 if ((AtomCount == 0) || (i != AtomCount)) {
1130 *out << Verbose(3) << "Mismatch in AtomCount " << AtomCount << " and recounted number " << i << ", renaming all." << endl;
1131 AtomCount = i;
1132
1133 // count NonHydrogen atoms and give each atom a unique name
1134 if (AtomCount != 0) {
1135 i=0;
1136 NoNonHydrogen = 0;
1137 Walker = start;
1138 while (Walker->next != end) {
1139 Walker = Walker->next;
1140 Walker->nr = i; // update number in molecule (for easier referencing in FragmentMolecule lateron)
1141 if (Walker->type->Z != 1) // count non-hydrogen atoms whilst at it
1142 NoNonHydrogen++;
1143 Free((void **)&Walker->Name, "molecule::CountAtoms: *walker->Name");
1144 Walker->Name = (char *) Malloc(sizeof(char)*6, "molecule::CountAtoms: *walker->Name");
1145 sprintf(Walker->Name, "%2s%02d", Walker->type->symbol, Walker->nr+1);
1146 *out << "Naming atom nr. " << Walker->nr << " " << Walker->Name << "." << endl;
1147 i++;
1148 }
1149 } else
1150 *out << Verbose(3) << "AtomCount is still " << AtomCount << ", thus counting nothing." << endl;
1151 }
1152};
1153
1154/** Brings molecule::ElementCount and molecule::ElementsInMolecule up-to-date.
1155 */
1156void molecule::CountElements()
1157{
1158 int i = 0;
1159 for(i=0;i<MAX_ELEMENTS;i++)
1160 ElementsInMolecule[i] = 0;
1161 ElementCount = 0;
1162
1163 atom *walker = start;
1164 while (walker->next != end) {
1165 walker = walker->next;
1166 ElementsInMolecule[walker->type->Z]++;
1167 i++;
1168 }
1169 for(i=0;i<MAX_ELEMENTS;i++)
1170 ElementCount += (ElementsInMolecule[i] != 0 ? 1 : 0);
1171};
1172
1173/** Counts all cyclic bonds and returns their number.
1174 * \note Hydrogen bonds can never by cyclic, thus no check for that
1175 * \param *out output stream for debugging
1176 * \return number opf cyclic bonds
1177 */
1178int molecule::CountCyclicBonds(ofstream *out)
1179{
1180 int No = 0;
1181 int MinimumRingSize;
1182 MoleculeLeafClass *Subgraphs = NULL;
1183 bond *Binder = first;
1184 if ((Binder->next != last) && (Binder->next->Type == Undetermined)) {
1185 *out << Verbose(0) << "No Depth-First-Search analysis performed so far, calling ..." << endl;
1186 Subgraphs = DepthFirstSearchAnalysis(out, false, MinimumRingSize);
1187 while (Subgraphs->next != NULL) {
1188 Subgraphs = Subgraphs->next;
1189 delete(Subgraphs->previous);
1190 }
1191 delete(Subgraphs);
1192 }
1193 while(Binder->next != last) {
1194 Binder = Binder->next;
1195 if (Binder->Cyclic)
1196 No++;
1197 }
1198 return No;
1199};
1200
1201/** Returns Shading as a char string.
1202 * \param color the Shading
1203 * \return string of the flag
1204 */
1205char * molecule::GetColor(enum Shading color)
1206{
1207 switch(color) {
1208 case white:
1209 return "white";
1210 break;
1211 case lightgray:
1212 return "lightgray";
1213 break;
1214 case darkgray:
1215 return "darkgray";
1216 break;
1217 case black:
1218 return "black";
1219 break;
1220 default:
1221 return "uncolored";
1222 break;
1223 };
1224};
1225
1226
1227/** Counts necessary number of valence electrons and returns number and SpinType.
1228 * \param configuration containing everything
1229 */
1230void molecule::CalculateOrbitals(class config &configuration)
1231{
1232 configuration.MaxPsiDouble = configuration.PsiMaxNoDown = configuration.PsiMaxNoUp = configuration.PsiType = 0;
1233 for(int i=0;i<MAX_ELEMENTS;i++) {
1234 if (ElementsInMolecule[i] != 0) {
1235 //cout << "CalculateOrbitals: " << elemente->FindElement(i)->name << " has a valence of " << (int)elemente->FindElement(i)->Valence << " and there are " << ElementsInMolecule[i] << " of it." << endl;
1236 configuration.MaxPsiDouble += ElementsInMolecule[i]*((int)elemente->FindElement(i)->Valence);
1237 }
1238 }
1239 configuration.PsiMaxNoDown = configuration.MaxPsiDouble/2 + (configuration.MaxPsiDouble % 2);
1240 configuration.PsiMaxNoUp = configuration.MaxPsiDouble/2;
1241 configuration.MaxPsiDouble /= 2;
1242 configuration.PsiType = (configuration.PsiMaxNoDown == configuration.PsiMaxNoUp) ? 0 : 1;
1243 if ((configuration.PsiType == 1) && (configuration.ProcPEPsi < 2)) {
1244 configuration.ProcPEGamma /= 2;
1245 configuration.ProcPEPsi *= 2;
1246 } else {
1247 configuration.ProcPEGamma *= configuration.ProcPEPsi;
1248 configuration.ProcPEPsi = 1;
1249 }
1250 configuration.InitMaxMinStopStep = configuration.MaxMinStopStep = configuration.MaxPsiDouble;
1251};
1252
1253/** Creates an adjacency list of the molecule.
1254 * Generally, we use the CSD approach to bond recognition, that is the the distance
1255 * between two atoms A and B must be within [Rcov(A)+Rcov(B)-t,Rcov(A)+Rcov(B)+t] with
1256 * a threshold t = 0.4 Angstroem.
1257 * To make it O(N log N) the function uses the linked-cell technique as follows:
1258 * The procedure is step-wise:
1259 * -# Remove every bond in list
1260 * -# Count the atoms in the molecule with CountAtoms()
1261 * -# partition cell into smaller linked cells of size \a bonddistance
1262 * -# put each atom into its corresponding cell
1263 * -# go through every cell, check the atoms therein against all possible bond partners in the 27 adjacent cells, add bond if true
1264 * -# create the list of bonds via CreateListOfBondsPerAtom()
1265 * -# correct the bond degree iteratively (single->double->triple bond)
1266 * -# finally print the bond list to \a *out if desired
1267 * \param *out out stream for printing the matrix, NULL if no output
1268 * \param bonddistance length of linked cells (i.e. maximum minimal length checked)
1269 */
1270void molecule::CreateAdjacencyList(ofstream *out, double bonddistance)
1271{
1272 atom *Walker = NULL, *OtherWalker = NULL;
1273 int No, NoBonds;
1274 int NumberCells, divisor[NDIM], n[NDIM], N[NDIM], index, Index, j;
1275 molecule **CellList;
1276 double distance, MinDistance, MaxDistance;
1277 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
1278 vector x;
1279
1280 BondDistance = bonddistance;
1281 *out << Verbose(0) << "Begin of CreateAdjacencyList." << endl;
1282 // remove every bond from the list
1283 if ((first->next != last) && (last->previous != first)) { // there are bonds present
1284 cleanup(first,last);
1285 }
1286
1287 // count atoms in molecule = dimension of matrix (also give each unique name and continuous numbering)
1288 CountAtoms(out);
1289 *out << Verbose(1) << "AtomCount " << AtomCount << "." << endl;
1290
1291 if (AtomCount != 0) {
1292 // 1. find divisor for each axis, such that a sphere with radius of at least bonddistance can be placed into each cell
1293 j=-1;
1294 for (int i=0;i<NDIM;i++) {
1295 j += i+1;
1296 divisor[i] = (int)floor(cell_size[j]/bonddistance); // take smaller value such that size of linked cell is at least bonddistance
1297 *out << Verbose(1) << "divisor[" << i << "] = " << divisor[i] << "." << endl;
1298 }
1299 // 2a. allocate memory for the cell list
1300 NumberCells = divisor[0]*divisor[1]*divisor[2];
1301 *out << Verbose(1) << "Allocating " << NumberCells << " cells." << endl;
1302 CellList = (molecule **) Malloc(sizeof(molecule *)*NumberCells, "molecule::CreateAdjacencyList - ** CellList");
1303 for (int i=0;i<NumberCells;i++)
1304 CellList[i] = NULL;
1305
1306 // 2b. put all atoms into its corresponding list
1307 Walker = start;
1308 while(Walker->next != end) {
1309 Walker = Walker->next;
1310 //*out << Verbose(1) << "Current atom is " << *Walker << " with coordinates ";
1311 //Walker->x.Output(out);
1312 //*out << "." << endl;
1313 // compute the cell by the atom's coordinates
1314 j=-1;
1315 for (int i=0;i<NDIM;i++) {
1316 j += i+1;
1317 x.CopyVector(&(Walker->x));
1318 x.KeepPeriodic(out, matrix);
1319 n[i] = (int)floor(x.x[i]/cell_size[j]*(double)divisor[i]);
1320 }
1321 index = n[2] + (n[1] + n[0] * divisor[1]) * divisor[2];
1322 *out << Verbose(1) << "Atom " << *Walker << " goes into cell number [" << n[0] << "," << n[1] << "," << n[2] << "] = " << index << "." << endl;
1323 // add copy atom to this cell
1324 if (CellList[index] == NULL) // allocate molecule if not done
1325 CellList[index] = new molecule(elemente);
1326 OtherWalker = CellList[index]->AddCopyAtom(Walker); // add a copy of walker to this atom, father will be walker for later reference
1327 //*out << Verbose(1) << "Copy Atom is " << *OtherWalker << "." << endl;
1328 }
1329 //for (int i=0;i<NumberCells;i++)
1330 //*out << Verbose(1) << "Cell number " << i << ": " << CellList[i] << "." << endl;
1331
1332 // 3a. go through every cell
1333 for (N[0]=0;N[0]<divisor[0];N[0]++)
1334 for (N[1]=0;N[1]<divisor[1];N[1]++)
1335 for (N[2]=0;N[2]<divisor[2];N[2]++) {
1336 Index = N[2] + (N[1] + N[0] * divisor[1]) * divisor[2];
1337 if (CellList[Index] != NULL) { // if there atoms in this cell
1338 //*out << Verbose(1) << "Current cell is " << Index << "." << endl;
1339 // 3b. for every atom therein
1340 Walker = CellList[Index]->start;
1341 while (Walker->next != CellList[Index]->end) { // go through every atom
1342 Walker = Walker->next;
1343 //*out << Verbose(0) << "Current Atom is " << *Walker << "." << endl;
1344 // 3c. check for possible bond between each atom in this and every one in the 27 cells
1345 for (n[0]=-1;n[0]<=1;n[0]++)
1346 for (n[1]=-1;n[1]<=1;n[1]++)
1347 for (n[2]=-1;n[2]<=1;n[2]++) {
1348 // compute the index of this comparison cell and make it periodic
1349 index = ((N[2]+n[2]+divisor[2])%divisor[2]) + (((N[1]+n[1]+divisor[1])%divisor[1]) + ((N[0]+n[0]+divisor[0])%divisor[0]) * divisor[1]) * divisor[2];
1350 //*out << Verbose(1) << "Number of comparison cell is " << index << "." << endl;
1351 if (CellList[index] != NULL) { // if there are any atoms in this cell
1352 OtherWalker = CellList[index]->start;
1353 while(OtherWalker->next != CellList[index]->end) { // go through every atom in this cell
1354 OtherWalker = OtherWalker->next;
1355 //*out << Verbose(0) << "Current comparison atom is " << *OtherWalker << "." << endl;
1356 /// \todo periodic check is missing here!
1357 //*out << Verbose(1) << "Checking distance " << OtherWalker->x.PeriodicDistance(&(Walker->x), cell_size) << " against typical bond length of " << bonddistance*bonddistance << "." << endl;
1358 MinDistance = OtherWalker->type->CovalentRadius + Walker->type->CovalentRadius;
1359 MaxDistance = MinDistance + BONDTHRESHOLD;
1360 MinDistance -= BONDTHRESHOLD;
1361 distance = OtherWalker->x.PeriodicDistance(&(Walker->x), cell_size);
1362 if ((OtherWalker->father->nr > Walker->father->nr) && (distance <= MaxDistance*MaxDistance) && (distance >= MinDistance*MinDistance)) { // create bond if distance is smaller
1363 *out << Verbose(0) << "Adding Bond between " << *Walker << " and " << *OtherWalker << "." << endl;
1364 AddBond(Walker->father, OtherWalker->father, 1); // also increases molecule::BondCount
1365 } else {
1366 //*out << Verbose(1) << "Not Adding: Wrong label order or distance too great." << endl;
1367 }
1368 }
1369 }
1370 }
1371 }
1372 }
1373 }
1374 // 4. free the cell again
1375 for (int i=0;i<NumberCells;i++)
1376 if (CellList[i] != NULL) {
1377 delete(CellList[i]);
1378 }
1379 Free((void **)&CellList, "molecule::CreateAdjacencyList - ** CellList");
1380
1381 // create the adjacency list per atom
1382 CreateListOfBondsPerAtom(out);
1383
1384 // correct Bond degree of each bond by checking of updated(!) sum of bond degree for an atom match its valence count
1385 // bond degrres are correctled iteratively by one, so that 2-2 instead of 1-3 or 3-1 corrections are favoured: We want
1386 // a rather symmetric distribution of higher bond degrees
1387 if (BondCount != 0) {
1388 NoCyclicBonds = 0;
1389 *out << Verbose(1) << "Correcting Bond degree of each bond ... ";
1390 do {
1391 No = 0; // No acts as breakup flag (if 1 we still continue)
1392 Walker = start;
1393 while (Walker->next != end) { // go through every atom
1394 Walker = Walker->next;
1395 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) { // go through each of its bond partners
1396 OtherWalker = ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
1397 // count valence of first partner (updated!), might have changed during last bond partner
1398 NoBonds = 0;
1399 for(j=0;j<NumberOfBondsPerAtom[Walker->nr];j++)
1400 NoBonds += ListOfBondsPerAtom[Walker->nr][j]->BondDegree;
1401 //*out << Verbose(3) << "Walker: " << (int)Walker->type->NoValenceOrbitals << " > " << NoBonds << "?" << endl;
1402 if ((int)(Walker->type->NoValenceOrbitals) > NoBonds) { // we have a mismatch, check NoBonds of other atom
1403 // count valence of second partner
1404 NoBonds = 0;
1405 for(j=0;j<NumberOfBondsPerAtom[OtherWalker->nr];j++)
1406 NoBonds += ListOfBondsPerAtom[OtherWalker->nr][j]->BondDegree;
1407 //*out << Verbose(3) << "OtherWalker: " << (int)OtherWalker->type->NoValenceOrbitals << " > " << NoBonds << "?" << endl;
1408 if ((int)(OtherWalker->type->NoValenceOrbitals) > NoBonds) // increase bond degree by one
1409 ListOfBondsPerAtom[Walker->nr][i]->BondDegree++;
1410 }
1411 }
1412 }
1413 } while (No);
1414 *out << " done." << endl;
1415 } else
1416 *out << Verbose(1) << "BondCount is " << BondCount << ", no bonds between any of the " << AtomCount << " atoms." << endl;
1417 *out << Verbose(1) << "I detected " << BondCount << " bonds in the molecule with distance " << bonddistance << "." << endl;
1418
1419// // output bonds for debugging (if bond chain list was correctly installed)
1420// *out << Verbose(1) << endl << "From contents of bond chain list:";
1421// bond *Binder = first;
1422// while(Binder->next != last) {
1423// Binder = Binder->next;
1424// *out << *Binder << "\t" << endl;
1425// }
1426// *out << endl;
1427 } else
1428 *out << Verbose(1) << "AtomCount is " << AtomCount << ", thus no bonds, no connections!." << endl;
1429 *out << Verbose(0) << "End of CreateAdjacencyList." << endl;
1430 Free((void **)&matrix, "molecule::CreateAdjacencyList: *matrix");
1431};
1432
1433/** Performs a Depth-First search on this molecule.
1434 * Marks bonds in molecule as cyclic, bridge, ... and atoms as
1435 * articulations points, ...
1436 * We use the algorithm from [Even, Graph Algorithms, p.62].
1437 * \param *out output stream for debugging
1438 * \param ReturnStack true - return pointer to atom stack of separable components, false - return NULL
1439 * \param MinimumRingSize contains smallest ring size in molecular structure on return or -1 if no rings were found
1440 * \return list of each disconnected subgraph as an individual molecule class structure
1441 */
1442MoleculeLeafClass * molecule::DepthFirstSearchAnalysis(ofstream *out, bool ReturnStack, int &MinimumRingSize)
1443{
1444 class StackClass<atom *> *AtomStack;
1445 AtomStack = new StackClass<atom *>(AtomCount);
1446 class StackClass<bond *> *BackEdgeStack = new StackClass<bond *> (BondCount);
1447 MoleculeLeafClass *SubGraphs = new MoleculeLeafClass(NULL);
1448 MoleculeLeafClass *LeafWalker = SubGraphs;
1449 int CurrentGraphNr = 0, OldGraphNr;
1450 int ComponentNumber = 0;
1451 atom *Walker = NULL, *OtherAtom = NULL, *Root = start->next;
1452 bond *Binder = NULL;
1453 bool BackStepping = false;
1454
1455 *out << Verbose(0) << "Begin of DepthFirstSearchAnalysis" << endl;
1456
1457 ResetAllBondsToUnused();
1458 ResetAllAtomNumbers();
1459 InitComponentNumbers();
1460 BackEdgeStack->ClearStack();
1461 while (Root != end) { // if there any atoms at all
1462 // (1) mark all edges unused, empty stack, set atom->GraphNr = 0 for all
1463 AtomStack->ClearStack();
1464
1465 // put into new subgraph molecule and add this to list of subgraphs
1466 LeafWalker = new MoleculeLeafClass(LeafWalker);
1467 LeafWalker->Leaf = new molecule(elemente);
1468 LeafWalker->Leaf->AddCopyAtom(Root);
1469
1470 OldGraphNr = CurrentGraphNr;
1471 Walker = Root;
1472 do { // (10)
1473 do { // (2) set number and Lowpoint of Atom to i, increase i, push current atom
1474 if (!BackStepping) { // if we don't just return from (8)
1475 Walker->GraphNr = CurrentGraphNr;
1476 Walker->LowpointNr = CurrentGraphNr;
1477 *out << Verbose(1) << "Setting Walker[" << Walker->Name << "]'s number to " << Walker->GraphNr << " with Lowpoint " << Walker->LowpointNr << "." << endl;
1478 AtomStack->Push(Walker);
1479 CurrentGraphNr++;
1480 }
1481 do { // (3) if Walker has no unused egdes, go to (5)
1482 BackStepping = false; // reset backstepping flag for (8)
1483 if (Binder == NULL) // if we don't just return from (11), Binder is already set to next unused
1484 Binder = FindNextUnused(Walker);
1485 if (Binder == NULL)
1486 break;
1487 *out << Verbose(2) << "Current Unused Bond is " << *Binder << "." << endl;
1488 // (4) Mark Binder used, ...
