source: src/molecules.cpp@ 1f066fe

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 1f066fe was f14a52, checked in by Frederik Heber <heber@…>, 17 years ago

StoreFragmentFromKeySet(): BUGFIX - commented out the Leaf->AddBond for non-hydrogen atoms by accident

This happened because the adding was hidden in the "*out << ... << endl;" directive. I put it onto an extra line and surrounded it with "*out <<" and so on so that it may still be used.

  • Property mode set to 100644
File size: 190.4 KB
Line 
1/** \file molecules.cpp
2 *
3 * Functions for the class molecule.
4 *
5 */
6
7#include "molecules.hpp"
8
9/************************************* Other Functions *************************************/
10
11/** Determines sum of squared distances of \a X to all \a **vectors.
12 * \param *x reference vector
13 * \param *params
14 * \return sum of square distances
15 */
16double LSQ (const gsl_vector * x, void * params)
17{
18 double sum = 0.;
19 struct LSQ_params *par = (struct LSQ_params *)params;
20 vector **vectors = par->vectors;
21 int num = par->num;
22
23 for (int i=num;i--;) {
24 for(int j=NDIM;j--;)
25 sum += (gsl_vector_get(x,j) - (vectors[i])->x[j])*(gsl_vector_get(x,j) - (vectors[i])->x[j]);
26 }
27
28 return sum;
29};
30
31/************************************* Functions for class molecule *********************************/
32
33/** Constructor of class molecule.
34 * Initialises molecule list with correctly referenced start and end, and sets molecule::last_atom to zero.
35 */
36molecule::molecule(periodentafel *teil)
37{
38 // init atom chain list
39 start = new atom;
40 end = new atom;
41 start->father = NULL;
42 end->father = NULL;
43 link(start,end);
44 // init bond chain list
45 first = new bond(start, end, 1, -1);
46 last = new bond(start, end, 1, -1);
47 link(first,last);
48 // other stuff
49 last_atom = 0;
50 elemente = teil;
51 AtomCount = 0;
52 BondCount = 0;
53 NoNonBonds = 0;
54 NoNonHydrogen = 0;
55 NoCyclicBonds = 0;
56 ListOfBondsPerAtom = NULL;
57 NumberOfBondsPerAtom = NULL;
58 ElementCount = 0;
59 for(int i=MAX_ELEMENTS;i--;)
60 ElementsInMolecule[i] = 0;
61 cell_size[0] = cell_size[2] = cell_size[5]= 20.;
62 cell_size[1] = cell_size[3] = cell_size[4]= 0.;
63};
64
65/** Destructor of class molecule.
66 * Initialises molecule list with correctly referenced start and end, and sets molecule::last_atom to zero.
67 */
68molecule::~molecule()
69{
70 if (ListOfBondsPerAtom != NULL)
71 for(int i=AtomCount;i--;)
72 Free((void **)&ListOfBondsPerAtom[i], "molecule::~molecule: ListOfBondsPerAtom[i]");
73 Free((void **)&ListOfBondsPerAtom, "molecule::~molecule: ListOfBondsPerAtom");
74 Free((void **)&NumberOfBondsPerAtom, "molecule::~molecule: NumberOfBondsPerAtom");
75 CleanupMolecule();
76 delete(first);
77 delete(last);
78 delete(end);
79 delete(start);
80};
81
82/** Adds given atom \a *pointer from molecule list.
83 * Increases molecule::last_atom and gives last number to added atom and names it according to its element::abbrev and molecule::AtomCount
84 * \param *pointer allocated and set atom
85 * \return true - succeeded, false - atom not found in list
86 */
87bool molecule::AddAtom(atom *pointer)
88{
89 if (pointer != NULL) {
90 pointer->sort = &pointer->nr;
91 pointer->nr = last_atom++; // increase number within molecule
92 AtomCount++;
93 if (pointer->type != NULL) {
94 if (ElementsInMolecule[pointer->type->Z] == 0)
95 ElementCount++;
96 ElementsInMolecule[pointer->type->Z]++; // increase number of elements
97 if (pointer->type->Z != 1)
98 NoNonHydrogen++;
99 if (pointer->Name == NULL) {
100 Free((void **)&pointer->Name, "molecule::AddAtom: *pointer->Name");
101 pointer->Name = (char *) Malloc(sizeof(char)*6, "molecule::AddAtom: *pointer->Name");
102 sprintf(pointer->Name, "%2s%02d", pointer->type->symbol, pointer->nr+1);
103 }
104 }
105 return add(pointer, end);
106 } else
107 return false;
108};
109
110/** Adds a copy of the given atom \a *pointer from molecule list.
111 * Increases molecule::last_atom and gives last number to added atom.
112 * \param *pointer allocated and set atom
113 * \return true - succeeded, false - atom not found in list
114 */
115atom * molecule::AddCopyAtom(atom *pointer)
116{
117 if (pointer != NULL) {
118 atom *walker = new atom();
119 walker->type = pointer->type; // copy element of atom
120 walker->x.CopyVector(&pointer->x); // copy coordination
121 walker->v.CopyVector(&pointer->v); // copy velocity
122 walker->FixedIon = pointer->FixedIon;
123 walker->sort = &walker->nr;
124 walker->nr = last_atom++; // increase number within molecule
125 walker->father = pointer; //->GetTrueFather();
126 walker->Name = (char *) Malloc(sizeof(char)*strlen(pointer->Name)+1, "molecule::AddCopyAtom: *Name");
127 strcpy (walker->Name, pointer->Name);
128 add(walker, end);
129 if ((pointer->type != NULL) && (pointer->type->Z != 1))
130 NoNonHydrogen++;
131 AtomCount++;
132 return walker;
133 } else
134 return NULL;
135};
136
137/** Adds a Hydrogen atom in replacement for the given atom \a *partner in bond with a *origin.
138 * Here, we have to distinguish between single, double or triple bonds as stated by \a BondDegree, that each demand
139 * a different scheme when adding \a *replacement atom for the given one.
140 * -# Single Bond: Simply add new atom with bond distance rescaled to typical hydrogen one
141 * -# Double Bond: Here, we need the **BondList of the \a *origin atom, by scanning for the other bonds instead of
142 * *Bond, we use the through these connected atoms to determine the plane they lie in, vector::MakeNormalVector().
143 * The orthonormal vector to this plane along with the vector in *Bond direction determines the plane the two
144 * replacing hydrogens shall lie in. Now, all remains to do is take the usual hydrogen double bond angle for the
145 * element of *origin and form the sin/cos admixture of both plane vectors for the new coordinates of the two
146 * hydrogens forming this angle with *origin.
147 * -# Triple Bond: The idea is to set up a tetraoid (C1-H1-H2-H3) (however the lengths \f$b\f$ of the sides of the base
148 * triangle formed by the to be added hydrogens are not equal to the typical bond distance \f$l\f$ but have to be
149 * determined from the typical angle \f$\alpha\f$ for a hydrogen triple connected to the element of *origin):
150 * We have the height \f$d\f$ as the vector in *Bond direction (from triangle C1-H1-H2).
151 * \f[ h = l \cdot \cos{\left (\frac{\alpha}{2} \right )} \qquad b = 2l \cdot \sin{\left (\frac{\alpha}{2} \right)} \quad \rightarrow \quad d = l \cdot \sqrt{\cos^2{\left (\frac{\alpha}{2} \right)}-\frac{1}{3}\cdot\sin^2{\left (\frac{\alpha}{2}\right )}}
152 * \f]
153 * vector::GetNormalVector() creates one orthonormal vector from this *Bond vector and vector::MakeNormalVector creates
154 * the third one from the former two vectors. The latter ones form the plane of the base triangle mentioned above.
155 * The lengths for these are \f$f\f$ and \f$g\f$ (from triangle H1-H2-(center of H1-H2-H3)) with knowledge that
156 * the median lines in an isosceles triangle meet in the center point with a ratio 2:1.
157 * \f[ f = \frac{b}{\sqrt{3}} \qquad g = \frac{b}{2}
158 * \f]
159 * as the coordination of all three atoms in the coordinate system of these three vectors:
160 * \f$\pmatrix{d & f & 0}\f$, \f$\pmatrix{d & -0.5 \cdot f & g}\f$ and \f$\pmatrix{d & -0.5 \cdot f & -g}\f$.
161 *
162 * \param *out output stream for debugging
163 * \param *Bond pointer to bond between \a *origin and \a *replacement
164 * \param *TopOrigin son of \a *origin of upper level molecule (the atom added to this molecule as a copy of \a *origin)
165 * \param *origin pointer to atom which acts as the origin for scaling the added hydrogen to correct bond length
166 * \param *replacement pointer to the atom which shall be copied as a hydrogen atom in this molecule
167 * \param **BondList list of bonds \a *replacement has (necessary to determine plane for double and triple bonds)
168 * \param NumBond number of bonds in \a **BondList
169 * \param isAngstroem whether the coordination of the given atoms is in AtomicLength (false) or Angstrom(true)
170 * \return number of atoms added, if < bond::BondDegree then something went wrong
171 * \todo double and triple bonds splitting (always use the tetraeder angle!)
172 */
173bool molecule::AddHydrogenReplacementAtom(ofstream *out, bond *TopBond, atom *BottomOrigin, atom *TopOrigin, atom *TopReplacement, bond **BondList, int NumBond, bool IsAngstroem)
174{
175 double bondlength; // bond length of the bond to be replaced/cut
176 double bondangle; // bond angle of the bond to be replaced/cut
177 double BondRescale; // rescale value for the hydrogen bond length
178 bool AllWentWell = true; // flag gathering the boolean return value of molecule::AddAtom and other functions, as return value on exit
179 bond *FirstBond = NULL, *SecondBond = NULL; // Other bonds in double bond case to determine "other" plane
180 atom *FirstOtherAtom = NULL, *SecondOtherAtom = NULL, *ThirdOtherAtom = NULL; // pointer to hydrogen atoms to be added
181 double b,l,d,f,g, alpha, factors[NDIM]; // hold temporary values in triple bond case for coordination determination
182 vector OrthoVector1, OrthoVector2; // temporary vectors in coordination construction
183 vector InBondVector; // vector in direction of *Bond
184 bond *Binder = NULL;
185 double *matrix;
186
187// *out << Verbose(3) << "Begin of AddHydrogenReplacementAtom." << endl;
188 // create vector in direction of bond
189 InBondVector.CopyVector(&TopReplacement->x);
190 InBondVector.SubtractVector(&TopOrigin->x);
191 bondlength = InBondVector.Norm();
192
193 // is greater than typical bond distance? Then we have to correct periodically
194 // the problem is not the H being out of the box, but InBondVector have the wrong direction
195 // due to TopReplacement or Origin being on the wrong side!
196 if (bondlength > BondDistance) {
197// *out << Verbose(4) << "InBondVector is: ";
198// InBondVector.Output(out);
199// *out << endl;
200 OrthoVector1.Zero();
201 for (int i=NDIM;i--;) {
202 l = TopReplacement->x.x[i] - TopOrigin->x.x[i];
203 if (fabs(l) > BondDistance) { // is component greater than bond distance
204 OrthoVector1.x[i] = (l < 0) ? -1. : +1.;
205 } // (signs are correct, was tested!)
206 }
207 matrix = ReturnFullMatrixforSymmetric(cell_size);
208 OrthoVector1.MatrixMultiplication(matrix);
209 InBondVector.SubtractVector(&OrthoVector1); // subtract just the additional translation
210 Free((void **)&matrix, "molecule::AddHydrogenReplacementAtom: *matrix");
211 bondlength = InBondVector.Norm();
212// *out << Verbose(4) << "Corrected InBondVector is now: ";
213// InBondVector.Output(out);
214// *out << endl;
215 } // periodic correction finished
216
217 InBondVector.Normalize();
218 // get typical bond length and store as scale factor for later
219 BondRescale = TopOrigin->type->HBondDistance[TopBond->BondDegree-1];
220 if (BondRescale == -1) {
221 cerr << Verbose(3) << "WARNING: There is no typical bond distance for bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") of degree " << TopBond->BondDegree << "!" << endl;
222 BondRescale = bondlength;
223 } else {
224 if (!IsAngstroem)
225 BondRescale /= (1.*AtomicLengthToAngstroem);
226 }
227
228 // discern single, double and triple bonds
229 switch(TopBond->BondDegree) {
230 case 1:
231 FirstOtherAtom = new atom(); // new atom
232 FirstOtherAtom->type = elemente->FindElement(1); // element is Hydrogen
233 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
234 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
235 if (TopReplacement->type->Z == 1) { // neither rescale nor replace if it's already hydrogen
236 FirstOtherAtom->father = TopReplacement;
237 BondRescale = bondlength;
238 } else {
239 FirstOtherAtom->father = NULL; // if we replace hydrogen, we mark it as our father, otherwise we are just an added hydrogen with no father
240 }
241 InBondVector.Scale(&BondRescale); // rescale the distance vector to Hydrogen bond length
242 FirstOtherAtom->x.CopyVector(&TopOrigin->x); // set coordination to origin ...
243 FirstOtherAtom->x.AddVector(&InBondVector); // ... and add distance vector to replacement atom
244 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
245// *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
246// FirstOtherAtom->x.Output(out);
247// *out << endl;
248 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
249 Binder->Cyclic = false;
250 Binder->Type = TreeEdge;
251 break;
252 case 2:
253 // determine two other bonds (warning if there are more than two other) plus valence sanity check
254 for (int i=0;i<NumBond;i++) {
255 if (BondList[i] != TopBond) {
256 if (FirstBond == NULL) {
257 FirstBond = BondList[i];
258 FirstOtherAtom = BondList[i]->GetOtherAtom(TopOrigin);
259 } else if (SecondBond == NULL) {
260 SecondBond = BondList[i];
261 SecondOtherAtom = BondList[i]->GetOtherAtom(TopOrigin);
262 } else {
263 *out << Verbose(3) << "WARNING: Detected more than four bonds for atom " << TopOrigin->Name;
264 }
265 }
266 }
267 if (SecondOtherAtom == NULL) { // then we have an atom with valence four, but only 3 bonds: one to replace and one which is TopBond (third is FirstBond)
268 SecondBond = TopBond;
269 SecondOtherAtom = TopReplacement;
270 }
271 if (FirstOtherAtom != NULL) { // then we just have this double bond and the plane does not matter at all
272// *out << Verbose(3) << "Regarding the double bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") to be constructed: Taking " << FirstOtherAtom->Name << " and " << SecondOtherAtom->Name << " along with " << TopOrigin->Name << " to determine orthogonal plane." << endl;
273
274 // determine the plane of these two with the *origin
275 AllWentWell = AllWentWell && OrthoVector1.MakeNormalVector(&TopOrigin->x, &FirstOtherAtom->x, &SecondOtherAtom->x);
276 } else {
277 OrthoVector1.GetOneNormalVector(&InBondVector);
278 }
279 //*out << Verbose(3)<< "Orthovector1: ";
280 //OrthoVector1.Output(out);
281 //*out << endl;
282 // orthogonal vector and bond vector between origin and replacement form the new plane
283 OrthoVector1.MakeNormalVector(&InBondVector);
284 OrthoVector1.Normalize();
285 //*out << Verbose(3) << "ReScaleCheck: " << OrthoVector1.Norm() << " and " << InBondVector.Norm() << "." << endl;
286
287 // create the two Hydrogens ...
288 FirstOtherAtom = new atom();
289 SecondOtherAtom = new atom();
290 FirstOtherAtom->type = elemente->FindElement(1);
291 SecondOtherAtom->type = elemente->FindElement(1);
292 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
293 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
294 SecondOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
295 SecondOtherAtom->FixedIon = TopReplacement->FixedIon;
296 FirstOtherAtom->father = NULL; // we are just an added hydrogen with no father
297 SecondOtherAtom->father = NULL; // we are just an added hydrogen with no father
298 bondangle = TopOrigin->type->HBondAngle[1];
299 if (bondangle == -1) {
300 *out << Verbose(3) << "WARNING: There is no typical bond angle for bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") of degree " << TopBond->BondDegree << "!" << endl;
301 bondangle = 0;
302 }
303 bondangle *= M_PI/180./2.;
304// *out << Verbose(3) << "ReScaleCheck: InBondVector ";
305// InBondVector.Output(out);
306// *out << endl;
307// *out << Verbose(3) << "ReScaleCheck: Orthovector ";
308// OrthoVector1.Output(out);
309// *out << endl;
310// *out << Verbose(3) << "Half the bond angle is " << bondangle << ", sin and cos of it: " << sin(bondangle) << ", " << cos(bondangle) << endl;
311 FirstOtherAtom->x.Zero();
312 SecondOtherAtom->x.Zero();
313 for(int i=NDIM;i--;) { // rotate by half the bond angle in both directions (InBondVector is bondangle = 0 direction)
314 FirstOtherAtom->x.x[i] = InBondVector.x[i] * cos(bondangle) + OrthoVector1.x[i] * (sin(bondangle));
315 SecondOtherAtom->x.x[i] = InBondVector.x[i] * cos(bondangle) + OrthoVector1.x[i] * (-sin(bondangle));
316 }
317 FirstOtherAtom->x.Scale(&BondRescale); // rescale by correct BondDistance
318 SecondOtherAtom->x.Scale(&BondRescale);
319 //*out << Verbose(3) << "ReScaleCheck: " << FirstOtherAtom->x.Norm() << " and " << SecondOtherAtom->x.Norm() << "." << endl;
320 for(int i=NDIM;i--;) { // and make relative to origin atom
321 FirstOtherAtom->x.x[i] += TopOrigin->x.x[i];
322 SecondOtherAtom->x.x[i] += TopOrigin->x.x[i];
323 }
324 // ... and add to molecule
325 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
326 AllWentWell = AllWentWell && AddAtom(SecondOtherAtom);
327// *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
328// FirstOtherAtom->x.Output(out);
329// *out << endl;
330// *out << Verbose(4) << "Added " << *SecondOtherAtom << " at: ";
331// SecondOtherAtom->x.Output(out);
332// *out << endl;
333 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
334 Binder->Cyclic = false;
335 Binder->Type = TreeEdge;
336 Binder = AddBond(BottomOrigin, SecondOtherAtom, 1);
337 Binder->Cyclic = false;
338 Binder->Type = TreeEdge;
339 break;
340 case 3:
341 // take the "usual" tetraoidal angle and add the three Hydrogen in direction of the bond (height of the tetraoid)
342 FirstOtherAtom = new atom();
343 SecondOtherAtom = new atom();
344 ThirdOtherAtom = new atom();
345 FirstOtherAtom->type = elemente->FindElement(1);
346 SecondOtherAtom->type = elemente->FindElement(1);
347 ThirdOtherAtom->type = elemente->FindElement(1);
348 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
349 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
350 SecondOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
351 SecondOtherAtom->FixedIon = TopReplacement->FixedIon;
352 ThirdOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
353 ThirdOtherAtom->FixedIon = TopReplacement->FixedIon;
354 FirstOtherAtom->father = NULL; // we are just an added hydrogen with no father
355 SecondOtherAtom->father = NULL; // we are just an added hydrogen with no father
356 ThirdOtherAtom->father = NULL; // we are just an added hydrogen with no father
357
358 // we need to vectors orthonormal the InBondVector
359 AllWentWell = AllWentWell && OrthoVector1.GetOneNormalVector(&InBondVector);
360// *out << Verbose(3) << "Orthovector1: ";
361// OrthoVector1.Output(out);
362// *out << endl;
363 AllWentWell = AllWentWell && OrthoVector2.MakeNormalVector(&InBondVector, &OrthoVector1);
364// *out << Verbose(3) << "Orthovector2: ";
365// OrthoVector2.Output(out);
366// *out << endl;
367
368 // create correct coordination for the three atoms
369 alpha = (TopOrigin->type->HBondAngle[2])/180.*M_PI/2.; // retrieve triple bond angle from database
370 l = BondRescale; // desired bond length
371 b = 2.*l*sin(alpha); // base length of isosceles triangle
372 d = l*sqrt(cos(alpha)*cos(alpha) - sin(alpha)*sin(alpha)/3.); // length for InBondvector
373 f = b/sqrt(3.); // length for OrthVector1
374 g = b/2.; // length for OrthVector2
375// *out << Verbose(3) << "Bond length and half-angle: " << l << ", " << alpha << "\t (b,d,f,g) = " << b << ", " << d << ", " << f << ", " << g << ", " << endl;
376// *out << Verbose(3) << "The three Bond lengths: " << sqrt(d*d+f*f) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g) << endl;
377 factors[0] = d;
378 factors[1] = f;
379 factors[2] = 0.;
380 FirstOtherAtom->x.LinearCombinationOfVectors(&InBondVector, &OrthoVector1, &OrthoVector2, factors);
381 factors[1] = -0.5*f;
382 factors[2] = g;
383 SecondOtherAtom->x.LinearCombinationOfVectors(&InBondVector, &OrthoVector1, &OrthoVector2, factors);
384 factors[2] = -g;
385 ThirdOtherAtom->x.LinearCombinationOfVectors(&InBondVector, &OrthoVector1, &OrthoVector2, factors);
386
387 // rescale each to correct BondDistance
388// FirstOtherAtom->x.Scale(&BondRescale);
389// SecondOtherAtom->x.Scale(&BondRescale);
390// ThirdOtherAtom->x.Scale(&BondRescale);
391
392 // and relative to *origin atom
393 FirstOtherAtom->x.AddVector(&TopOrigin->x);
394 SecondOtherAtom->x.AddVector(&TopOrigin->x);
395 ThirdOtherAtom->x.AddVector(&TopOrigin->x);
396
397 // ... and add to molecule
398 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
399 AllWentWell = AllWentWell && AddAtom(SecondOtherAtom);
400 AllWentWell = AllWentWell && AddAtom(ThirdOtherAtom);
401// *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
402// FirstOtherAtom->x.Output(out);
403// *out << endl;
404// *out << Verbose(4) << "Added " << *SecondOtherAtom << " at: ";
405// SecondOtherAtom->x.Output(out);
406// *out << endl;
407// *out << Verbose(4) << "Added " << *ThirdOtherAtom << " at: ";
408// ThirdOtherAtom->x.Output(out);
409// *out << endl;
410 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
411 Binder->Cyclic = false;
412 Binder->Type = TreeEdge;
413 Binder = AddBond(BottomOrigin, SecondOtherAtom, 1);
414 Binder->Cyclic = false;
415 Binder->Type = TreeEdge;
416 Binder = AddBond(BottomOrigin, ThirdOtherAtom, 1);
417 Binder->Cyclic = false;
418 Binder->Type = TreeEdge;
419 break;
420 default:
421 cerr << "ERROR: BondDegree does not state single, double or triple bond!" << endl;
422 AllWentWell = false;
423 break;
424 }
425
426// *out << Verbose(3) << "End of AddHydrogenReplacementAtom." << endl;
427 return AllWentWell;
428};
429
430/** Adds given atom \a *pointer from molecule list.
431 * Increases molecule::last_atom and gives last number to added atom.
432 * \param filename name and path of xyz file
433 * \return true - succeeded, false - file not found
434 */
435bool molecule::AddXYZFile(string filename)
436{
437 istringstream *input = NULL;
438 int NumberOfAtoms = 0; // atom number in xyz read
439 int i, j; // loop variables
440 atom *Walker = NULL; // pointer to added atom
441 char shorthand[3]; // shorthand for atom name
442 ifstream xyzfile; // xyz file
443 string line; // currently parsed line
444 double x[3]; // atom coordinates
445
446 xyzfile.open(filename.c_str());
447 if (!xyzfile)
448 return false;
449
450 getline(xyzfile,line,'\n'); // Read numer of atoms in file
451 input = new istringstream(line);
452 *input >> NumberOfAtoms;
453 cout << Verbose(0) << "Parsing " << NumberOfAtoms << " atoms in file." << endl;
454 getline(xyzfile,line,'\n'); // Read comment
455 cout << Verbose(1) << "Comment: " << line << endl;
456
457 for(i=0;i<NumberOfAtoms;i++){
458 Walker = new atom;
459 getline(xyzfile,line,'\n');
460 istringstream *item = new istringstream(line);
461 //istringstream input(line);
462 //cout << Verbose(1) << "Reading: " << line << endl;
463 *item >> shorthand;
464 *item >> x[0];
465 *item >> x[1];
466 *item >> x[2];
467 Walker->type = elemente->FindElement(shorthand);
468 if (Walker->type == NULL) {
469 cerr << "Could not parse the element at line: '" << line << "', setting to H.";
470 Walker->type = elemente->FindElement(1);
471 }
472 for(j=NDIM;j--;)
473 Walker->x.x[j] = x[j];
474 AddAtom(Walker); // add to molecule
475 delete(item);
476 }
477 xyzfile.close();
478 delete(input);
479 return true;
480};
481
482/** Creates a copy of this molecule.