1489 Binder->MarkUsed(black);
1490 OtherAtom = Binder->GetOtherAtom(Walker);
1491 *out << Verbose(2) << "(4) OtherAtom is " << OtherAtom->Name << "." << endl;
1492 if (OtherAtom->GraphNr != -1) {
1493 // (4a) ... if "other" atom has been visited (GraphNr != 0), set lowpoint to minimum of both, go to (3)
1494 Binder->Type = BackEdge;
1495 BackEdgeStack->Push(Binder);
1496 Walker->LowpointNr = ( Walker->LowpointNr < OtherAtom->GraphNr ) ? Walker->LowpointNr : OtherAtom->GraphNr;
1497 *out << Verbose(3) << "(4a) Visited: Setting Lowpoint of Walker[" << Walker->Name << "] to " << Walker->LowpointNr << "." << endl;
1498 } else {
1499 // (4b) ... otherwise set OtherAtom as Ancestor of Walker and Walker as OtherAtom, go to (2)
1500 Binder->Type = TreeEdge;
1501 OtherAtom->Ancestor = Walker;
1502 Walker = OtherAtom;
1503 *out << Verbose(3) << "(4b) Not Visited: OtherAtom[" << OtherAtom->Name << "]'s Ancestor is now " << OtherAtom->Ancestor->Name << ", Walker is OtherAtom " << OtherAtom->Name << "." << endl;
1504 break;
1505 }
1506 Binder = NULL;
1507 } while (1); // (3)
1508 if (Binder == NULL) {
1509 *out << Verbose(2) << "No more Unused Bonds." << endl;
1510 break;
1511 } else
1512 Binder = NULL;
1513 } while (1); // (2)
1514
1515 // if we came from backstepping, yet there were no more unused bonds, we end up here with no Ancestor, because Walker is Root! Then we are finished!
1516 if ((Walker == Root) && (Binder == NULL))
1517 break;
1518
1519 // (5) if Ancestor of Walker is ...
1520 *out << Verbose(1) << "(5) Number of Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "] is " << Walker->Ancestor->GraphNr << "." << endl;
1521 if (Walker->Ancestor->GraphNr != Root->GraphNr) {
1522 // (6) (Ancestor of Walker is not Root)
1523 if (Walker->LowpointNr < Walker->Ancestor->GraphNr) {
1524 // (6a) set Ancestor's Lowpoint number to minimum of of its Ancestor and itself, go to Step(8)
1525 Walker->Ancestor->LowpointNr = (Walker->Ancestor->LowpointNr < Walker->LowpointNr) ? Walker->Ancestor->LowpointNr : Walker->LowpointNr;
1526 *out << Verbose(2) << "(6) Setting Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "]'s Lowpoint to " << Walker->Ancestor->LowpointNr << "." << endl;
1527 } else {
1528 // (7) (Ancestor of Walker is a separating vertex, remove all from stack till Walker (including), these and Ancestor form a component
1529 Walker->Ancestor->SeparationVertex = true;
1530 *out << Verbose(2) << "(7) Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "]'s is a separating vertex, creating component." << endl;
1531 SetNextComponentNumber(Walker->Ancestor, ComponentNumber);
1532 *out << Verbose(3) << "(7) Walker[" << Walker->Name << "]'s Ancestor's Compont is " << ComponentNumber << "." << endl;
1533 SetNextComponentNumber(Walker, ComponentNumber);
1534 *out << Verbose(3) << "(7) Walker[" << Walker->Name << "]'s Compont is " << ComponentNumber << "." << endl;
1535 do {
1536 OtherAtom = AtomStack->PopLast();
1537 LeafWalker->Leaf->AddCopyAtom(OtherAtom);
1538 SetNextComponentNumber(OtherAtom, ComponentNumber);
1539 *out << Verbose(3) << "(7) Other[" << OtherAtom->Name << "]'s Compont is " << ComponentNumber << "." << endl;
1540 } while (OtherAtom != Walker);
1541 ComponentNumber++;
1542 }
1543 // (8) Walker becomes its Ancestor, go to (3)
1544 *out << Verbose(2) << "(8) Walker[" << Walker->Name << "] is now its Ancestor " << Walker->Ancestor->Name << ", backstepping. " << endl;
1545 Walker = Walker->Ancestor;
1546 BackStepping = true;
1547 }
1548 if (!BackStepping) { // coming from (8) want to go to (3)
1549 // (9) remove all from stack till Walker (including), these and Root form a component
1550 AtomStack->Output(out);
1551 SetNextComponentNumber(Root, ComponentNumber);
1552 *out << Verbose(3) << "(9) Root[" << Root->Name << "]'s Component is " << ComponentNumber << "." << endl;
1553 SetNextComponentNumber(Walker, ComponentNumber);
1554 *out << Verbose(3) << "(9) Walker[" << Walker->Name << "]'s Component is " << ComponentNumber << "." << endl;
1555 do {
1556 OtherAtom = AtomStack->PopLast();
1557 LeafWalker->Leaf->AddCopyAtom(OtherAtom);
1558 SetNextComponentNumber(OtherAtom, ComponentNumber);
1559 *out << Verbose(3) << "(7) Other[" << OtherAtom->Name << "]'s Compont is " << ComponentNumber << "." << endl;
1560 } while (OtherAtom != Walker);
1561 ComponentNumber++;
1562
1563 // (11) Root is separation vertex, set Walker to Root and go to (4)
1564 Walker = Root;
1565 Binder = FindNextUnused(Walker);
1566 *out << Verbose(1) << "(10) Walker is Root[" << Root->Name << "], next Unused Bond is " << Binder << "." << endl;
1567 if (Binder != NULL) { // Root is separation vertex
1568 *out << Verbose(1) << "(11) Root is a separation vertex." << endl;
1569 Walker->SeparationVertex = true;
1570 }
1571 }
1572 } while ((BackStepping) || (Binder != NULL)); // (10) halt only if Root has no unused edges
1573
1574 // From OldGraphNr to CurrentGraphNr ranges an disconnected subgraph
1575 *out << Verbose(0) << "Disconnected subgraph ranges from " << OldGraphNr << " to " << CurrentGraphNr << "." << endl;
1576 LeafWalker->Leaf->Output(out);
1577 *out << endl;
1578
1579 // step on to next root
1580 while ((Root != end) && (Root->GraphNr != -1)) {
1581 //*out << Verbose(1) << "Current next subgraph root candidate is " << Root->Name << "." << endl;
1582 if (Root->GraphNr != -1) // if already discovered, step on
1583 Root = Root->next;
1584 }
1585 }
1586 // set cyclic bond criterium on "same LP" basis
1587 Binder = first;
1588 while(Binder->next != last) {
1589 Binder = Binder->next;
1590 if (Binder->rightatom->LowpointNr == Binder->leftatom->LowpointNr) { // cyclic ??
1591 Binder->Cyclic = true;
1592 NoCyclicBonds++;
1593 }
1594 }
1595
1596 // analysis of the cycles (print rings, get minimum cycle length)
1597 CyclicStructureAnalysis(out, BackEdgeStack, MinimumRingSize);
1598
1599 *out << Verbose(1) << "Final graph info for each atom is:" << endl;
1600 Walker = start;
1601 while (Walker->next != end) {
1602 Walker = Walker->next;
1603 *out << Verbose(2) << "Atom " << Walker->Name << " is " << ((Walker->SeparationVertex) ? "a" : "not a") << " separation vertex, components are ";
1604 OutputComponentNumber(out, Walker);
1605 *out << " with Lowpoint " << Walker->LowpointNr << " and Graph Nr. " << Walker->GraphNr << "." << endl;
1606 }
1607
1608 *out << Verbose(1) << "Final graph info for each bond is:" << endl;
1609 Binder = first;
1610 while(Binder->next != last) {
1611 Binder = Binder->next;
1612 *out << Verbose(2) << ((Binder->Type == TreeEdge) ? "TreeEdge " : "BackEdge ") << *Binder << ": <";
1613 *out << ((Binder->leftatom->SeparationVertex) ? "SP," : "") << "L" << Binder->leftatom->LowpointNr << " G" << Binder->leftatom->GraphNr << " Comp.";
1614 OutputComponentNumber(out, Binder->leftatom);
1615 *out << " === ";
1616 *out << ((Binder->rightatom->SeparationVertex) ? "SP," : "") << "L" << Binder->rightatom->LowpointNr << " G" << Binder->rightatom->GraphNr << " Comp.";
1617 OutputComponentNumber(out, Binder->rightatom);
1618 *out << ">." << endl;
1619 if (Binder->Cyclic) // cyclic ??
1620 *out << Verbose(3) << "Lowpoint at each side are equal: CYCLIC!" << endl;
1621 }
1622
1623 // free all and exit
1624 delete(AtomStack);
1625 *out << Verbose(0) << "End of DepthFirstSearchAnalysis" << endl;
1626 return SubGraphs;
1627};
1628
1629/** Analyses the cycles found and returns minimum of all cycle lengths.
1630 * \param *out output stream for debugging
1631 * \param *BackEdgeStack stack with all back edges found during DFS scan
1632 * \param MinimumRingSize contains smallest ring size in molecular structure on return or -1 if no rings were found, if set is maximum search distance
1633 * \todo BFS from the not-same-LP to find back to starting point of tributary cycle over more than one bond
1634 */
1635void molecule::CyclicStructureAnalysis(ofstream *out, class StackClass<bond *> * BackEdgeStack, int &MinimumRingSize)
1636{
1637 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::CyclicStructureAnalysis: **PredecessorList");
1638 int *ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CyclicStructureAnalysis: *ShortestPathList");
1639 enum Shading *ColorList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::CyclicStructureAnalysis: *ColorList");
1640 class StackClass<atom *> *BFSStack = new StackClass<atom *> (AtomCount); // will hold the current ring
1641 class StackClass<atom *> *TouchedStack = new StackClass<atom *> (AtomCount); // contains all "touched" atoms
1642 atom *Walker = NULL, *OtherAtom = NULL, *Root = NULL;
1643 bond *Binder = NULL, *BackEdge = NULL;
1644 int RingSize, NumCycles;
1645
1646 // initialise each vertex as white with no predecessor, empty queue, color Root lightgray
1647 for (int i=0;i<AtomCount;i++) {
1648 PredecessorList[i] = NULL;
1649 ShortestPathList[i] = -1;
1650 ColorList[i] = white;
1651 }
1652
1653 *out << Verbose(1) << "Back edge list - ";
1654 BackEdgeStack->Output(out);
1655
1656 *out << Verbose(1) << "Analysing cycles ... " << endl;
1657 if ((MinimumRingSize <= 2) || (MinimumRingSize > AtomCount))
1658 MinimumRingSize = AtomCount;
1659 NumCycles = 0;
1660 while (!BackEdgeStack->IsEmpty()) {
1661 BackEdge = BackEdgeStack->PopFirst();
1662 // this is the target
1663 Root = BackEdge->leftatom;
1664 // this is the source point
1665 Walker = BackEdge->rightatom;
1666 ShortestPathList[Walker->nr] = 0;
1667 BFSStack->ClearStack(); // start with empty BFS stack
1668 BFSStack->Push(Walker);
1669 TouchedStack->Push(Walker);
1670 //*out << Verbose(1) << "---------------------------------------------------------------------------------------------------------" << endl;
1671 OtherAtom = NULL;
1672 while ((Walker != Root) && ((OtherAtom == NULL) || (ShortestPathList[OtherAtom->nr] < MinimumRingSize))) { // look for Root
1673 Walker = BFSStack->PopFirst();
1674 //*out << Verbose(2) << "Current Walker is " << *Walker << ", we look for SP to Root " << *Root << "." << endl;
1675 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
1676 Binder = ListOfBondsPerAtom[Walker->nr][i];
1677 if (Binder != BackEdge) { // only walk along DFS spanning tree (otherwise we always find SP of one being backedge Binder)
1678 OtherAtom = Binder->GetOtherAtom(Walker);
1679 //*out << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *Binder << "." << endl;
1680 if (ColorList[OtherAtom->nr] == white) {
1681 TouchedStack->Push(OtherAtom);
1682 ColorList[OtherAtom->nr] = lightgray;
1683 PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
1684 ShortestPathList[OtherAtom->nr] = ShortestPathList[Walker->nr]+1;
1685 //*out << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " lightgray, its predecessor is " << Walker->Name << " and its Shortest Path is " << ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;
1686 if (ShortestPathList[OtherAtom->nr] < MinimumRingSize) { // Check for maximum distance
1687 //*out << Verbose(3) << "Putting OtherAtom into queue." << endl;
1688 BFSStack->Push(OtherAtom);
1689 }
1690 } else {
1691 //*out << Verbose(3) << "Not Adding, has already been visited." << endl;
1692 }
1693 } else {
1694 //*out << Verbose(3) << "Not Visiting, is a back edge." << endl;
1695 }
1696 }
1697 ColorList[Walker->nr] = black;
1698 //*out << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;
1699 }
1700
1701 if (Walker == Root) {
1702 // now climb back the predecessor list and thus find the cycle members
1703 NumCycles++;
1704 RingSize = 1;
1705 Walker = Root;
1706 *out << Verbose(1) << "Found ring contains: ";
1707 while (Walker != BackEdge->rightatom) {
1708 *out << Walker->Name << " <-> ";
1709 Walker = PredecessorList[Walker->nr];
1710 RingSize++;
1711 }
1712 *out << Walker->Name << " with a length of " << RingSize << "." << endl << endl;
1713 if (RingSize < MinimumRingSize)
1714 MinimumRingSize = RingSize;
1715 } else {
1716 *out << Verbose(1) << "No ring with length equal to or smaller than " << MinimumRingSize << " found." << endl;
1717 }
1718
1719 // now clean the lists
1720 while (!TouchedStack->IsEmpty()){
1721 Walker = TouchedStack->PopFirst();
1722 PredecessorList[Walker->nr] = NULL;
1723 ShortestPathList[Walker->nr] = -1;
1724 ColorList[Walker->nr] = white;
1725 }
1726 }
1727
1728
1729 if (MinimumRingSize != -1)
1730 *out << Verbose(1) << "Minimum ring size is " << MinimumRingSize << ", over " << NumCycles << " cycles total." << endl;
1731 else
1732 *out << Verbose(1) << "No rings were detected in the molecular structure." << endl;
1733
1734 Free((void **)&PredecessorList, "molecule::CyclicStructureAnalysis: **PredecessorList");
1735 Free((void **)&ShortestPathList, "molecule::CyclicStructureAnalysis: **ShortestPathList");
1736 Free((void **)&ColorList, "molecule::CyclicStructureAnalysis: **ColorList");
1737 delete(BFSStack);
1738};
1739
1740/** Sets the next component number.
1741 * This is O(N) as the number of bonds per atom is bound.
1742 * \param *vertex atom whose next atom::*ComponentNr is to be set
1743 * \param nr number to use
1744 */
1745void molecule::SetNextComponentNumber(atom *vertex, int nr)
1746{
1747 int i=0;
1748 if (vertex != NULL) {
1749 for(;i<NumberOfBondsPerAtom[vertex->nr];i++) {
1750 if (vertex->ComponentNr[i] == -1) { // check if not yet used
1751 vertex->ComponentNr[i] = nr;
1752 break;
1753 }
1754 else if (vertex->ComponentNr[i] == nr) // if number is already present, don't add another time
1755 break; // breaking here will not cause error!
1756 }
1757 if (i == NumberOfBondsPerAtom[vertex->nr])
1758 cerr << "Error: All Component entries are already occupied!" << endl;
1759 } else
1760 cerr << "Error: Given vertex is NULL!" << endl;
1761};
1762
1763/** Output a list of flags, stating whether the bond was visited or not.
1764 * \param *out output stream for debugging
1765 */
1766void molecule::OutputComponentNumber(ofstream *out, atom *vertex)
1767{
1768 for(int i=0;i<NumberOfBondsPerAtom[vertex->nr];i++)
1769 *out << vertex->ComponentNr[i] << " ";
1770};
1771
1772/** Allocates memory for all atom::*ComponentNr in this molecule and sets each entry to -1.
1773 */
1774void molecule::InitComponentNumbers()
1775{
1776 atom *Walker = start;
1777 while(Walker->next != end) {
1778 Walker = Walker->next;
1779 if (Walker->ComponentNr != NULL)
1780 Free((void **)&Walker->ComponentNr, "molecule::InitComponentNumbers: **Walker->ComponentNr");
1781 Walker->ComponentNr = (int *) Malloc(sizeof(int)*NumberOfBondsPerAtom[Walker->nr], "molecule::InitComponentNumbers: *Walker->ComponentNr");
1782 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
1783 Walker->ComponentNr[i] = -1;
1784 }
1785};
1786
1787/** Returns next unused bond for this atom \a *vertex or NULL of none exists.
1788 * \param *vertex atom to regard
1789 * \return bond class or NULL
1790 */
1791bond * molecule::FindNextUnused(atom *vertex)
1792{
1793 for(int i=0;i<NumberOfBondsPerAtom[vertex->nr];i++)
1794 if (ListOfBondsPerAtom[vertex->nr][i]->IsUsed() == white)
1795 return(ListOfBondsPerAtom[vertex->nr][i]);
1796 return NULL;
1797};
1798
1799/** Resets bond::Used flag of all bonds in this molecule.
1800 * \return true - success, false - -failure
1801 */
1802void molecule::ResetAllBondsToUnused()
1803{
1804 bond *Binder = first;
1805 while (Binder->next != last) {
1806 Binder = Binder->next;
1807 Binder->ResetUsed();
1808 }
1809};
1810
1811/** Resets atom::nr to -1 of all atoms in this molecule.
1812 */
1813void molecule::ResetAllAtomNumbers()
1814{
1815 atom *Walker = start;
1816 while (Walker->next != end) {
1817 Walker = Walker->next;
1818 Walker->GraphNr = -1;
1819 }
1820};
1821
1822/** Output a list of flags, stating whether the bond was visited or not.
1823 * \param *out output stream for debugging
1824 * \param *list
1825 */
1826void OutputAlreadyVisited(ofstream *out, int *list)
1827{
1828 *out << Verbose(4) << "Already Visited Bonds:\t";
1829 for(int i=1;i<=list[0];i++) *out << Verbose(0) << list[i] << " ";
1830 *out << endl;
1831};
1832
1833/** Estimates by educated guessing (using upper limit) the expected number of fragments.
1834 * The upper limit is
1835 * \f[
1836 * n = N \cdot C^k
1837 * \f]
1838 * where \f$C=2^c\f$ and c is the maximum bond degree over N number of atoms.
1839 * \param *out output stream for debugging
1840 * \param order bond order k
1841 * \return number n of fragments
1842 */
1843int molecule::GuesstimateFragmentCount(ofstream *out, int order)
1844{
1845 int c = 0;
1846 int FragmentCount;
1847 // get maximum bond degree
1848 atom *Walker = start;
1849 while (Walker->next != end) {
1850 Walker = Walker->next;
1851 c = (NumberOfBondsPerAtom[Walker->nr] > c) ? NumberOfBondsPerAtom[Walker->nr] : c;
1852 }
1853 FragmentCount = NoNonHydrogen*(1 << (c*order));
1854 *out << Verbose(1) << "Upper limit for this subgraph is " << FragmentCount << " for " << NoNonHydrogen << " non-H atoms with maximum bond degree of " << c << "." << endl;
1855 return FragmentCount;
1856};
1857
1858/** Scans a single line for number and puts them into \a KeySet.
1859 * \param *out output stream for debugging
1860 * \param *buffer buffer to scan
1861 * \param &CurrentSet filled KeySet on return
1862 * \return true - at least one valid atom id parsed, false - CurrentSet is empty
1863 */
1864bool molecule::ScanBufferIntoKeySet(ofstream *out, char *buffer, KeySet &CurrentSet)
1865{
1866 stringstream line;
1867 int AtomNr;
1868 int status = 0;
1869
1870 line.str(buffer);
1871 while (!line.eof()) {
1872 line >> AtomNr;
1873 if ((AtomNr >= 0) && (AtomNr < AtomCount)) {
1874 CurrentSet.insert(AtomNr); // insert at end, hence in same order as in file!
1875 status++;
1876 } // else it's "-1" or else and thus must not be added
1877 }
1878 *out << Verbose(1) << "The scanned KeySet is ";
1879 for(KeySet::iterator runner = CurrentSet.begin(); runner != CurrentSet.end(); runner++) {
1880 *out << (*runner) << "\t";
1881 }
1882 *out << endl;
1883 return (status != 0);
1884};
1885
1886/** Parses the KeySet file and fills \a *FragmentList from the known molecule structure.
1887 * Does two-pass scanning:
1888 * -# Scans the keyset file and initialises a temporary graph
1889 * -# Scans TEFactors file and sets the TEFactor of each key set in the temporary graph accordingly
1890 * Finally, the temporary graph is inserted into the given \a FragmentList for return.
1891 * \param *out output stream for debugging
1892 * \param *path path to file
1893 * \param *FragmentList empty, filled on return
1894 * \param IsAngstroem whether we have Ansgtroem or bohrradius
1895 * \return true - parsing successfully, false - failure on parsing (FragmentList will be NULL)
1896 */
1897bool molecule::ParseKeySetFile(ofstream *out, char *path, Graph *&FragmentList, bool IsAngstroem)
1898{
1899 bool status = true;
1900 ifstream InputFile;
1901 stringstream line;
1902 GraphTestPair testGraphInsert;
1903 int NumberOfFragments = 0;
1904 double TEFactor;
1905 char *filename = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "molecule::ParseKeySetFile - filename");
1906
1907 if (FragmentList == NULL) { // check list pointer
1908 FragmentList = new Graph;
1909 }
1910
1911 // 1st pass: open file and read
1912 *out << Verbose(1) << "Parsing the KeySet file ... " << endl;
1913 sprintf(filename, "%s/%s%s", path, FRAGMENTPREFIX, KEYSETFILE);
1914 InputFile.open(filename);
1915 if (InputFile != NULL) {
1916 // each line represents a new fragment
1917 char *buffer = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "molecule::ParseKeySetFile - *buffer");
1918 // 1. parse keysets and insert into temp. graph
1919 while (!InputFile.eof()) {
1920 InputFile.getline(buffer, MAXSTRINGSIZE);
1921 KeySet CurrentSet;
1922 if ((strlen(buffer) > 0) && (ScanBufferIntoKeySet(out, buffer, CurrentSet))) { // if at least one valid atom was added, write config
1923 testGraphInsert = FragmentList->insert(GraphPair (CurrentSet,pair<int,double>(NumberOfFragments++,1))); // store fragment number and current factor
1924 if (!testGraphInsert.second) {
1925 cerr << "KeySet file must be corrupt as there are two equal key sets therein!" << endl;
1926 }
1927 //FragmentList->ListOfMolecules[NumberOfFragments++] = StoreFragmentFromKeySet(out, CurrentSet, IsAngstroem);
1928 }
1929 }
1930 // 2. Free and done
1931 InputFile.close();
1932 InputFile.clear();
1933 Free((void **)&buffer, "molecule::ParseKeySetFile - *buffer");
1934 *out << Verbose(1) << "done." << endl;
1935 } else {
1936 *out << Verbose(1) << "File " << filename << " not found." << endl;
1937 status = false;
1938 }
1939
1940 // 2nd pass: open TEFactors file and read
1941 *out << Verbose(1) << "Parsing the TEFactors file ... " << endl;
1942 sprintf(filename, "%s/%s%s", path, FRAGMENTPREFIX, TEFACTORSFILE);
1943 InputFile.open(filename);
1944 if (InputFile != NULL) {
1945 // 3. add found TEFactors to each keyset
1946 NumberOfFragments = 0;
1947 for(Graph::iterator runner = FragmentList->begin();runner != FragmentList->end(); runner++) {
1948 if (!InputFile.eof()) {
1949 InputFile >> TEFactor;
1950 (*runner).second.second = TEFactor;
1951 *out << Verbose(2) << "Setting " << ++NumberOfFragments << " fragment's TEFactor to " << (*runner).second.second << "." << endl;
1952 } else {
1953 status = false;
1954 break;
1955 }
1956 }
1957 // 4. Free and done
1958 InputFile.close();
1959 *out << Verbose(1) << "done." << endl;
1960 } else {
1961 *out << Verbose(1) << "File " << filename << " not found." << endl;
1962 status = false;
1963 }
1964
1965 // free memory
1966 Free((void **)&filename, "molecule::ParseKeySetFile - filename");
1967
1968 return status;
1969};
1970
1971/** Stores keysets and TEFactors to file.
1972 * \param *out output stream for debugging
1973 * \param KeySetList Graph with Keysets and factors
1974 * \param *path path to file
1975 * \return true - file written successfully, false - writing failed
1976 */
1977bool molecule::StoreKeySetFile(ofstream *out, Graph &KeySetList, char *path)
1978{
1979 ofstream output;
1980 bool status = true;
1981 string line;
1982 string::iterator ende;
1983
1984 // open KeySet file
1985 line = path;
1986 line.append("/");
1987 line += FRAGMENTPREFIX;
1988 ende = line.end();
1989 line += KEYSETFILE;
1990 output.open(line.c_str(), ios::out);
1991 *out << Verbose(1) << "Saving key sets of the total graph ... ";
1992 if(output != NULL) {
1993 for(Graph::iterator runner = KeySetList.begin(); runner != KeySetList.end(); runner++) {
1994 for (KeySet::iterator sprinter = (*runner).first.begin();sprinter != (*runner).first.end(); sprinter++) {
1995 if (sprinter != (*runner).first.begin())
1996 output << "\t";
1997 output << *sprinter;
1998 }
1999 output << endl;
2000 }
2001 *out << "done." << endl;
2002 } else {
2003 cerr << "Unable to open " << line << " for writing keysets!" << endl;
2004 status = false;
2005 }
2006 output.close();
2007 output.clear();
2008
2009 // open TEFactors file
2010 line.erase(ende, line.end());
2011 line += TEFACTORSFILE;
2012 output.open(line.c_str(), ios::out);
2013 *out << Verbose(1) << "Saving TEFactors of the total graph ... ";
2014 if(output != NULL) {
2015 for(Graph::iterator runner = KeySetList.begin(); runner != KeySetList.end(); runner++)
2016 output << (*runner).second.second << endl;
2017 *out << Verbose(1) << "done." << endl;
2018 } else {
2019 *out << Verbose(1) << "failed to open file" << line << "." << endl;
2020 status = false;
2021 }
2022 output.close();
2023
2024 return status;
2025};
2026
2027/** Storing the bond structure of a molecule to file.
2028 * Simply stores Atom::nr and then the Atom::nr of all bond partners per line.
2029 * \param *out output stream for debugging
2030 * \param *path path to file
2031 * \return true - file written successfully, false - writing failed
2032 */
2033bool molecule::StoreAdjacencyToFile(ofstream *out, char *path)
2034{
2035 ofstream AdjacencyFile;
2036 atom *Walker = NULL;
2037 stringstream line;
2038 bool status = true;
2039
2040 line << path << "/" << FRAGMENTPREFIX << ADJACENCYFILE;
2041 AdjacencyFile.open(line.str().c_str(), ios::out);
2042 *out << Verbose(1) << "Saving adjacency list ... ";
2043 if (AdjacencyFile != NULL) {
2044 Walker = start;
2045 while(Walker->next != end) {
2046 Walker = Walker->next;
2047 AdjacencyFile << Walker->nr << "\t";
2048 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
2049 AdjacencyFile << ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker)->nr << "\t";
2050 AdjacencyFile << endl;
2051 }
2052 AdjacencyFile.close();
2053 *out << Verbose(1) << "done." << endl;
2054 } else {
2055 *out << Verbose(1) << "failed to open file " << line.str() << "." << endl;
2056 status = false;
2057 }
2058
2059 return status;
2060};
2061
2062/** Checks contents of adjacency file against bond structure in structure molecule.
2063 * \param *out output stream for debugging
2064 * \param *path path to file
2065 * \param **ListOfAtoms allocated (molecule::AtomCount) and filled lookup table for ids (Atom::nr) to *Atom
2066 * \return true - structure is equal, false - not equivalence
2067 */
2068bool molecule::CheckAdjacencyFileAgainstMolecule(ofstream *out, char *path, atom **ListOfAtoms)
2069{
2070 ifstream File;
2071 stringstream line;
2072 bool status = true;
2073 char *buffer = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "molecule::CheckAdjacencyFileAgainstMolecule: *buffer");
2074
2075 line << path << "/" << FRAGMENTPREFIX << ADJACENCYFILE;
2076 File.open(line.str().c_str(), ios::out);
2077 *out << Verbose(1) << "Looking at bond structure stored in adjacency file and comparing to present one ... ";
2078 if (File != NULL) {
2079 // allocate storage structure
2080 int NonMatchNumber = 0; // will number of atoms with differing bond structure
2081 int *CurrentBonds = (int *) Malloc(sizeof(int)*8, "molecule::CheckAdjacencyFileAgainstMolecule - CurrentBonds"); // contains parsed bonds of current atom
2082 int CurrentBondsOfAtom;
2083
2084 // Parse the file line by line and count the bonds
2085 while (!File.eof()) {
2086 File.getline(buffer, MAXSTRINGSIZE);
2087 stringstream line;
2088 line.str(buffer);
2089 int AtomNr = -1;
2090 line >> AtomNr;
2091 CurrentBondsOfAtom = -1; // we count one too far due to line end
2092 // parse into structure
2093 if ((AtomNr >= 0) && (AtomNr < AtomCount)) {
2094 while (!line.eof())
2095 line >> CurrentBonds[ ++CurrentBondsOfAtom ];
2096 // compare against present bonds
2097 //cout << Verbose(2) << "Walker is " << *Walker << ", bond partners: ";
2098 if (CurrentBondsOfAtom == NumberOfBondsPerAtom[AtomNr]) {
2099 for(int i=0;i<NumberOfBondsPerAtom[AtomNr];i++) {
2100 int id = ListOfBondsPerAtom[AtomNr][i]->GetOtherAtom(ListOfAtoms[AtomNr])->nr;
2101 int j = 0;
2102 for (;(j<CurrentBondsOfAtom) && (CurrentBonds[j++] != id);); // check against all parsed bonds
2103 if (CurrentBonds[j-1] != id) { // no match ? Then mark in ListOfAtoms
2104 ListOfAtoms[AtomNr] = NULL;
2105 NonMatchNumber++;
2106 status = false;
2107 //out << "[" << id << "]\t";
2108 } else {
2109 //out << id << "\t";
2110 }
2111 }
2112 //out << endl;
2113 } else {
2114 *out << "Number of bonds for Atom " << *ListOfAtoms[AtomNr] << " does not match, parsed " << CurrentBondsOfAtom << " against " << NumberOfBondsPerAtom[AtomNr] << "." << endl;
2115 status = false;
2116 }
2117 }
2118 }
2119 File.close();
2120 File.clear();
2121 if (status) { // if equal we parse the KeySetFile
2122 *out << Verbose(1) << "done: Equal." << endl;
2123 status = true;
2124 } else
2125 *out << Verbose(1) << "done: Not equal by " << NonMatchNumber << " atoms." << endl;
2126 Free((void **)&CurrentBonds, "molecule::CheckAdjacencyFileAgainstMolecule - **CurrentBonds");
2127 } else {
2128 *out << Verbose(1) << "Adjacency file not found." << endl;
2129 status = false;
2130 }
2131 *out << endl;
2132 Free((void **)&buffer, "molecule::CheckAdjacencyFileAgainstMolecule: *buffer");
2133
2134 return status;
2135};
2136
2137/** Checks whether the OrderAtSite is still bewloe \a Order at some site.
2138 * \param *out output stream for debugging
2139 * \param &FragmentationToDo return boolean
2140 * \param Order desired Order
2141 */
2142void molecule::CheckOrderAtSite(ofstream *out, bool &FragmentationToDo, int Order)
2143{
2144 atom *Walker = NULL;
2145
2146 if (FragmentationToDo) { // check whether OrderAtSite is above Order everywhere
2147 FragmentationToDo = false;
2148 Walker = start;
2149 while (Walker->next != end) {
2150 Walker = Walker->next;
2151#ifdef ADDHYDROGEN
2152 if (Walker->type->Z != 1) // skip hydrogen
2153#endif
2154 if (Walker->AdaptiveOrder < Order)
2155 FragmentationToDo = true;
2156 }
2157 if (!FragmentationToDo)
2158 *out << Verbose(1) << "Order at every site is already equal or above desired order " << Order << "." << endl;
2159 } else
2160 *out << Verbose(1) << "Parsing order at site file failed" << endl;
2161};
2162
2163/** Performs a many-body bond order analysis for a given bond order.
2164 * -# parses adjacency, keysets and orderatsite files
2165 * -# performs DFS to find connected subgraphs (to leave this in was a design decision: might be useful later)
2166 * -# RootStack is created for every subgraph (here, later we implement the "update 10 sites with highest energ
2167y contribution", and that's why this consciously not done in the following loop)
2168 * -# in a loop over all subgraphs
2169 * -# calls FragmentBOSSANOVA with this RootStack and within the subgraph molecule structure
2170 * -# creates molecule (fragment)s from the returned keysets (StoreFragmentFromKeySet)
2171 * -# combines the generated molecule lists from all subgraphs
2172 * -# saves to disk: fragment configs, adjacency, orderatsite, keyset files
2173 * Note that as we split "this" molecule up into a list of subgraphs, i.e. a MoleculeListClass, we have two sets
2174 * of vertex indices: Global always means the index in "this" molecule, whereas local refers to the molecule or
2175 * subgraph in the MoleculeListClass.
2176 * \param *out output stream for debugging
2177 * \param Order up to how many neighbouring bonds a fragment contains in BondOrderScheme::BottumUp scheme
2178 * \param *configuration configuration for writing config files for each fragment
2179 */
2180void molecule::FragmentMolecule(ofstream *out, int Order, config *configuration)
2181{
2182 MoleculeListClass *BondFragments = NULL;
2183 atom *Walker = NULL;
2184 int *SortIndex = NULL;
2185 element *runner = NULL;
2186 int AtomNo;
2187 int MinimumRingSize;
2188 int FragmentCounter;
2189 MoleculeLeafClass *MolecularWalker = NULL;
2190 MoleculeLeafClass *Subgraphs = NULL; // list of subgraphs from DFS analysis
2191 fstream File;
2192 bool FragmentationToDo = true;
2193 Graph **FragmentList = NULL;
2194 Graph *ParsedFragmentList = NULL;
2195 Graph TotalGraph; // graph with all keysets however local numbers
2196 int TotalNumberOfKeySets = 0;
2197 atom **ListOfAtoms = NULL;
2198 atom ***ListOfLocalAtoms = NULL;
2199
2200 *out << endl;
2201#ifdef ADDHYDROGEN
2202 *out << Verbose(0) << "I will treat hydrogen special and saturate dangling bonds with it." << endl;
2203#else
2204 *out << Verbose(0) << "Hydrogen is treated just like the rest of the lot." << endl;
2205#endif
2206
2207 // ++++++++++++++++++++++++++++ INITIAL STUFF: Bond structure analysis, ... ++++++++++++++++++++++++++++++++++++++++++
2208
2209 // ===== 1. Check whether bond structure is same as stored in files ====
2210
2211 // fill the adjacency list
2212 CreateListOfBondsPerAtom(out);
2213
2214 // create lookup table for Atom::nr
2215 FragmentationToDo = FragmentationToDo && CreateFatherLookupTable(out, start, end, ListOfAtoms, AtomCount);
2216
2217 // === compare it with adjacency file ===
2218 FragmentationToDo = FragmentationToDo && CheckAdjacencyFileAgainstMolecule(out, configuration->configpath, ListOfAtoms);
2219 Free((void **)&ListOfAtoms, "molecule::FragmentMolecule - **ListOfAtoms");
2220
2221 // ===== 2. perform a DFS analysis to gather info on cyclic structure and a list of disconnected subgraphs =====
2222 Subgraphs = DepthFirstSearchAnalysis(out, false, MinimumRingSize);
2223 // fill the bond structure of the individually stored subgraphs
2224 Subgraphs->next->FillBondStructureFromReference(out, this, (FragmentCounter = 0), ListOfLocalAtoms, false); // we want to keep the created ListOfLocalAtoms
2225
2226 // ===== 3. if structure still valid, parse key set file and others =====
2227 FragmentationToDo = FragmentationToDo && ParseKeySetFile(out, configuration->configpath, ParsedFragmentList, configuration->GetIsAngstroem());
2228
2229 // ===== 4. check globally whether there's something to do actually (first adaptivity check)
2230 FragmentationToDo = FragmentationToDo && ParseOrderAtSiteFromFile(out, configuration->configpath);
2231 CheckOrderAtSite(out, FragmentationToDo, Order);
2232
2233 // =================================== Begin of FRAGMENTATION ===============================
2234 // check cyclic lengths
2235 if ((MinimumRingSize != -1) && (Order >= MinimumRingSize)) {
2236 *out << Verbose(0) << "Bond order " << Order << " greater than or equal to Minimum Ring size of " << MinimumRingSize << " found is not allowed." << endl;
2237 } else {
2238 // ===== 6a. fill RootStack for each subgraph (second adaptivity check) =====
2239 // NOTE: (keep this extern of following while loop, as lateron we may here look for which site to add to which subgraph)
2240 // fill the root stack
2241 KeyStack *RootStack = new KeyStack[Subgraphs->next->Count()];
2242 Subgraphs->next->FillRootStackForSubgraphs(out, RootStack, Order, (FragmentCounter = 0));
2243
2244 // ===== 6b. assign each keyset to its respective subgraph =====
2245 Subgraphs->next->AssignKeySetsToFragment(out, this, ParsedFragmentList, ListOfLocalAtoms, FragmentList, (FragmentCounter = 0), false);
2246
2247 // ===== 7. fill the bond fragment list =====
2248 FragmentCounter = 0;
2249 MolecularWalker = Subgraphs;
2250 while (MolecularWalker->next != NULL) {
2251 MolecularWalker = MolecularWalker->next;
2252 *out << Verbose(1) << "Fragmenting subgraph " << MolecularWalker << "." << endl;
2253 // output ListOfBondsPerAtom for debugging
2254 MolecularWalker->Leaf->OutputListOfBonds(out);
2255 if (MolecularWalker->Leaf->first->next != MolecularWalker->Leaf->last) {
2256
2257 // call BOSSANOVA method
2258 *out << Verbose(0) << endl << " ========== BOND ENERGY of subgraph " << FragmentCounter << " ========================= " << endl;
2259 MolecularWalker->Leaf->FragmentBOSSANOVA(out, FragmentList[FragmentCounter], RootStack[FragmentCounter]);
2260 } else {
2261 cerr << "Subgraph " << MolecularWalker << " has no atoms!" << endl;
2262 }
2263 FragmentCounter++; // next fragment list
2264 }
2265 }
2266
2267 // free the index lookup list
2268 for (int i=0;i<FragmentCounter;i++)
2269 Free((void **)&ListOfLocalAtoms[i], "molecule::FragmentMolecule - *ListOfLocalAtoms[]");
2270 Free((void **)&ListOfLocalAtoms, "molecule::FragmentMolecule - **ListOfLocalAtoms");
2271
2272 // ==================================== End of FRAGMENTATION ============================================
2273
2274 // ===== 8a. translate list into global numbers (i.e. ones that are valid in "this" molecule, not in MolecularWalker->Leaf)
2275 MolecularWalker = Subgraphs;
2276 FragmentCounter = 0;
2277 while (MolecularWalker->next != NULL) {
2278 MolecularWalker = MolecularWalker->next;
2279 KeySet *TempSet = new KeySet;
2280 for(Graph::iterator runner = FragmentList[FragmentCounter]->begin(); runner != FragmentList[FragmentCounter]->end(); runner++) {
2281 for(KeySet::iterator sprinter = (*runner).first.begin(); sprinter != (*runner).first.end(); sprinter++)
2282 TempSet->insert((MolecularWalker->Leaf->FindAtom(*sprinter))->GetTrueFather()->nr);
2283 TotalGraph.insert(GraphPair(*TempSet, pair<int,double>(TotalNumberOfKeySets++, (*runner).second.second)));
2284 TempSet->clear();
2285 }
2286 delete(TempSet);
2287 delete(FragmentList[FragmentCounter]);
2288 FragmentCounter++;
2289 }
2290 Free((void **)&FragmentList, "molecule::FragmentMolecule - **FragmentList");
2291 // free subgraph memory again
2292 delete(ParsedFragmentList);
2293 if (Subgraphs != NULL) {
2294 while (Subgraphs->next != NULL) {
2295 Subgraphs = Subgraphs->next;
2296 delete(Subgraphs->previous);
2297 }
2298 delete(Subgraphs);
2299 }
2300
2301 // ===== 8b. gather keyset lists (graphs) from all subgraphs and transform into MoleculeListClass =====
2302 // allocate memory for the pointer array and transmorph graphs into full molecular fragments
2303 BondFragments = new MoleculeListClass(TotalGraph.size(), AtomCount);
2304 int k=0;
2305 for(Graph::iterator runner = TotalGraph.begin(); runner != TotalGraph.end(); runner++) {
2306 KeySet test = (*runner).first;
2307 *out << "Fragment No." << (*runner).second.first << " with TEFactor " << (*runner).second.second << "." << endl;
2308 BondFragments->ListOfMolecules[k] = StoreFragmentFromKeySet(out, test, configuration);
2309 k++;
2310 }
2311 *out << k << "/" << BondFragments->NumberOfMolecules << " fragments generated from the keysets." << endl;
2312
2313 // ===== 9. Save fragments' configuration and keyset files et al to disk ===
2314 if (BondFragments->NumberOfMolecules != 0) {
2315 // create a SortIndex to map from BFS labels to the sequence in which the atoms are given in the config file
2316 SortIndex = (int *) Malloc(sizeof(int)*AtomCount, "molecule::FragmentMolecule: *SortIndex");
2317 for(int i=0;i<AtomCount;i++)
2318 SortIndex[i] = -1;
2319 runner = elemente->start;
2320 AtomNo = 0;
2321 while (runner->next != elemente->end) { // go through every element
2322 runner = runner->next;
2323 if (ElementsInMolecule[runner->Z]) { // if this element got atoms
2324 Walker = start;
2325 while (Walker->next != end) { // go through every atom of this element
2326 Walker = Walker->next;
2327 if (Walker->type->Z == runner->Z) // if this atom fits to element
2328 SortIndex[Walker->nr] = AtomNo++;
2329 }
2330 }
2331 }
2332 *out << Verbose(1) << "Writing " << BondFragments->NumberOfMolecules << " possible bond fragmentation configs" << endl;
2333 if (BondFragments->OutputConfigForListOfFragments(out, configuration, SortIndex))
2334 *out << Verbose(1) << "All configs written." << endl;
2335 else
2336 *out << Verbose(1) << "Some config writing failed." << endl;
2337
2338 // store force index reference file
2339 BondFragments->StoreForcesFile(out, configuration->configpath, SortIndex);
2340
2341 // store keysets file
2342 StoreKeySetFile(out, TotalGraph, configuration->configpath);
2343
2344 // store Adjacency file
2345 StoreAdjacencyToFile(out, configuration->configpath);
2346
2347 // store adaptive orders into file
2348 StoreOrderAtSiteFile(out, configuration->configpath);
2349
2350 // restore orbital and Stop values
2351 CalculateOrbitals(*configuration);
2352
2353 // free memory for bond part
2354 *out << Verbose(1) << "Freeing bond memory" << endl;
2355 delete(FragmentList); // remove bond molecule from memory
2356 FragmentList = NULL;
2357 Free((void **)&SortIndex, "molecule::FragmentMolecule: *SortIndex");
2358 } else
2359 *out << Verbose(1) << "FragmentList is zero on return, splitting failed." << endl;
2360
2361 *out << Verbose(0) << "End of bond fragmentation." << endl;
2362};
2363
2364/** Stores pairs (Atom::nr, Atom::AdaptiveOrder) into file.