483 * \return copy of molecule
484 */
485molecule *molecule::CopyMolecule()
486{
487 molecule *copy = new molecule(elemente);
488 atom *CurrentAtom = NULL;
489 atom *LeftAtom = NULL, *RightAtom = NULL;
490 atom *Walker = NULL;
491
492 // copy all atoms
493 Walker = start;
494 while(Walker->next != end) {
495 Walker = Walker->next;
496 CurrentAtom = copy->AddCopyAtom(Walker);
497 }
498
499 // copy all bonds
500 bond *Binder = first;
501 bond *NewBond = NULL;
502 while(Binder->next != last) {
503 Binder = Binder->next;
504 // get the pendant atoms of current bond in the copy molecule
505 LeftAtom = copy->start;
506 while (LeftAtom->next != copy->end) {
507 LeftAtom = LeftAtom->next;
508 if (LeftAtom->father == Binder->leftatom)
509 break;
510 }
511 RightAtom = copy->start;
512 while (RightAtom->next != copy->end) {
513 RightAtom = RightAtom->next;
514 if (RightAtom->father == Binder->rightatom)
515 break;
516 }
517 NewBond = copy->AddBond(LeftAtom, RightAtom, Binder->BondDegree);
518 NewBond->Cyclic = Binder->Cyclic;
519 if (Binder->Cyclic)
520 copy->NoCyclicBonds++;
521 NewBond->Type = Binder->Type;
522 }
523 // correct fathers
524 Walker = copy->start;
525 while(Walker->next != copy->end) {
526 Walker = Walker->next;
527 if (Walker->father->father == Walker->father) // same atom in copy's father points to itself
528 Walker->father = Walker; // set father to itself (copy of a whole molecule)
529 else
530 Walker->father = Walker->father->father; // set father to original's father
531 }
532 // copy values
533 copy->CountAtoms((ofstream *)&cout);
534 copy->CountElements();
535 if (first->next != last) { // if adjaceny list is present
536 copy->BondDistance = BondDistance;
537 copy->CreateListOfBondsPerAtom((ofstream *)&cout);
538 }
539
540 return copy;
541};
542
543/** Adds a bond to a the molecule specified by two atoms, \a *first and \a *second.
544 * Also updates molecule::BondCount and molecule::NoNonBonds.
545 * \param *first first atom in bond
546 * \param *second atom in bond
547 * \return pointer to bond or NULL on failure
548 */
549bond * molecule::AddBond(atom *atom1, atom *atom2, int degree=1)
550{
551 bond *Binder = NULL;
552 if ((atom1 != NULL) && (FindAtom(atom1->nr) != NULL) && (atom2 != NULL) && (FindAtom(atom2->nr) != NULL)) {
553 Binder = new bond(atom1, atom2, degree, BondCount++);
554 if ((atom1->type != NULL) && (atom1->type->Z != 1) && (atom2->type != NULL) && (atom2->type->Z != 1))
555 NoNonBonds++;
556 add(Binder, last);
557 } else {
558 cerr << Verbose(1) << "ERROR: Could not add bond between " << atom1->Name << " and " << atom2->Name << " as one or both are not present in the molecule." << endl;
559 }
560 return Binder;
561};
562
563/** Remove bond from bond chain list.
564 * \todo Function not implemented yet
565 * \param *pointer bond pointer
566 * \return true - bound found and removed, false - bond not found/removed
567 */
568bool molecule::RemoveBond(bond *pointer)
569{
570 //cerr << Verbose(1) << "molecule::RemoveBond: Function not implemented yet." << endl;
571 removewithoutcheck(pointer);
572 return true;
573};
574
575/** Remove every bond from bond chain list that atom \a *BondPartner is a constituent of.
576 * \todo Function not implemented yet
577 * \param *BondPartner atom to be removed
578 * \return true - bounds found and removed, false - bonds not found/removed
579 */
580bool molecule::RemoveBonds(atom *BondPartner)
581{
582 cerr << Verbose(1) << "molecule::RemoveBond: Function not implemented yet." << endl;
583 return false;
584};
585
586/** Sets the molecule::cell_size to the components of \a *dim (rectangular box)
587 * \param *dim vector class
588 */
589void molecule::SetBoxDimension(vector *dim)
590{
591 cell_size[0] = dim->x[0];
592 cell_size[1] = 0.;
593 cell_size[2] = dim->x[1];
594 cell_size[3] = 0.;
595 cell_size[4] = 0.;
596 cell_size[5] = dim->x[2];
597};
598
599/** Centers the molecule in the box whose lengths are defined by vector \a *BoxLengths.
600 * \param *out output stream for debugging
601 * \param *BoxLengths box lengths
602 */
603bool molecule::CenterInBox(ofstream *out, vector *BoxLengths)
604{
605 bool status = true;
606 atom *ptr = NULL;
607 vector *min = new vector;
608 vector *max = new vector;
609
610 // gather min and max for each axis
611 ptr = start->next; // start at first in list
612 if (ptr != end) { //list not empty?
613 for (int i=NDIM;i--;) {
614 max->x[i] = ptr->x.x[i];
615 min->x[i] = ptr->x.x[i];
616 }
617 while (ptr->next != end) { // continue with second if present
618 ptr = ptr->next;
619 //ptr->Output(1,1,out);
620 for (int i=NDIM;i--;) {
621 max->x[i] = (max->x[i] < ptr->x.x[i]) ? ptr->x.x[i] : max->x[i];
622 min->x[i] = (min->x[i] > ptr->x.x[i]) ? ptr->x.x[i] : min->x[i];
623 }
624 }
625 }
626 // sanity check
627 for(int i=NDIM;i--;) {
628 if (max->x[i] - min->x[i] > BoxLengths->x[i])
629 status = false;
630 }
631 // warn if check failed
632 if (!status)
633 *out << "WARNING: molecule is bigger than defined box!" << endl;
634 else { // else center in box
635 ptr = start;
636 while (ptr->next != end) {
637 ptr = ptr->next;
638 for (int i=NDIM;i--;)
639 ptr->x.x[i] += -(max->x[i] + min->x[i])/2. + BoxLengths->x[i]/2.; // first term centers molecule at (0,0,0), second shifts to center of new box
640 }
641 }
642
643 // free and exit
644 delete(min);
645 delete(max);
646 return status;
647};
648
649/** Centers the edge of the atoms at (0,0,0).
650 * \param *out output stream for debugging
651 * \param *max coordinates of other edge, specifying box dimensions.
652 */
653void molecule::CenterEdge(ofstream *out, vector *max)
654{
655 vector *min = new vector;
656
657// *out << Verbose(3) << "Begin of CenterEdge." << endl;
658 atom *ptr = start->next; // start at first in list
659 if (ptr != end) { //list not empty?
660 for (int i=NDIM;i--;) {
661 max->x[i] = ptr->x.x[i];
662 min->x[i] = ptr->x.x[i];
663 }
664 while (ptr->next != end) { // continue with second if present
665 ptr = ptr->next;
666 //ptr->Output(1,1,out);
667 for (int i=NDIM;i--;) {
668 max->x[i] = (max->x[i] < ptr->x.x[i]) ? ptr->x.x[i] : max->x[i];
669 min->x[i] = (min->x[i] > ptr->x.x[i]) ? ptr->x.x[i] : min->x[i];
670 }
671 }
672// *out << Verbose(4) << "Maximum is ";
673// max->Output(out);
674// *out << ", Minimum is ";
675// min->Output(out);
676// *out << endl;
677
678 for (int i=NDIM;i--;) {
679 min->x[i] *= -1.;
680 max->x[i] += min->x[i];
681 }
682 Translate(min);
683 }
684 delete(min);
685// *out << Verbose(3) << "End of CenterEdge." << endl;
686};
687
688/** Centers the center of the atoms at (0,0,0).
689 * \param *out output stream for debugging
690 * \param *center return vector for translation vector
691 */
692void molecule::CenterOrigin(ofstream *out, vector *center)
693{
694 int Num = 0;
695 atom *ptr = start->next; // start at first in list
696
697 for(int i=NDIM;i--;) // zero center vector
698 center->x[i] = 0.;
699
700 if (ptr != end) { //list not empty?
701 while (ptr->next != end) { // continue with second if present
702 ptr = ptr->next;
703 Num++;
704 center->AddVector(&ptr->x);
705 }
706 center->Scale(-1./Num); // divide through total number (and sign for direction)
707 Translate(center);
708 }
709};
710
711/** Returns vector pointing to center of gravity.
712 * \param *out output stream for debugging
713 * \return pointer to center of gravity vector
714 */
715vector * molecule::DetermineCenterOfGravity(ofstream *out)
716{
717 atom *ptr = start->next; // start at first in list
718 vector *a = new vector();
719 vector tmp;
720 double Num = 0;
721
722 a->Zero();
723
724 if (ptr != end) { //list not empty?
725 while (ptr->next != end) { // continue with second if present
726 ptr = ptr->next;
727 Num += ptr->type->mass;
728 tmp.CopyVector(&ptr->x);
729 tmp.Scale(ptr->type->mass); // scale by mass
730 a->AddVector(&tmp);
731 }
732 a->Scale(-1./Num); // divide through total mass (and sign for direction)
733 }
734 *out << Verbose(1) << "Resulting center of gravity: ";
735 a->Output(out);
736 *out << endl;
737 return a;
738};
739
740/** Centers the center of gravity of the atoms at (0,0,0).
741 * \param *out output stream for debugging
742 * \param *center return vector for translation vector
743 */
744void molecule::CenterGravity(ofstream *out, vector *center)
745{
746 if (center == NULL) {
747 DetermineCenter(*center);
748 Translate(center);
749 delete(center);
750 } else {
751 Translate(center);
752 }
753};
754
755/** Scales all atoms by \a *factor.
756 * \param *factor pointer to scaling factor
757 */
758void molecule::Scale(double **factor)
759{
760 atom *ptr = start;
761
762 while (ptr->next != end) {
763 ptr = ptr->next;
764 ptr->x.Scale(factor);
765 }
766};
767
768/** Translate all atoms by given vector.
769 * \param trans[] translation vector.
770 */
771void molecule::Translate(const vector *trans)
772{
773 atom *ptr = start;
774
775 while (ptr->next != end) {
776 ptr = ptr->next;
777 ptr->x.Translate(trans);
778 }
779};
780
781/** Mirrors all atoms against a given plane.
782 * \param n[] normal vector of mirror plane.
783 */
784void molecule::Mirror(const vector *n)
785{
786 atom *ptr = start;
787
788 while (ptr->next != end) {
789 ptr = ptr->next;
790 ptr->x.Mirror(n);
791 }
792};
793
794/** Determines center of molecule (yet not considering atom masses).
795 * \param Center reference to return vector
796 */
797void molecule::DetermineCenter(vector &Center)
798{
799 atom *Walker = start;
800 bond *Binder = NULL;
801 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
802 double tmp;
803 bool flag;
804 vector TestVector, TranslationVector;
805
806 do {
807 Center.Zero();
808 flag = true;
809 while (Walker->next != end) {
810 Walker = Walker->next;
811#ifdef ADDHYDROGEN
812 if (Walker->type->Z != 1) {
813#endif
814 TestVector.CopyVector(&Walker->x);
815 TestVector.InverseMatrixMultiplication(matrix);
816 TranslationVector.Zero();
817 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {
818 Binder = ListOfBondsPerAtom[Walker->nr][i];
819 if (Walker->nr < Binder->GetOtherAtom(Walker)->nr) // otherwise we shift one to, the other fro and gain nothing
820 for (int j=0;j<NDIM;j++) {
821 tmp = Walker->x.x[j] - Binder->GetOtherAtom(Walker)->x.x[j];
822 if ((fabs(tmp)) > BondDistance) {
823 flag = false;
824 cout << Verbose(0) << "Hit: atom " << Walker->Name << " in bond " << *Binder << " has to be shifted due to " << tmp << "." << endl;
825 if (tmp > 0)
826 TranslationVector.x[j] -= 1.;
827 else
828 TranslationVector.x[j] += 1.;
829 }
830 }
831 }
832 TestVector.AddVector(&TranslationVector);
833 TestVector.MatrixMultiplication(matrix);
834 Center.AddVector(&TestVector);
835 cout << Verbose(1) << "Vector is: ";
836 TestVector.Output((ofstream *)&cout);
837 cout << endl;
838#ifdef ADDHYDROGEN
839 // now also change all hydrogens
840 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {
841 Binder = ListOfBondsPerAtom[Walker->nr][i];
842 if (Binder->GetOtherAtom(Walker)->type->Z == 1) {
843 TestVector.CopyVector(&Binder->GetOtherAtom(Walker)->x);
844 TestVector.InverseMatrixMultiplication(matrix);
845 TestVector.AddVector(&TranslationVector);
846 TestVector.MatrixMultiplication(matrix);
847 Center.AddVector(&TestVector);
848 cout << Verbose(1) << "Hydrogen Vector is: ";
849 TestVector.Output((ofstream *)&cout);
850 cout << endl;
851 }
852 }
853 }
854#endif
855 }
856 } while (!flag);
857 Free((void **)&matrix, "molecule::DetermineCenter: *matrix");
858 Center.Scale(1./(double)AtomCount);
859};
860
861/** Transforms/Rotates the given molecule into its principal axis system.
862 * \param *out output stream for debugging
863 * \param DoRotate whether to rotate (true) or only to determine the PAS.
864 */
865void molecule::PrincipalAxisSystem(ofstream *out, bool DoRotate)
866{
867 atom *ptr = start; // start at first in list
868 double InertiaTensor[NDIM*NDIM];
869 vector *CenterOfGravity = DetermineCenterOfGravity(out);
870
871 CenterGravity(out, CenterOfGravity);
872
873 // reset inertia tensor
874 for(int i=0;i<NDIM*NDIM;i++)
875 InertiaTensor[i] = 0.;
876
877 // sum up inertia tensor
878 while (ptr->next != end) {
879 ptr = ptr->next;
880 vector x;
881 x.CopyVector(&ptr->x);
882 //x.SubtractVector(CenterOfGravity);
883 InertiaTensor[0] += ptr->type->mass*(x.x[1]*x.x[1] + x.x[2]*x.x[2]);
884 InertiaTensor[1] += ptr->type->mass*(-x.x[0]*x.x[1]);
885 InertiaTensor[2] += ptr->type->mass*(-x.x[0]*x.x[2]);
886 InertiaTensor[3] += ptr->type->mass*(-x.x[1]*x.x[0]);
887 InertiaTensor[4] += ptr->type->mass*(x.x[0]*x.x[0] + x.x[2]*x.x[2]);
888 InertiaTensor[5] += ptr->type->mass*(-x.x[1]*x.x[2]);
889 InertiaTensor[6] += ptr->type->mass*(-x.x[2]*x.x[0]);
890 InertiaTensor[7] += ptr->type->mass*(-x.x[2]*x.x[1]);
891 InertiaTensor[8] += ptr->type->mass*(x.x[0]*x.x[0] + x.x[1]*x.x[1]);
892 }
893 // print InertiaTensor for debugging
894 *out << "The inertia tensor is:" << endl;
895 for(int i=0;i<NDIM;i++) {
896 for(int j=0;j<NDIM;j++)
897 *out << InertiaTensor[i*NDIM+j] << " ";
898 *out << endl;
899 }
900 *out << endl;
901
902 // diagonalize to determine principal axis system
903 gsl_eigen_symmv_workspace *T = gsl_eigen_symmv_alloc(NDIM);
904 gsl_matrix_view m = gsl_matrix_view_array(InertiaTensor, NDIM, NDIM);
905 gsl_vector *eval = gsl_vector_alloc(NDIM);
906 gsl_matrix *evec = gsl_matrix_alloc(NDIM, NDIM);
907 gsl_eigen_symmv(&m.matrix, eval, evec, T);
908 gsl_eigen_symmv_free(T);
909 gsl_eigen_symmv_sort(eval, evec, GSL_EIGEN_SORT_ABS_DESC);
910
911 for(int i=0;i<NDIM;i++) {
912 *out << Verbose(1) << "eigenvalue = " << gsl_vector_get(eval, i);
913 *out << ", eigenvector = (" << evec->data[i * evec->tda + 0] << "," << evec->data[i * evec->tda + 1] << "," << evec->data[i * evec->tda + 2] << ")" << endl;
914 }
915
916 // check whether we rotate or not
917 if (DoRotate) {
918 *out << Verbose(1) << "Transforming molecule into PAS ... ";
919 // the eigenvectors specify the transformation matrix
920 ptr = start;
921 while (ptr->next != end) {
922 ptr = ptr->next;
923 ptr->x.MatrixMultiplication(evec->data);
924 }
925 *out << "done." << endl;
926
927 // summing anew for debugging (resulting matrix has to be diagonal!)
928 // reset inertia tensor
929 for(int i=0;i<NDIM*NDIM;i++)
930 InertiaTensor[i] = 0.;
931
932 // sum up inertia tensor
933 ptr = start;
934 while (ptr->next != end) {
935 ptr = ptr->next;
936 vector x;
937 x.CopyVector(&ptr->x);
938 //x.SubtractVector(CenterOfGravity);
939 InertiaTensor[0] += ptr->type->mass*(x.x[1]*x.x[1] + x.x[2]*x.x[2]);
940 InertiaTensor[1] += ptr->type->mass*(-x.x[0]*x.x[1]);
941 InertiaTensor[2] += ptr->type->mass*(-x.x[0]*x.x[2]);
942 InertiaTensor[3] += ptr->type->mass*(-x.x[1]*x.x[0]);
943 InertiaTensor[4] += ptr->type->mass*(x.x[0]*x.x[0] + x.x[2]*x.x[2]);
944 InertiaTensor[5] += ptr->type->mass*(-x.x[1]*x.x[2]);
945 InertiaTensor[6] += ptr->type->mass*(-x.x[2]*x.x[0]);
946 InertiaTensor[7] += ptr->type->mass*(-x.x[2]*x.x[1]);
947 InertiaTensor[8] += ptr->type->mass*(x.x[0]*x.x[0] + x.x[1]*x.x[1]);
948 }
949 // print InertiaTensor for debugging
950 *out << "The inertia tensor is:" << endl;
951 for(int i=0;i<NDIM;i++) {
952 for(int j=0;j<NDIM;j++)
953 *out << InertiaTensor[i*NDIM+j] << " ";
954 *out << endl;
955 }
956 *out << endl;
957 }
958
959 // free everything
960 delete(CenterOfGravity);
961 gsl_vector_free(eval);
962 gsl_matrix_free(evec);
963};
964
965/** Align all atoms in such a manner that given vector \a *n is along z axis.
966 * \param n[] alignment vector.
967 */
968void molecule::Align(vector *n)
969{
970 atom *ptr = start;
971 double alpha, tmp;
972 vector z_axis;
973 z_axis.x[0] = 0.;
974 z_axis.x[1] = 0.;
975 z_axis.x[2] = 1.;
976
977 // rotate on z-x plane
978 cout << Verbose(0) << "Begin of Aligning all atoms." << endl;
979 alpha = atan(-n->x[0]/n->x[2]);
980 cout << Verbose(1) << "Z-X-angle: " << alpha << " ... ";
981 while (ptr->next != end) {
982 ptr = ptr->next;
983 tmp = ptr->x.x[0];
984 ptr->x.x[0] = cos(alpha) * tmp + sin(alpha) * ptr->x.x[2];
985 ptr->x.x[2] = -sin(alpha) * tmp + cos(alpha) * ptr->x.x[2];
986 }
987 // rotate n vector
988 tmp = n->x[0];
989 n->x[0] = cos(alpha) * tmp + sin(alpha) * n->x[2];
990 n->x[2] = -sin(alpha) * tmp + cos(alpha) * n->x[2];
991 cout << Verbose(1) << "alignment vector after first rotation: ";
992 n->Output((ofstream *)&cout);
993 cout << endl;
994
995 // rotate on z-y plane
996 ptr = start;
997 alpha = atan(-n->x[1]/n->x[2]);
998 cout << Verbose(1) << "Z-Y-angle: " << alpha << " ... ";
999 while (ptr->next != end) {
1000 ptr = ptr->next;
1001 tmp = ptr->x.x[1];
1002 ptr->x.x[1] = cos(alpha) * tmp + sin(alpha) * ptr->x.x[2];
1003 ptr->x.x[2] = -sin(alpha) * tmp + cos(alpha) * ptr->x.x[2];
1004 }
1005 // rotate n vector (for consistency check)
1006 tmp = n->x[1];
1007 n->x[1] = cos(alpha) * tmp + sin(alpha) * n->x[2];
1008 n->x[2] = -sin(alpha) * tmp + cos(alpha) * n->x[2];
1009
1010 cout << Verbose(1) << "alignment vector after second rotation: ";
1011 n->Output((ofstream *)&cout);
1012 cout << Verbose(1) << endl;
1013 cout << Verbose(0) << "End of Aligning all atoms." << endl;
1014};
1015
1016/** Removes atom from molecule list.
1017 * \param *pointer atom to be removed
1018 * \return true - succeeded, false - atom not found in list
1019 */
1020bool molecule::RemoveAtom(atom *pointer)
1021{
1022 if (ElementsInMolecule[pointer->type->Z] != 0) // this would indicate an error
1023 ElementsInMolecule[pointer->type->Z]--; // decrease number of atom of this element
1024 else
1025 cerr << "ERROR: Atom " << pointer->Name << " is of element " << pointer->type->Z << " but the entry in the table of the molecule is 0!" << endl;
1026 if (ElementsInMolecule[pointer->type->Z] == 0) // was last atom of this element?
1027 ElementCount--;
1028 return remove(pointer, start, end);
1029};
1030
1031/** Removes every atom from molecule list.
1032 * \return true - succeeded, false - atom not found in list
1033 */
1034bool molecule::CleanupMolecule()
1035{
1036 return (cleanup(start,end) && cleanup(first,last));
1037};
1038
1039/** Finds an atom specified by its continuous number.
1040 * \param Nr number of atom withim molecule
1041 * \return pointer to atom or NULL
1042 */
1043atom * molecule::FindAtom(int Nr) const{
1044 atom * walker = find(&Nr, start,end);
1045 if (walker != NULL) {
1046 //cout << Verbose(0) << "Found Atom Nr. " << walker->nr << endl;
1047 return walker;
1048 } else {
1049 cout << Verbose(0) << "Atom not found in list." << endl;
1050 return NULL;
1051 }
1052};
1053
1054/** Asks for atom number, and checks whether in list.
1055 * \param *text question before entering
1056 */
1057atom * molecule::AskAtom(string text)
1058{
1059 int No;
1060 atom *ion = NULL;
1061 do {
1062 //cout << Verbose(0) << "============Atom list==========================" << endl;
1063 //mol->Output((ofstream *)&cout);
1064 //cout << Verbose(0) << "===============================================" << endl;
1065 cout << Verbose(0) << text;
1066 cin >> No;
1067 ion = this->FindAtom(No);
1068 } while (ion == NULL);
1069 return ion;
1070};
1071
1072/** Checks if given coordinates are within cell volume.
1073 * \param *x array of coordinates
1074 * \return true - is within, false - out of cell
1075 */
1076bool molecule::CheckBounds(const vector *x) const
1077{
1078 bool result = true;
1079 int j =-1;
1080 for (int i=0;i<NDIM;i++) {
1081 j += i+1;
1082 result = result && ((x->x[i] >= 0) && (x->x[i] < cell_size[j]));
1083 }
1084 //return result;
1085 return true; /// probably not gonna use the check no more
1086};
1087
1088/** Calculates sum over least square distance to line hidden in \a *x.
1089 * \param *x offset and direction vector
1090 * \param *params pointer to lsq_params structure
1091 * \return \f$ sum_i^N | y_i - (a + t_i b)|^2\f$
1092 */
1093double LeastSquareDistance (const gsl_vector * x, void * params)
1094{
1095 double res = 0, t;
1096 vector a,b,c,d;
1097 struct lsq_params *par = (struct lsq_params *)params;
1098 atom *ptr = par->mol->start;
1099
1100 // initialize vectors
1101 a.x[0] = gsl_vector_get(x,0);
1102 a.x[1] = gsl_vector_get(x,1);
1103 a.x[2] = gsl_vector_get(x,2);
1104 b.x[0] = gsl_vector_get(x,3);
1105 b.x[1] = gsl_vector_get(x,4);
1106 b.x[2] = gsl_vector_get(x,5);
1107 // go through all atoms
1108 while (ptr != par->mol->end) {
1109 ptr = ptr->next;
1110 if (ptr->type == ((struct lsq_params *)params)->type) { // for specific type
1111 c.CopyVector(&ptr->x); // copy vector to temporary one
1112 c.SubtractVector(&a); // subtract offset vector
1113 t = c.ScalarProduct(&b); // get direction parameter
1114 d.CopyVector(&b); // and create vector
1115 d.Scale(&t);
1116 c.SubtractVector(&d); // ... yielding distance vector
1117 res += d.ScalarProduct((const vector *)&d); // add squared distance
1118 }
1119 }
1120 return res;
1121};
1122
1123/** By minimizing the least square distance gains alignment vector.