2365 * Atoms not present in the file get "-1".
2366 * \param *out output stream for debugging
2367 * \param *path path to file ORDERATSITEFILE
2368 * \return true - file writable, false - not writable
2369 */
2370bool molecule::StoreOrderAtSiteFile(ofstream *out, char *path)
2371{
2372 stringstream line;
2373 ofstream file;
2374
2375 line << path << "/" << FRAGMENTPREFIX << ORDERATSITEFILE;
2376 file.open(line.str().c_str());
2377 *out << Verbose(1) << "Writing OrderAtSite " << ORDERATSITEFILE << " ... " << endl;
2378 if (file != NULL) {
2379 atom *Walker = start;
2380 while (Walker->next != end) {
2381 Walker = Walker->next;
2382 file << Walker->nr << "\t" << (int)Walker->AdaptiveOrder << endl;
2383 *out << Verbose(2) << "Storing: " << Walker->nr << "\t" << (int)Walker->AdaptiveOrder << "." << endl;
2384 }
2385 file.close();
2386 *out << Verbose(1) << "done." << endl;
2387 return true;
2388 } else {
2389 *out << Verbose(1) << "failed to open file " << line.str() << "." << endl;
2390 return false;
2391 }
2392};
2393
2394/** Parses pairs(Atom::nr, Atom::AdaptiveOrder) from file and stores in molecule's Atom's.
2395 * Atoms not present in the file get "0".
2396 * \param *out output stream for debugging
2397 * \param *path path to file ORDERATSITEFILEe
2398 * \return true - file found and scanned, false - file not found
2399 * \sa ParseKeySetFile() and CheckAdjacencyFileAgainstMolecule() as this is meant to be used in conjunction with the two
2400 */
2401bool molecule::ParseOrderAtSiteFromFile(ofstream *out, char *path)
2402{
2403 unsigned char *OrderArray = (unsigned char *) Malloc(sizeof(unsigned char)*AtomCount, "molecule::ParseOrderAtSiteFromFile - *OrderArray");
2404 bool status;
2405 int AtomNr;
2406 stringstream line;
2407 ifstream file;
2408 int Order;
2409
2410 *out << Verbose(1) << "Begin of ParseOrderAtSiteFromFile" << endl;
2411 for(int i=0;i<AtomCount;i++)
2412 OrderArray[i] = 0;
2413 line << path << "/" << FRAGMENTPREFIX << ORDERATSITEFILE;
2414 file.open(line.str().c_str());
2415 if (file != NULL) {
2416 for (int i=0;i<AtomCount;i++) // initialise with 0
2417 OrderArray[i] = 0;
2418 while (!file.eof()) { // parse from file
2419 file >> AtomNr;
2420 file >> Order;
2421 OrderArray[AtomNr] = (unsigned char) Order;
2422 //*out << Verbose(2) << "AtomNr " << AtomNr << " with order " << (int)OrderArray[AtomNr] << "." << endl;
2423 }
2424 atom *Walker = start;
2425 while (Walker->next != end) { // fill into atom classes
2426 Walker = Walker->next;
2427 Walker->AdaptiveOrder = OrderArray[Walker->nr];
2428 *out << Verbose(2) << *Walker << " gets order " << (int)Walker->AdaptiveOrder << "." << endl;
2429 }
2430 file.close();
2431 *out << Verbose(1) << "done." << endl;
2432 status = true;
2433 } else {
2434 *out << Verbose(1) << "failed to open file " << line.str() << "." << endl;
2435 status = false;
2436 }
2437 Free((void **)&OrderArray, "molecule::ParseOrderAtSiteFromFile - *OrderArray");
2438
2439 *out << Verbose(1) << "End of ParseOrderAtSiteFromFile" << endl;
2440 return status;
2441};
2442
2443/** Creates an 2d array of pointer with an entry for each atom and each bond it has.
2444 * Updates molecule::ListOfBondsPerAtom, molecule::NumberOfBondsPerAtom by parsing through
2445 * bond chain list, using molecule::AtomCount and molecule::BondCount.
2446 * Allocates memory, fills the array and exits
2447 * \param *out output stream for debugging
2448 */
2449void molecule::CreateListOfBondsPerAtom(ofstream *out)
2450{
2451 bond *Binder = NULL;
2452 atom *Walker = NULL;
2453 int TotalDegree;
2454 *out << Verbose(1) << "Begin of Creating ListOfBondsPerAtom: AtomCount = " << AtomCount << "\tBondCount = " << BondCount << "\tNoNonBonds = " << NoNonBonds << "." << endl;
2455
2456 // re-allocate memory
2457 *out << Verbose(2) << "(Re-)Allocating memory." << endl;
2458 if (ListOfBondsPerAtom != NULL) {
2459 for(int i=0;i<AtomCount;i++)
2460 Free((void **)&ListOfBondsPerAtom[i], "molecule::CreateListOfBondsPerAtom: ListOfBondsPerAtom[i]");
2461 Free((void **)&ListOfBondsPerAtom, "molecule::CreateListOfBondsPerAtom: ListOfBondsPerAtom");
2462 }
2463 if (NumberOfBondsPerAtom != NULL)
2464 Free((void **)&NumberOfBondsPerAtom, "molecule::CreateListOfBondsPerAtom: NumberOfBondsPerAtom");
2465 ListOfBondsPerAtom = (bond ***) Malloc(sizeof(bond **)*AtomCount, "molecule::CreateListOfBondsPerAtom: ***ListOfBondsPerAtom");
2466 NumberOfBondsPerAtom = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfBondsPerAtom: *NumberOfBondsPerAtom");
2467
2468 // reset bond counts per atom
2469 for(int i=0;i<AtomCount;i++)
2470 NumberOfBondsPerAtom[i] = 0;
2471 // count bonds per atom
2472 Binder = first;
2473 while (Binder->next != last) {
2474 Binder = Binder->next;
2475 NumberOfBondsPerAtom[Binder->leftatom->nr]++;
2476 NumberOfBondsPerAtom[Binder->rightatom->nr]++;
2477 }
2478 // allocate list of bonds per atom
2479 for(int i=0;i<AtomCount;i++)
2480 ListOfBondsPerAtom[i] = (bond **) Malloc(sizeof(bond *)*NumberOfBondsPerAtom[i], "molecule::CreateListOfBondsPerAtom: **ListOfBondsPerAtom[]");
2481 // clear the list again, now each NumberOfBondsPerAtom marks current free field
2482 for(int i=0;i<AtomCount;i++)
2483 NumberOfBondsPerAtom[i] = 0;
2484 // fill the list
2485 Binder = first;
2486 while (Binder->next != last) {
2487 Binder = Binder->next;
2488 ListOfBondsPerAtom[Binder->leftatom->nr][NumberOfBondsPerAtom[Binder->leftatom->nr]++] = Binder;
2489 ListOfBondsPerAtom[Binder->rightatom->nr][NumberOfBondsPerAtom[Binder->rightatom->nr]++] = Binder;
2490 }
2491
2492 // output list for debugging
2493 *out << Verbose(3) << "ListOfBondsPerAtom for each atom:" << endl;
2494 Walker = start;
2495 while (Walker->next != end) {
2496 Walker = Walker->next;
2497 *out << Verbose(4) << "Atom " << Walker->Name << " with " << NumberOfBondsPerAtom[Walker->nr] << " bonds: ";
2498 TotalDegree = 0;
2499 for (int j=0;j<NumberOfBondsPerAtom[Walker->nr];j++) {
2500 *out << *ListOfBondsPerAtom[Walker->nr][j] << "\t";
2501 TotalDegree += ListOfBondsPerAtom[Walker->nr][j]->BondDegree;
2502 }
2503 *out << " -- TotalDegree: " << TotalDegree << endl;
2504 }
2505 *out << Verbose(1) << "End of Creating ListOfBondsPerAtom." << endl << endl;
2506};
2507
2508/** Adds atoms up to \a BondCount distance from \a *Root and notes them down in \a **AddedAtomList.
2509 * Gray vertices are always enqueued in an StackClass<atom *> FIFO queue, the rest is usual BFS with adding vertices found was
2510 * white and putting into queue.
2511 * \param *out output stream for debugging
2512 * \param *Mol Molecule class to add atoms to
2513 * \param **AddedAtomList list with added atom pointers, index is atom father's number
2514 * \param **AddedBondList list with added bond pointers, index is bond father's number
2515 * \param *Root root vertex for BFS
2516 * \param *Bond bond not to look beyond
2517 * \param BondOrder maximum distance for vertices to add
2518 * \param IsAngstroem lengths are in angstroem or bohrradii
2519 */
2520void molecule::BreadthFirstSearchAdd(ofstream *out, molecule *Mol, atom **&AddedAtomList, bond **&AddedBondList, atom *Root, bond *Bond, int BondOrder, bool IsAngstroem)
2521{
2522 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::BreadthFirstSearchAdd: **PredecessorList");
2523 int *ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::BreadthFirstSearchAdd: *ShortestPathList");
2524 enum Shading *ColorList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::BreadthFirstSearchAdd: *ColorList");
2525 class StackClass<atom *> *AtomStack = new StackClass<atom *>(AtomCount);
2526 atom *Walker = NULL, *OtherAtom = NULL;
2527 bond *Binder = NULL;
2528
2529 // add Root if not done yet
2530 AtomStack->ClearStack();
2531 if (AddedAtomList[Root->nr] == NULL) // add Root if not yet present
2532 AddedAtomList[Root->nr] = Mol->AddCopyAtom(Root);
2533 AtomStack->Push(Root);
2534
2535 // initialise each vertex as white with no predecessor, empty queue, color Root lightgray
2536 for (int i=0;i<AtomCount;i++) {
2537 PredecessorList[i] = NULL;
2538 ShortestPathList[i] = -1;
2539 if (AddedAtomList[i] != NULL) // mark already present atoms (i.e. Root and maybe others) as visited
2540 ColorList[i] = lightgray;
2541 else
2542 ColorList[i] = white;
2543 }
2544 ShortestPathList[Root->nr] = 0;
2545
2546 // and go on ... Queue always contains all lightgray vertices
2547 while (!AtomStack->IsEmpty()) {
2548 // we have to pop the oldest atom from stack. This keeps the atoms on the stack always of the same ShortestPath distance.
2549 // e.g. if current atom is 2, push to end of stack are of length 3, but first all of length 2 would be popped. They again
2550 // append length of 3 (their neighbours). Thus on stack we have always atoms of a certain length n at bottom of stack and
2551 // followed by n+1 till top of stack.
2552 Walker = AtomStack->PopFirst(); // pop oldest added
2553 *out << Verbose(1) << "Current Walker is: " << Walker->Name << ", and has " << NumberOfBondsPerAtom[Walker->nr] << " bonds." << endl;
2554 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
2555 Binder = ListOfBondsPerAtom[Walker->nr][i];
2556 if (Binder != NULL) { // don't look at bond equal NULL
2557 OtherAtom = Binder->GetOtherAtom(Walker);
2558 *out << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *Binder << "." << endl;
2559 if (ColorList[OtherAtom->nr] == white) {
2560 if (Binder != Bond) // let other atom white if it's via Root bond. In case it's cyclic it has to be reached again (yet Root is from OtherAtom already black, thus no problem)
2561 ColorList[OtherAtom->nr] = lightgray;
2562 PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
2563 ShortestPathList[OtherAtom->nr] = ShortestPathList[Walker->nr]+1;
2564 *out << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " " << ((ColorList[OtherAtom->nr] == white) ? "white" : "lightgray") << ", its predecessor is " << Walker->Name << " and its Shortest Path is " << ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;
2565 if ((((ShortestPathList[OtherAtom->nr] < BondOrder) && (Binder != Bond))) ) { // Check for maximum distance
2566 *out << Verbose(3);
2567 if (AddedAtomList[OtherAtom->nr] == NULL) { // add if it's not been so far
2568 AddedAtomList[OtherAtom->nr] = Mol->AddCopyAtom(OtherAtom);
2569 *out << "Added OtherAtom " << OtherAtom->Name;
2570 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
2571 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
2572 AddedBondList[Binder->nr]->Type = Binder->Type;
2573 *out << " and bond " << *(AddedBondList[Binder->nr]) << ", ";
2574 } else { // this code should actually never come into play (all white atoms are not yet present in BondMolecule, that's why they are white in the first place)
2575 *out << "Not adding OtherAtom " << OtherAtom->Name;
2576 if (AddedBondList[Binder->nr] == NULL) {
2577 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
2578 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
2579 AddedBondList[Binder->nr]->Type = Binder->Type;
2580 *out << ", added Bond " << *(AddedBondList[Binder->nr]);
2581 } else
2582 *out << ", not added Bond ";
2583 }
2584 *out << ", putting OtherAtom into queue." << endl;
2585 AtomStack->Push(OtherAtom);
2586 } else { // out of bond order, then replace
2587 if ((AddedAtomList[OtherAtom->nr] == NULL) && (Binder->Cyclic))
2588 ColorList[OtherAtom->nr] = white; // unmark if it has not been queued/added, to make it available via its other bonds (cyclic)
2589 if (Binder == Bond)
2590 *out << Verbose(3) << "Not Queueing, is the Root bond";
2591 else if (ShortestPathList[OtherAtom->nr] >= BondOrder)
2592 *out << Verbose(3) << "Not Queueing, is out of Bond Count of " << BondOrder;
2593 if (!Binder->Cyclic)
2594 *out << ", is not part of a cyclic bond, saturating bond with Hydrogen." << endl;
2595 if (AddedBondList[Binder->nr] == NULL) {
2596 if ((AddedAtomList[OtherAtom->nr] != NULL)) { // .. whether we add or saturate
2597 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
2598 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
2599 AddedBondList[Binder->nr]->Type = Binder->Type;
2600 } else {
2601#ifdef ADDHYDROGEN
2602 Mol->AddHydrogenReplacementAtom(out, Binder, AddedAtomList[Walker->nr], Walker, OtherAtom, ListOfBondsPerAtom[Walker->nr], NumberOfBondsPerAtom[Walker->nr], IsAngstroem);
2603#endif
2604 }
2605 }
2606 }
2607 } else {
2608 *out << Verbose(3) << "Not Adding, has already been visited." << endl;
2609 // This has to be a cyclic bond, check whether it's present ...
2610 if (AddedBondList[Binder->nr] == NULL) {
2611 if ((Binder != Bond) && (Binder->Cyclic) && (((ShortestPathList[Walker->nr]+1) < BondOrder))) {
2612 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
2613 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
2614 AddedBondList[Binder->nr]->Type = Binder->Type;
2615 } else { // if it's root bond it has to broken (otherwise we would not create the fragments)
2616#ifdef ADDHYDROGEN
2617 Mol->AddHydrogenReplacementAtom(out, Binder, AddedAtomList[Walker->nr], Walker, OtherAtom, ListOfBondsPerAtom[Walker->nr], NumberOfBondsPerAtom[Walker->nr], IsAngstroem);
2618#endif
2619 }
2620 }
2621 }
2622 }
2623 }
2624 ColorList[Walker->nr] = black;
2625 *out << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;
2626 }
2627 Free((void **)&PredecessorList, "molecule::BreadthFirstSearchAdd: **PredecessorList");
2628 Free((void **)&ShortestPathList, "molecule::BreadthFirstSearchAdd: **ShortestPathList");
2629 Free((void **)&ColorList, "molecule::BreadthFirstSearchAdd: **ColorList");
2630 delete(AtomStack);
2631};
2632
2633/** Adds bond structure to this molecule from \a Father molecule.
2634 * This basically causes this molecule to become an induced subgraph of the \a Father, i.e. for every bond in Father
2635 * with end points present in this molecule, bond is created in this molecule.
2636 * Special care was taken to ensure that this is of complexity O(N), where N is the \a Father's molecule::AtomCount.
2637 * \param *out output stream for debugging
2638 * \param *Father father molecule
2639 * \return true - is induced subgraph, false - there are atoms with fathers not in \a Father
2640 * \todo not checked, not fully working probably
2641 */
2642bool molecule::BuildInducedSubgraph(ofstream *out, const molecule *Father)
2643{
2644 atom *Walker = NULL, *OtherAtom = NULL;
2645 bool status = true;
2646 atom **ParentList = (atom **) Malloc(sizeof(atom *)*Father->AtomCount, "molecule::BuildInducedSubgraph: **ParentList");
2647
2648 *out << Verbose(2) << "Begin of BuildInducedSubgraph." << endl;
2649
2650 // reset parent list
2651 *out << Verbose(3) << "Resetting ParentList." << endl;
2652 for (int i=0;i<Father->AtomCount;i++)
2653 ParentList[i] = NULL;
2654
2655 // fill parent list with sons
2656 *out << Verbose(3) << "Filling Parent List." << endl;
2657 Walker = start;
2658 while (Walker->next != end) {
2659 Walker = Walker->next;
2660 ParentList[Walker->father->nr] = Walker;
2661 // Outputting List for debugging
2662 *out << Verbose(4) << "Son["<< Walker->father->nr <<"] of " << Walker->father << " is " << ParentList[Walker->father->nr] << "." << endl;
2663 }
2664
2665 // check each entry of parent list and if ok (one-to-and-onto matching) create bonds
2666 *out << Verbose(3) << "Creating bonds." << endl;
2667 Walker = Father->start;
2668 while (Walker->next != Father->end) {
2669 Walker = Walker->next;
2670 if (ParentList[Walker->nr] != NULL) {
2671 if (ParentList[Walker->nr]->father != Walker) {
2672 status = false;
2673 } else {
2674 for (int i=0;i<Father->NumberOfBondsPerAtom[Walker->nr];i++) {
2675 OtherAtom = Father->ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
2676 if (ParentList[OtherAtom->nr] != NULL) { // if otheratom is also a father of an atom on this molecule, create the bond
2677 *out << Verbose(4) << "Endpoints of Bond " << Father->ListOfBondsPerAtom[Walker->nr][i] << " are both present: " << ParentList[Walker->nr]->Name << " and " << ParentList[OtherAtom->nr]->Name << "." << endl;
2678 AddBond(ParentList[Walker->nr], ParentList[OtherAtom->nr], Father->ListOfBondsPerAtom[Walker->nr][i]->BondDegree);
2679 }
2680 }
2681 }
2682 }
2683 }
2684
2685 Free((void **)&ParentList, "molecule::BuildInducedSubgraph: **ParentList");
2686 *out << Verbose(2) << "End of BuildInducedSubgraph." << endl;
2687 return status;
2688};
2689
2690
2691/** Looks through a StackClass<atom *> and returns the likeliest removal candiate.
2692 * \param *out output stream for debugging messages
2693 * \param *&Leaf KeySet to look through
2694 * \param *&ShortestPathList list of the shortest path to decide which atom to suggest as removal candidate in the end
2695 * \param index of the atom suggested for removal
2696 */
2697int molecule::LookForRemovalCandidate(ofstream *&out, KeySet *&Leaf, int *&ShortestPathList)
2698{
2699 atom *Runner = NULL;
2700 int SP, Removal;
2701
2702 *out << Verbose(2) << "Looking for removal candidate." << endl;
2703 SP = -1; //0; // not -1, so that Root is never removed
2704 Removal = -1;
2705 for (KeySet::iterator runner = Leaf->begin(); runner != Leaf->end(); runner++) {
2706 Runner = FindAtom((*runner));
2707 if (Runner->type->Z != 1) { // skip all those added hydrogens when re-filling snake stack
2708 if (ShortestPathList[(*runner)] > SP) { // remove the oldest one with longest shortest path
2709 SP = ShortestPathList[(*runner)];
2710 Removal = (*runner);
2711 }
2712 }
2713 }
2714 return Removal;
2715};
2716
2717/** Stores a fragment from \a KeySet into \a molecule.
2718 * First creates the minimal set of atoms from the KeySet, then creates the bond structure from the complete
2719 * molecule and adds missing hydrogen where bonds were cut.
2720 * \param *out output stream for debugging messages
2721 * \param &Leaflet pointer to KeySet structure
2722 * \param IsAngstroem whether we have Ansgtroem or bohrradius
2723 * \return pointer to constructed molecule
2724 */
2725molecule * molecule::StoreFragmentFromKeySet(ofstream *out, KeySet &Leaflet, bool IsAngstroem)
2726{
2727 atom *Runner = NULL, *FatherOfRunner = NULL, *OtherFather = NULL;
2728 atom **SonList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::StoreFragmentFromStack: **SonList");
2729 molecule *Leaf = new molecule(elemente);
2730
2731// *out << Verbose(1) << "Begin of StoreFragmentFromKeyset." << endl;
2732
2733 Leaf->BondDistance = BondDistance;
2734 for(int i=0;i<NDIM*2;i++)
2735 Leaf->cell_size[i] = cell_size[i];
2736
2737 // initialise SonList (indicates when we need to replace a bond with hydrogen instead)
2738 for(int i=0;i<AtomCount;i++)
2739 SonList[i] = NULL;
2740
2741 // first create the minimal set of atoms from the KeySet
2742 for(KeySet::iterator runner = Leaflet.begin(); runner != Leaflet.end(); runner++) {
2743 FatherOfRunner = FindAtom((*runner)); // find the id
2744 SonList[FatherOfRunner->nr] = Leaf->AddCopyAtom(FatherOfRunner);
2745 }
2746
2747 // create the bonds between all: Make it an induced subgraph and add hydrogen
2748// *out << Verbose(2) << "Creating bonds from father graph (i.e. induced subgraph creation)." << endl;
2749 Runner = Leaf->start;
2750 while (Runner->next != Leaf->end) {
2751 Runner = Runner->next;
2752 FatherOfRunner = Runner->father;
2753 if (SonList[FatherOfRunner->nr] != NULL) { // check if this, our father, is present in list
2754 // create all bonds
2755 for (int i=0;i<NumberOfBondsPerAtom[FatherOfRunner->nr];i++) { // go through every bond of father
2756 OtherFather = ListOfBondsPerAtom[FatherOfRunner->nr][i]->GetOtherAtom(FatherOfRunner);
2757// *out << Verbose(2) << "Father " << *FatherOfRunner << " of son " << *SonList[FatherOfRunner->nr] << " is bound to " << *OtherFather;
2758 if (SonList[OtherFather->nr] != NULL) {
2759// *out << ", whose son is " << *SonList[OtherFather->nr] << "." << endl;
2760 if (OtherFather->nr > FatherOfRunner->nr) { // add bond (nr check is for adding only one of both variants: ab, ba)
2761// *out << Verbose(3) << "Adding Bond: " << Leaf->AddBond(Runner, SonList[OtherFather->nr], ListOfBondsPerAtom[FatherOfRunner->nr][i]->BondDegree) << "." << endl;
2762 //NumBonds[Runner->nr]++;
2763 } else {
2764// *out << Verbose(3) << "Not adding bond, labels in wrong order." << endl;
2765 }
2766 } else {
2767// *out << ", who has no son in this fragment molecule." << endl;
2768#ifdef ADDHYDROGEN
2769// *out << Verbose(3) << "Adding Hydrogen to " << Runner->Name << " and a bond in between." << endl;
2770 Leaf->AddHydrogenReplacementAtom(out, ListOfBondsPerAtom[FatherOfRunner->nr][i], Runner, FatherOfRunner, OtherFather, ListOfBondsPerAtom[FatherOfRunner->nr],NumberOfBondsPerAtom[FatherOfRunner->nr], IsAngstroem);
2771#endif
2772 //NumBonds[Runner->nr] += ListOfBondsPerAtom[FatherOfRunner->nr][i]->BondDegree;
2773 }
2774 }
2775 } else {
2776 *out << Verbose(0) << "ERROR: Son " << Runner->Name << " has father " << FatherOfRunner->Name << " but its entry in SonList is " << SonList[FatherOfRunner->nr] << "!" << endl;
2777 }
2778#ifdef ADDHYDROGEN
2779 while ((Runner->next != Leaf->end) && (Runner->next->type->Z == 1)) // skip added hydrogen
2780 Runner = Runner->next;
2781#endif
2782 }
2783 Leaf->CreateListOfBondsPerAtom(out);
2784 //Leaflet->Leaf->ScanForPeriodicCorrection(out);
2785 Free((void **)&SonList, "molecule::StoreFragmentFromStack: **SonList");
2786// *out << Verbose(1) << "End of StoreFragmentFromKeyset." << endl;
2787 return Leaf;
2788};
2789
2790/** Creates \a MoleculeListClass of all unique fragments of the \a molecule containing \a Order atoms or vertices.
2791 * The picture to have in mind is that of a DFS "snake" of a certain length \a Order, i.e. as in the infamous
2792 * computer game, that winds through the connected graph representing the molecule. Color (white,
2793 * lightgray, darkgray, black) indicates whether a vertex has been discovered so far or not. Labels will help in
2794 * creating only unique fragments and not additional ones with vertices simply in different sequence.
2795 * The Predecessor is always the one that came before in discovering, needed on backstepping. And
2796 * finally, the ShortestPath is needed for removing vertices from the snake stack during the back-
2797 * stepping.
2798 * \param *out output stream for debugging
2799 * \param Order number of atoms in each fragment
2800 * \param *configuration configuration for writing config files for each fragment
2801 * \return List of all unique fragments with \a Order atoms
2802 */
2803/*
2804MoleculeListClass * molecule::CreateListOfUniqueFragmentsOfOrder(ofstream *out, int Order, config *configuration)
2805{
2806 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: **PredecessorList");
2807 int *ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ShortestPathList");
2808 int *Labels = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *Labels");
2809 enum Shading *ColorVertexList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorList");
2810 enum Shading *ColorEdgeList = (enum Shading *) Malloc(sizeof(enum Shading)*BondCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorBondList");
2811 StackClass<atom *> *RootStack = new StackClass<atom *>(AtomCount);
2812 StackClass<atom *> *TouchedStack = new StackClass<atom *>((int)pow(4,Order)+2); // number of atoms reached from one with maximal 4 bonds plus Root itself
2813 StackClass<atom *> *SnakeStack = new StackClass<atom *>(Order+1); // equal to Order is not possible, as then the StackClass<atom *> cannot discern between full and empty stack!
2814 MoleculeLeafClass *Leaflet = NULL, *TempLeaf = NULL;
2815 MoleculeListClass *FragmentList = NULL;
2816 atom *Walker = NULL, *OtherAtom = NULL, *Root = NULL, *Removal = NULL;
2817 bond *Binder = NULL;
2818 int RunningIndex = 0, FragmentCounter = 0;
2819
2820 *out << Verbose(1) << "Begin of CreateListOfUniqueFragmentsOfOrder." << endl;
2821
2822 // reset parent list
2823 *out << Verbose(3) << "Resetting labels, parent, predecessor, color and shortest path lists." << endl;
2824 for (int i=0;i<AtomCount;i++) { // reset all atom labels
2825 // initialise each vertex as white with no predecessor, empty queue, color lightgray, not labelled, no sons
2826 Labels[i] = -1;
2827 SonList[i] = NULL;
2828 PredecessorList[i] = NULL;
2829 ColorVertexList[i] = white;
2830 ShortestPathList[i] = -1;
2831 }
2832 for (int i=0;i<BondCount;i++)
2833 ColorEdgeList[i] = white;
2834 RootStack->ClearStack(); // clearstack and push first atom if exists
2835 TouchedStack->ClearStack();
2836 Walker = start->next;
2837 while ((Walker != end)
2838#ifdef ADDHYDROGEN
2839 && (Walker->type->Z == 1)
2840#endif
2841 ) { // search for first non-hydrogen atom
2842 *out << Verbose(4) << "Current Root candidate is " << Walker->Name << "." << endl;
2843 Walker = Walker->next;
2844 }
2845 if (Walker != end)
2846 RootStack->Push(Walker);
2847 else
2848 *out << Verbose(0) << "ERROR: Could not find an appropriate Root atom!" << endl;
2849 *out << Verbose(3) << "Root " << Walker->Name << " is on AtomStack, beginning loop through all vertices ..." << endl;
2850
2851 ///// OUTER LOOP ////////////
2852 while (!RootStack->IsEmpty()) {
2853 // get new root vertex from atom stack
2854 Root = RootStack->PopFirst();
2855 ShortestPathList[Root->nr] = 0;
2856 if (Labels[Root->nr] == -1)
2857 Labels[Root->nr] = RunningIndex++; // prevent it from getting again on AtomStack
2858 PredecessorList[Root->nr] = Root;
2859 TouchedStack->Push(Root);
2860 *out << Verbose(0) << "Root for this loop is: " << Root->Name << ".\n";
2861
2862 // clear snake stack
2863 SnakeStack->ClearStack();
2864 //SnakeStack->TestImplementation(out, start->next);
2865
2866 ///// INNER LOOP ////////////
2867 // Problems:
2868 // - what about cyclic bonds?
2869 Walker = Root;
2870 do {
2871 *out << Verbose(1) << "Current Walker is: " << Walker->Name;
2872 // initial setting of the new Walker: label, color, shortest path and put on stacks
2873 if (Labels[Walker->nr] == -1) { // give atom a unique, monotonely increasing number
2874 Labels[Walker->nr] = RunningIndex++;
2875 RootStack->Push(Walker);
2876 }
2877 *out << ", has label " << Labels[Walker->nr];
2878 if ((ColorVertexList[Walker->nr] == white) || ((Binder != NULL) && (ColorEdgeList[Binder->nr] == white))) { // color it if newly discovered and push on stacks (and if within reach!)
2879 if ((Binder != NULL) && (ColorEdgeList[Binder->nr] == white)) {
2880 // Binder ought to be set still from last neighbour search
2881 *out << ", coloring bond " << *Binder << " black";
2882 ColorEdgeList[Binder->nr] = black; // mark this bond as used
2883 }
2884 if (ShortestPathList[Walker->nr] == -1) {
2885 ShortestPathList[Walker->nr] = ShortestPathList[PredecessorList[Walker->nr]->nr]+1;
2886 TouchedStack->Push(Walker); // mark every atom for lists cleanup later, whose shortest path has been changed
2887 }
2888 if ((ShortestPathList[Walker->nr] < Order) && (ColorVertexList[Walker->nr] != darkgray)) { // if not already on snake stack
2889 SnakeStack->Push(Walker);
2890 ColorVertexList[Walker->nr] = darkgray; // mark as dark gray of on snake stack
2891 }
2892 }
2893 *out << ", SP of " << ShortestPathList[Walker->nr] << " and its color is " << GetColor(ColorVertexList[Walker->nr]) << "." << endl;
2894
2895 // then check the stack for a newly stumbled upon fragment
2896 if (SnakeStack->ItemCount() == Order) { // is stack full?
2897 // store the fragment if it is one and get a removal candidate
2898 Removal = StoreFragmentFromStack(out, Root, Walker, Leaflet, SnakeStack, ShortestPathList, SonList, Labels, &FragmentCounter, configuration);
2899 // remove the candidate if one was found
2900 if (Removal != NULL) {
2901 *out << Verbose(2) << "Removing item " << Removal->Name << " with SP of " << ShortestPathList[Removal->nr] << " from snake stack." << endl;
2902 SnakeStack->RemoveItem(Removal);
2903 ColorVertexList[Removal->nr] = lightgray; // return back to not on snake stack but explored marking
2904 if (Walker == Removal) { // if the current atom is to be removed, we also have to take a step back
2905 Walker = PredecessorList[Removal->nr];
2906 *out << Verbose(2) << "Stepping back to " << Walker->Name << "." << endl;
2907 }
2908 }
2909 } else
2910 Removal = NULL;
2911
2912 // finally, look for a white neighbour as the next Walker
2913 Binder = NULL;
2914 if ((Removal == NULL) || (Walker != PredecessorList[Removal->nr])) { // don't look, if a new walker has been set above
2915 *out << Verbose(2) << "Snake has currently " << SnakeStack->ItemCount() << " item(s)." << endl;
2916 OtherAtom = NULL; // this is actually not needed, every atom has at least one neighbour
2917 if (ShortestPathList[Walker->nr] < Order) {
2918 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
2919 Binder = ListOfBondsPerAtom[Walker->nr][i];
2920 *out << Verbose(2) << "Current bond is " << *Binder << ": ";
2921 OtherAtom = Binder->GetOtherAtom(Walker);
2922 if ((Labels[OtherAtom->nr] != -1) && (Labels[OtherAtom->nr] < Labels[Root->nr])) { // we don't step up to labels bigger than us
2923 *out << "Label " << Labels[OtherAtom->nr] << " is smaller than Root's " << Labels[Root->nr] << "." << endl;
2924 //ColorVertexList[OtherAtom->nr] = lightgray; // mark as explored
2925 } else { // otherwise check its colour and element
2926 if (
2927#ifdef ADDHYDROGEN
2928 (OtherAtom->type->Z != 1) &&
2929#endif
2930 (ColorEdgeList[Binder->nr] == white)) { // skip hydrogen, look for unexplored vertices
2931 *out << "Moving along " << GetColor(ColorEdgeList[Binder->nr]) << " bond " << Binder << " to " << ((ColorVertexList[OtherAtom->nr] == white) ? "unexplored" : "explored") << " item: " << OtherAtom->Name << "." << endl;
2932 // i find it currently rather sensible to always set the predecessor in order to find one's way back
2933 //if (PredecessorList[OtherAtom->nr] == NULL) {
2934 PredecessorList[OtherAtom->nr] = Walker;
2935 *out << Verbose(3) << "Setting Predecessor of " << OtherAtom->Name << " to " << PredecessorList[OtherAtom->nr]->Name << "." << endl;
2936 //} else {
2937 // *out << Verbose(3) << "Predecessor of " << OtherAtom->Name << " is " << PredecessorList[OtherAtom->nr]->Name << "." << endl;
2938 //}
2939 Walker = OtherAtom;
2940 break;
2941 } else {
2942 if (OtherAtom->type->Z == 1)
2943 *out << "Links to a hydrogen atom." << endl;
2944 else
2945 *out << "Bond has not white but " << GetColor(ColorEdgeList[Binder->nr]) << " color." << endl;
2946 }
2947 }
2948 }
2949 } else { // means we have stepped beyond the horizon: Return!