1124 * \bug this is not yet working properly it seems
1125 */
1126void molecule::GetAlignVector(struct lsq_params * par) const
1127{
1128 int np = 6;
1129
1130 const gsl_multimin_fminimizer_type *T =
1131 gsl_multimin_fminimizer_nmsimplex;
1132 gsl_multimin_fminimizer *s = NULL;
1133 gsl_vector *ss;
1134 gsl_multimin_function minex_func;
1135
1136 size_t iter = 0, i;
1137 int status;
1138 double size;
1139
1140 /* Initial vertex size vector */
1141 ss = gsl_vector_alloc (np);
1142
1143 /* Set all step sizes to 1 */
1144 gsl_vector_set_all (ss, 1.0);
1145
1146 /* Starting point */
1147 par->x = gsl_vector_alloc (np);
1148 par->mol = this;
1149
1150 gsl_vector_set (par->x, 0, 0.0); // offset
1151 gsl_vector_set (par->x, 1, 0.0);
1152 gsl_vector_set (par->x, 2, 0.0);
1153 gsl_vector_set (par->x, 3, 0.0); // direction
1154 gsl_vector_set (par->x, 4, 0.0);
1155 gsl_vector_set (par->x, 5, 1.0);
1156
1157 /* Initialize method and iterate */
1158 minex_func.f = &LeastSquareDistance;
1159 minex_func.n = np;
1160 minex_func.params = (void *)par;
1161
1162 s = gsl_multimin_fminimizer_alloc (T, np);
1163 gsl_multimin_fminimizer_set (s, &minex_func, par->x, ss);
1164
1165 do
1166 {
1167 iter++;
1168 status = gsl_multimin_fminimizer_iterate(s);
1169
1170 if (status)
1171 break;
1172
1173 size = gsl_multimin_fminimizer_size (s);
1174 status = gsl_multimin_test_size (size, 1e-2);
1175
1176 if (status == GSL_SUCCESS)
1177 {
1178 printf ("converged to minimum at\n");
1179 }
1180
1181 printf ("%5d ", (int)iter);
1182 for (i = 0; i < (size_t)np; i++)
1183 {
1184 printf ("%10.3e ", gsl_vector_get (s->x, i));
1185 }
1186 printf ("f() = %7.3f size = %.3f\n", s->fval, size);
1187 }
1188 while (status == GSL_CONTINUE && iter < 100);
1189
1190 for (i=0;i<(size_t)np;i++)
1191 gsl_vector_set(par->x, i, gsl_vector_get(s->x, i));
1192 //gsl_vector_free(par->x);
1193 gsl_vector_free(ss);
1194 gsl_multimin_fminimizer_free (s);
1195};
1196
1197/** Prints molecule to *out.
1198 * \param *out output stream
1199 */
1200bool molecule::Output(ofstream *out)
1201{
1202 element *runner = elemente->start;
1203 atom *walker = NULL;
1204 int ElementNo, AtomNo;
1205 CountElements();
1206
1207 if (out == NULL) {
1208 return false;
1209 } else {
1210 *out << "#Ion_TypeNr._Nr.R[0] R[1] R[2] MoveType (0 MoveIon, 1 FixedIon)" << endl;
1211 ElementNo = 0;
1212 while (runner->next != elemente->end) { // go through every element
1213 runner = runner->next;
1214 if (ElementsInMolecule[runner->Z]) { // if this element got atoms
1215 ElementNo++;
1216 AtomNo = 0;
1217 walker = start;
1218 while (walker->next != end) { // go through every atom of this element
1219 walker = walker->next;
1220 if (walker->type == runner) { // if this atom fits to element
1221 AtomNo++;
1222 walker->Output(ElementNo, AtomNo, out);
1223 }
1224 }
1225 }
1226 }
1227 return true;
1228 }
1229};
1230
1231/** Outputs contents of molecule::ListOfBondsPerAtom.
1232 * \param *out output stream
1233 */
1234void molecule::OutputListOfBonds(ofstream *out) const
1235{
1236 *out << Verbose(2) << endl << "From Contents of ListOfBondsPerAtom, all non-hydrogen atoms:" << endl;
1237 atom *Walker = start;
1238 while (Walker->next != end) {
1239 Walker = Walker->next;
1240#ifdef ADDHYDROGEN
1241 if (Walker->type->Z != 1) { // regard only non-hydrogen
1242#endif
1243 *out << Verbose(2) << "Atom " << Walker->Name << " has Bonds: "<<endl;
1244 for(int j=0;j<NumberOfBondsPerAtom[Walker->nr];j++) {
1245 *out << Verbose(3) << *(ListOfBondsPerAtom)[Walker->nr][j] << endl;
1246 }
1247#ifdef ADDHYDROGEN
1248 }
1249#endif
1250 }
1251 *out << endl;
1252};
1253
1254/** Output of element before the actual coordination list.
1255 * \param *out stream pointer
1256 */
1257bool molecule::Checkout(ofstream *out) const
1258{
1259 return elemente->Checkout(out, ElementsInMolecule);
1260};
1261
1262/** Prints molecule to *out as xyz file.
1263 * \param *out output stream
1264 */
1265bool molecule::OutputXYZ(ofstream *out) const
1266{
1267 atom *walker = NULL;
1268 int No = 0;
1269 time_t now;
1270
1271 now = time((time_t *)NULL); // Get the system time and put it into 'now' as 'calender time'
1272 walker = start;
1273 while (walker->next != end) { // go through every atom and count
1274 walker = walker->next;
1275 No++;
1276 }
1277 if (out != NULL) {
1278 *out << No << "\n\tCreated by molecuilder on " << ctime(&now);
1279 walker = start;
1280 while (walker->next != end) { // go through every atom of this element
1281 walker = walker->next;
1282 walker->OutputXYZLine(out);
1283 }
1284 return true;
1285 } else
1286 return false;
1287};
1288
1289/** Brings molecule::AtomCount and atom::*Name up-to-date.
1290 * \param *out output stream for debugging
1291 */
1292void molecule::CountAtoms(ofstream *out)
1293{
1294 int i = 0;
1295 atom *Walker = start;
1296 while (Walker->next != end) {
1297 Walker = Walker->next;
1298 i++;
1299 }
1300 if ((AtomCount == 0) || (i != AtomCount)) {
1301 *out << Verbose(3) << "Mismatch in AtomCount " << AtomCount << " and recounted number " << i << ", renaming all." << endl;
1302 AtomCount = i;
1303
1304 // count NonHydrogen atoms and give each atom a unique name
1305 if (AtomCount != 0) {
1306 i=0;
1307 NoNonHydrogen = 0;
1308 Walker = start;
1309 while (Walker->next != end) {
1310 Walker = Walker->next;
1311 Walker->nr = i; // update number in molecule (for easier referencing in FragmentMolecule lateron)
1312 if (Walker->type->Z != 1) // count non-hydrogen atoms whilst at it
1313 NoNonHydrogen++;
1314 Free((void **)&Walker->Name, "molecule::CountAtoms: *walker->Name");
1315 Walker->Name = (char *) Malloc(sizeof(char)*6, "molecule::CountAtoms: *walker->Name");
1316 sprintf(Walker->Name, "%2s%02d", Walker->type->symbol, Walker->nr+1);
1317 *out << "Naming atom nr. " << Walker->nr << " " << Walker->Name << "." << endl;
1318 i++;
1319 }
1320 } else
1321 *out << Verbose(3) << "AtomCount is still " << AtomCount << ", thus counting nothing." << endl;
1322 }
1323};
1324
1325/** Brings molecule::ElementCount and molecule::ElementsInMolecule up-to-date.
1326 */
1327void molecule::CountElements()
1328{
1329 int i = 0;
1330 for(i=MAX_ELEMENTS;i--;)
1331 ElementsInMolecule[i] = 0;
1332 ElementCount = 0;
1333
1334 atom *walker = start;
1335 while (walker->next != end) {
1336 walker = walker->next;
1337 ElementsInMolecule[walker->type->Z]++;
1338 i++;
1339 }
1340 for(i=MAX_ELEMENTS;i--;)
1341 ElementCount += (ElementsInMolecule[i] != 0 ? 1 : 0);
1342};
1343
1344/** Counts all cyclic bonds and returns their number.
1345 * \note Hydrogen bonds can never by cyclic, thus no check for that
1346 * \param *out output stream for debugging
1347 * \return number opf cyclic bonds
1348 */
1349int molecule::CountCyclicBonds(ofstream *out)
1350{
1351 int No = 0;
1352 int *MinimumRingSize = NULL;
1353 MoleculeLeafClass *Subgraphs = NULL;
1354 bond *Binder = first;
1355 if ((Binder->next != last) && (Binder->next->Type == Undetermined)) {
1356 *out << Verbose(0) << "No Depth-First-Search analysis performed so far, calling ..." << endl;
1357 Subgraphs = DepthFirstSearchAnalysis(out, MinimumRingSize);
1358 while (Subgraphs->next != NULL) {
1359 Subgraphs = Subgraphs->next;
1360 delete(Subgraphs->previous);
1361 }
1362 delete(Subgraphs);
1363 delete[](MinimumRingSize);
1364 }
1365 while(Binder->next != last) {
1366 Binder = Binder->next;
1367 if (Binder->Cyclic)
1368 No++;
1369 }
1370 return No;
1371};
1372/** Returns Shading as a char string.
1373 * \param color the Shading
1374 * \return string of the flag
1375 */
1376string molecule::GetColor(enum Shading color)
1377{
1378 switch(color) {
1379 case white:
1380 return "white";
1381 break;
1382 case lightgray:
1383 return "lightgray";
1384 break;
1385 case darkgray:
1386 return "darkgray";
1387 break;
1388 case black:
1389 return "black";
1390 break;
1391 default:
1392 return "uncolored";
1393 break;
1394 };
1395};
1396
1397
1398/** Counts necessary number of valence electrons and returns number and SpinType.
1399 * \param configuration containing everything
1400 */
1401void molecule::CalculateOrbitals(class config &configuration)
1402{
1403 configuration.MaxPsiDouble = configuration.PsiMaxNoDown = configuration.PsiMaxNoUp = configuration.PsiType = 0;
1404 for(int i=MAX_ELEMENTS;i--;) {
1405 if (ElementsInMolecule[i] != 0) {
1406 //cout << "CalculateOrbitals: " << elemente->FindElement(i)->name << " has a valence of " << (int)elemente->FindElement(i)->Valence << " and there are " << ElementsInMolecule[i] << " of it." << endl;
1407 configuration.MaxPsiDouble += ElementsInMolecule[i]*((int)elemente->FindElement(i)->Valence);
1408 }
1409 }
1410 configuration.PsiMaxNoDown = configuration.MaxPsiDouble/2 + (configuration.MaxPsiDouble % 2);
1411 configuration.PsiMaxNoUp = configuration.MaxPsiDouble/2;
1412 configuration.MaxPsiDouble /= 2;
1413 configuration.PsiType = (configuration.PsiMaxNoDown == configuration.PsiMaxNoUp) ? 0 : 1;
1414 if ((configuration.PsiType == 1) && (configuration.ProcPEPsi < 2)) {
1415 configuration.ProcPEGamma /= 2;
1416 configuration.ProcPEPsi *= 2;
1417 } else {
1418 configuration.ProcPEGamma *= configuration.ProcPEPsi;
1419 configuration.ProcPEPsi = 1;
1420 }
1421 configuration.InitMaxMinStopStep = configuration.MaxMinStopStep = configuration.MaxPsiDouble;
1422};
1423
1424/** Creates an adjacency list of the molecule.
1425 * Generally, we use the CSD approach to bond recognition, that is the the distance
1426 * between two atoms A and B must be within [Rcov(A)+Rcov(B)-t,Rcov(A)+Rcov(B)+t] with
1427 * a threshold t = 0.4 Angstroem.
1428 * To make it O(N log N) the function uses the linked-cell technique as follows:
1429 * The procedure is step-wise:
1430 * -# Remove every bond in list
1431 * -# Count the atoms in the molecule with CountAtoms()
1432 * -# partition cell into smaller linked cells of size \a bonddistance
1433 * -# put each atom into its corresponding cell
1434 * -# go through every cell, check the atoms therein against all possible bond partners in the 27 adjacent cells, add bond if true
1435 * -# create the list of bonds via CreateListOfBondsPerAtom()
1436 * -# correct the bond degree iteratively (single->double->triple bond)
1437 * -# finally print the bond list to \a *out if desired
1438 * \param *out out stream for printing the matrix, NULL if no output
1439 * \param bonddistance length of linked cells (i.e. maximum minimal length checked)
1440 * \param IsAngstroem whether coordinate system is gauged to Angstroem or Bohr radii
1441 */
1442void molecule::CreateAdjacencyList(ofstream *out, double bonddistance, bool IsAngstroem)
1443{
1444 atom *Walker = NULL, *OtherWalker = NULL;
1445 int No, NoBonds;
1446 int NumberCells, divisor[NDIM], n[NDIM], N[NDIM], index, Index, j;
1447 molecule **CellList;
1448 double distance, MinDistance, MaxDistance;
1449 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
1450 vector x;
1451
1452 BondDistance = bonddistance; // * ((IsAngstroem) ? 1. : 1./AtomicLengthToAngstroem);
1453 *out << Verbose(0) << "Begin of CreateAdjacencyList." << endl;
1454 // remove every bond from the list
1455 if ((first->next != last) && (last->previous != first)) { // there are bonds present
1456 cleanup(first,last);
1457 }
1458
1459 // count atoms in molecule = dimension of matrix (also give each unique name and continuous numbering)
1460 CountAtoms(out);
1461 *out << Verbose(1) << "AtomCount " << AtomCount << "." << endl;
1462
1463 if (AtomCount != 0) {
1464 // 1. find divisor for each axis, such that a sphere with radius of at least bonddistance can be placed into each cell
1465 j=-1;
1466 for (int i=0;i<NDIM;i++) {
1467 j += i+1;
1468 divisor[i] = (int)floor(cell_size[j]/bonddistance); // take smaller value such that size of linked cell is at least bonddistance
1469 *out << Verbose(1) << "divisor[" << i << "] = " << divisor[i] << "." << endl;
1470 }
1471 // 2a. allocate memory for the cell list
1472 NumberCells = divisor[0]*divisor[1]*divisor[2];
1473 *out << Verbose(1) << "Allocating " << NumberCells << " cells." << endl;
1474 CellList = (molecule **) Malloc(sizeof(molecule *)*NumberCells, "molecule::CreateAdjacencyList - ** CellList");
1475 for (int i=NumberCells;i--;)
1476 CellList[i] = NULL;
1477
1478 // 2b. put all atoms into its corresponding list
1479 Walker = start;
1480 while(Walker->next != end) {
1481 Walker = Walker->next;
1482 //*out << Verbose(1) << "Current atom is " << *Walker << " with coordinates ";
1483 //Walker->x.Output(out);
1484 //*out << "." << endl;
1485 // compute the cell by the atom's coordinates
1486 j=-1;
1487 for (int i=0;i<NDIM;i++) {
1488 j += i+1;
1489 x.CopyVector(&(Walker->x));
1490 x.KeepPeriodic(out, matrix);
1491 n[i] = (int)floor(x.x[i]/cell_size[j]*(double)divisor[i]);
1492 }
1493 index = n[2] + (n[1] + n[0] * divisor[1]) * divisor[2];
1494 *out << Verbose(1) << "Atom " << *Walker << " goes into cell number [" << n[0] << "," << n[1] << "," << n[2] << "] = " << index << "." << endl;
1495 // add copy atom to this cell
1496 if (CellList[index] == NULL) // allocate molecule if not done
1497 CellList[index] = new molecule(elemente);
1498 OtherWalker = CellList[index]->AddCopyAtom(Walker); // add a copy of walker to this atom, father will be walker for later reference
1499 //*out << Verbose(1) << "Copy Atom is " << *OtherWalker << "." << endl;
1500 }
1501 //for (int i=0;i<NumberCells;i++)
1502 //*out << Verbose(1) << "Cell number " << i << ": " << CellList[i] << "." << endl;
1503
1504 // 3a. go through every cell
1505 for (N[0]=divisor[0];N[0]--;)
1506 for (N[1]=divisor[1];N[1]--;)
1507 for (N[2]=divisor[2];N[2]--;) {
1508 Index = N[2] + (N[1] + N[0] * divisor[1]) * divisor[2];
1509 if (CellList[Index] != NULL) { // if there atoms in this cell
1510 //*out << Verbose(1) << "Current cell is " << Index << "." << endl;
1511 // 3b. for every atom therein
1512 Walker = CellList[Index]->start;
1513 while (Walker->next != CellList[Index]->end) { // go through every atom
1514 Walker = Walker->next;
1515 //*out << Verbose(0) << "Current Atom is " << *Walker << "." << endl;
1516 // 3c. check for possible bond between each atom in this and every one in the 27 cells
1517 for (n[0]=-1;n[0]<=1;n[0]++)
1518 for (n[1]=-1;n[1]<=1;n[1]++)
1519 for (n[2]=-1;n[2]<=1;n[2]++) {
1520 // compute the index of this comparison cell and make it periodic
1521 index = ((N[2]+n[2]+divisor[2])%divisor[2]) + (((N[1]+n[1]+divisor[1])%divisor[1]) + ((N[0]+n[0]+divisor[0])%divisor[0]) * divisor[1]) * divisor[2];
1522 //*out << Verbose(1) << "Number of comparison cell is " << index << "." << endl;
1523 if (CellList[index] != NULL) { // if there are any atoms in this cell
1524 OtherWalker = CellList[index]->start;
1525 while(OtherWalker->next != CellList[index]->end) { // go through every atom in this cell
1526 OtherWalker = OtherWalker->next;
1527 //*out << Verbose(0) << "Current comparison atom is " << *OtherWalker << "." << endl;
1528 /// \todo periodic check is missing here!
1529 //*out << Verbose(1) << "Checking distance " << OtherWalker->x.PeriodicDistance(&(Walker->x), cell_size) << " against typical bond length of " << bonddistance*bonddistance << "." << endl;
1530 MinDistance = OtherWalker->type->CovalentRadius + Walker->type->CovalentRadius;
1531 MinDistance *= (IsAngstroem) ? 1. : 1./AtomicLengthToAngstroem;
1532 MaxDistance = MinDistance + BONDTHRESHOLD;
1533 MinDistance -= BONDTHRESHOLD;
1534 distance = OtherWalker->x.PeriodicDistance(&(Walker->x), cell_size);
1535 if ((OtherWalker->father->nr > Walker->father->nr) && (distance <= MaxDistance*MaxDistance) && (distance >= MinDistance*MinDistance)) { // create bond if distance is smaller
1536 *out << Verbose(0) << "Adding Bond between " << *Walker << " and " << *OtherWalker << "." << endl;
1537 AddBond(Walker->father, OtherWalker->father, 1); // also increases molecule::BondCount
1538 BondCount++;
1539 } else {
1540 //*out << Verbose(1) << "Not Adding: Wrong label order or distance too great." << endl;
1541 }
1542 }
1543 }
1544 }
1545 }
1546 }
1547 }
1548 // 4. free the cell again
1549 for (int i=NumberCells;i--;)
1550 if (CellList[i] != NULL) {
1551 delete(CellList[i]);
1552 }
1553 Free((void **)&CellList, "molecule::CreateAdjacencyList - ** CellList");
1554
1555 // create the adjacency list per atom
1556 CreateListOfBondsPerAtom(out);
1557
1558 // correct Bond degree of each bond by checking of updated(!) sum of bond degree for an atom match its valence count
1559 // bond degrres are correctled iteratively by one, so that 2-2 instead of 1-3 or 3-1 corrections are favoured: We want
1560 // a rather symmetric distribution of higher bond degrees
1561 if (BondCount != 0) {
1562 NoCyclicBonds = 0;
1563 *out << Verbose(1) << "Correcting Bond degree of each bond ... ";
1564 do {
1565 No = 0; // No acts as breakup flag (if 1 we still continue)
1566 Walker = start;
1567 while (Walker->next != end) { // go through every atom
1568 Walker = Walker->next;
1569 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) { // go through each of its bond partners
1570 OtherWalker = ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
1571 // count valence of first partner (updated!), might have changed during last bond partner
1572 NoBonds = 0;
1573 for(j=0;j<NumberOfBondsPerAtom[Walker->nr];j++)
1574 NoBonds += ListOfBondsPerAtom[Walker->nr][j]->BondDegree;
1575 *out << Verbose(3) << "Walker: " << (int)Walker->type->NoValenceOrbitals << " > " << NoBonds << "?" << endl;
1576 if ((int)(Walker->type->NoValenceOrbitals) > NoBonds) { // we have a mismatch, check NoBonds of other atom
1577 // count valence of second partner
1578 NoBonds = 0;
1579 for(j=0;j<NumberOfBondsPerAtom[OtherWalker->nr];j++)
1580 NoBonds += ListOfBondsPerAtom[OtherWalker->nr][j]->BondDegree;
1581 *out << Verbose(3) << "OtherWalker: " << (int)OtherWalker->type->NoValenceOrbitals << " > " << NoBonds << "?" << endl;
1582 if ((int)(OtherWalker->type->NoValenceOrbitals) > NoBonds) // increase bond degree by one
1583 ListOfBondsPerAtom[Walker->nr][i]->BondDegree++;
1584 }
1585 }
1586 }
1587 } while (No);
1588 *out << " done." << endl;
1589 } else
1590 *out << Verbose(1) << "BondCount is " << BondCount << ", no bonds between any of the " << AtomCount << " atoms." << endl;
1591 *out << Verbose(1) << "I detected " << BondCount << " bonds in the molecule with distance " << bonddistance << "." << endl;
1592
1593 // output bonds for debugging (if bond chain list was correctly installed)
1594 *out << Verbose(1) << endl << "From contents of bond chain list:";
1595 bond *Binder = first;
1596 while(Binder->next != last) {
1597 Binder = Binder->next;
1598 *out << *Binder << "\t" << endl;
1599 }
1600 *out << endl;
1601 } else
1602 *out << Verbose(1) << "AtomCount is " << AtomCount << ", thus no bonds, no connections!." << endl;
1603 *out << Verbose(0) << "End of CreateAdjacencyList." << endl;
1604 Free((void **)&matrix, "molecule::CreateAdjacencyList: *matrix");
1605};
1606
1607/** Performs a Depth-First search on this molecule.
1608 * Marks bonds in molecule as cyclic, bridge, ... and atoms as
1609 * articulations points, ...
1610 * We use the algorithm from [Even, Graph Algorithms, p.62].
1611 * \param *out output stream for debugging
1612 * \param *&MinimumRingSize contains smallest ring size in molecular structure on return or -1 if no rings were found
1613 * \return list of each disconnected subgraph as an individual molecule class structure
1614 */
1615MoleculeLeafClass * molecule::DepthFirstSearchAnalysis(ofstream *out, int *&MinimumRingSize)
1616{
1617 class StackClass<atom *> *AtomStack;
1618 AtomStack = new StackClass<atom *>(AtomCount);
1619 class StackClass<bond *> *BackEdgeStack = new StackClass<bond *> (BondCount);
1620 MoleculeLeafClass *SubGraphs = new MoleculeLeafClass(NULL);
1621 MoleculeLeafClass *LeafWalker = SubGraphs;
1622 int CurrentGraphNr = 0, OldGraphNr;
1623 int ComponentNumber = 0;
1624 atom *Walker = NULL, *OtherAtom = NULL, *Root = start->next;
1625 bond *Binder = NULL;
1626 bool BackStepping = false;
1627
1628 *out << Verbose(0) << "Begin of DepthFirstSearchAnalysis" << endl;
1629
1630 ResetAllBondsToUnused();
1631 ResetAllAtomNumbers();
1632 InitComponentNumbers();
1633 BackEdgeStack->ClearStack();
1634 while (Root != end) { // if there any atoms at all
1635 // (1) mark all edges unused, empty stack, set atom->GraphNr = 0 for all
1636 AtomStack->ClearStack();
1637
1638 // put into new subgraph molecule and add this to list of subgraphs
1639 LeafWalker = new MoleculeLeafClass(LeafWalker);
1640 LeafWalker->Leaf = new molecule(elemente);
1641 LeafWalker->Leaf->AddCopyAtom(Root);
1642
1643 OldGraphNr = CurrentGraphNr;
1644 Walker = Root;
1645 do { // (10)
1646 do { // (2) set number and Lowpoint of Atom to i, increase i, push current atom
1647 if (!BackStepping) { // if we don't just return from (8)
1648 Walker->GraphNr = CurrentGraphNr;
1649 Walker->LowpointNr = CurrentGraphNr;
1650 *out << Verbose(1) << "Setting Walker[" << Walker->Name << "]'s number to " << Walker->GraphNr << " with Lowpoint " << Walker->LowpointNr << "." << endl;
1651 AtomStack->Push(Walker);
1652 CurrentGraphNr++;
1653 }
1654 do { // (3) if Walker has no unused egdes, go to (5)
1655 BackStepping = false; // reset backstepping flag for (8)
1656 if (Binder == NULL) // if we don't just return from (11), Binder is already set to next unused
1657 Binder = FindNextUnused(Walker);
1658 if (Binder == NULL)
1659 break;
1660 *out << Verbose(2) << "Current Unused Bond is " << *Binder << "." << endl;
1661 // (4) Mark Binder used, ...
1662 Binder->MarkUsed(black);
1663 OtherAtom = Binder->GetOtherAtom(Walker);
1664 *out << Verbose(2) << "(4) OtherAtom is " << OtherAtom->Name << "." << endl;
1665 if (OtherAtom->GraphNr != -1) {
1666 // (4a) ... if "other" atom has been visited (GraphNr != 0), set lowpoint to minimum of both, go to (3)
1667 Binder->Type = BackEdge;
1668 BackEdgeStack->Push(Binder);
1669 Walker->LowpointNr = ( Walker->LowpointNr < OtherAtom->GraphNr ) ? Walker->LowpointNr : OtherAtom->GraphNr;
1670 *out << Verbose(3) << "(4a) Visited: Setting Lowpoint of Walker[" << Walker->Name << "] to " << Walker->LowpointNr << "." << endl;
1671 } else {
1672 // (4b) ... otherwise set OtherAtom as Ancestor of Walker and Walker as OtherAtom, go to (2)
1673 Binder->Type = TreeEdge;
1674 OtherAtom->Ancestor = Walker;
1675 Walker = OtherAtom;
1676 *out << Verbose(3) << "(4b) Not Visited: OtherAtom[" << OtherAtom->Name << "]'s Ancestor is now " << OtherAtom->Ancestor->Name << ", Walker is OtherAtom " << OtherAtom->Name << "." << endl;
1677 break;
1678 }
1679 Binder = NULL;
1680 } while (1); // (3)
1681 if (Binder == NULL) {
1682 *out << Verbose(2) << "No more Unused Bonds." << endl;
1683 break;
1684 } else
1685 Binder = NULL;
1686 } while (1); // (2)
1687
1688 // if we came from backstepping, yet there were no more unused bonds, we end up here with no Ancestor, because Walker is Root! Then we are finished!
1689 if ((Walker == Root) && (Binder == NULL))
1690 break;
1691
1692 // (5) if Ancestor of Walker is ...
1693 *out << Verbose(1) << "(5) Number of Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "] is " << Walker->Ancestor->GraphNr << "." << endl;
1694 if (Walker->Ancestor->GraphNr != Root->GraphNr) {
1695 // (6) (Ancestor of Walker is not Root)
1696 if (Walker->LowpointNr < Walker->Ancestor->GraphNr) {
1697 // (6a) set Ancestor's Lowpoint number to minimum of of its Ancestor and itself, go to Step(8)
1698 Walker->Ancestor->LowpointNr = (Walker->Ancestor->LowpointNr < Walker->LowpointNr) ? Walker->Ancestor->LowpointNr : Walker->LowpointNr;
1699 *out << Verbose(2) << "(6) Setting Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "]'s Lowpoint to " << Walker->Ancestor->LowpointNr << "." << endl;
1700 } else {
1701 // (7) (Ancestor of Walker is a separating vertex, remove all from stack till Walker (including), these and Ancestor form a component
1702 Walker->Ancestor->SeparationVertex = true;
1703 *out << Verbose(2) << "(7) Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "]'s is a separating vertex, creating component." << endl;
1704 SetNextComponentNumber(Walker->Ancestor, ComponentNumber);
1705 *out << Verbose(3) << "(7) Walker[" << Walker->Name << "]'s Ancestor's Compont is " << ComponentNumber << "." << endl;
1706 SetNextComponentNumber(Walker, ComponentNumber);
1707 *out << Verbose(3) << "(7) Walker[" << Walker->Name << "]'s Compont is " << ComponentNumber << "." << endl;
1708 do {
1709 OtherAtom = AtomStack->PopLast();
1710 LeafWalker->Leaf->AddCopyAtom(OtherAtom);
1711 SetNextComponentNumber(OtherAtom, ComponentNumber);
1712 *out << Verbose(3) << "(7) Other[" << OtherAtom->Name << "]'s Compont is " << ComponentNumber << "." << endl;
1713 } while (OtherAtom != Walker);
1714 ComponentNumber++;
1715 }
1716 // (8) Walker becomes its Ancestor, go to (3)
1717 *out << Verbose(2) << "(8) Walker[" << Walker->Name << "] is now its Ancestor " << Walker->Ancestor->Name << ", backstepping. " << endl;
1718 Walker = Walker->Ancestor;
1719 BackStepping = true;
1720 }
1721 if (!BackStepping) { // coming from (8) want to go to (3)
1722 // (9) remove all from stack till Walker (including), these and Root form a component
1723 AtomStack->Output(out);
1724 SetNextComponentNumber(Root, ComponentNumber);
1725 *out << Verbose(3) << "(9) Root[" << Root->Name << "]'s Component is " << ComponentNumber << "." << endl;
1726 SetNextComponentNumber(Walker, ComponentNumber);
1727 *out << Verbose(3) << "(9) Walker[" << Walker->Name << "]'s Component is " << ComponentNumber << "." << endl;
1728 do {
1729 OtherAtom = AtomStack->PopLast();
1730 LeafWalker->Leaf->AddCopyAtom(OtherAtom);
1731 SetNextComponentNumber(OtherAtom, ComponentNumber);
1732 *out << Verbose(3) << "(7) Other[" << OtherAtom->Name << "]'s Compont is " << ComponentNumber << "." << endl;
1733 } while (OtherAtom != Walker);
1734 ComponentNumber++;
1735
1736 // (11) Root is separation vertex, set Walker to Root and go to (4)
1737 Walker = Root;
1738 Binder = FindNextUnused(Walker);
1739 *out << Verbose(1) << "(10) Walker is Root[" << Root->Name << "], next Unused Bond is " << Binder << "." << endl;
1740 if (Binder != NULL) { // Root is separation vertex
1741 *out << Verbose(1) << "(11) Root is a separation vertex." << endl;
1742 Walker->SeparationVertex = true;
1743 }
1744 }
1745 } while ((BackStepping) || (Binder != NULL)); // (10) halt only if Root has no unused edges
1746
1747 // From OldGraphNr to CurrentGraphNr ranges an disconnected subgraph
1748 *out << Verbose(0) << "Disconnected subgraph ranges from " << OldGraphNr << " to " << CurrentGraphNr << "." << endl;
1749 LeafWalker->Leaf->Output(out);
1750 *out << endl;
1751
1752 // step on to next root
1753 while ((Root != end) && (Root->GraphNr != -1)) {
1754 //*out << Verbose(1) << "Current next subgraph root candidate is " << Root->Name << "." << endl;
1755 if (Root->GraphNr != -1) // if already discovered, step on
1756 Root = Root->next;
1757 }
1758 }
1759 // set cyclic bond criterium on "same LP" basis
1760 Binder = first;
1761 while(Binder->next != last) {
1762 Binder = Binder->next;
1763 if (Binder->rightatom->LowpointNr == Binder->leftatom->LowpointNr) { // cyclic ??
1764 Binder->Cyclic = true;
1765 NoCyclicBonds++;
1766 }
1767 }
1768
1769 // analysis of the cycles (print rings, get minimum cycle length)
1770 CyclicStructureAnalysis(out, BackEdgeStack, MinimumRingSize);
1771
1772 *out << Verbose(1) << "Final graph info for each atom is:" << endl;
1773 Walker = start;
1774 while (Walker->next != end) {
1775 Walker = Walker->next;
1776 *out << Verbose(2) << "Atom " << Walker->Name << " is " << ((Walker->SeparationVertex) ? "a" : "not a") << " separation vertex, components are ";
1777 OutputComponentNumber(out, Walker);
1778 *out << " with Lowpoint " << Walker->LowpointNr << " and Graph Nr. " << Walker->GraphNr << "." << endl;
1779 }
1780
1781 *out << Verbose(1) << "Final graph info for each bond is:" << endl;
1782 Binder = first;
1783 while(Binder->next != last) {
1784 Binder = Binder->next;
1785 *out << Verbose(2) << ((Binder->Type == TreeEdge) ? "TreeEdge " : "BackEdge ") << *Binder << ": <";
1786 *out << ((Binder->leftatom->SeparationVertex) ? "SP," : "") << "L" << Binder->leftatom->LowpointNr << " G" << Binder->leftatom->GraphNr << " Comp.";
1787 OutputComponentNumber(out, Binder->leftatom);
1788 *out << " === ";
1789 *out << ((Binder->rightatom->SeparationVertex) ? "SP," : "") << "L" << Binder->rightatom->LowpointNr << " G" << Binder->rightatom->GraphNr << " Comp.";
1790 OutputComponentNumber(out, Binder->rightatom);
1791 *out << ">." << endl;
1792 if (Binder->Cyclic) // cyclic ??
1793 *out << Verbose(3) << "Lowpoint at each side are equal: CYCLIC!" << endl;
1794 }
1795
1796 // free all and exit
1797 delete(AtomStack);
1798 *out << Verbose(0) << "End of DepthFirstSearchAnalysis" << endl;
1799 return SubGraphs;
1800};
1801
1802/** Analyses the cycles found and returns minimum of all cycle lengths.
1803 * \param *out output stream for debugging
1804 * \param *BackEdgeStack stack with all back edges found during DFS scan
1805 * \param *&MinimumRingSize contains smallest ring size in molecular structure on return or -1 if no rings were found, if set is maximum search distance
1806 * \todo BFS from the not-same-LP to find back to starting point of tributary cycle over more than one bond
1807 */
1808void molecule::CyclicStructureAnalysis(ofstream *out, class StackClass<bond *> * BackEdgeStack, int *&MinimumRingSize)
1809{
1810 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::CyclicStructureAnalysis: **PredecessorList");
1811 int *ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CyclicStructureAnalysis: *ShortestPathList");
1812 enum Shading *ColorList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::CyclicStructureAnalysis: *ColorList");
1813 class StackClass<atom *> *BFSStack = new StackClass<atom *> (AtomCount); // will hold the current ring
1814 class StackClass<atom *> *TouchedStack = new StackClass<atom *> (AtomCount); // contains all "touched" atoms
1815 atom *Walker = NULL, *OtherAtom = NULL, *Root = NULL;
1816 bond *Binder = NULL, *BackEdge = NULL;
1817 int RingSize, NumCycles, MinRingSize = -1;
1818
1819 // initialise each vertex as white with no predecessor, empty queue, color Root lightgray
1820 for (int i=AtomCount;i--;) {
1821 PredecessorList[i] = NULL;
1822 ShortestPathList[i] = -1;
1823 ColorList[i] = white;
1824 }
1825 MinimumRingSize = new int[AtomCount];
1826 for(int i=AtomCount;i--;)
1827 MinimumRingSize[i] = AtomCount;
1828
1829
1830 *out << Verbose(1) << "Back edge list - ";
1831 BackEdgeStack->Output(out);
1832
1833 *out << Verbose(1) << "Analysing cycles ... " << endl;
1834 NumCycles = 0;
1835 while (!BackEdgeStack->IsEmpty()) {
1836 BackEdge = BackEdgeStack->PopFirst();
1837 // this is the target
1838 Root = BackEdge->leftatom;
1839 // this is the source point
1840 Walker = BackEdge->rightatom;
1841 ShortestPathList[Walker->nr] = 0;
1842 BFSStack->ClearStack(); // start with empty BFS stack
1843 BFSStack->Push(Walker);
1844 TouchedStack->Push(Walker);
1845 //*out << Verbose(1) << "---------------------------------------------------------------------------------------------------------" << endl;
1846 OtherAtom = NULL;
1847 while ((Walker != Root) && ((OtherAtom == NULL) || (ShortestPathList[OtherAtom->nr] < MinimumRingSize[Walker->GetTrueFather()->nr]))) { // look for Root
1848 Walker = BFSStack->PopFirst();
1849 //*out << Verbose(2) << "Current Walker is " << *Walker << ", we look for SP to Root " << *Root << "." << endl;
1850 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
1851 Binder = ListOfBondsPerAtom[Walker->nr][i];
1852 if (Binder != BackEdge) { // only walk along DFS spanning tree (otherwise we always find SP of one being backedge Binder)
1853 OtherAtom = Binder->GetOtherAtom(Walker);
1854 //*out << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *Binder << "." << endl;
1855 if (ColorList[OtherAtom->nr] == white) {
1856 TouchedStack->Push(OtherAtom);
1857 ColorList[OtherAtom->nr] = lightgray;
1858 PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
1859 ShortestPathList[OtherAtom->nr] = ShortestPathList[Walker->nr]+1;
1860 //*out << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " lightgray, its predecessor is " << Walker->Name << " and its Shortest Path is " << ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;
1861 if (ShortestPathList[OtherAtom->nr] < MinimumRingSize[Walker->GetTrueFather()->nr]) { // Check for maximum distance
1862 //*out << Verbose(3) << "Putting OtherAtom into queue." << endl;
1863 BFSStack->Push(OtherAtom);
1864 }
1865 } else {
1866 //*out << Verbose(3) << "Not Adding, has already been visited." << endl;
1867 }
1868 } else {
1869 //*out << Verbose(3) << "Not Visiting, is a back edge." << endl;
1870 }
1871 }
1872 ColorList[Walker->nr] = black;
1873 //*out << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;
1874 }
1875
1876 if (Walker == Root) {
1877 // now climb back the predecessor list and thus find the cycle members
1878 NumCycles++;
1879 RingSize = 1;
1880 Walker = Root;
1881 *out << Verbose(1) << "Found ring contains: ";
1882 while (Walker != BackEdge->rightatom) {
1883 *out << Walker->Name << " <-> ";
1884 Walker = PredecessorList[Walker->nr];
1885 RingSize++;
1886 }
1887 *out << Walker->Name << " with a length of " << RingSize << "." << endl << endl;
1888 // walk through all and set MinimumRingSize
1889 Walker = Root;
1890 while (Walker != BackEdge->rightatom) {
1891 Walker = PredecessorList[Walker->nr];
1892 if (RingSize < MinimumRingSize[Walker->GetTrueFather()->nr])
1893 MinimumRingSize[Walker->GetTrueFather()->nr] = RingSize;
1894 }
1895 if ((RingSize < MinRingSize) || (MinRingSize == -1))
1896 MinRingSize = RingSize;
1897 } else {
1898 *out << Verbose(1) << "No ring containing " << *Root << " with length equal to or smaller than " << MinimumRingSize[Walker->GetTrueFather()->nr] << " found." << endl;
1899 }
1900
1901 // now clean the lists
1902 while (!TouchedStack->IsEmpty()){
1903 Walker = TouchedStack->PopFirst();
1904 PredecessorList[Walker->nr] = NULL;
1905 ShortestPathList[Walker->nr] = -1;
1906 ColorList[Walker->nr] = white;
1907 }
1908 }
1909 if (MinRingSize != -1) {
1910 // go over all atoms
1911 Root = start;
1912 while(Root->next != end) {
1913 Root = Root->next;
1914
1915 if (MinimumRingSize[Root->GetTrueFather()->nr] == AtomCount) { // check whether MinimumRingSize is set, if not BFS to next where it is
1916 ShortestPathList[Walker->nr] = 0;
1917 BFSStack->ClearStack(); // start with empty BFS stack
1918 BFSStack->Push(Walker);
1919 TouchedStack->Push(Walker);
1920 //*out << Verbose(1) << "---------------------------------------------------------------------------------------------------------" << endl;
1921 OtherAtom = Walker;
1922 while ((Walker != Root) && (OtherAtom != NULL)) { // look for Root
1923 Walker = BFSStack->PopFirst();
1924 //*out << Verbose(2) << "Current Walker is " << *Walker << ", we look for SP to Root " << *Root << "." << endl;
1925 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
1926 Binder = ListOfBondsPerAtom[Walker->nr][i];
1927 if (Binder != BackEdge) { // only walk along DFS spanning tree (otherwise we always find SP of one being backedge Binder)
1928 OtherAtom = Binder->GetOtherAtom(Walker);
1929 //*out << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *Binder << "." << endl;
1930 if (ColorList[OtherAtom->nr] == white) {
1931 TouchedStack->Push(OtherAtom);
1932 ColorList[OtherAtom->nr] = lightgray;
1933 PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
1934 ShortestPathList[OtherAtom->nr] = ShortestPathList[Walker->nr]+1;
1935 //*out << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " lightgray, its predecessor is " << Walker->Name << " and its Shortest Path is " << ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;
1936 if (MinimumRingSize[OtherAtom->GetTrueFather()->nr] != AtomCount) { // if the other atom is connected to a ring
1937 MinimumRingSize[Root->GetTrueFather()->nr] = ShortestPathList[OtherAtom->nr]+MinimumRingSize[OtherAtom->GetTrueFather()->nr];
1938 OtherAtom = NULL; //break;
1939 break;
1940 } else
1941 BFSStack->Push(OtherAtom);
1942 } else {
1943 //*out << Verbose(3) << "Not Adding, has already been visited." << endl;
1944 }
1945 } else {
1946 //*out << Verbose(3) << "Not Visiting, is a back edge." << endl;
1947 }
1948 }
1949 ColorList[Walker->nr] = black;
1950 //*out << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;
1951 }
1952
1953 // now clean the lists
1954 while (!TouchedStack->IsEmpty()){
1955 Walker = TouchedStack->PopFirst();
1956 PredecessorList[Walker->nr] = NULL;
1957 ShortestPathList[Walker->nr] = -1;
1958 ColorList[Walker->nr] = white;
1959 }
1960 }
1961 *out << Verbose(1) << "Minimum ring size of " << *Root << " is " << MinimumRingSize[Root->GetTrueFather()->nr] << "." << endl;
1962 }
1963 *out << Verbose(1) << "Minimum ring size is " << MinRingSize << ", over " << NumCycles << " cycles total." << endl;
1964 } else
1965 *out << Verbose(1) << "No rings were detected in the molecular structure." << endl;
1966
1967 Free((void **)&PredecessorList, "molecule::CyclicStructureAnalysis: **PredecessorList");
1968 Free((void **)&ShortestPathList, "molecule::CyclicStructureAnalysis: **ShortestPathList");
1969 Free((void **)&ColorList, "molecule::CyclicStructureAnalysis: **ColorList");
1970 delete(BFSStack);
1971};
1972
1973/** Sets the next component number.
1974 * This is O(N) as the number of bonds per atom is bound.
1975 * \param *vertex atom whose next atom::*ComponentNr is to be set
1976 * \param nr number to use
1977 */
1978void molecule::SetNextComponentNumber(atom *vertex, int nr)
1979{
1980 int i=0;
1981 if (vertex != NULL) {
1982 for(;i<NumberOfBondsPerAtom[vertex->nr];i++) {
1983 if (vertex->ComponentNr[i] == -1) { // check if not yet used
1984 vertex->ComponentNr[i] = nr;
1985 break;
1986 }
1987 else if (vertex->ComponentNr[i] == nr) // if number is already present, don't add another time
1988 break; // breaking here will not cause error!
1989 }
1990 if (i == NumberOfBondsPerAtom[vertex->nr])
1991 cerr << "Error: All Component entries are already occupied!" << endl;
1992 } else
1993 cerr << "Error: Given vertex is NULL!" << endl;
1994};
1995
1996/** Output a list of flags, stating whether the bond was visited or not.
1997 * \param *out output stream for debugging
1998 */
1999void molecule::OutputComponentNumber(ofstream *out, atom *vertex)
2000{
2001 for(int i=0;i<NumberOfBondsPerAtom[vertex->nr];i++)
2002 *out << vertex->ComponentNr[i] << " ";
2003};
2004
2005/** Allocates memory for all atom::*ComponentNr in this molecule and sets each entry to -1.
2006 */
2007void molecule::InitComponentNumbers()
2008{
2009 atom *Walker = start;
2010 while(Walker->next != end) {
2011 Walker = Walker->next;
2012 if (Walker->ComponentNr != NULL)
2013 Free((void **)&Walker->ComponentNr, "molecule::InitComponentNumbers: **Walker->ComponentNr");
2014 Walker->ComponentNr = (int *) Malloc(sizeof(int)*NumberOfBondsPerAtom[Walker->nr], "molecule::InitComponentNumbers: *Walker->ComponentNr");
2015 for (int i=NumberOfBondsPerAtom[Walker->nr];i--;)
2016 Walker->ComponentNr[i] = -1;
2017 }
2018};
2019
2020/** Returns next unused bond for this atom \a *vertex or NULL of none exists.
2021 * \param *vertex atom to regard
2022 * \return bond class or NULL
2023 */
2024bond * molecule::FindNextUnused(atom *vertex)
2025{
2026 for(int i=0;i<NumberOfBondsPerAtom[vertex->nr];i++)
2027 if (ListOfBondsPerAtom[vertex->nr][i]->IsUsed() == white)
2028 return(ListOfBondsPerAtom[vertex->nr][i]);
2029 return NULL;
2030};
2031
2032/** Resets bond::Used flag of all bonds in this molecule.
2033 * \return true - success, false - -failure
2034 */
2035void molecule::ResetAllBondsToUnused()
2036{
2037 bond *Binder = first;
2038 while (Binder->next != last) {
2039 Binder = Binder->next;
2040 Binder->ResetUsed();
2041 }
2042};
2043
2044/** Resets atom::nr to -1 of all atoms in this molecule.
2045 */
2046void molecule::ResetAllAtomNumbers()
2047{
2048 atom *Walker = start;
2049 while (Walker->next != end) {
2050 Walker = Walker->next;
2051 Walker->GraphNr = -1;
2052 }
2053};
2054
2055/** Output a list of flags, stating whether the bond was visited or not.
2056 * \param *out output stream for debugging
2057 * \param *list
2058 */
2059void OutputAlreadyVisited(ofstream *out, int *list)
2060{
2061 *out << Verbose(4) << "Already Visited Bonds:\t";
2062 for(int i=1;i<=list[0];i++) *out << Verbose(0) << list[i] << " ";
2063 *out << endl;
2064};
2065
2066/** Estimates by educated guessing (using upper limit) the expected number of fragments.
2067 * The upper limit is
2068 * \f[
2069 * n = N \cdot C^k
2070 * \f]
2071 * where \f$C=2^c\f$ and c is the maximum bond degree over N number of atoms.
2072 * \param *out output stream for debugging
2073 * \param order bond order k
2074 * \return number n of fragments
2075 */
2076int molecule::GuesstimateFragmentCount(ofstream *out, int order)
2077{
2078 int c = 0;
2079 int FragmentCount;
2080 // get maximum bond degree
2081 atom *Walker = start;
2082 while (Walker->next != end) {
2083 Walker = Walker->next;
2084 c = (NumberOfBondsPerAtom[Walker->nr] > c) ? NumberOfBondsPerAtom[Walker->nr] : c;
2085 }
2086 FragmentCount = NoNonHydrogen*(1 << (c*order));
2087 *out << Verbose(1) << "Upper limit for this subgraph is " << FragmentCount << " for " << NoNonHydrogen << " non-H atoms with maximum bond degree of " << c << "." << endl;
2088 return FragmentCount;
2089};
2090
2091/** Scans a single line for number and puts them into \a KeySet.
2092 * \param *out output stream for debugging
2093 * \param *buffer buffer to scan
2094 * \param &CurrentSet filled KeySet on return
2095 * \return true - at least one valid atom id parsed, false - CurrentSet is empty
2096 */
2097bool molecule::ScanBufferIntoKeySet(ofstream *out, char *buffer, KeySet &CurrentSet)
2098{
2099 stringstream line;
2100 int AtomNr;
2101 int status = 0;
2102
2103 line.str(buffer);
2104 while (!line.eof()) {
2105 line >> AtomNr;
2106 if ((AtomNr >= 0) && (AtomNr < AtomCount)) {
2107 CurrentSet.insert(AtomNr); // insert at end, hence in same order as in file!
2108 status++;
2109 } // else it's "-1" or else and thus must not be added
2110 }
2111 *out << Verbose(1) << "The scanned KeySet is ";
2112 for(KeySet::iterator runner = CurrentSet.begin(); runner != CurrentSet.end(); runner++) {
2113 *out << (*runner) << "\t";
2114 }
2115 *out << endl;
2116 return (status != 0);
2117};
2118
2119/** Parses the KeySet file and fills \a *FragmentList from the known molecule structure.
2120 * Does two-pass scanning:
2121 * -# Scans the keyset file and initialises a temporary graph
2122 * -# Scans TEFactors file and sets the TEFactor of each key set in the temporary graph accordingly
2123 * Finally, the temporary graph is inserted into the given \a FragmentList for return.
2124 * \param *out output stream for debugging
2125 * \param *path path to file
2126 * \param *FragmentList empty, filled on return
2127 * \return true - parsing successfully, false - failure on parsing (FragmentList will be NULL)
2128 */
2129bool molecule::ParseKeySetFile(ofstream *out, char *path, Graph *&FragmentList)
2130{
2131 bool status = true;
2132 ifstream InputFile;
2133 stringstream line;
2134 GraphTestPair testGraphInsert;
2135 int NumberOfFragments = 0;
2136 double TEFactor;
2137 char *filename = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "molecule::ParseKeySetFile - filename");
2138
2139 if (FragmentList == NULL) { // check list pointer
2140 FragmentList = new Graph;
2141 }
2142
2143 // 1st pass: open file and read
2144 *out << Verbose(1) << "Parsing the KeySet file ... " << endl;
2145 sprintf(filename, "%s/%s%s", path, FRAGMENTPREFIX, KEYSETFILE);
2146 InputFile.open(filename);
2147 if (InputFile != NULL) {
2148 // each line represents a new fragment
2149 char *buffer = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "molecule::ParseKeySetFile - *buffer");
2150 // 1. parse keysets and insert into temp. graph
2151 while (!InputFile.eof()) {
2152 InputFile.getline(buffer, MAXSTRINGSIZE);
2153 KeySet CurrentSet;
2154 if ((strlen(buffer) > 0) && (ScanBufferIntoKeySet(out, buffer, CurrentSet))) { // if at least one valid atom was added, write config
2155 testGraphInsert = FragmentList->insert(GraphPair (CurrentSet,pair<int,double>(NumberOfFragments++,1))); // store fragment number and current factor
2156 if (!testGraphInsert.second) {
2157 cerr << "KeySet file must be corrupt as there are two equal key sets therein!" << endl;
2158 }
2159 //FragmentList->ListOfMolecules[NumberOfFragments++] = StoreFragmentFromKeySet(out, CurrentSet, IsAngstroem);
2160 }
2161 }
2162 // 2. Free and done
2163 InputFile.close();
2164 InputFile.clear();
2165 Free((void **)&buffer, "molecule::ParseKeySetFile - *buffer");
2166 *out << Verbose(1) << "done." << endl;
2167 } else {
2168 *out << Verbose(1) << "File " << filename << " not found." << endl;
2169 status = false;
2170 }
2171
2172 // 2nd pass: open TEFactors file and read
2173 *out << Verbose(1) << "Parsing the TEFactors file ... " << endl;
2174 sprintf(filename, "%s/%s%s", path, FRAGMENTPREFIX, TEFACTORSFILE);
2175 InputFile.open(filename);
2176 if (InputFile != NULL) {
2177 // 3. add found TEFactors to each keyset
2178 NumberOfFragments = 0;
2179 for(Graph::iterator runner = FragmentList->begin();runner != FragmentList->end(); runner++) {
2180 if (!InputFile.eof()) {
2181 InputFile >> TEFactor;
2182 (*runner).second.second = TEFactor;
2183 *out << Verbose(2) << "Setting " << ++NumberOfFragments << " fragment's TEFactor to " << (*runner).second.second << "." << endl;
2184 } else {
2185 status = false;
2186 break;
2187 }
2188 }
2189 // 4. Free and done
2190 InputFile.close();
2191 *out << Verbose(1) << "done." << endl;
2192 } else {
2193 *out << Verbose(1) << "File " << filename << " not found." << endl;
2194 status = false;
2195 }
2196
2197 // free memory
2198 Free((void **)&filename, "molecule::ParseKeySetFile - filename");
2199
2200 return status;
2201};
2202
2203/** Stores keysets and TEFactors to file.