2950 Walker = PredecessorList[Walker->nr];
2951 OtherAtom = Walker;
2952 *out << Verbose(3) << "We have gone too far, stepping back to " << Walker->Name << "." << endl;
2953 }
2954 if (Walker != OtherAtom) { // if no white neighbours anymore, color it black
2955 *out << Verbose(2) << "Coloring " << Walker->Name << " black." << endl;
2956 ColorVertexList[Walker->nr] = black;
2957 Walker = PredecessorList[Walker->nr];
2958 }
2959 }
2960 } while ((Walker != Root) || (ColorVertexList[Root->nr] != black));
2961 *out << Verbose(2) << "Inner Looping is finished." << endl;
2962
2963 // if we reset all AtomCount atoms, we have again technically O(N^2) ...
2964 *out << Verbose(2) << "Resetting lists." << endl;
2965 Walker = NULL;
2966 Binder = NULL;
2967 while (!TouchedStack->IsEmpty()) {
2968 Walker = TouchedStack->PopLast();
2969 *out << Verbose(3) << "Re-initialising entries of " << *Walker << "." << endl;
2970 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
2971 ColorEdgeList[ListOfBondsPerAtom[Walker->nr][i]->nr] = white;
2972 PredecessorList[Walker->nr] = NULL;
2973 ColorVertexList[Walker->nr] = white;
2974 ShortestPathList[Walker->nr] = -1;
2975 }
2976 }
2977 *out << Verbose(1) << "Outer Looping over all vertices is done." << endl;
2978
2979 // copy together
2980 *out << Verbose(1) << "Copying all fragments into MoleculeList structure." << endl;
2981 FragmentList = new MoleculeListClass(FragmentCounter, AtomCount);
2982 RunningIndex = 0;
2983 while ((Leaflet != NULL) && (RunningIndex < FragmentCounter)) {
2984 FragmentList->ListOfMolecules[RunningIndex++] = Leaflet->Leaf;
2985 Leaflet->Leaf = NULL; // prevent molecule from being removed
2986 TempLeaf = Leaflet;
2987 Leaflet = Leaflet->previous;
2988 delete(TempLeaf);
2989 };
2990
2991 // free memory and exit
2992 Free((void **)&PredecessorList, "molecule::CreateListOfUniqueFragmentsOfOrder: **PredecessorList");
2993 Free((void **)&ShortestPathList, "molecule::CreateListOfUniqueFragmentsOfOrder: *ShortestPathList");
2994 Free((void **)&Labels, "molecule::CreateListOfUniqueFragmentsOfOrder: *Labels");
2995 Free((void **)&ColorVertexList, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorList");
2996 delete(RootStack);
2997 delete(TouchedStack);
2998 delete(SnakeStack);
2999
3000 *out << Verbose(1) << "End of CreateListOfUniqueFragmentsOfOrder." << endl;
3001 return FragmentList;
3002};
3003*/
3004
3005/** Structure containing all values in power set combination generation.
3006 */
3007struct UniqueFragments {
3008 config *configuration;
3009 atom *Root;
3010 Graph *Leaflet;
3011 KeySet *FragmentSet;
3012 int ANOVAOrder;
3013 int FragmentCounter;
3014 int CurrentIndex;
3015 int *Labels;
3016 double TEFactor;
3017 int *ShortestPathList;
3018 bool **UsedList;
3019 bond **BondsPerSPList;
3020 int *BondsPerSPCount;
3021};
3022
3023/** From a given set of Bond sorted by Shortest Path distance, create all possible fragments of size \a SetDimension.
3024 * -# loops over every possible combination (2^dimension of edge set)
3025 * -# inserts current set, if there's still space left
3026 * -# yes: calls SPFragmentGenerator with structure, created new edge list and size respective to root dist
3027ance+1
3028 * -# no: stores fragment into keyset list by calling InsertFragmentIntoGraph
3029 * -# removes all items added into the snake stack (in UniqueFragments structure) added during level (root
3030distance) and current set
3031 * \param *out output stream for debugging
3032 * \param FragmentSearch UniqueFragments structure with all values needed
3033 * \param RootDistance current shortest path level, whose set of edges is represented by **BondsSet
3034 * \param SetDimension Number of possible bonds on this level (i.e. size of the array BondsSet[])
3035 * \param SubOrder remaining number of allowed vertices to add
3036 */
3037void molecule::SPFragmentGenerator(ofstream *out, struct UniqueFragments *FragmentSearch, int RootDistance, bond **BondsSet, int SetDimension, int SubOrder)
3038{
3039 atom *OtherWalker = NULL;
3040 int verbosity = 0; //FragmentSearch->ANOVAOrder-SubOrder;
3041 int NumCombinations;
3042 bool bit;
3043 int bits, TouchedIndex, SubSetDimension, SP;
3044 int Removal;
3045 int *TouchedList = (int *) Malloc(sizeof(int)*(SubOrder+1), "molecule::SPFragmentGenerator: *TouchedList");
3046 bond *Binder = NULL;
3047 bond **BondsList = NULL;
3048
3049 NumCombinations = 1 << SetDimension;
3050
3051 // Hier muessen von 1 bis NumberOfBondsPerAtom[Walker->nr] alle Kombinationen
3052 // von Endstuecken (aus den Bonds) hinzugefÃŒgt werden und fÃŒr verbleibende ANOVAOrder
3053 // rekursiv GraphCrawler in der nÀchsten Ebene aufgerufen werden
3054
3055 *out << Verbose(1+verbosity) << "Begin of SPFragmentGenerator." << endl;
3056 *out << Verbose(1+verbosity) << "We are " << RootDistance << " away from Root, which is " << *FragmentSearch->Root << ", SubOrder is " << SubOrder << ", SetDimension is " << SetDimension << " and this means " << NumCombinations-1 << " combination(s)." << endl;
3057
3058 // initialised touched list (stores added atoms on this level)
3059 *out << Verbose(1+verbosity) << "Clearing touched list." << endl;
3060 for (TouchedIndex=0;TouchedIndex<=SubOrder;TouchedIndex++) // empty touched list
3061 TouchedList[TouchedIndex] = -1;
3062 TouchedIndex = 0;
3063
3064 // create every possible combination of the endpieces
3065 *out << Verbose(1+verbosity) << "Going through all combinations of the power set." << endl;
3066 for (int i=1;i<NumCombinations;i++) { // sweep through all power set combinations (skip empty set!)
3067 // count the set bit of i
3068 bits = 0;
3069 for (int j=0;j<SetDimension;j++)
3070 bits += (i & (1 << j)) >> j;
3071
3072 *out << Verbose(1+verbosity) << "Current set is " << Binary(i | (1 << SetDimension)) << ", number of bits is " << bits << "." << endl;
3073 if (bits <= SubOrder) { // if not greater than additional atoms allowed on stack, continue
3074 // --1-- add this set of the power set of bond partners to the snake stack
3075 for (int j=0;j<SetDimension;j++) { // pull out every bit by shifting
3076 bit = ((i & (1 << j)) != 0); // mask the bit for the j-th bond
3077 if (bit) { // if bit is set, we add this bond partner
3078 OtherWalker = BondsSet[j]->rightatom; // rightatom is always the one more distant, i.e. the one to add
3079 //*out << Verbose(1+verbosity) << "Current Bond is " << ListOfBondsPerAtom[Walker->nr][i] << ", checking on " << *OtherWalker << "." << endl;
3080 //if ((!FragmentSearch->UsedList[OtherWalker->nr][i]) && (FragmentSearch->Labels[OtherWalker->nr] > FragmentSearch->Labels[FragmentSearch->Root->nr])) {
3081 //*out << Verbose(2+verbosity) << "Not used so far, label " << FragmentSearch->Labels[OtherWalker->nr] << " is bigger than Root's " << FragmentSearch->Labels[FragmentSearch->Root->nr] << "." << endl;
3082 *out << Verbose(2+verbosity) << "Adding " << *OtherWalker << " with nr " << OtherWalker->nr << "." << endl;
3083 TouchedList[TouchedIndex++] = OtherWalker->nr; // note as added
3084 FragmentSearch->FragmentSet->insert(OtherWalker->nr);
3085 //FragmentSearch->UsedList[OtherWalker->nr][i] = true;
3086 //}
3087 } else {
3088 *out << Verbose(2+verbosity) << "Not adding." << endl;
3089 }
3090 }
3091
3092 if (bits < SubOrder) {
3093 *out << Verbose(1+verbosity) << "There's still some space left on stack: " << (SubOrder - bits) << "." << endl;
3094 // --2-- look at all added end pieces of this combination, construct bond subsets and sweep through a power set of these by recursion
3095 SP = RootDistance+1; // this is the next level
3096 // first count the members in the subset
3097 SubSetDimension = 0;
3098 Binder = FragmentSearch->BondsPerSPList[2*SP]; // start node for this level
3099 while (Binder->next != FragmentSearch->BondsPerSPList[2*SP+1]) { // compare to end node of this level
3100 Binder = Binder->next;
3101 for (int k=0;k<TouchedIndex;k++) {
3102 if (Binder->Contains(TouchedList[k])) // if we added this very endpiece
3103 SubSetDimension++;
3104 }
3105 }
3106 // then allocate and fill the list
3107 BondsList = (bond **) Malloc(sizeof(bond *)*SubSetDimension, "molecule::SPFragmentGenerator: **BondsList");
3108 SubSetDimension = 0;
3109 Binder = FragmentSearch->BondsPerSPList[2*SP];
3110 while (Binder->next != FragmentSearch->BondsPerSPList[2*SP+1]) {
3111 Binder = Binder->next;
3112 for (int k=0;k<TouchedIndex;k++) {
3113 if (Binder->leftatom->nr == TouchedList[k]) // leftatom is always the close one
3114 BondsList[SubSetDimension++] = Binder;
3115 }
3116 }
3117 *out << Verbose(2+verbosity) << "Calling subset generator " << SP << " away from root " << *FragmentSearch->Root << " with sub set dimension " << SubSetDimension << "." << endl;
3118 SPFragmentGenerator(out, FragmentSearch, SP, BondsList, SubSetDimension, SubOrder-bits);
3119 Free((void **)&BondsList, "molecule::SPFragmentGenerator: **BondsList");
3120 } else {
3121 // --2-- otherwise store the complete fragment
3122 *out << Verbose(1+verbosity) << "Enough items on stack for a fragment!" << endl;
3123 // store fragment as a KeySet
3124 *out << Verbose(2) << "Found a new fragment[" << FragmentSearch->FragmentCounter << "], local nr.s are: ";
3125 for(KeySet::iterator runner = FragmentSearch->FragmentSet->begin(); runner != FragmentSearch->FragmentSet->end(); runner++)
3126 *out << (*runner) << " ";
3127 InsertFragmentIntoGraph(out, FragmentSearch);
3128 //Removal = LookForRemovalCandidate(out, FragmentSearch->FragmentSet, FragmentSearch->ShortestPathList);
3129 //Removal = StoreFragmentFromStack(out, FragmentSearch->Root, FragmentSearch->Leaflet, FragmentSearch->FragmentStack, FragmentSearch->ShortestPathList,FragmentSearch->Labels, &FragmentSearch->FragmentCounter, FragmentSearch->configuration);
3130 }
3131
3132 // --3-- remove all added items in this level from snake stack
3133 *out << Verbose(1+verbosity) << "Removing all items that were added on this SP level " << RootDistance << "." << endl;
3134 for(int j=0;j<TouchedIndex;j++) {
3135 Removal = TouchedList[j];
3136 *out << Verbose(2+verbosity) << "Removing item nr. " << Removal << " from snake stack." << endl;
3137 FragmentSearch->FragmentSet->erase(Removal);
3138 TouchedList[j] = -1;
3139 }
3140 *out << Verbose(2) << "Remaining local nr.s on snake stack are: ";
3141 for(KeySet::iterator runner = FragmentSearch->FragmentSet->begin(); runner != FragmentSearch->FragmentSet->end(); runner++)
3142 *out << (*runner) << " ";
3143 *out << endl;
3144 TouchedIndex = 0; // set Index to 0 for list of atoms added on this level
3145 } else {
3146 *out << Verbose(2+verbosity) << "More atoms to add for this set (" << bits << ") than space left on stack " << SubOrder << ", skipping this set." << endl;
3147 }
3148 }
3149 Free((void **)&TouchedList, "molecule::SPFragmentGenerator: *TouchedList");
3150 *out << Verbose(1+verbosity) << "End of SPFragmentGenerator, " << RootDistance << " away from Root " << *FragmentSearch->Root << " and SubOrder is " << SubOrder << "." << endl;
3151};
3152
3153/** Creates a list of all unique fragments of certain vertex size from a given graph \a Fragment for a given root vertex in the context of \a this molecule.
3154 * -# initialises UniqueFragments structure
3155 * -# fills edge list via BFS
3156 * -# creates the fragment by calling recursive function SPFragmentGenerator with UniqueFragments structure, 0 as
3157 root distance, the edge set, its dimension and the current suborder
3158 * -# Free'ing structure
3159 * Note that we may use the fact that the atoms are SP-ordered on the atomstack. I.e. when popping always the last, we first get all
3160 * with SP of 2, then those with SP of 3, then those with SP of 4 and so on.
3161 * \param *out output stream for debugging
3162 * \param Order bond order (limits BFS exploration and "number of digits" in power set generation
3163 * \param FragmentSearch UniqueFragments structure containing TEFactor, root atom and so on
3164 * \param RestrictedKeySet Restricted vertex set to use in context of molecule
3165 * \return number of inserted fragments
3166 * \note ShortestPathList in FragmentSearch structure is probably due to NumberOfAtomsSPLevel and SP not needed anymore
3167 */
3168int molecule::PowerSetGenerator(ofstream *out, int Order, struct UniqueFragments &FragmentSearch, KeySet RestrictedKeySet)
3169{
3170 int SP, UniqueIndex, AtomKeyNr;
3171 int *NumberOfAtomsSPLevel = (int *) Malloc(sizeof(int)*Order, "molecule::PowerSetGenerator: *SPLevelCount");
3172 atom *Walker = NULL, *OtherWalker = NULL;
3173 bond *Binder = NULL;
3174 bond **BondsList = NULL;
3175 KeyStack AtomStack;
3176 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::PowerSetGenerator: **PredecessorList");
3177 KeySet::iterator runner;
3178 int RootKeyNr = FragmentSearch.Root->nr;
3179 int Counter = FragmentSearch.FragmentCounter;
3180
3181 for (int i=0;i<AtomCount;i++) {
3182 PredecessorList[i] = NULL;
3183 }
3184
3185 *out << endl;
3186 *out << Verbose(0) << "Begin of PowerSetGenerator with order " << Order << " at Root " << *FragmentSearch.Root << "." << endl;
3187
3188 UniqueIndex = 0;
3189 if (FragmentSearch.Labels[RootKeyNr] == -1)
3190 FragmentSearch.Labels[RootKeyNr] = UniqueIndex++;
3191 FragmentSearch.ShortestPathList[RootKeyNr] = 0;
3192 // prepare the atom stack counters (number of atoms with certain SP on stack)
3193 for (int i=0;i<Order;i++)
3194 NumberOfAtomsSPLevel[i] = 0;
3195 NumberOfAtomsSPLevel[0] = 1; // for root
3196 SP = -1;
3197 *out << endl;
3198 *out << Verbose(0) << "Starting BFS analysis ..." << endl;
3199 // push as first on atom stack and goooo ...
3200 AtomStack.clear();
3201 AtomStack.push_back(RootKeyNr);
3202 *out << Verbose(0) << "Cleared AtomStack and pushed root as first item onto it." << endl;
3203 // do a BFS search to fill the SP lists and label the found vertices
3204 while (!AtomStack.empty()) {
3205 // pop next atom
3206 AtomKeyNr = AtomStack.front();
3207 AtomStack.pop_front();
3208 if (SP != -1)
3209 NumberOfAtomsSPLevel[SP]--;
3210 if ((SP == -1) || (NumberOfAtomsSPLevel[SP] == -1)) {
3211 SP++;
3212 NumberOfAtomsSPLevel[SP]--; // carry over "-1" to next level
3213 *out << Verbose(1) << "New SP level reached: " << SP << ", creating new SP list with 0 item(s)";
3214 if (SP > 0)
3215 *out << ", old level closed with " << FragmentSearch.BondsPerSPCount[SP-1] << " item(s)." << endl;
3216 else
3217 *out << "." << endl;
3218 FragmentSearch.BondsPerSPCount[SP] = 0;
3219 } else {
3220 *out << Verbose(1) << "Still " << NumberOfAtomsSPLevel[SP]+1 << " on this SP (" << SP << ") level, currently having " << FragmentSearch.BondsPerSPCount[SP] << " item(s)." << endl;
3221 }
3222 Walker = FindAtom(AtomKeyNr);
3223 *out << Verbose(0) << "Current Walker is: " << *Walker << " with nr " << Walker->nr << " and label " << FragmentSearch.Labels[AtomKeyNr] << " and SP of " << SP << "." << endl;
3224 // check for new sp level
3225 // go through all its bonds
3226 *out << Verbose(1) << "Going through all bonds of Walker." << endl;
3227 for (int i=0;i<NumberOfBondsPerAtom[AtomKeyNr];i++) {
3228 Binder = ListOfBondsPerAtom[AtomKeyNr][i];
3229 OtherWalker = Binder->GetOtherAtom(Walker);
3230 if ((RestrictedKeySet.find(OtherWalker->nr) != RestrictedKeySet.end())
3231#ifdef ADDHYDROGEN
3232 && (OtherWalker->type->Z != 1)
3233#endif
3234 ) { // skip hydrogens and restrict to fragment
3235 *out << Verbose(2) << "Current partner is " << *OtherWalker << " with nr " << OtherWalker->nr << " in bond " << *Binder << "." << endl;
3236 // set the label if not set (and push on root stack as well)
3237 if (FragmentSearch.Labels[OtherWalker->nr] == -1) {
3238 FragmentSearch.Labels[OtherWalker->nr] = UniqueIndex++;
3239 *out << Verbose(3) << "Set label to " << FragmentSearch.Labels[OtherWalker->nr] << "." << endl;
3240 } else {
3241 *out << Verbose(3) << "Label is already " << FragmentSearch.Labels[OtherWalker->nr] << "." << endl;
3242 }
3243 if ((OtherWalker != PredecessorList[AtomKeyNr]) && (OtherWalker->nr > RootKeyNr)) { // only pass through those with label bigger than Root's
3244 FragmentSearch.ShortestPathList[OtherWalker->nr] = SP+1;
3245 *out << Verbose(3) << "Set Shortest Path to " << FragmentSearch.ShortestPathList[OtherWalker->nr] << "." << endl;
3246 if (FragmentSearch.ShortestPathList[OtherWalker->nr] < Order) { // only pass through those within reach of Order
3247 // push for exploration on stack (only if the SP of OtherWalker is longer than of Walker! (otherwise it has been added already!)