2204 * \param *out output stream for debugging
2205 * \param KeySetList Graph with Keysets and factors
2206 * \param *path path to file
2207 * \return true - file written successfully, false - writing failed
2208 */
2209bool molecule::StoreKeySetFile(ofstream *out, Graph &KeySetList, char *path)
2210{
2211 ofstream output;
2212 bool status = true;
2213 string line;
2214 string::iterator ende;
2215
2216 // open KeySet file
2217 line = path;
2218 line.append("/");
2219 line += FRAGMENTPREFIX;
2220 ende = line.end();
2221 line += KEYSETFILE;
2222 output.open(line.c_str(), ios::out);
2223 *out << Verbose(1) << "Saving key sets of the total graph ... ";
2224 if(output != NULL) {
2225 for(Graph::iterator runner = KeySetList.begin(); runner != KeySetList.end(); runner++) {
2226 for (KeySet::iterator sprinter = (*runner).first.begin();sprinter != (*runner).first.end(); sprinter++) {
2227 if (sprinter != (*runner).first.begin())
2228 output << "\t";
2229 output << *sprinter;
2230 }
2231 output << endl;
2232 }
2233 *out << "done." << endl;
2234 } else {
2235 cerr << "Unable to open " << line << " for writing keysets!" << endl;
2236 status = false;
2237 }
2238 output.close();
2239 output.clear();
2240
2241 // open TEFactors file
2242 line = path;
2243 line.append("/");
2244 line += FRAGMENTPREFIX;
2245 ende = line.end();
2246 line += TEFACTORSFILE;
2247 output.open(line.c_str(), ios::out);
2248 *out << Verbose(1) << "Saving TEFactors of the total graph ... ";
2249 if(output != NULL) {
2250 for(Graph::iterator runner = KeySetList.begin(); runner != KeySetList.end(); runner++)
2251 output << (*runner).second.second << endl;
2252 *out << Verbose(1) << "done." << endl;
2253 } else {
2254 *out << Verbose(1) << "failed to open " << line << "." << endl;
2255 status = false;
2256 }
2257 output.close();
2258
2259 return status;
2260};
2261
2262/** Storing the bond structure of a molecule to file.
2263 * Simply stores Atom::nr and then the Atom::nr of all bond partners per line.
2264 * \param *out output stream for debugging
2265 * \param *path path to file
2266 * \return true - file written successfully, false - writing failed
2267 */
2268bool molecule::StoreAdjacencyToFile(ofstream *out, char *path)
2269{
2270 ofstream AdjacencyFile;
2271 atom *Walker = NULL;
2272 stringstream line;
2273 bool status = true;
2274
2275 line << path << "/" << FRAGMENTPREFIX << ADJACENCYFILE;
2276 AdjacencyFile.open(line.str().c_str(), ios::out);
2277 *out << Verbose(1) << "Saving adjacency list ... ";
2278 if (AdjacencyFile != NULL) {
2279 Walker = start;
2280 while(Walker->next != end) {
2281 Walker = Walker->next;
2282 AdjacencyFile << Walker->nr << "\t";
2283 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
2284 AdjacencyFile << ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker)->nr << "\t";
2285 AdjacencyFile << endl;
2286 }
2287 AdjacencyFile.close();
2288 *out << Verbose(1) << "done." << endl;
2289 } else {
2290 *out << Verbose(1) << "failed to open file " << line.str() << "." << endl;
2291 status = false;
2292 }
2293
2294 return status;
2295};
2296
2297/** Checks contents of adjacency file against bond structure in structure molecule.
2298 * \param *out output stream for debugging
2299 * \param *path path to file
2300 * \param **ListOfAtoms allocated (molecule::AtomCount) and filled lookup table for ids (Atom::nr) to *Atom
2301 * \return true - structure is equal, false - not equivalence
2302 */
2303bool molecule::CheckAdjacencyFileAgainstMolecule(ofstream *out, char *path, atom **ListOfAtoms)
2304{
2305 ifstream File;
2306 stringstream filename;
2307 bool status = true;
2308 char *buffer = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "molecule::CheckAdjacencyFileAgainstMolecule: *buffer");
2309
2310 filename << path << "/" << FRAGMENTPREFIX << ADJACENCYFILE;
2311 File.open(filename.str().c_str(), ios::out);
2312 *out << Verbose(1) << "Looking at bond structure stored in adjacency file and comparing to present one ... ";
2313 if (File != NULL) {
2314 // allocate storage structure
2315 int NonMatchNumber = 0; // will number of atoms with differing bond structure
2316 int *CurrentBonds = (int *) Malloc(sizeof(int)*8, "molecule::CheckAdjacencyFileAgainstMolecule - CurrentBonds"); // contains parsed bonds of current atom
2317 int CurrentBondsOfAtom;
2318
2319 // Parse the file line by line and count the bonds
2320 while (!File.eof()) {
2321 File.getline(buffer, MAXSTRINGSIZE);
2322 stringstream line;
2323 line.str(buffer);
2324 int AtomNr = -1;
2325 line >> AtomNr;
2326 CurrentBondsOfAtom = -1; // we count one too far due to line end
2327 // parse into structure
2328 if ((AtomNr >= 0) && (AtomNr < AtomCount)) {
2329 while (!line.eof())
2330 line >> CurrentBonds[ ++CurrentBondsOfAtom ];
2331 // compare against present bonds
2332 //cout << Verbose(2) << "Walker is " << *Walker << ", bond partners: ";
2333 if (CurrentBondsOfAtom == NumberOfBondsPerAtom[AtomNr]) {
2334 for(int i=0;i<NumberOfBondsPerAtom[AtomNr];i++) {
2335 int id = ListOfBondsPerAtom[AtomNr][i]->GetOtherAtom(ListOfAtoms[AtomNr])->nr;
2336 int j = 0;
2337 for (;(j<CurrentBondsOfAtom) && (CurrentBonds[j++] != id);); // check against all parsed bonds
2338 if (CurrentBonds[j-1] != id) { // no match ? Then mark in ListOfAtoms
2339 ListOfAtoms[AtomNr] = NULL;
2340 NonMatchNumber++;
2341 status = false;
2342 //out << "[" << id << "]\t";
2343 } else {
2344 //out << id << "\t";
2345 }
2346 }
2347 //out << endl;
2348 } else {
2349 *out << "Number of bonds for Atom " << *ListOfAtoms[AtomNr] << " does not match, parsed " << CurrentBondsOfAtom << " against " << NumberOfBondsPerAtom[AtomNr] << "." << endl;
2350 status = false;
2351 }
2352 }
2353 }
2354 File.close();
2355 File.clear();
2356 if (status) { // if equal we parse the KeySetFile
2357 *out << Verbose(1) << "done: Equal." << endl;
2358 status = true;
2359 } else
2360 *out << Verbose(1) << "done: Not equal by " << NonMatchNumber << " atoms." << endl;
2361 Free((void **)&CurrentBonds, "molecule::CheckAdjacencyFileAgainstMolecule - **CurrentBonds");
2362 } else {
2363 *out << Verbose(1) << "Adjacency file not found." << endl;
2364 status = false;
2365 }
2366 *out << endl;
2367 Free((void **)&buffer, "molecule::CheckAdjacencyFileAgainstMolecule: *buffer");
2368
2369 return status;
2370};
2371
2372/** Checks whether the OrderAtSite is still bewloe \a Order at some site.
2373 * \param *out output stream for debugging
2374 * \param *AtomMask defines true/false per global Atom::nr to mask in/out each nuclear site, used to activate given number of site to increment order adaptively
2375 * \param *GlobalKeySetList list of keysets with global ids (valid in "this" molecule) needed for adaptive increase
2376 * \param Order desired Order if positive, desired exponent in threshold criteria if negative (0 is single-step)
2377 * \param *path path to ENERGYPERFRAGMENT file (may be NULL if Order is non-negative)
2378 * \return true - needs further fragmentation, false - does not need fragmentation
2379 */
2380bool molecule::CheckOrderAtSite(ofstream *out, bool *AtomMask, Graph *GlobalKeySetList, int Order, char *path)
2381{
2382 atom *Walker = start;
2383 bool status = false;
2384 ifstream InputFile;
2385
2386 // initialize mask list
2387 for(int i=AtomCount;i--;)
2388 AtomMask[i] = false;
2389
2390 if (Order < 0) { // adaptive increase of BondOrder per site
2391 if (AtomMask[AtomCount] == true) // break after one step
2392 return false;
2393 // parse the EnergyPerFragment file
2394 char *buffer = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "molecule::CheckOrderAtSite: *buffer");
2395 sprintf(buffer, "%s/%s%s.dat", path, FRAGMENTPREFIX, ENERGYPERFRAGMENT);
2396 InputFile.open(buffer, ios::in);
2397 if ((InputFile != NULL) && (GlobalKeySetList != NULL)) {
2398 // transmorph graph keyset list into indexed KeySetList
2399 map<int,KeySet> IndexKeySetList;
2400 for(Graph::iterator runner = GlobalKeySetList->begin(); runner != GlobalKeySetList->end(); runner++) {
2401 IndexKeySetList.insert( pair<int,KeySet>(runner->second.first,runner->first) );
2402 }
2403 int lines = 0;
2404 // count the number of lines, i.e. the number of fragments
2405 InputFile.getline(buffer, MAXSTRINGSIZE); // skip comment lines
2406 InputFile.getline(buffer, MAXSTRINGSIZE);
2407 while(!InputFile.eof()) {
2408 InputFile.getline(buffer, MAXSTRINGSIZE);
2409 lines++;
2410 }
2411 *out << Verbose(2) << "Scanned " << lines-1 << " lines." << endl; // one endline too much
2412 InputFile.clear();
2413 InputFile.seekg(ios::beg);
2414 map<int, pair<double,int> > AdaptiveCriteriaList; // (Root No., (Value, Order)) !
2415 int No, FragOrder;
2416 double Value;
2417 // each line represents a fragment root (Atom::nr) id and its energy contribution
2418 InputFile.getline(buffer, MAXSTRINGSIZE); // skip comment lines
2419 InputFile.getline(buffer, MAXSTRINGSIZE);
2420 while(!InputFile.eof()) {
2421 InputFile.getline(buffer, MAXSTRINGSIZE);
2422 if (strlen(buffer) > 2) {
2423 //*out << Verbose(2) << "Scanning: " << buffer;
2424 stringstream line(buffer);
2425 line >> FragOrder;
2426 line >> ws >> No;
2427 line >> ws >> Value; // skip time entry
2428 line >> ws >> Value;
2429 No -= 1; // indices start at 1 in file, not 0
2430 //*out << Verbose(2) << " - yields (" << No << "," << Value << ")" << endl;
2431
2432 // clean the list of those entries that have been superceded by higher order terms already
2433 map<int,KeySet>::iterator marker = IndexKeySetList.find(No); // find keyset to Frag No.
2434 if (marker != IndexKeySetList.end()) { // if found
2435 // as the smallest number in each set has always been the root (we use global id to keep the doubles away), seek smallest and insert into AtomMask
2436 pair <map<int, pair<double,int> >::iterator, bool> InsertedElement = AdaptiveCriteriaList.insert( make_pair(*((*marker).second.begin()), pair<double,int>( Value, Order) ));
2437 map<int, pair<double,int> >::iterator PresentItem = InsertedElement.first;
2438 if (!InsertedElement.second) { // this root is already present
2439 if ((*PresentItem).second.second < FragOrder) // if order there is lower, update entry with higher-order term
2440 //if ((*PresentItem).second.first < (*runner).first) // as higher-order terms are not always better, we skip this part (which would always include this site into adaptive increase)
2441 { // if value is smaller, update value and order
2442 (*PresentItem).second.first = Value;
2443 (*PresentItem).second.second = FragOrder;
2444 *out << Verbose(2) << "Updated element (" << (*PresentItem).first << ",[" << (*PresentItem).second.first << "," << (*PresentItem).second.second << "])." << endl;
2445 }
2446 } else {
2447 *out << Verbose(2) << "Inserted element (" << (*PresentItem).first << ",[" << (*PresentItem).second.first << "," << (*PresentItem).second.second << "])." << endl;
2448 }
2449 } else {
2450 *out << Verbose(1) << "No Fragment under No. " << No << "found." << endl;
2451 }
2452 }
2453 }
2454 // then map back onto (Value, (Root Nr., Order)) (i.e. sorted by value to pick the highest ones)
2455 map<double, pair<int,int> > FinalRootCandidates;
2456 *out << Verbose(1) << "Root candidate list is: " << endl;
2457 for(map<int, pair<double,int> >::iterator runner = AdaptiveCriteriaList.begin(); runner != AdaptiveCriteriaList.end(); runner++) {
2458 Walker = FindAtom((*runner).first);
2459 if (Walker != NULL) {
2460 if ((*runner).second.second >= Walker->AdaptiveOrder) { // only insert if this is an "active" root site for the current order
2461 *out << Verbose(2) << "(" << (*runner).first << ",[" << (*runner).second.first << "," << (*runner).second.second << "])" << endl;
2462 FinalRootCandidates.insert( make_pair( (*runner).second.first, pair<int,int>((*runner).first, (*runner).second.second) ) );
2463 }
2464 } else {
2465 cerr << "Atom No. " << (*runner).second.first << " was not found in this molecule." << endl;
2466 }
2467 }
2468 // pick the ones still below threshold and mark as to be adaptively updated
2469 for(map<double, pair<int,int> >::iterator runner = FinalRootCandidates.upper_bound(pow(10.,Order)); runner != FinalRootCandidates.end(); runner++) {
2470 No = (*runner).second.first;
2471 *out << Verbose(2) << "Root " << No << " is still above threshold (10^{" << Order <<"}: " << runner->first << ", setting entry " << No << " of Atom mask to true." << endl;
2472 AtomMask[No] = true;
2473 status = true;
2474 }
2475 // close and done
2476 InputFile.close();
2477 InputFile.clear();
2478 } else {
2479 cerr << "Unable to parse " << buffer << " file, incrementing all." << endl;
2480 while (Walker->next != end) {
2481 Walker = Walker->next;
2482 #ifdef ADDHYDROGEN
2483 if (Walker->type->Z != 1) // skip hydrogen
2484 #endif
2485 {
2486 AtomMask[Walker->nr] = true; // include all (non-hydrogen) atoms
2487 status = true;
2488 }
2489 }
2490 }
2491 Free((void **)&buffer, "molecule::CheckOrderAtSite: *buffer");
2492 // pick a given number of highest values and set AtomMask
2493 } else { // global increase of Bond Order
2494 while (Walker->next != end) {
2495 Walker = Walker->next;
2496 #ifdef ADDHYDROGEN
2497 if (Walker->type->Z != 1) // skip hydrogen
2498 #endif
2499 {
2500 AtomMask[Walker->nr] = true; // include all (non-hydrogen) atoms
2501 if ((Order != 0) && (Walker->AdaptiveOrder < Order))
2502 status = true;
2503 }
2504 }
2505 if ((Order == 0) && (AtomMask[AtomCount] == true)) // single stepping, just check
2506 status = false;
2507
2508 if (!status)
2509 *out << Verbose(1) << "Order at every site is already equal or above desired order " << Order << "." << endl;
2510 }
2511
2512 // print atom mask for debugging
2513 *out << " ";
2514 for(int i=0;i<AtomCount;i++)
2515 *out << (i % 10);
2516 *out << endl << "Atom mask is: ";
2517 for(int i=0;i<AtomCount;i++)
2518 *out << (AtomMask[i] ? "t" : "f");
2519 *out << endl;
2520
2521 return status;
2522};
2523
2524/** Create a SortIndex to map from BFS labels to the sequence in which the atoms are given in the config file.
2525 * \param *out output stream for debugging
2526 * \param *&SortIndex Mapping array of size molecule::AtomCount
2527 * \return true - success, false - failure of SortIndex alloc
2528 */
2529bool molecule::CreateMappingLabelsToConfigSequence(ofstream *out, int *&SortIndex)
2530{
2531 element *runner = elemente->start;
2532 int AtomNo = 0;
2533 atom *Walker = NULL;
2534
2535 if (SortIndex != NULL) {
2536 *out << Verbose(1) << "SortIndex is " << SortIndex << " and not NULL as expected." << endl;
2537 return false;
2538 }
2539 SortIndex = (int *) Malloc(sizeof(int)*AtomCount, "molecule::FragmentMolecule: *SortIndex");
2540 for(int i=AtomCount;i--;)
2541 SortIndex[i] = -1;
2542 while (runner->next != elemente->end) { // go through every element
2543 runner = runner->next;
2544 if (ElementsInMolecule[runner->Z]) { // if this element got atoms
2545 Walker = start;
2546 while (Walker->next != end) { // go through every atom of this element
2547 Walker = Walker->next;
2548 if (Walker->type->Z == runner->Z) // if this atom fits to element
2549 SortIndex[Walker->nr] = AtomNo++;
2550 }
2551 }
2552 }
2553 return true;
2554};
2555
2556/** Performs a many-body bond order analysis for a given bond order.
2557 * -# parses adjacency, keysets and orderatsite files
2558 * -# performs DFS to find connected subgraphs (to leave this in was a design decision: might be useful later)
2559 * -# RootStack is created for every subgraph (here, later we implement the "update 10 sites with highest energ
2560y contribution", and that's why this consciously not done in the following loop)
2561 * -# in a loop over all subgraphs
2562 * -# calls FragmentBOSSANOVA with this RootStack and within the subgraph molecule structure
2563 * -# creates molecule (fragment)s from the returned keysets (StoreFragmentFromKeySet)
2564 * -# combines the generated molecule lists from all subgraphs
2565 * -# saves to disk: fragment configs, adjacency, orderatsite, keyset files
2566 * Note that as we split "this" molecule up into a list of subgraphs, i.e. a MoleculeListClass, we have two sets
2567 * of vertex indices: Global always means the index in "this" molecule, whereas local refers to the molecule or
2568 * subgraph in the MoleculeListClass.
2569 * \param *out output stream for debugging
2570 * \param Order up to how many neighbouring bonds a fragment contains in BondOrderScheme::BottumUp scheme
2571 * \param *configuration configuration for writing config files for each fragment
2572 */
2573void molecule::FragmentMolecule(ofstream *out, int Order, config *configuration)
2574{
2575 MoleculeListClass *BondFragments = NULL;
2576 int *SortIndex = NULL;
2577 int *MinimumRingSize = NULL;
2578 int FragmentCounter;
2579 MoleculeLeafClass *MolecularWalker = NULL;
2580 MoleculeLeafClass *Subgraphs = NULL; // list of subgraphs from DFS analysis
2581 fstream File;
2582 bool FragmentationToDo = true;
2583 Graph **FragmentList = NULL;
2584 Graph *ParsedFragmentList = NULL;
2585 Graph TotalGraph; // graph with all keysets however local numbers
2586 int TotalNumberOfKeySets = 0;
2587 atom **ListOfAtoms = NULL;
2588 atom ***ListOfLocalAtoms = NULL;
2589 bool *AtomMask = NULL;
2590
2591 *out << endl;
2592#ifdef ADDHYDROGEN
2593 *out << Verbose(0) << "I will treat hydrogen special and saturate dangling bonds with it." << endl;
2594#else
2595 *out << Verbose(0) << "Hydrogen is treated just like the rest of the lot." << endl;
2596#endif
2597
2598 // ++++++++++++++++++++++++++++ INITIAL STUFF: Bond structure analysis, file parsing, ... ++++++++++++++++++++++++++++++++++++++++++
2599
2600 // ===== 1. Check whether bond structure is same as stored in files ====
2601
2602 // fill the adjacency list
2603 CreateListOfBondsPerAtom(out);
2604
2605 // create lookup table for Atom::nr
2606 FragmentationToDo = FragmentationToDo && CreateFatherLookupTable(out, start, end, ListOfAtoms, AtomCount);
2607
2608 // === compare it with adjacency file ===
2609 FragmentationToDo = FragmentationToDo && CheckAdjacencyFileAgainstMolecule(out, configuration->configpath, ListOfAtoms);
2610 Free((void **)&ListOfAtoms, "molecule::FragmentMolecule - **ListOfAtoms");
2611
2612 // ===== 2. perform a DFS analysis to gather info on cyclic structure and a list of disconnected subgraphs =====
2613 Subgraphs = DepthFirstSearchAnalysis(out, MinimumRingSize);
2614 // fill the bond structure of the individually stored subgraphs
2615 Subgraphs->next->FillBondStructureFromReference(out, this, (FragmentCounter = 0), ListOfLocalAtoms, false); // we want to keep the created ListOfLocalAtoms
2616
2617 // ===== 3. if structure still valid, parse key set file and others =====
2618 FragmentationToDo = FragmentationToDo && ParseKeySetFile(out, configuration->configpath, ParsedFragmentList);
2619
2620 // ===== 4. check globally whether there's something to do actually (first adaptivity check)
2621 FragmentationToDo = FragmentationToDo && ParseOrderAtSiteFromFile(out, configuration->configpath);
2622
2623 // =================================== Begin of FRAGMENTATION ===============================
2624 // ===== 6a. assign each keyset to its respective subgraph =====
2625 Subgraphs->next->AssignKeySetsToFragment(out, this, ParsedFragmentList, ListOfLocalAtoms, FragmentList, (FragmentCounter = 0), false);
2626
2627 KeyStack *RootStack = new KeyStack[Subgraphs->next->Count()];
2628 AtomMask = new bool[AtomCount+1];
2629 while (CheckOrderAtSite(out, AtomMask, ParsedFragmentList, Order, configuration->configpath)) {
2630 AtomMask[AtomCount] = true; // last plus one entry is used as marker that we have been through this loop once already in CheckOrderAtSite()
2631 // ===== 6b. fill RootStack for each subgraph (second adaptivity check) =====
2632 Subgraphs->next->FillRootStackForSubgraphs(out, RootStack, AtomMask, (FragmentCounter = 0));
2633
2634 // ===== 7. fill the bond fragment list =====
2635 FragmentCounter = 0;
2636 MolecularWalker = Subgraphs;
2637 while (MolecularWalker->next != NULL) {
2638 MolecularWalker = MolecularWalker->next;
2639 *out << Verbose(1) << "Fragmenting subgraph " << MolecularWalker << "." << endl;
2640 // output ListOfBondsPerAtom for debugging
2641 MolecularWalker->Leaf->OutputListOfBonds(out);
2642 if (MolecularWalker->Leaf->first->next != MolecularWalker->Leaf->last) {
2643
2644 // call BOSSANOVA method
2645 *out << Verbose(0) << endl << " ========== BOND ENERGY of subgraph " << FragmentCounter << " ========================= " << endl;
2646 MolecularWalker->Leaf->FragmentBOSSANOVA(out, FragmentList[FragmentCounter], RootStack[FragmentCounter], MinimumRingSize);
2647 } else {
2648 cerr << "Subgraph " << MolecularWalker << " has no atoms!" << endl;
2649 }
2650 FragmentCounter++; // next fragment list
2651 }
2652 }
2653 delete[](RootStack);
2654 delete[](AtomMask);
2655 delete(ParsedFragmentList);
2656 delete[](MinimumRingSize);
2657
2658 // free the index lookup list
2659 for (int i=FragmentCounter;i--;)
2660 Free((void **)&ListOfLocalAtoms[i], "molecule::FragmentMolecule - *ListOfLocalAtoms[]");
2661 Free((void **)&ListOfLocalAtoms, "molecule::FragmentMolecule - **ListOfLocalAtoms");
2662
2663 // ==================================== End of FRAGMENTATION ============================================
2664
2665 // ===== 8a. translate list into global numbers (i.e. ones that are valid in "this" molecule, not in MolecularWalker->Leaf)
2666 Subgraphs->next->TranslateIndicesToGlobalIDs(out, FragmentList, (FragmentCounter = 0), TotalNumberOfKeySets, TotalGraph);
2667
2668 // free subgraph memory again
2669 FragmentCounter = 0;
2670 if (Subgraphs != NULL) {
2671 while (Subgraphs->next != NULL) {
2672 Subgraphs = Subgraphs->next;
2673 delete(FragmentList[FragmentCounter++]);
2674 delete(Subgraphs->previous);
2675 }
2676 delete(Subgraphs);
2677 }
2678 Free((void **)&FragmentList, "molecule::FragmentMolecule - **FragmentList");
2679
2680 // ===== 8b. gather keyset lists (graphs) from all subgraphs and transform into MoleculeListClass =====
2681 // allocate memory for the pointer array and transmorph graphs into full molecular fragments
2682 BondFragments = new MoleculeListClass(TotalGraph.size(), AtomCount);
2683 int k=0;
2684 for(Graph::iterator runner = TotalGraph.begin(); runner != TotalGraph.end(); runner++) {
2685 KeySet test = (*runner).first;
2686 *out << "Fragment No." << (*runner).second.first << " with TEFactor " << (*runner).second.second << "." << endl;
2687 BondFragments->ListOfMolecules[k] = StoreFragmentFromKeySet(out, test, configuration);
2688 k++;
2689 }
2690 *out << k << "/" << BondFragments->NumberOfMolecules << " fragments generated from the keysets." << endl;
2691
2692 // ===== 9. Save fragments' configuration and keyset files et al to disk ===
2693 if (BondFragments->NumberOfMolecules != 0) {
2694 // create the SortIndex from BFS labels to order in the config file
2695 CreateMappingLabelsToConfigSequence(out, SortIndex);
2696
2697 *out << Verbose(1) << "Writing " << BondFragments->NumberOfMolecules << " possible bond fragmentation configs" << endl;
2698 if (BondFragments->OutputConfigForListOfFragments(out, configuration, SortIndex))
2699 *out << Verbose(1) << "All configs written." << endl;
2700 else
2701 *out << Verbose(1) << "Some config writing failed." << endl;
2702
2703 // store force index reference file
2704 BondFragments->StoreForcesFile(out, configuration->configpath, SortIndex);
2705
2706 // store keysets file
2707 StoreKeySetFile(out, TotalGraph, configuration->configpath);
2708
2709 // store Adjacency file
2710 StoreAdjacencyToFile(out, configuration->configpath);
2711
2712 // store adaptive orders into file
2713 StoreOrderAtSiteFile(out, configuration->configpath);
2714
2715 // restore orbital and Stop values
2716 CalculateOrbitals(*configuration);
2717
2718 // free memory for bond part
2719 *out << Verbose(1) << "Freeing bond memory" << endl;
2720 delete(FragmentList); // remove bond molecule from memory
2721 Free((void **)&SortIndex, "molecule::FragmentMolecule: *SortIndex");
2722 } else
2723 *out << Verbose(1) << "FragmentList is zero on return, splitting failed." << endl;
2724
2725 *out << Verbose(0) << "End of bond fragmentation." << endl;
2726};
2727
2728/** Stores pairs (Atom::nr, Atom::AdaptiveOrder) into file.
2729 * Atoms not present in the file get "-1".
2730 * \param *out output stream for debugging
2731 * \param *path path to file ORDERATSITEFILE
2732 * \return true - file writable, false - not writable
2733 */
2734bool molecule::StoreOrderAtSiteFile(ofstream *out, char *path)
2735{
2736 stringstream line;
2737 ofstream file;
2738
2739 line << path << "/" << FRAGMENTPREFIX << ORDERATSITEFILE;
2740 file.open(line.str().c_str());
2741 *out << Verbose(1) << "Writing OrderAtSite " << ORDERATSITEFILE << " ... " << endl;
2742 if (file != NULL) {
2743 atom *Walker = start;
2744 while (Walker->next != end) {
2745 Walker = Walker->next;
2746 file << Walker->nr << "\t" << (int)Walker->AdaptiveOrder << endl;
2747 *out << Verbose(2) << "Storing: " << Walker->nr << "\t" << (int)Walker->AdaptiveOrder << "." << endl;
2748 }
2749 file.close();
2750 *out << Verbose(1) << "done." << endl;
2751 return true;
2752 } else {
2753 *out << Verbose(1) << "failed to open file " << line.str() << "." << endl;
2754 return false;
2755 }
2756};
2757
2758/** Parses pairs(Atom::nr, Atom::AdaptiveOrder) from file and stores in molecule's Atom's.
2759 * Atoms not present in the file get "0".
2760 * \param *out output stream for debugging
2761 * \param *path path to file ORDERATSITEFILEe
2762 * \return true - file found and scanned, false - file not found
2763 * \sa ParseKeySetFile() and CheckAdjacencyFileAgainstMolecule() as this is meant to be used in conjunction with the two
2764 */
2765bool molecule::ParseOrderAtSiteFromFile(ofstream *out, char *path)
2766{
2767 unsigned char *OrderArray = (unsigned char *) Malloc(sizeof(unsigned char)*AtomCount, "molecule::ParseOrderAtSiteFromFile - *OrderArray");
2768 bool status;
2769 int AtomNr;
2770 stringstream line;
2771 ifstream file;
2772 int Order;
2773
2774 *out << Verbose(1) << "Begin of ParseOrderAtSiteFromFile" << endl;
2775 for(int i=AtomCount;i--;)
2776 OrderArray[i] = 0;
2777 line << path << "/" << FRAGMENTPREFIX << ORDERATSITEFILE;
2778 file.open(line.str().c_str());
2779 if (file != NULL) {
2780 for (int i=AtomCount;i--;) // initialise with 0
2781 OrderArray[i] = 0;
2782 while (!file.eof()) { // parse from file
2783 file >> AtomNr;
2784 file >> Order;
2785 OrderArray[AtomNr] = (unsigned char) Order;
2786 //*out << Verbose(2) << "AtomNr " << AtomNr << " with order " << (int)OrderArray[AtomNr] << "." << endl;
2787 }
2788 atom *Walker = start;
2789 while (Walker->next != end) { // fill into atom classes
2790 Walker = Walker->next;
2791 Walker->AdaptiveOrder = OrderArray[Walker->nr];
2792 *out << Verbose(2) << *Walker << " gets order " << (int)Walker->AdaptiveOrder << "." << endl;
2793 }
2794 file.close();
2795 *out << Verbose(1) << "done." << endl;
2796 status = true;
2797 } else {
2798 *out << Verbose(1) << "failed to open file " << line.str() << "." << endl;
2799 status = false;
2800 }
2801 Free((void **)&OrderArray, "molecule::ParseOrderAtSiteFromFile - *OrderArray");
2802
2803 *out << Verbose(1) << "End of ParseOrderAtSiteFromFile" << endl;
2804 return status;
2805};
2806
2807/** Creates an 2d array of pointer with an entry for each atom and each bond it has.
2808 * Updates molecule::ListOfBondsPerAtom, molecule::NumberOfBondsPerAtom by parsing through
2809 * bond chain list, using molecule::AtomCount and molecule::BondCount.
2810 * Allocates memory, fills the array and exits
2811 * \param *out output stream for debugging
2812 */
2813void molecule::CreateListOfBondsPerAtom(ofstream *out)
2814{
2815 bond *Binder = NULL;
2816 atom *Walker = NULL;
2817 int TotalDegree;
2818 *out << Verbose(1) << "Begin of Creating ListOfBondsPerAtom: AtomCount = " << AtomCount << "\tBondCount = " << BondCount << "\tNoNonBonds = " << NoNonBonds << "." << endl;
2819
2820 // re-allocate memory
2821 *out << Verbose(2) << "(Re-)Allocating memory." << endl;
2822 if (ListOfBondsPerAtom != NULL) {
2823 for(int i=AtomCount;i--;)
2824 Free((void **)&ListOfBondsPerAtom[i], "molecule::CreateListOfBondsPerAtom: ListOfBondsPerAtom[i]");
2825 Free((void **)&ListOfBondsPerAtom, "molecule::CreateListOfBondsPerAtom: ListOfBondsPerAtom");
2826 }
2827 if (NumberOfBondsPerAtom != NULL)
2828 Free((void **)&NumberOfBondsPerAtom, "molecule::CreateListOfBondsPerAtom: NumberOfBondsPerAtom");
2829 ListOfBondsPerAtom = (bond ***) Malloc(sizeof(bond **)*AtomCount, "molecule::CreateListOfBondsPerAtom: ***ListOfBondsPerAtom");
2830 NumberOfBondsPerAtom = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfBondsPerAtom: *NumberOfBondsPerAtom");
2831
2832 // reset bond counts per atom
2833 for(int i=AtomCount;i--;)
2834 NumberOfBondsPerAtom[i] = 0;
2835 // count bonds per atom
2836 Binder = first;
2837 while (Binder->next != last) {
2838 Binder = Binder->next;
2839 NumberOfBondsPerAtom[Binder->leftatom->nr]++;
2840 NumberOfBondsPerAtom[Binder->rightatom->nr]++;
2841 }
2842 for(int i=AtomCount;i--;) {
2843 // allocate list of bonds per atom
2844 ListOfBondsPerAtom[i] = (bond **) Malloc(sizeof(bond *)*NumberOfBondsPerAtom[i], "molecule::CreateListOfBondsPerAtom: **ListOfBondsPerAtom[]");
2845 // clear the list again, now each NumberOfBondsPerAtom marks current free field
2846 NumberOfBondsPerAtom[i] = 0;
2847 }
2848 // fill the list
2849 Binder = first;
2850 while (Binder->next != last) {
2851 Binder = Binder->next;
2852 ListOfBondsPerAtom[Binder->leftatom->nr][NumberOfBondsPerAtom[Binder->leftatom->nr]++] = Binder;
2853 ListOfBondsPerAtom[Binder->rightatom->nr][NumberOfBondsPerAtom[Binder->rightatom->nr]++] = Binder;
2854 }
2855
2856 // output list for debugging
2857 *out << Verbose(3) << "ListOfBondsPerAtom for each atom:" << endl;
2858 Walker = start;
2859 while (Walker->next != end) {
2860 Walker = Walker->next;
2861 *out << Verbose(4) << "Atom " << Walker->Name << " with " << NumberOfBondsPerAtom[Walker->nr] << " bonds: ";
2862 TotalDegree = 0;
2863 for (int j=0;j<NumberOfBondsPerAtom[Walker->nr];j++) {
2864 *out << *ListOfBondsPerAtom[Walker->nr][j] << "\t";
2865 TotalDegree += ListOfBondsPerAtom[Walker->nr][j]->BondDegree;
2866 }
2867 *out << " -- TotalDegree: " << TotalDegree << endl;
2868 }
2869 *out << Verbose(1) << "End of Creating ListOfBondsPerAtom." << endl << endl;
2870};
2871
2872/** Adds atoms up to \a BondCount distance from \a *Root and notes them down in \a **AddedAtomList.
2873 * Gray vertices are always enqueued in an StackClass<atom *> FIFO queue, the rest is usual BFS with adding vertices found was
2874 * white and putting into queue.
2875 * \param *out output stream for debugging
2876 * \param *Mol Molecule class to add atoms to
2877 * \param **AddedAtomList list with added atom pointers, index is atom father's number
2878 * \param **AddedBondList list with added bond pointers, index is bond father's number
2879 * \param *Root root vertex for BFS
2880 * \param *Bond bond not to look beyond
2881 * \param BondOrder maximum distance for vertices to add
2882 * \param IsAngstroem lengths are in angstroem or bohrradii
2883 */
2884void molecule::BreadthFirstSearchAdd(ofstream *out, molecule *Mol, atom **&AddedAtomList, bond **&AddedBondList, atom *Root, bond *Bond, int BondOrder, bool IsAngstroem)
2885{
2886 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::BreadthFirstSearchAdd: **PredecessorList");
2887 int *ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::BreadthFirstSearchAdd: *ShortestPathList");
2888 enum Shading *ColorList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::BreadthFirstSearchAdd: *ColorList");
2889 class StackClass<atom *> *AtomStack = new StackClass<atom *>(AtomCount);
2890 atom *Walker = NULL, *OtherAtom = NULL;
2891 bond *Binder = NULL;
2892
2893 // add Root if not done yet
2894 AtomStack->ClearStack();
2895 if (AddedAtomList[Root->nr] == NULL) // add Root if not yet present
2896 AddedAtomList[Root->nr] = Mol->AddCopyAtom(Root);
2897 AtomStack->Push(Root);
2898
2899 // initialise each vertex as white with no predecessor, empty queue, color Root lightgray
2900 for (int i=AtomCount;i--;) {
2901 PredecessorList[i] = NULL;
2902 ShortestPathList[i] = -1;
2903 if (AddedAtomList[i] != NULL) // mark already present atoms (i.e. Root and maybe others) as visited
2904 ColorList[i] = lightgray;
2905 else
2906 ColorList[i] = white;
2907 }
2908 ShortestPathList[Root->nr] = 0;
2909
2910 // and go on ... Queue always contains all lightgray vertices
2911 while (!AtomStack->IsEmpty()) {
2912 // we have to pop the oldest atom from stack. This keeps the atoms on the stack always of the same ShortestPath distance.
2913 // e.g. if current atom is 2, push to end of stack are of length 3, but first all of length 2 would be popped. They again
2914 // append length of 3 (their neighbours). Thus on stack we have always atoms of a certain length n at bottom of stack and
2915 // followed by n+1 till top of stack.
2916 Walker = AtomStack->PopFirst(); // pop oldest added
2917 *out << Verbose(1) << "Current Walker is: " << Walker->Name << ", and has " << NumberOfBondsPerAtom[Walker->nr] << " bonds." << endl;
2918 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
2919 Binder = ListOfBondsPerAtom[Walker->nr][i];
2920 if (Binder != NULL) { // don't look at bond equal NULL
2921 OtherAtom = Binder->GetOtherAtom(Walker);
2922 *out << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *Binder << "." << endl;
2923 if (ColorList[OtherAtom->nr] == white) {
2924 if (Binder != Bond) // let other atom white if it's via Root bond. In case it's cyclic it has to be reached again (yet Root is from OtherAtom already black, thus no problem)
2925 ColorList[OtherAtom->nr] = lightgray;
2926 PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
2927 ShortestPathList[OtherAtom->nr] = ShortestPathList[Walker->nr]+1;
2928 *out << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " " << ((ColorList[OtherAtom->nr] == white) ? "white" : "lightgray") << ", its predecessor is " << Walker->Name << " and its Shortest Path is " << ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;
2929 if ((((ShortestPathList[OtherAtom->nr] < BondOrder) && (Binder != Bond))) ) { // Check for maximum distance
2930 *out << Verbose(3);
2931 if (AddedAtomList[OtherAtom->nr] == NULL) { // add if it's not been so far
2932 AddedAtomList[OtherAtom->nr] = Mol->AddCopyAtom(OtherAtom);
2933 *out << "Added OtherAtom " << OtherAtom->Name;
2934 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
2935 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
2936 AddedBondList[Binder->nr]->Type = Binder->Type;
2937 *out << " and bond " << *(AddedBondList[Binder->nr]) << ", ";
2938 } else { // this code should actually never come into play (all white atoms are not yet present in BondMolecule, that's why they are white in the first place)
2939 *out << "Not adding OtherAtom " << OtherAtom->Name;
2940 if (AddedBondList[Binder->nr] == NULL) {
2941 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
2942 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
2943 AddedBondList[Binder->nr]->Type = Binder->Type;
2944 *out << ", added Bond " << *(AddedBondList[Binder->nr]);
2945 } else
2946 *out << ", not added Bond ";
2947 }
2948 *out << ", putting OtherAtom into queue." << endl;
2949 AtomStack->Push(OtherAtom);
2950 } else { // out of bond order, then replace
2951 if ((AddedAtomList[OtherAtom->nr] == NULL) && (Binder->Cyclic))
2952 ColorList[OtherAtom->nr] = white; // unmark if it has not been queued/added, to make it available via its other bonds (cyclic)
2953 if (Binder == Bond)
2954 *out << Verbose(3) << "Not Queueing, is the Root bond";
2955 else if (ShortestPathList[OtherAtom->nr] >= BondOrder)
2956 *out << Verbose(3) << "Not Queueing, is out of Bond Count of " << BondOrder;
2957 if (!Binder->Cyclic)
2958 *out << ", is not part of a cyclic bond, saturating bond with Hydrogen." << endl;
2959 if (AddedBondList[Binder->nr] == NULL) {
2960 if ((AddedAtomList[OtherAtom->nr] != NULL)) { // .. whether we add or saturate
2961 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
2962 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
2963 AddedBondList[Binder->nr]->Type = Binder->Type;
2964 } else {
2965#ifdef ADDHYDROGEN
2966 Mol->AddHydrogenReplacementAtom(out, Binder, AddedAtomList[Walker->nr], Walker, OtherAtom, ListOfBondsPerAtom[Walker->nr], NumberOfBondsPerAtom[Walker->nr], IsAngstroem);
2967#endif
2968 }
2969 }
2970 }
2971 } else {
2972 *out << Verbose(3) << "Not Adding, has already been visited." << endl;
2973 // This has to be a cyclic bond, check whether it's present ...
2974 if (AddedBondList[Binder->nr] == NULL) {
2975 if ((Binder != Bond) && (Binder->Cyclic) && (((ShortestPathList[Walker->nr]+1) < BondOrder))) {
2976 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
2977 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
2978 AddedBondList[Binder->nr]->Type = Binder->Type;
2979 } else { // if it's root bond it has to broken (otherwise we would not create the fragments)
2980#ifdef ADDHYDROGEN
2981 Mol->AddHydrogenReplacementAtom(out, Binder, AddedAtomList[Walker->nr], Walker, OtherAtom, ListOfBondsPerAtom[Walker->nr], NumberOfBondsPerAtom[Walker->nr], IsAngstroem);
2982#endif
2983 }
2984 }
2985 }
2986 }
2987 }
2988 ColorList[Walker->nr] = black;
2989 *out << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;
2990 }
2991 Free((void **)&PredecessorList, "molecule::BreadthFirstSearchAdd: **PredecessorList");
2992 Free((void **)&ShortestPathList, "molecule::BreadthFirstSearchAdd: **ShortestPathList");
2993 Free((void **)&ColorList, "molecule::BreadthFirstSearchAdd: **ColorList");
2994 delete(AtomStack);
2995};
2996
2997/** Adds bond structure to this molecule from \a Father molecule.
2998 * This basically causes this molecule to become an induced subgraph of the \a Father, i.e. for every bond in Father
2999 * with end points present in this molecule, bond is created in this molecule.
3000 * Special care was taken to ensure that this is of complexity O(N), where N is the \a Father's molecule::AtomCount.
3001 * \param *out output stream for debugging
3002 * \param *Father father molecule
3003 * \return true - is induced subgraph, false - there are atoms with fathers not in \a Father
3004 * \todo not checked, not fully working probably
3005 */
3006bool molecule::BuildInducedSubgraph(ofstream *out, const molecule *Father)
3007{
3008 atom *Walker = NULL, *OtherAtom = NULL;
3009 bool status = true;
3010 atom **ParentList = (atom **) Malloc(sizeof(atom *)*Father->AtomCount, "molecule::BuildInducedSubgraph: **ParentList");
3011
3012 *out << Verbose(2) << "Begin of BuildInducedSubgraph." << endl;
3013
3014 // reset parent list
3015 *out << Verbose(3) << "Resetting ParentList." << endl;
3016 for (int i=Father->AtomCount;i--;)
3017 ParentList[i] = NULL;
3018
3019 // fill parent list with sons
3020 *out << Verbose(3) << "Filling Parent List." << endl;
3021 Walker = start;
3022 while (Walker->next != end) {
3023 Walker = Walker->next;
3024 ParentList[Walker->father->nr] = Walker;
3025 // Outputting List for debugging
3026 *out << Verbose(4) << "Son["<< Walker->father->nr <<"] of " << Walker->father << " is " << ParentList[Walker->father->nr] << "." << endl;
3027 }
3028
3029 // check each entry of parent list and if ok (one-to-and-onto matching) create bonds
3030 *out << Verbose(3) << "Creating bonds." << endl;
3031 Walker = Father->start;
3032 while (Walker->next != Father->end) {
3033 Walker = Walker->next;
3034 if (ParentList[Walker->nr] != NULL) {
3035 if (ParentList[Walker->nr]->father != Walker) {
3036 status = false;
3037 } else {
3038 for (int i=0;i<Father->NumberOfBondsPerAtom[Walker->nr];i++) {
3039 OtherAtom = Father->ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
3040 if (ParentList[OtherAtom->nr] != NULL) { // if otheratom is also a father of an atom on this molecule, create the bond
3041 *out << Verbose(4) << "Endpoints of Bond " << Father->ListOfBondsPerAtom[Walker->nr][i] << " are both present: " << ParentList[Walker->nr]->Name << " and " << ParentList[OtherAtom->nr]->Name << "." << endl;
3042 AddBond(ParentList[Walker->nr], ParentList[OtherAtom->nr], Father->ListOfBondsPerAtom[Walker->nr][i]->BondDegree);
3043 }
3044 }
3045 }
3046 }
3047 }
3048
3049 Free((void **)&ParentList, "molecule::BuildInducedSubgraph: **ParentList");
3050 *out << Verbose(2) << "End of BuildInducedSubgraph." << endl;
3051 return status;
3052};
3053
3054
3055/** Looks through a StackClass<atom *> and returns the likeliest removal candiate.
3056 * \param *out output stream for debugging messages
3057 * \param *&Leaf KeySet to look through
3058 * \param *&ShortestPathList list of the shortest path to decide which atom to suggest as removal candidate in the end
3059 * \param index of the atom suggested for removal
3060 */
3061int molecule::LookForRemovalCandidate(ofstream *&out, KeySet *&Leaf, int *&ShortestPathList)
3062{
3063 atom *Runner = NULL;
3064 int SP, Removal;
3065
3066 *out << Verbose(2) << "Looking for removal candidate." << endl;
3067 SP = -1; //0; // not -1, so that Root is never removed
3068 Removal = -1;
3069 for (KeySet::iterator runner = Leaf->begin(); runner != Leaf->end(); runner++) {
3070 Runner = FindAtom((*runner));
3071 if (Runner->type->Z != 1) { // skip all those added hydrogens when re-filling snake stack
3072 if (ShortestPathList[(*runner)] > SP) { // remove the oldest one with longest shortest path
3073 SP = ShortestPathList[(*runner)];
3074 Removal = (*runner);
3075 }
3076 }
3077 }
3078 return Removal;
3079};
3080
3081/** Stores a fragment from \a KeySet into \a molecule.
3082 * First creates the minimal set of atoms from the KeySet, then creates the bond structure from the complete
3083 * molecule and adds missing hydrogen where bonds were cut.
3084 * \param *out output stream for debugging messages
3085 * \param &Leaflet pointer to KeySet structure
3086 * \param IsAngstroem whether we have Ansgtroem or bohrradius
3087 * \return pointer to constructed molecule
3088 */
3089molecule * molecule::StoreFragmentFromKeySet(ofstream *out, KeySet &Leaflet, bool IsAngstroem)
3090{
3091 atom *Runner = NULL, *FatherOfRunner = NULL, *OtherFather = NULL;
3092 atom **SonList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::StoreFragmentFromStack: **SonList");
3093 molecule *Leaf = new molecule(elemente);
3094
3095// *out << Verbose(1) << "Begin of StoreFragmentFromKeyset." << endl;
3096
3097 Leaf->BondDistance = BondDistance;
3098 for(int i=NDIM*2;i--;)
3099 Leaf->cell_size[i] = cell_size[i];
3100
3101 // initialise SonList (indicates when we need to replace a bond with hydrogen instead)
3102 for(int i=AtomCount;i--;)
3103 SonList[i] = NULL;
3104
3105 // first create the minimal set of atoms from the KeySet
3106 for(KeySet::iterator runner = Leaflet.begin(); runner != Leaflet.end(); runner++) {
3107 FatherOfRunner = FindAtom((*runner)); // find the id
3108 SonList[FatherOfRunner->nr] = Leaf->AddCopyAtom(FatherOfRunner);
3109 }
3110
3111 // create the bonds between all: Make it an induced subgraph and add hydrogen
3112// *out << Verbose(2) << "Creating bonds from father graph (i.e. induced subgraph creation)." << endl;
3113 Runner = Leaf->start;
3114 while (Runner->next != Leaf->end) {
3115 Runner = Runner->next;
3116 FatherOfRunner = Runner->father;
3117 if (SonList[FatherOfRunner->nr] != NULL) { // check if this, our father, is present in list
3118 // create all bonds
3119 for (int i=0;i<NumberOfBondsPerAtom[FatherOfRunner->nr];i++) { // go through every bond of father
3120 OtherFather = ListOfBondsPerAtom[FatherOfRunner->nr][i]->GetOtherAtom(FatherOfRunner);
3121// *out << Verbose(2) << "Father " << *FatherOfRunner << " of son " << *SonList[FatherOfRunner->nr] << " is bound to " << *OtherFather;
3122 if (SonList[OtherFather->nr] != NULL) {
3123// *out << ", whose son is " << *SonList[OtherFather->nr] << "." << endl;
3124 if (OtherFather->nr > FatherOfRunner->nr) { // add bond (nr check is for adding only one of both variants: ab, ba)
3125// *out << Verbose(3) << "Adding Bond: ";
3126// *out <<
3127 Leaf->AddBond(Runner, SonList[OtherFather->nr], ListOfBondsPerAtom[FatherOfRunner->nr][i]->BondDegree);
3128// *out << "." << endl;
3129 //NumBonds[Runner->nr]++;
3130 } else {
3131// *out << Verbose(3) << "Not adding bond, labels in wrong order." << endl;
3132 }
3133 } else {
3134// *out << ", who has no son in this fragment molecule." << endl;
3135#ifdef ADDHYDROGEN
3136 //*out << Verbose(3) << "Adding Hydrogen to " << Runner->Name << " and a bond in between." << endl;
3137 Leaf->AddHydrogenReplacementAtom(out, ListOfBondsPerAtom[FatherOfRunner->nr][i], Runner, FatherOfRunner, OtherFather, ListOfBondsPerAtom[FatherOfRunner->nr],NumberOfBondsPerAtom[FatherOfRunner->nr], IsAngstroem);
3138#endif
3139 //NumBonds[Runner->nr] += ListOfBondsPerAtom[FatherOfRunner->nr][i]->BondDegree;
3140 }
3141 }
3142 } else {
3143 *out << Verbose(0) << "ERROR: Son " << Runner->Name << " has father " << FatherOfRunner->Name << " but its entry in SonList is " << SonList[FatherOfRunner->nr] << "!" << endl;
3144 }
3145#ifdef ADDHYDROGEN
3146 while ((Runner->next != Leaf->end) && (Runner->next->type->Z == 1)) // skip added hydrogen
3147 Runner = Runner->next;
3148#endif
3149 }
3150 Leaf->CreateListOfBondsPerAtom(out);
3151 //Leaflet->Leaf->ScanForPeriodicCorrection(out);
3152 Free((void **)&SonList, "molecule::StoreFragmentFromStack: **SonList");
3153// *out << Verbose(1) << "End of StoreFragmentFromKeyset." << endl;
3154 return Leaf;
3155};
3156
3157/** Creates \a MoleculeListClass of all unique fragments of the \a molecule containing \a Order atoms or vertices.