3248 if (FragmentSearch.ShortestPathList[OtherWalker->nr] > SP) {
3249 if (FragmentSearch.ShortestPathList[OtherWalker->nr] < (Order-1)) {
3250 *out << Verbose(3) << "Putting on atom stack for further exploration." << endl;
3251 PredecessorList[OtherWalker->nr] = Walker; // note down the one further up the exploration tree
3252 AtomStack.push_back(OtherWalker->nr);
3253 NumberOfAtomsSPLevel[FragmentSearch.ShortestPathList[OtherWalker->nr]]++;
3254 } else {
3255 *out << Verbose(3) << "Not putting on atom stack, is at end of reach." << endl;
3256 }
3257 // add the bond in between to the SP list
3258 Binder = new bond(Walker, OtherWalker); // create a new bond in such a manner, that bond::rightatom is always the one more distant
3259 add(Binder, FragmentSearch.BondsPerSPList[2*SP+1]);
3260 FragmentSearch.BondsPerSPCount[SP]++;
3261 *out << Verbose(3) << "Added its bond to SP list, having now " << FragmentSearch.BondsPerSPCount[SP] << " item(s)." << endl;
3262 } else *out << Verbose(3) << "Not putting on atom stack, nor adding bond, as " << *OtherWalker << "'s SP is shorter than Walker's." << endl;
3263 } else *out << Verbose(3) << "Not continuing, as " << *OtherWalker << " is out of reach of order " << Order << "." << endl;
3264 } else *out << Verbose(3) << "Not passing on, as index of " << *OtherWalker << " " << OtherWalker->nr << " is smaller than that of Root " << RootKeyNr << " or this is my predecessor." << endl;
3265 } else *out << Verbose(2) << "Is not in the restricted keyset or skipping hydrogen " << *OtherWalker << "." << endl;
3266 }
3267 }
3268 // reset predecessor list
3269 for(int i=0;i<Order;i++) {
3270 Binder = FragmentSearch.BondsPerSPList[2*i];
3271 *out << Verbose(1) << "Current SP level is " << i << "." << endl;
3272 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
3273 Binder = Binder->next;
3274 PredecessorList[Binder->rightatom->nr] = NULL; // By construction "OtherAtom" is always Bond::rightatom!
3275 }
3276 }
3277 *out << endl;
3278
3279 // outputting all list for debugging
3280 *out << Verbose(0) << "Printing all found lists." << endl;
3281 for(int i=0;i<Order;i++) {
3282 Binder = FragmentSearch.BondsPerSPList[2*i];
3283 *out << Verbose(1) << "Current SP level is " << i << "." << endl;
3284 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
3285 Binder = Binder->next;
3286 *out << Verbose(2) << *Binder << endl;
3287 }
3288 }
3289
3290 // creating fragments with the found edge sets
3291 SP = 0;
3292 for(int i=0;i<Order;i++) { // sum up all found edges
3293 Binder = FragmentSearch.BondsPerSPList[2*i];
3294 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
3295 Binder = Binder->next;
3296 SP ++;
3297 }
3298 }
3299 *out << Verbose(0) << "Total number of edges is " << SP << "." << endl;
3300 if (SP >= (Order-1)) {
3301 // start with root (push on fragment stack)
3302 *out << Verbose(0) << "Starting fragment generation with " << *FragmentSearch.Root << ", local nr is " << FragmentSearch.Root->nr << "." << endl;
3303 FragmentSearch.FragmentSet->clear();
3304 FragmentSearch.FragmentSet->insert(FragmentSearch.Root->nr);
3305
3306 if (FragmentSearch.FragmentSet->size() == (unsigned int) Order) {
3307 *out << Verbose(0) << "Enough items on stack already for a fragment!" << endl;
3308 // store fragment as a KeySet
3309 *out << Verbose(2) << "Found a new fragment[" << FragmentSearch.FragmentCounter << "], local nr.s are: ";
3310 for(KeySet::iterator runner = FragmentSearch.FragmentSet->begin(); runner != FragmentSearch.FragmentSet->end(); runner++) {
3311 *out << (*runner) << " ";
3312 }
3313 *out << endl;
3314 InsertFragmentIntoGraph(out, &FragmentSearch);
3315 } else {
3316 *out << Verbose(0) << "Preparing subset for this root and calling generator." << endl;
3317 // prepare the subset and call the generator
3318 BondsList = (bond **) Malloc(sizeof(bond *)*FragmentSearch.BondsPerSPCount[0], "molecule::PowerSetGenerator: **BondsList");
3319 Binder = FragmentSearch.BondsPerSPList[0];
3320 for(int i=0;i<FragmentSearch.BondsPerSPCount[0];i++) {
3321 Binder = Binder->next;
3322 BondsList[i] = Binder;
3323 }
3324 SPFragmentGenerator(out, &FragmentSearch, 0, BondsList, FragmentSearch.BondsPerSPCount[0], Order-1);
3325 Free((void **)&BondsList, "molecule::PowerSetGenerator: **BondsList");
3326 }
3327 } else {
3328 *out << Verbose(0) << "Not enough total number of edges to build " << Order << "-body fragments." << endl;
3329 }
3330
3331 // as FragmentSearch structure is used only once, we don't have to clean it anymore
3332 // remove root from stack
3333 *out << Verbose(0) << "Removing root again from stack." << endl;
3334 FragmentSearch.FragmentSet->erase(FragmentSearch.Root->nr);
3335
3336 // free'ing the bonds lists
3337 *out << Verbose(0) << "Free'ing all found lists. and resetting index lists" << endl;
3338 for(int i=0;i<Order;i++) {
3339 *out << Verbose(1) << "Current SP level is " << i << ": ";
3340 Binder = FragmentSearch.BondsPerSPList[2*i];
3341 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
3342 Binder = Binder->next;
3343 // *out << "Removing atom " << Binder->leftatom->nr << " and " << Binder->rightatom->nr << "." << endl; // make sure numbers are local
3344 FragmentSearch.ShortestPathList[Binder->leftatom->nr] = -1;
3345 FragmentSearch.ShortestPathList[Binder->rightatom->nr] = -1;
3346 }
3347 // delete added bonds
3348 cleanup(FragmentSearch.BondsPerSPList[2*i], FragmentSearch.BondsPerSPList[2*i+1]);
3349 // also start and end node
3350 *out << "cleaned." << endl;
3351 }
3352
3353 // free allocated memory
3354 Free((void **)&NumberOfAtomsSPLevel, "molecule::PowerSetGenerator: *SPLevelCount");
3355 Free((void **)&PredecessorList, "molecule::PowerSetGenerator: **PredecessorList");
3356
3357 // return list
3358 *out << Verbose(0) << "End of PowerSetGenerator." << endl;
3359 return (FragmentSearch.FragmentCounter - Counter);
3360};
3361
3362/** Corrects the nuclei position if the fragment was created over the cell borders.
3363 * Scans all bonds, checks the distance, if greater than typical, we have a candidate for the correction.
3364 * We remove the bond whereafter the graph probably separates. Then, we translate the one component periodically
3365 * and re-add the bond. Looping on the distance check.
3366 * \param *out ofstream for debugging messages
3367 */
3368void molecule::ScanForPeriodicCorrection(ofstream *out)
3369{
3370 bond *Binder = NULL;
3371 bond *OtherBinder = NULL;
3372 atom *Walker = NULL;
3373 atom *OtherWalker = NULL;
3374 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
3375 enum Shading *ColorList = NULL;
3376 double tmp;
3377 vector TranslationVector;
3378 //class StackClass<atom *> *CompStack = NULL;
3379 class StackClass<atom *> *AtomStack = new StackClass<atom *>(AtomCount);
3380 bool flag = true;
3381
3382// *out << Verbose(1) << "Begin of ScanForPeriodicCorrection." << endl;
3383
3384 ColorList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::ScanForPeriodicCorrection: *ColorList");
3385 while (flag) {
3386 // remove bonds that are beyond bonddistance
3387 for(int i=0;i<NDIM;i++)
3388 TranslationVector.x[i] = 0.;
3389 // scan all bonds
3390 Binder = first;
3391 flag = false;
3392 while ((!flag) && (Binder->next != last)) {
3393 Binder = Binder->next;
3394 for (int i=0;i<NDIM;i++) {
3395 tmp = fabs(Binder->leftatom->x.x[i] - Binder->rightatom->x.x[i]);
3396 //*out << Verbose(3) << "Checking " << i << "th distance of " << *Binder->leftatom << " to " << *Binder->rightatom << ": " << tmp << "." << endl;
3397 if (tmp > BondDistance) {
3398 OtherBinder = Binder->next; // note down binding partner for later re-insertion
3399 unlink(Binder); // unlink bond
3400// *out << Verbose(2) << "Correcting at bond " << *Binder << "." << endl;
3401 flag = true;
3402 break;
3403 }
3404 }
3405 }
3406 if (flag) {
3407 // create translation vector from their periodically modified distance
3408 for (int i=0;i<NDIM;i++) {
3409 tmp = Binder->leftatom->x.x[i] - Binder->rightatom->x.x[i];
3410 if (fabs(tmp) > BondDistance)
3411 TranslationVector.x[i] = (tmp < 0) ? +1. : -1.;
3412 }
3413 TranslationVector.MatrixMultiplication(matrix);
3414 //*out << "Translation vector is ";
3415 //TranslationVector.Output(out);
3416 //*out << endl;
3417 // apply to all atoms of first component via BFS
3418 for (int i=0;i<AtomCount;i++)
3419 ColorList[i] = white;
3420 AtomStack->Push(Binder->leftatom);
3421 while (!AtomStack->IsEmpty()) {
3422 Walker = AtomStack->PopFirst();
3423 //*out << Verbose (3) << "Current Walker is: " << *Walker << "." << endl;
3424 ColorList[Walker->nr] = black; // mark as explored
3425 Walker->x.AddVector(&TranslationVector); // translate
3426 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) { // go through all binding partners
3427 if (ListOfBondsPerAtom[Walker->nr][i] != Binder) {
3428 OtherWalker = ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
3429 if (ColorList[OtherWalker->nr] == white) {
3430 AtomStack->Push(OtherWalker); // push if yet unexplored
3431 }
3432 }
3433 }
3434 }
3435 // re-add bond
3436 link(Binder, OtherBinder);
3437 } else {
3438// *out << Verbose(2) << "No corrections for this fragment." << endl;
3439 }
3440 //delete(CompStack);
3441 }
3442
3443 // free allocated space from ReturnFullMatrixforSymmetric()
3444 delete(AtomStack);
3445 Free((void **)&ColorList, "molecule::ScanForPeriodicCorrection: *ColorList");
3446 Free((void **)&matrix, "molecule::ScanForPeriodicCorrection: *matrix");
3447// *out << Verbose(1) << "End of ScanForPeriodicCorrection." << endl;
3448};
3449
3450/** Blows the 6-dimensional \a cell_size array up to a full NDIM by NDIM matrix.
3451 * \param *symm 6-dim array of unique symmetric matrix components
3452 * \return allocated NDIM*NDIM array with the symmetric matrix
3453 */
3454double * molecule::ReturnFullMatrixforSymmetric(double *symm)
3455{
3456 double *matrix = (double *) Malloc(sizeof(double)*NDIM*NDIM, "molecule::ReturnFullMatrixforSymmetric: *matrix");
3457 matrix[0] = symm[0];
3458 matrix[1] = symm[1];
3459 matrix[2] = symm[3];
3460 matrix[3] = symm[1];
3461 matrix[4] = symm[2];
3462 matrix[5] = symm[4];
3463 matrix[6] = symm[3];
3464 matrix[7] = symm[4];
3465 matrix[8] = symm[5];
3466 return matrix;
3467};
3468
3469bool KeyCompare::operator() (const KeySet SubgraphA, const KeySet SubgraphB) const
3470{
3471 //cout << "my check is used." << endl;
3472 if (SubgraphA.size() < SubgraphB.size()) {
3473 return true;
3474 } else {
3475 if (SubgraphA.size() > SubgraphB.size()) {
3476 return false;
3477 } else {
3478 KeySet::iterator IteratorA = SubgraphA.begin();
3479 KeySet::iterator IteratorB = SubgraphB.begin();
3480 while ((IteratorA != SubgraphA.end()) && (IteratorB != SubgraphB.end())) {
3481 if ((*IteratorA) < (*IteratorB))
3482 return true;
3483 else if ((*IteratorA) > (*IteratorB)) {
3484 return false;
3485 } // else, go on to next index
3486 IteratorA++;
3487 IteratorB++;
3488 } // end of while loop
3489 }// end of check in case of equal sizes
3490 }
3491 return false; // if we reach this point, they are equal
3492};
3493
3494//bool operator < (KeySet SubgraphA, KeySet SubgraphB)
3495//{
3496// return KeyCompare(SubgraphA, SubgraphB);
3497//};
3498
3499/** Checking whether KeySet is not already present in Graph, if so just adds factor.
3500 * \param *out output stream for debugging
3501 * \param &set KeySet to insert
3502 * \param &graph Graph to insert into
3503 * \param *counter pointer to unique fragment count
3504 * \param factor energy factor for the fragment
3505 */
3506inline void InsertFragmentIntoGraph(ofstream *out, struct UniqueFragments *Fragment)
3507{
3508 GraphTestPair testGraphInsert;
3509
3510 testGraphInsert = Fragment->Leaflet->insert(GraphPair (*Fragment->FragmentSet,pair<int,double>(Fragment->FragmentCounter,Fragment->TEFactor))); // store fragment number and current factor
3511 if (testGraphInsert.second) {
3512 *out << Verbose(2) << "KeySet " << Fragment->FragmentCounter << " successfully inserted." << endl;
3513 Fragment->FragmentCounter++;
3514 } else {
3515 *out << Verbose(2) << "KeySet " << Fragment->FragmentCounter << " failed to insert, present fragment is " << ((*(testGraphInsert.first)).second).first << endl;
3516 ((*(testGraphInsert.first)).second).second += Fragment->TEFactor; // increase the "created" counter
3517 *out << Verbose(2) << "New factor is " << ((*(testGraphInsert.first)).second).second << "." << endl;
3518 }
3519};
3520//void inline InsertIntoGraph(ofstream *out, KeyStack &stack, Graph &graph, int *counter, double factor)
3521//{
3522// // copy stack contents to set and call overloaded function again
3523// KeySet set;
3524// for(KeyStack::iterator runner = stack.begin(); runner != stack.begin(); runner++)
3525// set.insert((*runner));
3526// InsertIntoGraph(out, set, graph, counter, factor);
3527//};
3528
3529/** Inserts each KeySet in \a graph2 into \a graph1.
3530 * \param *out output stream for debugging
3531 * \param graph1 first (dest) graph
3532 * \param graph2 second (source) graph
3533 * \param *counter keyset counter that gets increased
3534 */
3535inline void InsertGraphIntoGraph(ofstream *out, Graph &graph1, Graph &graph2, int *counter)
3536{
3537 GraphTestPair testGraphInsert;
3538
3539 for(Graph::iterator runner = graph2.begin(); runner != graph2.end(); runner++) {
3540 testGraphInsert = graph1.insert(GraphPair ((*runner).first,pair<int,double>((*counter)++,((*runner).second).second))); // store fragment number and current factor
3541 if (testGraphInsert.second) {
3542 *out << Verbose(2) << "KeySet " << (*counter)-1 << " successfully inserted." << endl;
3543 } else {
3544 *out << Verbose(2) << "KeySet " << (*counter)-1 << " failed to insert, present fragment is " << ((*(testGraphInsert.first)).second).first << endl;
3545 ((*(testGraphInsert.first)).second).second += (*runner).second.second;
3546 *out << Verbose(2) << "New factor is " << (*(testGraphInsert.first)).second.second << "." << endl;
3547 }
3548 }
3549};
3550
3551
3552/** Performs BOSSANOVA decomposition at selected sites, increasing the cutoff by one at these sites.
3553 * -# constructs a complete keyset of the molecule
3554 * -# In a loop over all possible roots from the given rootstack
3555 * -# increases order of root site
3556 * -# calls PowerSetGenerator with this order, the complete keyset and the rootkeynr
3557 * -# for all consecutive lower levels PowerSetGenerator is called with the suborder, the higher order keyset
3558as the restricted one and each site in the set as the root)
3559 * -# these are merged into a fragment list of keysets
3560 * -# All fragment lists (for all orders, i.e. from all destination fields) are merged into one list for return
3561 * Important only is that we create all fragments, it is not important if we create them more than once
3562 * as these copies are filtered out via use of the hash table (KeySet).