3158 * The picture to have in mind is that of a DFS "snake" of a certain length \a Order, i.e. as in the infamous
3159 * computer game, that winds through the connected graph representing the molecule. Color (white,
3160 * lightgray, darkgray, black) indicates whether a vertex has been discovered so far or not. Labels will help in
3161 * creating only unique fragments and not additional ones with vertices simply in different sequence.
3162 * The Predecessor is always the one that came before in discovering, needed on backstepping. And
3163 * finally, the ShortestPath is needed for removing vertices from the snake stack during the back-
3164 * stepping.
3165 * \param *out output stream for debugging
3166 * \param Order number of atoms in each fragment
3167 * \param *configuration configuration for writing config files for each fragment
3168 * \return List of all unique fragments with \a Order atoms
3169 */
3170/*
3171MoleculeListClass * molecule::CreateListOfUniqueFragmentsOfOrder(ofstream *out, int Order, config *configuration)
3172{
3173 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: **PredecessorList");
3174 int *ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ShortestPathList");
3175 int *Labels = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *Labels");
3176 enum Shading *ColorVertexList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorList");
3177 enum Shading *ColorEdgeList = (enum Shading *) Malloc(sizeof(enum Shading)*BondCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorBondList");
3178 StackClass<atom *> *RootStack = new StackClass<atom *>(AtomCount);
3179 StackClass<atom *> *TouchedStack = new StackClass<atom *>((int)pow(4,Order)+2); // number of atoms reached from one with maximal 4 bonds plus Root itself
3180 StackClass<atom *> *SnakeStack = new StackClass<atom *>(Order+1); // equal to Order is not possible, as then the StackClass<atom *> cannot discern between full and empty stack!
3181 MoleculeLeafClass *Leaflet = NULL, *TempLeaf = NULL;
3182 MoleculeListClass *FragmentList = NULL;
3183 atom *Walker = NULL, *OtherAtom = NULL, *Root = NULL, *Removal = NULL;
3184 bond *Binder = NULL;
3185 int RunningIndex = 0, FragmentCounter = 0;
3186
3187 *out << Verbose(1) << "Begin of CreateListOfUniqueFragmentsOfOrder." << endl;
3188
3189 // reset parent list
3190 *out << Verbose(3) << "Resetting labels, parent, predecessor, color and shortest path lists." << endl;
3191 for (int i=0;i<AtomCount;i++) { // reset all atom labels
3192 // initialise each vertex as white with no predecessor, empty queue, color lightgray, not labelled, no sons
3193 Labels[i] = -1;
3194 SonList[i] = NULL;
3195 PredecessorList[i] = NULL;
3196 ColorVertexList[i] = white;
3197 ShortestPathList[i] = -1;
3198 }
3199 for (int i=0;i<BondCount;i++)
3200 ColorEdgeList[i] = white;
3201 RootStack->ClearStack(); // clearstack and push first atom if exists
3202 TouchedStack->ClearStack();
3203 Walker = start->next;
3204 while ((Walker != end)
3205#ifdef ADDHYDROGEN
3206 && (Walker->type->Z == 1)
3207#endif
3208 ) { // search for first non-hydrogen atom
3209 *out << Verbose(4) << "Current Root candidate is " << Walker->Name << "." << endl;
3210 Walker = Walker->next;
3211 }
3212 if (Walker != end)
3213 RootStack->Push(Walker);
3214 else
3215 *out << Verbose(0) << "ERROR: Could not find an appropriate Root atom!" << endl;
3216 *out << Verbose(3) << "Root " << Walker->Name << " is on AtomStack, beginning loop through all vertices ..." << endl;
3217
3218 ///// OUTER LOOP ////////////
3219 while (!RootStack->IsEmpty()) {
3220 // get new root vertex from atom stack
3221 Root = RootStack->PopFirst();
3222 ShortestPathList[Root->nr] = 0;
3223 if (Labels[Root->nr] == -1)
3224 Labels[Root->nr] = RunningIndex++; // prevent it from getting again on AtomStack
3225 PredecessorList[Root->nr] = Root;
3226 TouchedStack->Push(Root);
3227 *out << Verbose(0) << "Root for this loop is: " << Root->Name << ".\n";
3228
3229 // clear snake stack
3230 SnakeStack->ClearStack();
3231 //SnakeStack->TestImplementation(out, start->next);
3232
3233 ///// INNER LOOP ////////////
3234 // Problems:
3235 // - what about cyclic bonds?
3236 Walker = Root;
3237 do {
3238 *out << Verbose(1) << "Current Walker is: " << Walker->Name;
3239 // initial setting of the new Walker: label, color, shortest path and put on stacks
3240 if (Labels[Walker->nr] == -1) { // give atom a unique, monotonely increasing number
3241 Labels[Walker->nr] = RunningIndex++;
3242 RootStack->Push(Walker);
3243 }
3244 *out << ", has label " << Labels[Walker->nr];
3245 if ((ColorVertexList[Walker->nr] == white) || ((Binder != NULL) && (ColorEdgeList[Binder->nr] == white))) { // color it if newly discovered and push on stacks (and if within reach!)
3246 if ((Binder != NULL) && (ColorEdgeList[Binder->nr] == white)) {
3247 // Binder ought to be set still from last neighbour search
3248 *out << ", coloring bond " << *Binder << " black";
3249 ColorEdgeList[Binder->nr] = black; // mark this bond as used
3250 }
3251 if (ShortestPathList[Walker->nr] == -1) {
3252 ShortestPathList[Walker->nr] = ShortestPathList[PredecessorList[Walker->nr]->nr]+1;
3253 TouchedStack->Push(Walker); // mark every atom for lists cleanup later, whose shortest path has been changed
3254 }
3255 if ((ShortestPathList[Walker->nr] < Order) && (ColorVertexList[Walker->nr] != darkgray)) { // if not already on snake stack
3256 SnakeStack->Push(Walker);
3257 ColorVertexList[Walker->nr] = darkgray; // mark as dark gray of on snake stack
3258 }
3259 }
3260 *out << ", SP of " << ShortestPathList[Walker->nr] << " and its color is " << GetColor(ColorVertexList[Walker->nr]) << "." << endl;
3261
3262 // then check the stack for a newly stumbled upon fragment
3263 if (SnakeStack->ItemCount() == Order) { // is stack full?
3264 // store the fragment if it is one and get a removal candidate
3265 Removal = StoreFragmentFromStack(out, Root, Walker, Leaflet, SnakeStack, ShortestPathList, SonList, Labels, &FragmentCounter, configuration);
3266 // remove the candidate if one was found
3267 if (Removal != NULL) {
3268 *out << Verbose(2) << "Removing item " << Removal->Name << " with SP of " << ShortestPathList[Removal->nr] << " from snake stack." << endl;
3269 SnakeStack->RemoveItem(Removal);
3270 ColorVertexList[Removal->nr] = lightgray; // return back to not on snake stack but explored marking
3271 if (Walker == Removal) { // if the current atom is to be removed, we also have to take a step back
3272 Walker = PredecessorList[Removal->nr];
3273 *out << Verbose(2) << "Stepping back to " << Walker->Name << "." << endl;
3274 }
3275 }
3276 } else
3277 Removal = NULL;
3278
3279 // finally, look for a white neighbour as the next Walker
3280 Binder = NULL;
3281 if ((Removal == NULL) || (Walker != PredecessorList[Removal->nr])) { // don't look, if a new walker has been set above
3282 *out << Verbose(2) << "Snake has currently " << SnakeStack->ItemCount() << " item(s)." << endl;
3283 OtherAtom = NULL; // this is actually not needed, every atom has at least one neighbour
3284 if (ShortestPathList[Walker->nr] < Order) {
3285 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
3286 Binder = ListOfBondsPerAtom[Walker->nr][i];
3287 *out << Verbose(2) << "Current bond is " << *Binder << ": ";
3288 OtherAtom = Binder->GetOtherAtom(Walker);
3289 if ((Labels[OtherAtom->nr] != -1) && (Labels[OtherAtom->nr] < Labels[Root->nr])) { // we don't step up to labels bigger than us
3290 *out << "Label " << Labels[OtherAtom->nr] << " is smaller than Root's " << Labels[Root->nr] << "." << endl;
3291 //ColorVertexList[OtherAtom->nr] = lightgray; // mark as explored
3292 } else { // otherwise check its colour and element
3293 if (
3294#ifdef ADDHYDROGEN
3295 (OtherAtom->type->Z != 1) &&
3296#endif
3297 (ColorEdgeList[Binder->nr] == white)) { // skip hydrogen, look for unexplored vertices
3298 *out << "Moving along " << GetColor(ColorEdgeList[Binder->nr]) << " bond " << Binder << " to " << ((ColorVertexList[OtherAtom->nr] == white) ? "unexplored" : "explored") << " item: " << OtherAtom->Name << "." << endl;
3299 // i find it currently rather sensible to always set the predecessor in order to find one's way back
3300 //if (PredecessorList[OtherAtom->nr] == NULL) {
3301 PredecessorList[OtherAtom->nr] = Walker;
3302 *out << Verbose(3) << "Setting Predecessor of " << OtherAtom->Name << " to " << PredecessorList[OtherAtom->nr]->Name << "." << endl;
3303 //} else {
3304 // *out << Verbose(3) << "Predecessor of " << OtherAtom->Name << " is " << PredecessorList[OtherAtom->nr]->Name << "." << endl;
3305 //}
3306 Walker = OtherAtom;
3307 break;
3308 } else {
3309 if (OtherAtom->type->Z == 1)
3310 *out << "Links to a hydrogen atom." << endl;
3311 else
3312 *out << "Bond has not white but " << GetColor(ColorEdgeList[Binder->nr]) << " color." << endl;
3313 }
3314 }
3315 }
3316 } else { // means we have stepped beyond the horizon: Return!
3317 Walker = PredecessorList[Walker->nr];
3318 OtherAtom = Walker;
3319 *out << Verbose(3) << "We have gone too far, stepping back to " << Walker->Name << "." << endl;
3320 }
3321 if (Walker != OtherAtom) { // if no white neighbours anymore, color it black
3322 *out << Verbose(2) << "Coloring " << Walker->Name << " black." << endl;
3323 ColorVertexList[Walker->nr] = black;
3324 Walker = PredecessorList[Walker->nr];
3325 }
3326 }
3327 } while ((Walker != Root) || (ColorVertexList[Root->nr] != black));
3328 *out << Verbose(2) << "Inner Looping is finished." << endl;
3329
3330 // if we reset all AtomCount atoms, we have again technically O(N^2) ...
3331 *out << Verbose(2) << "Resetting lists." << endl;
3332 Walker = NULL;
3333 Binder = NULL;
3334 while (!TouchedStack->IsEmpty()) {
3335 Walker = TouchedStack->PopLast();
3336 *out << Verbose(3) << "Re-initialising entries of " << *Walker << "." << endl;
3337 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
3338 ColorEdgeList[ListOfBondsPerAtom[Walker->nr][i]->nr] = white;
3339 PredecessorList[Walker->nr] = NULL;
3340 ColorVertexList[Walker->nr] = white;
3341 ShortestPathList[Walker->nr] = -1;
3342 }
3343 }
3344 *out << Verbose(1) << "Outer Looping over all vertices is done." << endl;
3345
3346 // copy together
3347 *out << Verbose(1) << "Copying all fragments into MoleculeList structure." << endl;
3348 FragmentList = new MoleculeListClass(FragmentCounter, AtomCount);
3349 RunningIndex = 0;
3350 while ((Leaflet != NULL) && (RunningIndex < FragmentCounter)) {
3351 FragmentList->ListOfMolecules[RunningIndex++] = Leaflet->Leaf;
3352 Leaflet->Leaf = NULL; // prevent molecule from being removed
3353 TempLeaf = Leaflet;
3354 Leaflet = Leaflet->previous;
3355 delete(TempLeaf);
3356 };
3357
3358 // free memory and exit
3359 Free((void **)&PredecessorList, "molecule::CreateListOfUniqueFragmentsOfOrder: **PredecessorList");
3360 Free((void **)&ShortestPathList, "molecule::CreateListOfUniqueFragmentsOfOrder: *ShortestPathList");
3361 Free((void **)&Labels, "molecule::CreateListOfUniqueFragmentsOfOrder: *Labels");
3362 Free((void **)&ColorVertexList, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorList");
3363 delete(RootStack);
3364 delete(TouchedStack);
3365 delete(SnakeStack);
3366
3367 *out << Verbose(1) << "End of CreateListOfUniqueFragmentsOfOrder." << endl;
3368 return FragmentList;
3369};
3370*/
3371
3372/** Structure containing all values in power set combination generation.
3373 */
3374struct UniqueFragments {
3375 config *configuration;
3376 atom *Root;
3377 Graph *Leaflet;
3378 KeySet *FragmentSet;
3379 int ANOVAOrder;
3380 int FragmentCounter;
3381 int CurrentIndex;
3382 int *Labels;
3383 double TEFactor;
3384 int *ShortestPathList;
3385 bool **UsedList;
3386 bond **BondsPerSPList;
3387 int *BondsPerSPCount;
3388};
3389
3390/** From a given set of Bond sorted by Shortest Path distance, create all possible fragments of size \a SetDimension.
3391 * -# loops over every possible combination (2^dimension of edge set)
3392 * -# inserts current set, if there's still space left
3393 * -# yes: calls SPFragmentGenerator with structure, created new edge list and size respective to root dist
3394ance+1
3395 * -# no: stores fragment into keyset list by calling InsertFragmentIntoGraph
3396 * -# removes all items added into the snake stack (in UniqueFragments structure) added during level (root
3397distance) and current set
3398 * \param *out output stream for debugging
3399 * \param FragmentSearch UniqueFragments structure with all values needed
3400 * \param RootDistance current shortest path level, whose set of edges is represented by **BondsSet
3401 * \param SetDimension Number of possible bonds on this level (i.e. size of the array BondsSet[])
3402 * \param SubOrder remaining number of allowed vertices to add
3403 */
3404void molecule::SPFragmentGenerator(ofstream *out, struct UniqueFragments *FragmentSearch, int RootDistance, bond **BondsSet, int SetDimension, int SubOrder)
3405{
3406 atom *OtherWalker = NULL;
3407 int verbosity = 0; //FragmentSearch->ANOVAOrder-SubOrder;
3408 int NumCombinations;
3409 bool bit;
3410 int bits, TouchedIndex, SubSetDimension, SP;
3411 int Removal;
3412 int *TouchedList = (int *) Malloc(sizeof(int)*(SubOrder+1), "molecule::SPFragmentGenerator: *TouchedList");
3413 bond *Binder = NULL;
3414 bond **BondsList = NULL;
3415
3416 NumCombinations = 1 << SetDimension;
3417
3418 // Hier muessen von 1 bis NumberOfBondsPerAtom[Walker->nr] alle Kombinationen
3419 // von Endstuecken (aus den Bonds) hinzugefᅵᅵgt werden und fᅵᅵr verbleibende ANOVAOrder
3420 // rekursiv GraphCrawler in der nᅵᅵchsten Ebene aufgerufen werden
3421
3422 *out << Verbose(1+verbosity) << "Begin of SPFragmentGenerator." << endl;
3423 *out << Verbose(1+verbosity) << "We are " << RootDistance << " away from Root, which is " << *FragmentSearch->Root << ", SubOrder is " << SubOrder << ", SetDimension is " << SetDimension << " and this means " << NumCombinations-1 << " combination(s)." << endl;
3424
3425 // initialised touched list (stores added atoms on this level)
3426 *out << Verbose(1+verbosity) << "Clearing touched list." << endl;
3427 for (TouchedIndex=SubOrder+1;TouchedIndex--;) // empty touched list
3428 TouchedList[TouchedIndex] = -1;
3429 TouchedIndex = 0;
3430
3431 // create every possible combination of the endpieces
3432 *out << Verbose(1+verbosity) << "Going through all combinations of the power set." << endl;
3433 for (int i=1;i<NumCombinations;i++) { // sweep through all power set combinations (skip empty set!)
3434 // count the set bit of i
3435 bits = 0;
3436 for (int j=SetDimension;j--;)
3437 bits += (i & (1 << j)) >> j;
3438
3439 *out << Verbose(1+verbosity) << "Current set is " << Binary(i | (1 << SetDimension)) << ", number of bits is " << bits << "." << endl;
3440 if (bits <= SubOrder) { // if not greater than additional atoms allowed on stack, continue
3441 // --1-- add this set of the power set of bond partners to the snake stack
3442 for (int j=0;j<SetDimension;j++) { // pull out every bit by shifting
3443 bit = ((i & (1 << j)) != 0); // mask the bit for the j-th bond
3444 if (bit) { // if bit is set, we add this bond partner
3445 OtherWalker = BondsSet[j]->rightatom; // rightatom is always the one more distant, i.e. the one to add
3446 //*out << Verbose(1+verbosity) << "Current Bond is " << ListOfBondsPerAtom[Walker->nr][i] << ", checking on " << *OtherWalker << "." << endl;
3447 //if ((!FragmentSearch->UsedList[OtherWalker->nr][i]) && (FragmentSearch->Labels[OtherWalker->nr] > FragmentSearch->Labels[FragmentSearch->Root->nr])) {
3448 //*out << Verbose(2+verbosity) << "Not used so far, label " << FragmentSearch->Labels[OtherWalker->nr] << " is bigger than Root's " << FragmentSearch->Labels[FragmentSearch->Root->nr] << "." << endl;
3449 *out << Verbose(2+verbosity) << "Adding " << *OtherWalker << " with nr " << OtherWalker->nr << "." << endl;
3450 TouchedList[TouchedIndex++] = OtherWalker->nr; // note as added
3451 FragmentSearch->FragmentSet->insert(OtherWalker->nr);
3452 //FragmentSearch->UsedList[OtherWalker->nr][i] = true;
3453 //}
3454 } else {
3455 *out << Verbose(2+verbosity) << "Not adding." << endl;
3456 }
3457 }
3458
3459 if (bits < SubOrder) {
3460 *out << Verbose(1+verbosity) << "There's still some space left on stack: " << (SubOrder - bits) << "." << endl;
3461 // --2-- look at all added end pieces of this combination, construct bond subsets and sweep through a power set of these by recursion
3462 SP = RootDistance+1; // this is the next level
3463 // first count the members in the subset
3464 SubSetDimension = 0;
3465 Binder = FragmentSearch->BondsPerSPList[2*SP]; // start node for this level
3466 while (Binder->next != FragmentSearch->BondsPerSPList[2*SP+1]) { // compare to end node of this level
3467 Binder = Binder->next;
3468 for (int k=TouchedIndex;k--;) {
3469 if (Binder->Contains(TouchedList[k])) // if we added this very endpiece
3470 SubSetDimension++;
3471 }
3472 }
3473 // then allocate and fill the list
3474 BondsList = (bond **) Malloc(sizeof(bond *)*SubSetDimension, "molecule::SPFragmentGenerator: **BondsList");
3475 SubSetDimension = 0;
3476 Binder = FragmentSearch->BondsPerSPList[2*SP];
3477 while (Binder->next != FragmentSearch->BondsPerSPList[2*SP+1]) {
3478 Binder = Binder->next;
3479 for (int k=0;k<TouchedIndex;k++) {
3480 if (Binder->leftatom->nr == TouchedList[k]) // leftatom is always the close one
3481 BondsList[SubSetDimension++] = Binder;
3482 }
3483 }
3484 *out << Verbose(2+verbosity) << "Calling subset generator " << SP << " away from root " << *FragmentSearch->Root << " with sub set dimension " << SubSetDimension << "." << endl;
3485 SPFragmentGenerator(out, FragmentSearch, SP, BondsList, SubSetDimension, SubOrder-bits);
3486 Free((void **)&BondsList, "molecule::SPFragmentGenerator: **BondsList");
3487 } else {
3488 // --2-- otherwise store the complete fragment
3489 *out << Verbose(1+verbosity) << "Enough items on stack for a fragment!" << endl;
3490 // store fragment as a KeySet
3491 *out << Verbose(2) << "Found a new fragment[" << FragmentSearch->FragmentCounter << "], local nr.s are: ";
3492 for(KeySet::iterator runner = FragmentSearch->FragmentSet->begin(); runner != FragmentSearch->FragmentSet->end(); runner++)
3493 *out << (*runner) << " ";
3494 InsertFragmentIntoGraph(out, FragmentSearch);
3495 //Removal = LookForRemovalCandidate(out, FragmentSearch->FragmentSet, FragmentSearch->ShortestPathList);
3496 //Removal = StoreFragmentFromStack(out, FragmentSearch->Root, FragmentSearch->Leaflet, FragmentSearch->FragmentStack, FragmentSearch->ShortestPathList,FragmentSearch->Labels, &FragmentSearch->FragmentCounter, FragmentSearch->configuration);
3497 }
3498
3499 // --3-- remove all added items in this level from snake stack
3500 *out << Verbose(1+verbosity) << "Removing all items that were added on this SP level " << RootDistance << "." << endl;
3501 for(int j=0;j<TouchedIndex;j++) {
3502 Removal = TouchedList[j];
3503 *out << Verbose(2+verbosity) << "Removing item nr. " << Removal << " from snake stack." << endl;
3504 FragmentSearch->FragmentSet->erase(Removal);
3505 TouchedList[j] = -1;
3506 }
3507 *out << Verbose(2) << "Remaining local nr.s on snake stack are: ";
3508 for(KeySet::iterator runner = FragmentSearch->FragmentSet->begin(); runner != FragmentSearch->FragmentSet->end(); runner++)
3509 *out << (*runner) << " ";
3510 *out << endl;
3511 TouchedIndex = 0; // set Index to 0 for list of atoms added on this level
3512 } else {
3513 *out << Verbose(2+verbosity) << "More atoms to add for this set (" << bits << ") than space left on stack " << SubOrder << ", skipping this set." << endl;
3514 }
3515 }
3516 Free((void **)&TouchedList, "molecule::SPFragmentGenerator: *TouchedList");
3517 *out << Verbose(1+verbosity) << "End of SPFragmentGenerator, " << RootDistance << " away from Root " << *FragmentSearch->Root << " and SubOrder is " << SubOrder << "." << endl;
3518};
3519
3520/** Creates a list of all unique fragments of certain vertex size from a given graph \a Fragment for a given root vertex in the context of \a this molecule.
3521 * -# initialises UniqueFragments structure
3522 * -# fills edge list via BFS
3523 * -# creates the fragment by calling recursive function SPFragmentGenerator with UniqueFragments structure, 0 as
3524 root distance, the edge set, its dimension and the current suborder
3525 * -# Free'ing structure
3526 * Note that we may use the fact that the atoms are SP-ordered on the atomstack. I.e. when popping always the last, we first get all
3527 * with SP of 2, then those with SP of 3, then those with SP of 4 and so on.
3528 * \param *out output stream for debugging
3529 * \param Order bond order (limits BFS exploration and "number of digits" in power set generation
3530 * \param FragmentSearch UniqueFragments structure containing TEFactor, root atom and so on
3531 * \param RestrictedKeySet Restricted vertex set to use in context of molecule
3532 * \return number of inserted fragments
3533 * \note ShortestPathList in FragmentSearch structure is probably due to NumberOfAtomsSPLevel and SP not needed anymore
3534 */
3535int molecule::PowerSetGenerator(ofstream *out, int Order, struct UniqueFragments &FragmentSearch, KeySet RestrictedKeySet)
3536{
3537 int SP, UniqueIndex, AtomKeyNr;
3538 int *NumberOfAtomsSPLevel = (int *) Malloc(sizeof(int)*Order, "molecule::PowerSetGenerator: *SPLevelCount");
3539 atom *Walker = NULL, *OtherWalker = NULL;
3540 bond *Binder = NULL;
3541 bond **BondsList = NULL;
3542 KeyStack AtomStack;
3543 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::PowerSetGenerator: **PredecessorList");
3544 int RootKeyNr = FragmentSearch.Root->nr;
3545 int Counter = FragmentSearch.FragmentCounter;
3546
3547 for (int i=AtomCount;i--;) {
3548 PredecessorList[i] = NULL;
3549 }
3550
3551 *out << endl;
3552 *out << Verbose(0) << "Begin of PowerSetGenerator with order " << Order << " at Root " << *FragmentSearch.Root << "." << endl;
3553
3554 UniqueIndex = 0;
3555 if (FragmentSearch.Labels[RootKeyNr] == -1)
3556 FragmentSearch.Labels[RootKeyNr] = UniqueIndex++;
3557 FragmentSearch.ShortestPathList[RootKeyNr] = 0;
3558 // prepare the atom stack counters (number of atoms with certain SP on stack)
3559 for (int i=Order;i--;)
3560 NumberOfAtomsSPLevel[i] = 0;
3561 NumberOfAtomsSPLevel[0] = 1; // for root
3562 SP = -1;
3563 *out << endl;
3564 *out << Verbose(0) << "Starting BFS analysis ..." << endl;
3565 // push as first on atom stack and goooo ...