3563 * \param *out output stream for debugging
3564 * \param Fragment&*List list of already present keystacks (adaptive scheme) or empty list
3565 * \param &RootStack stack with all root candidates (unequal to each atom in complete molecule if adaptive scheme is applied)
3566 * \return pointer to Graph list
3567 */
3568void molecule::FragmentBOSSANOVA(ofstream *out, Graph *&FragmentList, KeyStack &RootStack)
3569{
3570 Graph ***FragmentLowerOrdersList = NULL;
3571 int Order, NumLevels, NumMolecules, TotalNumMolecules = 0, *NumMoleculesOfOrder = NULL;
3572 int counter = 0;
3573 int UpgradeCount = RootStack.size();
3574 KeyStack FragmentRootStack;
3575 int RootKeyNr, RootNr;
3576 struct UniqueFragments FragmentSearch;
3577
3578 *out << Verbose(0) << "Begin of FragmentBOSSANOVA." << endl;
3579
3580 // FragmentLowerOrdersList is a 2D-array of pointer to MoleculeListClass objects, one dimension represents the ANOVA expansion of a single order (i.e. 5)
3581 // with all needed lower orders that are subtracted, the other dimension is the BondOrder (i.e. from 1 to 5)
3582 NumMoleculesOfOrder = (int *) Malloc(sizeof(int)*UpgradeCount, "molecule::FragmentBOSSANOVA: *NumMoleculesOfOrder");
3583 FragmentLowerOrdersList = (Graph ***) Malloc(sizeof(Graph **)*UpgradeCount, "molecule::FragmentBOSSANOVA: ***FragmentLowerOrdersList");
3584
3585 // initialise the fragments structure
3586 FragmentSearch.BondsPerSPList = (bond **) Malloc(sizeof(bond *)*Order*2, "molecule::PowerSetGenerator: ***BondsPerSPList");
3587 FragmentSearch.BondsPerSPCount = (int *) Malloc(sizeof(int)*Order, "molecule::PowerSetGenerator: *BondsPerSPCount");
3588 FragmentSearch.ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::PowerSetGenerator: *ShortestPathList");
3589 FragmentSearch.Labels = (int *) Malloc(sizeof(int)*AtomCount, "molecule::PowerSetGenerator: *Labels");
3590 FragmentSearch.FragmentCounter = 0;
3591 FragmentSearch.FragmentSet = new KeySet;
3592 FragmentSearch.Root = FindAtom(RootKeyNr);
3593 for (int i=0;i<AtomCount;i++) {
3594 FragmentSearch.Labels[i] = -1;
3595 FragmentSearch.ShortestPathList[i] = -1;
3596 }
3597
3598 // Construct the complete KeySet which we need for topmost level only (but for all Roots)
3599 atom *Walker = start;
3600 KeySet CompleteMolecule;
3601 while (Walker->next != end) {
3602 Walker = Walker->next;
3603 CompleteMolecule.insert(Walker->GetTrueFather()->nr);
3604 }
3605
3606 // this can easily be seen: if Order is 5, then the number of levels for each lower order is the total sum of the number of levels above, as
3607 // each has to be split up. E.g. for the second level we have one from 5th, one from 4th, two from 3th (which in turn is one from 5th, one from 4th),
3608 // hence we have overall four 2th order levels for splitting. This also allows for putting all into a single array (FragmentLowerOrdersList[])
3609 // with the order along the cells as this: 5433222211111111 for BondOrder 5 needing 16=pow(2,5-1) cells (only we use bit-shifting which is faster)
3610 RootNr = 0; // counts through the roots in RootStack
3611 while (RootNr < UpgradeCount) {
3612 RootKeyNr = RootStack.front();
3613 RootStack.pop_front();
3614 // increase adaptive order by one
3615 Walker = FindAtom(RootKeyNr);
3616 Walker->GetTrueFather()->AdaptiveOrder++;
3617 Order = Walker->AdaptiveOrder = Walker->GetTrueFather()->AdaptiveOrder;
3618
3619 // initialise Order-dependent entries of UniqueFragments structure
3620 FragmentSearch.BondsPerSPList = (bond **) Malloc(sizeof(bond *)*Order*2, "molecule::PowerSetGenerator: ***BondsPerSPList");
3621 FragmentSearch.BondsPerSPCount = (int *) Malloc(sizeof(int)*Order, "molecule::PowerSetGenerator: *BondsPerSPCount");
3622 for (int i=0;i<Order;i++) {
3623 FragmentSearch.BondsPerSPList[2*i] = new bond(); // start node
3624 FragmentSearch.BondsPerSPList[2*i+1] = new bond(); // end node
3625 FragmentSearch.BondsPerSPList[2*i]->next = FragmentSearch.BondsPerSPList[2*i+1]; // intertwine these two
3626 FragmentSearch.BondsPerSPList[2*i+1]->previous = FragmentSearch.BondsPerSPList[2*i];
3627 FragmentSearch.BondsPerSPCount[i] = 0;
3628 }
3629
3630 // allocate memory for all lower level orders in this 1D-array of ptrs
3631 NumLevels = 1 << (Order-1); // (int)pow(2,Order);
3632 FragmentLowerOrdersList[RootNr] = (Graph **) Malloc(sizeof(Graph *)*NumLevels, "molecule::FragmentBOSSANOVA: **FragmentLowerOrdersList[]");
3633
3634 // create top order where nothing is reduced
3635 *out << Verbose(0) << "==============================================================================================================" << endl;
3636 *out << Verbose(0) << "Creating KeySets of Bond Order " << Order << " for " << *Walker << ", NumLevels is " << NumLevels << ", " << (RootStack.size()-RootNr-1) << " Roots remaining." << endl;
3637
3638 // Create list of Graphs of current Bond Order (i.e. F_{ij})
3639 FragmentLowerOrdersList[RootNr][0] = new Graph;
3640 FragmentSearch.TEFactor = 1.;
3641 FragmentSearch.Leaflet = FragmentLowerOrdersList[RootNr][0]; // set to insertion graph
3642 FragmentSearch.Root = Walker;
3643 NumMoleculesOfOrder[RootNr] = PowerSetGenerator(out, Walker->AdaptiveOrder, FragmentSearch, CompleteMolecule);
3644 *out << Verbose(1) << "Number of resulting KeySets is: " << NumMoleculesOfOrder[RootNr] << "." << endl;
3645 NumMolecules = 0;
3646
3647 if ((NumLevels >> 1) > 0) {
3648 // create lower order fragments
3649 *out << Verbose(0) << "Creating list of unique fragments of lower Bond Order terms to be subtracted." << endl;
3650 Order = Walker->AdaptiveOrder;
3651 for (int source=0;source<(NumLevels >> 1);source++) { // 1-terms don't need any more splitting, that's why only half is gone through (shift again)
3652 // step down to next order at (virtual) boundary of powers of 2 in array
3653 while (source >= (1 << (Walker->AdaptiveOrder-Order))) // (int)pow(2,Walker->AdaptiveOrder-Order))
3654 Order--;
3655 *out << Verbose(0) << "Current Order is: " << Order << "." << endl;
3656 for (int SubOrder=Order-1;SubOrder>0;SubOrder--) {
3657 int dest = source + (1 << (Walker->AdaptiveOrder-(SubOrder+1)));
3658 *out << Verbose(0) << "--------------------------------------------------------------------------------------------------------------" << endl;
3659 *out << Verbose(0) << "Current SubOrder is: " << SubOrder << " with source " << source << " to destination " << dest << "." << endl;
3660
3661 // every molecule is split into a list of again (Order - 1) molecules, while counting all molecules
3662 //*out << Verbose(1) << "Splitting the " << (*FragmentLowerOrdersList[RootNr][source]).size() << " molecules of the " << source << "th cell in the array." << endl;
3663 //NumMolecules = 0;
3664 FragmentLowerOrdersList[RootNr][dest] = new Graph;
3665 for(Graph::iterator runner = (*FragmentLowerOrdersList[RootNr][source]).begin();runner != (*FragmentLowerOrdersList[RootNr][source]).end(); runner++) {
3666 for (KeySet::iterator sprinter = (*runner).first.begin();sprinter != (*runner).first.end(); sprinter++) {
3667 Graph TempFragmentList;
3668 FragmentSearch.TEFactor = -(*runner).second.second;
3669 FragmentSearch.Leaflet = &TempFragmentList; // set to insertion graph
3670 FragmentSearch.Root = FindAtom(*sprinter);
3671 NumMoleculesOfOrder[RootNr] += PowerSetGenerator(out, SubOrder, FragmentSearch, (*runner).first);
3672 // insert new keysets FragmentList into FragmentLowerOrdersList[Walker->AdaptiveOrder-1][dest]
3673 *out << Verbose(1) << "Merging resulting key sets with those present in destination " << dest << "." << endl;
3674 InsertGraphIntoGraph(out, *FragmentLowerOrdersList[RootNr][dest], TempFragmentList, &NumMolecules);
3675 }
3676 }
3677 *out << Verbose(1) << "Number of resulting molecules for SubOrder " << SubOrder << " is: " << NumMolecules << "." << endl;
3678 }
3679 }
3680 }
3681 // now, we have completely filled each cell of FragmentLowerOrdersList[] for the current Walker->AdaptiveOrder
3682 //NumMoleculesOfOrder[Walker->AdaptiveOrder-1] = NumMolecules;
3683 TotalNumMolecules += NumMoleculesOfOrder[RootNr];
3684 *out << Verbose(1) << "Number of resulting molecules for Order " << (int)Walker->GetTrueFather()->AdaptiveOrder << " is: " << NumMoleculesOfOrder[RootNr] << "." << endl;
3685 RootStack.push_back(RootKeyNr); // put back on stack
3686 RootNr++;
3687
3688 // free Order-dependent entries of UniqueFragments structure for next loop cycle
3689 Free((void **)&FragmentSearch.BondsPerSPCount, "molecule::PowerSetGenerator: *BondsPerSPCount");
3690 for (int i=0;i<Order;i++) {
3691 delete(FragmentSearch.BondsPerSPList[2*i]);
3692 delete(FragmentSearch.BondsPerSPList[2*i+1]);
3693 }
3694 Free((void **)&FragmentSearch.BondsPerSPList, "molecule::PowerSetGenerator: ***BondsPerSPList");
3695 }
3696 *out << Verbose(0) << "==============================================================================================================" << endl;
3697 *out << Verbose(1) << "Total number of resulting molecules is: " << TotalNumMolecules << "." << endl;
3698 *out << Verbose(0) << "==============================================================================================================" << endl;
3699
3700 // cleanup FragmentSearch structure
3701 Free((void **)&FragmentSearch.ShortestPathList, "molecule::PowerSetGenerator: *ShortestPathList");
3702 Free((void **)&FragmentSearch.Labels, "molecule::PowerSetGenerator: *Labels");
3703 delete(FragmentSearch.FragmentSet);
3704
3705 // now, FragmentLowerOrdersList is complete, it looks - for BondOrder 5 - as this (number is the ANOVA Order of the terms therein)
3706 // 5433222211111111
3707 // 43221111
3708 // 3211
3709 // 21
3710 // 1
3711
3712 // Subsequently, we combine all into a single list (FragmentList)
3713
3714 *out << Verbose(0) << "Combining the lists of all orders per order and finally into a single one." << endl;
3715 if (FragmentList == NULL) {
3716 FragmentList = new Graph;
3717 counter = 0;
3718 } else {
3719 counter = FragmentList->size();
3720 }
3721 RootNr = 0;
3722 while (!RootStack.empty()) {
3723 RootKeyNr = RootStack.front();
3724 RootStack.pop_front();
3725 Walker = FindAtom(RootKeyNr);
3726 NumLevels = 1 << (Walker->AdaptiveOrder - 1);
3727 for(int i=0;i<NumLevels;i++) {
3728 InsertGraphIntoGraph(out, *FragmentList, (*FragmentLowerOrdersList[RootNr][i]), &counter);
3729 delete(FragmentLowerOrdersList[RootNr][i]);
3730 }
3731 Free((void **)&FragmentLowerOrdersList[RootNr], "molecule::FragmentBOSSANOVA: **FragmentLowerOrdersList[]");
3732 RootNr++;
3733 }
3734 Free((void **)&FragmentLowerOrdersList, "molecule::FragmentBOSSANOVA: ***FragmentLowerOrdersList");
3735 Free((void **)&NumMoleculesOfOrder, "molecule::FragmentBOSSANOVA: *NumMoleculesOfOrder");
3736
3737 *out << Verbose(0) << "End of FragmentBOSSANOVA." << endl;
3738};
3739
3740/** Comparison function for GSL heapsort on distances in two molecules.
3741 * \param *a
3742 * \param *b
3743 * \return <0, \a *a less than \a *b, ==0 if equal, >0 \a *a greater than \a *b
3744 */
3745int CompareDoubles (const void * a, const void * b)
3746{
3747 if (*(double *)a > *(double *)b)
3748 return -1;
3749 else if (*(double *)a < *(double *)b)
3750 return 1;
3751 else
3752 return 0;
3753};
3754
3755/** Determines whether two molecules actually contain the same atoms and coordination.
3756 * \param *out output stream for debugging
3757 * \param *OtherMolecule the molecule to compare this one to
3758 * \param threshold upper limit of difference when comparing the coordination.
3759 * \return NULL - not equal, otherwise an allocated (molecule::AtomCount) permutation map of the atom numbers (which corresponds to which)
3760 */
3761int * molecule::IsEqualToWithinThreshold(ofstream *out, molecule *OtherMolecule, double threshold)
3762{
3763 int flag;
3764 double *Distances = NULL, *OtherDistances = NULL;
3765 vector CenterOfGravity, OtherCenterOfGravity;
3766 size_t *PermMap = NULL, *OtherPermMap = NULL;
3767 int *PermutationMap = NULL;
3768 atom *Walker = NULL;
3769 bool result = true; // status of comparison
3770
3771 *out << Verbose(3) << "Begin of IsEqualToWithinThreshold." << endl;
3772 /// first count both their atoms and elements and update lists thereby ...
3773 //*out << Verbose(0) << "Counting atoms, updating list" << endl;
3774 CountAtoms(out);
3775 OtherMolecule->CountAtoms(out);
3776 CountElements();
3777 OtherMolecule->CountElements();
3778
3779 /// ... and compare:
3780 /// -# AtomCount
3781 if (result) {
3782 if (AtomCount != OtherMolecule->AtomCount) {
3783 *out << Verbose(4) << "AtomCounts don't match: " << AtomCount << " == " << OtherMolecule->AtomCount << endl;
3784 result = false;
3785 } else *out << Verbose(4) << "AtomCounts match: " << AtomCount << " == " << OtherMolecule->AtomCount << endl;
3786 }
3787 /// -# ElementCount
3788 if (result) {
3789 if (ElementCount != OtherMolecule->ElementCount) {
3790 *out << Verbose(4) << "ElementCount don't match: " << ElementCount << " == " << OtherMolecule->ElementCount << endl;
3791 result = false;
3792 } else *out << Verbose(4) << "ElementCount match: " << ElementCount << " == " << OtherMolecule->ElementCount << endl;
3793 }
3794 /// -# ElementsInMolecule
3795 if (result) {
3796 for (flag=0;flag<MAX_ELEMENTS;flag++) {
3797 //*out << Verbose(5) << "Element " << flag << ": " << ElementsInMolecule[flag] << " <-> " << OtherMolecule->ElementsInMolecule[flag] << "." << endl;
3798 if (ElementsInMolecule[flag] != OtherMolecule->ElementsInMolecule[flag])
3799 break;
3800 }
3801 if (flag < MAX_ELEMENTS) {
3802 *out << Verbose(4) << "ElementsInMolecule don't match." << endl;
3803 result = false;
3804 } else *out << Verbose(4) << "ElementsInMolecule match." << endl;
3805 }
3806 /// then determine and compare center of gravity for each molecule ...
3807 if (result) {
3808 *out << Verbose(5) << "Calculating Centers of Gravity" << endl;
3809 DetermineCenterOfGravity(CenterOfGravity);
3810 OtherMolecule->DetermineCenterOfGravity(OtherCenterOfGravity);
3811 *out << Verbose(5) << "Center of Gravity: ";
3812 CenterOfGravity.Output(out);
3813 *out << endl << Verbose(5) << "Other Center of Gravity: ";
3814 OtherCenterOfGravity.Output(out);
3815 *out << endl;
3816 if (CenterOfGravity.Distance(&OtherCenterOfGravity) > threshold) {
3817 *out << Verbose(4) << "Centers of gravity don't match." << endl;
3818 result = false;
3819 }
3820 }
3821
3822 /// ... then make a list with the euclidian distance to this center for each atom of both molecules
3823 if (result) {
3824 *out << Verbose(5) << "Calculating distances" << endl;
3825 Distances = (double *) Malloc(sizeof(double)*AtomCount, "molecule::IsEqualToWithinThreshold: Distances");
3826 OtherDistances = (double *) Malloc(sizeof(double)*AtomCount, "molecule::IsEqualToWithinThreshold: OtherDistances");
3827 Walker = start;
3828 while (Walker->next != end) {
3829 Walker = Walker->next;
3830 //for (i=0;i<AtomCount;i++) {
3831 Distances[Walker->nr] = CenterOfGravity.Distance(&Walker->x);
3832 }
3833 Walker = OtherMolecule->start;
3834 while (Walker->next != OtherMolecule->end) {
3835 Walker = Walker->next;
3836 OtherDistances[Walker->nr] = OtherCenterOfGravity.Distance(&Walker->x);
3837 }
3838
3839 /// ... sort each list (using heapsort (o(N log N)) from GSL)
3840 *out << Verbose(5) << "Sorting distances" << endl;
3841 PermMap = (size_t *) Malloc(sizeof(size_t)*AtomCount, "molecule::IsEqualToWithinThreshold: *PermMap");
3842 OtherPermMap = (size_t *) Malloc(sizeof(size_t)*AtomCount, "molecule::IsEqualToWithinThreshold: *OtherPermMap");
3843 gsl_heapsort_index (PermMap, Distances, AtomCount, sizeof(double), CompareDoubles);
3844 gsl_heapsort_index (OtherPermMap, OtherDistances, AtomCount, sizeof(double), CompareDoubles);
3845 PermutationMap = (int *) Malloc(sizeof(int)*AtomCount, "molecule::IsEqualToWithinThreshold: *PermutationMap");
3846 *out << Verbose(5) << "Combining Permutation Maps" << endl;
3847 for(int i=0;i<AtomCount;i++)
3848 PermutationMap[PermMap[i]] = (int) OtherPermMap[i];
3849
3850 /// ... and compare them step by step, whether the difference is individiually(!) below \a threshold for all
3851 *out << Verbose(4) << "Comparing distances" << endl;
3852 flag = 0;
3853 for (int i=0;i<AtomCount;i++) {
3854 *out << Verbose(5) << "Distances: |" << Distances[PermMap[i]] << " - " << OtherDistances[OtherPermMap[i]] << "| = " << fabs(Distances[PermMap[i]] - OtherDistances[OtherPermMap[i]]) << " ?<? " << threshold << endl;
3855 if (fabs(Distances[PermMap[i]] - OtherDistances[OtherPermMap[i]]) > threshold)
3856 flag = 1;
3857 }
3858 Free((void **)&PermMap, "molecule::IsEqualToWithinThreshold: *PermMap");
3859 Free((void **)&OtherPermMap, "molecule::IsEqualToWithinThreshold: *OtherPermMap");
3860
3861 /// free memory
3862 Free((void **)&Distances, "molecule::IsEqualToWithinThreshold: Distances");
3863 Free((void **)&OtherDistances, "molecule::IsEqualToWithinThreshold: OtherDistances");
3864 if (flag) { // if not equal
3865 Free((void **)&PermutationMap, "molecule::IsEqualToWithinThreshold: *PermutationMap");
3866 result = false;
3867 }
3868 }
3869 /// return pointer to map if all distances were below \a threshold
3870 *out << Verbose(3) << "End of IsEqualToWithinThreshold." << endl;
3871 if (result) {
3872 *out << Verbose(3) << "Result: Equal." << endl;
3873 return PermutationMap;
3874 } else {
3875 *out << Verbose(3) << "Result: Not equal." << endl;
3876 return NULL;
3877 }
3878};
3879
3880/** Returns an index map for two father-son-molecules.
3881 * The map tells which atom in this molecule corresponds to which one in the other molecul with their fathers.
3882 * \param *out output stream for debugging
3883 * \param *OtherMolecule corresponding molecule with fathers
3884 * \return allocated map of size molecule::AtomCount with map
3885 * \todo make this with a good sort O(n), not O(n^2)
3886 */
3887int * molecule::GetFatherSonAtomicMap(ofstream *out, molecule *OtherMolecule)
3888{
3889 atom *Walker = NULL, *OtherWalker = NULL;
3890 *out << Verbose(3) << "Begin of GetFatherAtomicMap." << endl;
3891 int *AtomicMap = (int *) Malloc(sizeof(int)*AtomCount, "molecule::GetAtomicMap: *AtomicMap"); //Calloc
3892 for (int i=0;i<AtomCount;i++)
3893 AtomicMap[i] = -1;
3894 if (OtherMolecule == this) { // same molecule
3895 for (int i=0;i<AtomCount;i++) // no need as -1 means already that there is trivial correspondence
3896 AtomicMap[i] = i;
3897 *out << Verbose(4) << "Map is trivial." << endl;
3898 } else {
3899 *out << Verbose(4) << "Map is ";
3900 Walker = start;
3901 while (Walker->next != end) {
3902 Walker = Walker->next;
3903 if (Walker->father == NULL) {
3904 AtomicMap[Walker->nr] = -2;
3905 } else {
3906 OtherWalker = OtherMolecule->start;
3907 while (OtherWalker->next != OtherMolecule->end) {
3908 OtherWalker = OtherWalker->next;
3909 //for (int i=0;i<AtomCount;i++) { // search atom
3910 //for (int j=0;j<OtherMolecule->AtomCount;j++) {
3911 //*out << Verbose(4) << "Comparing father " << Walker->father << " with the other one " << OtherWalker->father << "." << endl;
3912 if (Walker->father == OtherWalker)
3913 AtomicMap[Walker->nr] = OtherWalker->nr;
3914 }
3915 }
3916 *out << AtomicMap[Walker->nr] << "\t";
3917 }
3918 *out << endl;
3919 }
3920 *out << Verbose(3) << "End of GetFatherAtomicMap." << endl;
3921 return AtomicMap;
3922};
3923
Note: See TracBrowser for help on using the repository browser.