3566 AtomStack.clear();
3567 AtomStack.push_back(RootKeyNr);
3568 *out << Verbose(0) << "Cleared AtomStack and pushed root as first item onto it." << endl;
3569 // do a BFS search to fill the SP lists and label the found vertices
3570 while (!AtomStack.empty()) {
3571 // pop next atom
3572 AtomKeyNr = AtomStack.front();
3573 AtomStack.pop_front();
3574 if (SP != -1)
3575 NumberOfAtomsSPLevel[SP]--;
3576 if ((SP == -1) || (NumberOfAtomsSPLevel[SP] == -1)) {
3577 SP++;
3578 NumberOfAtomsSPLevel[SP]--; // carry over "-1" to next level
3579 *out << Verbose(1) << "New SP level reached: " << SP << ", creating new SP list with 0 item(s)";
3580 if (SP > 0)
3581 *out << ", old level closed with " << FragmentSearch.BondsPerSPCount[SP-1] << " item(s)." << endl;
3582 else
3583 *out << "." << endl;
3584 FragmentSearch.BondsPerSPCount[SP] = 0;
3585 } else {
3586 *out << Verbose(1) << "Still " << NumberOfAtomsSPLevel[SP]+1 << " on this SP (" << SP << ") level, currently having " << FragmentSearch.BondsPerSPCount[SP] << " item(s)." << endl;
3587 }
3588 Walker = FindAtom(AtomKeyNr);
3589 *out << Verbose(0) << "Current Walker is: " << *Walker << " with nr " << Walker->nr << " and label " << FragmentSearch.Labels[AtomKeyNr] << " and SP of " << SP << "." << endl;
3590 // check for new sp level
3591 // go through all its bonds
3592 *out << Verbose(1) << "Going through all bonds of Walker." << endl;
3593 for (int i=0;i<NumberOfBondsPerAtom[AtomKeyNr];i++) {
3594 Binder = ListOfBondsPerAtom[AtomKeyNr][i];
3595 OtherWalker = Binder->GetOtherAtom(Walker);
3596 if ((RestrictedKeySet.find(OtherWalker->nr) != RestrictedKeySet.end())
3597#ifdef ADDHYDROGEN
3598 && (OtherWalker->type->Z != 1)
3599#endif
3600 ) { // skip hydrogens and restrict to fragment
3601 *out << Verbose(2) << "Current partner is " << *OtherWalker << " with nr " << OtherWalker->nr << " in bond " << *Binder << "." << endl;
3602 // set the label if not set (and push on root stack as well)
3603 if (FragmentSearch.Labels[OtherWalker->nr] == -1) {
3604 FragmentSearch.Labels[OtherWalker->nr] = UniqueIndex++;
3605 *out << Verbose(3) << "Set label to " << FragmentSearch.Labels[OtherWalker->nr] << "." << endl;
3606 } else {
3607 *out << Verbose(3) << "Label is already " << FragmentSearch.Labels[OtherWalker->nr] << "." << endl;
3608 }
3609 if ((OtherWalker != PredecessorList[AtomKeyNr]) && (OtherWalker->nr > RootKeyNr)) { // only pass through those with label bigger than Root's
3610 FragmentSearch.ShortestPathList[OtherWalker->nr] = SP+1;
3611 *out << Verbose(3) << "Set Shortest Path to " << FragmentSearch.ShortestPathList[OtherWalker->nr] << "." << endl;
3612 if (FragmentSearch.ShortestPathList[OtherWalker->nr] < Order) { // only pass through those within reach of Order
3613 // push for exploration on stack (only if the SP of OtherWalker is longer than of Walker! (otherwise it has been added already!)
3614 if (FragmentSearch.ShortestPathList[OtherWalker->nr] > SP) {
3615 if (FragmentSearch.ShortestPathList[OtherWalker->nr] < (Order-1)) {
3616 *out << Verbose(3) << "Putting on atom stack for further exploration." << endl;
3617 PredecessorList[OtherWalker->nr] = Walker; // note down the one further up the exploration tree
3618 AtomStack.push_back(OtherWalker->nr);
3619 NumberOfAtomsSPLevel[FragmentSearch.ShortestPathList[OtherWalker->nr]]++;
3620 } else {
3621 *out << Verbose(3) << "Not putting on atom stack, is at end of reach." << endl;
3622 }
3623 // add the bond in between to the SP list
3624 Binder = new bond(Walker, OtherWalker); // create a new bond in such a manner, that bond::rightatom is always the one more distant
3625 add(Binder, FragmentSearch.BondsPerSPList[2*SP+1]);
3626 FragmentSearch.BondsPerSPCount[SP]++;
3627 *out << Verbose(3) << "Added its bond to SP list, having now " << FragmentSearch.BondsPerSPCount[SP] << " item(s)." << endl;
3628 } else *out << Verbose(3) << "Not putting on atom stack, nor adding bond, as " << *OtherWalker << "'s SP is shorter than Walker's." << endl;
3629 } else *out << Verbose(3) << "Not continuing, as " << *OtherWalker << " is out of reach of order " << Order << "." << endl;
3630 } else *out << Verbose(3) << "Not passing on, as index of " << *OtherWalker << " " << OtherWalker->nr << " is smaller than that of Root " << RootKeyNr << " or this is my predecessor." << endl;
3631 } else *out << Verbose(2) << "Is not in the restricted keyset or skipping hydrogen " << *OtherWalker << "." << endl;
3632 }
3633 }
3634 // reset predecessor list
3635 for(int i=0;i<Order;i++) {
3636 Binder = FragmentSearch.BondsPerSPList[2*i];
3637 *out << Verbose(1) << "Current SP level is " << i << "." << endl;
3638 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
3639 Binder = Binder->next;
3640 PredecessorList[Binder->rightatom->nr] = NULL; // By construction "OtherAtom" is always Bond::rightatom!
3641 }
3642 }
3643 *out << endl;
3644
3645 // outputting all list for debugging
3646 *out << Verbose(0) << "Printing all found lists." << endl;
3647 for(int i=0;i<Order;i++) {
3648 Binder = FragmentSearch.BondsPerSPList[2*i];
3649 *out << Verbose(1) << "Current SP level is " << i << "." << endl;
3650 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
3651 Binder = Binder->next;
3652 *out << Verbose(2) << *Binder << endl;
3653 }
3654 }
3655
3656 // creating fragments with the found edge sets (may be done in reverse order, faster)
3657 SP = 0;
3658 for(int i=Order;i--;) { // sum up all found edges
3659 Binder = FragmentSearch.BondsPerSPList[2*i];
3660 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
3661 Binder = Binder->next;
3662 SP ++;
3663 }
3664 }
3665 *out << Verbose(0) << "Total number of edges is " << SP << "." << endl;
3666 if (SP >= (Order-1)) {
3667 // start with root (push on fragment stack)
3668 *out << Verbose(0) << "Starting fragment generation with " << *FragmentSearch.Root << ", local nr is " << FragmentSearch.Root->nr << "." << endl;
3669 FragmentSearch.FragmentSet->clear();
3670 FragmentSearch.FragmentSet->insert(FragmentSearch.Root->nr);
3671
3672 if (FragmentSearch.FragmentSet->size() == (unsigned int) Order) {
3673 *out << Verbose(0) << "Enough items on stack already for a fragment!" << endl;
3674 // store fragment as a KeySet
3675 *out << Verbose(2) << "Found a new fragment[" << FragmentSearch.FragmentCounter << "], local nr.s are: ";
3676 for(KeySet::iterator runner = FragmentSearch.FragmentSet->begin(); runner != FragmentSearch.FragmentSet->end(); runner++) {
3677 *out << (*runner) << " ";
3678 }
3679 *out << endl;
3680 InsertFragmentIntoGraph(out, &FragmentSearch);
3681 } else {
3682 *out << Verbose(0) << "Preparing subset for this root and calling generator." << endl;
3683 // prepare the subset and call the generator
3684 BondsList = (bond **) Malloc(sizeof(bond *)*FragmentSearch.BondsPerSPCount[0], "molecule::PowerSetGenerator: **BondsList");
3685 Binder = FragmentSearch.BondsPerSPList[0];
3686 for(int i=0;i<FragmentSearch.BondsPerSPCount[0];i++) {
3687 Binder = Binder->next;
3688 BondsList[i] = Binder;
3689 }
3690 SPFragmentGenerator(out, &FragmentSearch, 0, BondsList, FragmentSearch.BondsPerSPCount[0], Order-1);
3691 Free((void **)&BondsList, "molecule::PowerSetGenerator: **BondsList");
3692 }
3693 } else {
3694 *out << Verbose(0) << "Not enough total number of edges to build " << Order << "-body fragments." << endl;
3695 }
3696
3697 // as FragmentSearch structure is used only once, we don't have to clean it anymore
3698 // remove root from stack
3699 *out << Verbose(0) << "Removing root again from stack." << endl;
3700 FragmentSearch.FragmentSet->erase(FragmentSearch.Root->nr);
3701
3702 // free'ing the bonds lists
3703 *out << Verbose(0) << "Free'ing all found lists. and resetting index lists" << endl;
3704 for(int i=Order;i--;) {
3705 *out << Verbose(1) << "Current SP level is " << i << ": ";
3706 Binder = FragmentSearch.BondsPerSPList[2*i];
3707 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
3708 Binder = Binder->next;
3709 // *out << "Removing atom " << Binder->leftatom->nr << " and " << Binder->rightatom->nr << "." << endl; // make sure numbers are local
3710 FragmentSearch.ShortestPathList[Binder->leftatom->nr] = -1;
3711 FragmentSearch.ShortestPathList[Binder->rightatom->nr] = -1;
3712 }
3713 // delete added bonds
3714 cleanup(FragmentSearch.BondsPerSPList[2*i], FragmentSearch.BondsPerSPList[2*i+1]);
3715 // also start and end node
3716 *out << "cleaned." << endl;
3717 }
3718
3719 // free allocated memory
3720 Free((void **)&NumberOfAtomsSPLevel, "molecule::PowerSetGenerator: *SPLevelCount");
3721 Free((void **)&PredecessorList, "molecule::PowerSetGenerator: **PredecessorList");
3722
3723 // return list
3724 *out << Verbose(0) << "End of PowerSetGenerator." << endl;
3725 return (FragmentSearch.FragmentCounter - Counter);
3726};
3727
3728/** Corrects the nuclei position if the fragment was created over the cell borders.
3729 * Scans all bonds, checks the distance, if greater than typical, we have a candidate for the correction.
3730 * We remove the bond whereafter the graph probably separates. Then, we translate the one component periodically
3731 * and re-add the bond. Looping on the distance check.
3732 * \param *out ofstream for debugging messages
3733 */
3734void molecule::ScanForPeriodicCorrection(ofstream *out)
3735{
3736 bond *Binder = NULL;
3737 bond *OtherBinder = NULL;
3738 atom *Walker = NULL;
3739 atom *OtherWalker = NULL;
3740 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
3741 enum Shading *ColorList = NULL;
3742 double tmp;
3743 vector TranslationVector;
3744 //class StackClass<atom *> *CompStack = NULL;
3745 class StackClass<atom *> *AtomStack = new StackClass<atom *>(AtomCount);
3746 bool flag = true;
3747
3748 *out << Verbose(1) << "Begin of ScanForPeriodicCorrection." << endl;
3749
3750 ColorList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::ScanForPeriodicCorrection: *ColorList");
3751 while (flag) {
3752 // remove bonds that are beyond bonddistance
3753 for(int i=NDIM;i--;)
3754 TranslationVector.x[i] = 0.;
3755 // scan all bonds
3756 Binder = first;
3757 flag = false;
3758 while ((!flag) && (Binder->next != last)) {
3759 Binder = Binder->next;
3760 for (int i=NDIM;i--;) {
3761 tmp = fabs(Binder->leftatom->x.x[i] - Binder->rightatom->x.x[i]);
3762 *out << Verbose(3) << "Checking " << i << "th distance of " << *Binder->leftatom << " to " << *Binder->rightatom << ": " << tmp << "." << endl;
3763 if (tmp > BondDistance) {
3764 OtherBinder = Binder->next; // note down binding partner for later re-insertion
3765 unlink(Binder); // unlink bond
3766 *out << Verbose(2) << "Correcting at bond " << *Binder << "." << endl;
3767 flag = true;
3768 break;
3769 }
3770 }
3771 }
3772 if (flag) {
3773 // create translation vector from their periodically modified distance
3774 for (int i=NDIM;i--;) {
3775 tmp = Binder->leftatom->x.x[i] - Binder->rightatom->x.x[i];
3776 if (fabs(tmp) > BondDistance)
3777 TranslationVector.x[i] = (tmp < 0) ? +1. : -1.;
3778 }
3779 TranslationVector.MatrixMultiplication(matrix);
3780 *out << "Translation vector is ";
3781 TranslationVector.Output(out);
3782 *out << endl;
3783 // apply to all atoms of first component via BFS
3784 for (int i=AtomCount;i--;)
3785 ColorList[i] = white;
3786 AtomStack->Push(Binder->leftatom);
3787 while (!AtomStack->IsEmpty()) {
3788 Walker = AtomStack->PopFirst();
3789 //*out << Verbose (3) << "Current Walker is: " << *Walker << "." << endl;
3790 ColorList[Walker->nr] = black; // mark as explored
3791 Walker->x.AddVector(&TranslationVector); // translate
3792 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) { // go through all binding partners
3793 if (ListOfBondsPerAtom[Walker->nr][i] != Binder) {
3794 OtherWalker = ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
3795 if (ColorList[OtherWalker->nr] == white) {
3796 AtomStack->Push(OtherWalker); // push if yet unexplored
3797 }
3798 }
3799 }
3800 }
3801 // re-add bond
3802 link(Binder, OtherBinder);
3803 } else {
3804 *out << Verbose(2) << "No corrections for this fragment." << endl;
3805 }
3806 //delete(CompStack);
3807 }
3808
3809 // free allocated space from ReturnFullMatrixforSymmetric()
3810 delete(AtomStack);
3811 Free((void **)&ColorList, "molecule::ScanForPeriodicCorrection: *ColorList");
3812 Free((void **)&matrix, "molecule::ScanForPeriodicCorrection: *matrix");
3813 *out << Verbose(1) << "End of ScanForPeriodicCorrection." << endl;
3814};
3815
3816/** Blows the 6-dimensional \a cell_size array up to a full NDIM by NDIM matrix.
3817 * \param *symm 6-dim array of unique symmetric matrix components
3818 * \return allocated NDIM*NDIM array with the symmetric matrix
3819 */
3820double * molecule::ReturnFullMatrixforSymmetric(double *symm)
3821{
3822 double *matrix = (double *) Malloc(sizeof(double)*NDIM*NDIM, "molecule::ReturnFullMatrixforSymmetric: *matrix");
3823 matrix[0] = symm[0];
3824 matrix[1] = symm[1];
3825 matrix[2] = symm[3];
3826 matrix[3] = symm[1];
3827 matrix[4] = symm[2];
3828 matrix[5] = symm[4];
3829 matrix[6] = symm[3];
3830 matrix[7] = symm[4];
3831 matrix[8] = symm[5];
3832 return matrix;
3833};
3834
3835bool KeyCompare::operator() (const KeySet SubgraphA, const KeySet SubgraphB) const
3836{
3837 //cout << "my check is used." << endl;
3838 if (SubgraphA.size() < SubgraphB.size()) {
3839 return true;
3840 } else {
3841 if (SubgraphA.size() > SubgraphB.size()) {
3842 return false;
3843 } else {
3844 KeySet::iterator IteratorA = SubgraphA.begin();
3845 KeySet::iterator IteratorB = SubgraphB.begin();
3846 while ((IteratorA != SubgraphA.end()) && (IteratorB != SubgraphB.end())) {
3847 if ((*IteratorA) < (*IteratorB))
3848 return true;
3849 else if ((*IteratorA) > (*IteratorB)) {
3850 return false;
3851 } // else, go on to next index
3852 IteratorA++;
3853 IteratorB++;
3854 } // end of while loop
3855 }// end of check in case of equal sizes
3856 }
3857 return false; // if we reach this point, they are equal
3858};
3859
3860//bool operator < (KeySet SubgraphA, KeySet SubgraphB)
3861//{
3862// return KeyCompare(SubgraphA, SubgraphB);
3863//};
3864
3865/** Checking whether KeySet is not already present in Graph, if so just adds factor.
3866 * \param *out output stream for debugging
3867 * \param &set KeySet to insert
3868 * \param &graph Graph to insert into
3869 * \param *counter pointer to unique fragment count
3870 * \param factor energy factor for the fragment
3871 */
3872inline void InsertFragmentIntoGraph(ofstream *out, struct UniqueFragments *Fragment)
3873{
3874 GraphTestPair testGraphInsert;
3875
3876 testGraphInsert = Fragment->Leaflet->insert(GraphPair (*Fragment->FragmentSet,pair<int,double>(Fragment->FragmentCounter,Fragment->TEFactor))); // store fragment number and current factor
3877 if (testGraphInsert.second) {
3878 *out << Verbose(2) << "KeySet " << Fragment->FragmentCounter << " successfully inserted." << endl;
3879 Fragment->FragmentCounter++;
3880 } else {
3881 *out << Verbose(2) << "KeySet " << Fragment->FragmentCounter << " failed to insert, present fragment is " << ((*(testGraphInsert.first)).second).first << endl;
3882 ((*(testGraphInsert.first)).second).second += Fragment->TEFactor; // increase the "created" counter
3883 *out << Verbose(2) << "New factor is " << ((*(testGraphInsert.first)).second).second << "." << endl;
3884 }
3885};
3886//void inline InsertIntoGraph(ofstream *out, KeyStack &stack, Graph &graph, int *counter, double factor)
3887//{
3888// // copy stack contents to set and call overloaded function again
3889// KeySet set;
3890// for(KeyStack::iterator runner = stack.begin(); runner != stack.begin(); runner++)
3891// set.insert((*runner));
3892// InsertIntoGraph(out, set, graph, counter, factor);
3893//};
3894
3895/** Inserts each KeySet in \a graph2 into \a graph1.
3896 * \param *out output stream for debugging
3897 * \param graph1 first (dest) graph
3898 * \param graph2 second (source) graph
3899 * \param *counter keyset counter that gets increased
3900 */
3901inline void InsertGraphIntoGraph(ofstream *out, Graph &graph1, Graph &graph2, int *counter)
3902{
3903 GraphTestPair testGraphInsert;
3904
3905 for(Graph::iterator runner = graph2.begin(); runner != graph2.end(); runner++) {
3906 testGraphInsert = graph1.insert(GraphPair ((*runner).first,pair<int,double>((*counter)++,((*runner).second).second))); // store fragment number and current factor
3907 if (testGraphInsert.second) {
3908 *out << Verbose(2) << "KeySet " << (*counter)-1 << " successfully inserted." << endl;
3909 } else {
3910 *out << Verbose(2) << "KeySet " << (*counter)-1 << " failed to insert, present fragment is " << ((*(testGraphInsert.first)).second).first << endl;
3911 ((*(testGraphInsert.first)).second).second += (*runner).second.second;
3912 *out << Verbose(2) << "New factor is " << (*(testGraphInsert.first)).second.second << "." << endl;
3913 }
3914 }
3915};
3916
3917
3918/** Performs BOSSANOVA decomposition at selected sites, increasing the cutoff by one at these sites.
3919 * -# constructs a complete keyset of the molecule
3920 * -# In a loop over all possible roots from the given rootstack
3921 * -# increases order of root site
3922 * -# calls PowerSetGenerator with this order, the complete keyset and the rootkeynr
3923 * -# for all consecutive lower levels PowerSetGenerator is called with the suborder, the higher order keyset
3924as the restricted one and each site in the set as the root)
3925 * -# these are merged into a fragment list of keysets
3926 * -# All fragment lists (for all orders, i.e. from all destination fields) are merged into one list for return
3927 * Important only is that we create all fragments, it is not important if we create them more than once
3928 * as these copies are filtered out via use of the hash table (KeySet).
3929 * \param *out output stream for debugging
3930 * \param Fragment&*List list of already present keystacks (adaptive scheme) or empty list
3931 * \param &RootStack stack with all root candidates (unequal to each atom in complete molecule if adaptive scheme is applied)
3932 * \param *MinimumRingSize minimum ring size for each atom (molecule::Atomcount)
3933 * \return pointer to Graph list
3934 */
3935void molecule::FragmentBOSSANOVA(ofstream *out, Graph *&FragmentList, KeyStack &RootStack, int *MinimumRingSize)
3936{
3937 Graph ***FragmentLowerOrdersList = NULL;
3938 int NumLevels, NumMolecules, TotalNumMolecules = 0, *NumMoleculesOfOrder = NULL;
3939 int counter = 0, Order;
3940 int UpgradeCount = RootStack.size();
3941 KeyStack FragmentRootStack;
3942 int RootKeyNr, RootNr;
3943 struct UniqueFragments FragmentSearch;
3944
3945 *out << Verbose(0) << "Begin of FragmentBOSSANOVA." << endl;
3946
3947 // FragmentLowerOrdersList is a 2D-array of pointer to MoleculeListClass objects, one dimension represents the ANOVA expansion of a single order (i.e. 5)
3948 // with all needed lower orders that are subtracted, the other dimension is the BondOrder (i.e. from 1 to 5)
3949 NumMoleculesOfOrder = (int *) Malloc(sizeof(int)*UpgradeCount, "molecule::FragmentBOSSANOVA: *NumMoleculesOfOrder");
3950 FragmentLowerOrdersList = (Graph ***) Malloc(sizeof(Graph **)*UpgradeCount, "molecule::FragmentBOSSANOVA: ***FragmentLowerOrdersList");
3951
3952 // initialise the fragments structure
3953 FragmentSearch.ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::PowerSetGenerator: *ShortestPathList");
3954 FragmentSearch.Labels = (int *) Malloc(sizeof(int)*AtomCount, "molecule::PowerSetGenerator: *Labels");
3955 FragmentSearch.FragmentCounter = 0;
3956 FragmentSearch.FragmentSet = new KeySet;
3957 FragmentSearch.Root = FindAtom(RootKeyNr);
3958 for (int i=AtomCount;i--;) {
3959 FragmentSearch.Labels[i] = -1;
3960 FragmentSearch.ShortestPathList[i] = -1;
3961 }
3962
3963 // Construct the complete KeySet which we need for topmost level only (but for all Roots)
3964 atom *Walker = start;
3965 KeySet CompleteMolecule;
3966 while (Walker->next != end) {
3967 Walker = Walker->next;
3968 CompleteMolecule.insert(Walker->GetTrueFather()->nr);
3969 }
3970
3971 // this can easily be seen: if Order is 5, then the number of levels for each lower order is the total sum of the number of levels above, as
3972 // each has to be split up. E.g. for the second level we have one from 5th, one from 4th, two from 3th (which in turn is one from 5th, one from 4th),
3973 // hence we have overall four 2th order levels for splitting. This also allows for putting all into a single array (FragmentLowerOrdersList[])
3974 // with the order along the cells as this: 5433222211111111 for BondOrder 5 needing 16=pow(2,5-1) cells (only we use bit-shifting which is faster)
3975 RootNr = 0; // counts through the roots in RootStack
3976 while (RootNr < UpgradeCount) {
3977 RootKeyNr = RootStack.front();
3978 RootStack.pop_front();
3979 Walker = FindAtom(RootKeyNr);
3980 // check cyclic lengths
3981 if ((MinimumRingSize[Walker->GetTrueFather()->nr] != -1) && (Walker->GetTrueFather()->AdaptiveOrder+1 >= MinimumRingSize[Walker->GetTrueFather()->nr])) {
3982 *out << Verbose(0) << "Bond order " << Walker->GetTrueFather()->AdaptiveOrder << " of Root " << *Walker << " greater than or equal to Minimum Ring size of " << MinimumRingSize << " found is not allowed." << endl;
3983 } else {
3984 // increase adaptive order by one
3985 Walker->GetTrueFather()->AdaptiveOrder++;
3986 Order = Walker->AdaptiveOrder = Walker->GetTrueFather()->AdaptiveOrder;
3987
3988 // initialise Order-dependent entries of UniqueFragments structure
3989 FragmentSearch.BondsPerSPList = (bond **) Malloc(sizeof(bond *)*Order*2, "molecule::PowerSetGenerator: ***BondsPerSPList");
3990 FragmentSearch.BondsPerSPCount = (int *) Malloc(sizeof(int)*Order, "molecule::PowerSetGenerator: *BondsPerSPCount");
3991 for (int i=Order;i--;) {
3992 FragmentSearch.BondsPerSPList[2*i] = new bond(); // start node
3993 FragmentSearch.BondsPerSPList[2*i+1] = new bond(); // end node
3994 FragmentSearch.BondsPerSPList[2*i]->next = FragmentSearch.BondsPerSPList[2*i+1]; // intertwine these two
3995 FragmentSearch.BondsPerSPList[2*i+1]->previous = FragmentSearch.BondsPerSPList[2*i];
3996 FragmentSearch.BondsPerSPCount[i] = 0;
3997 }
3998
3999 // allocate memory for all lower level orders in this 1D-array of ptrs
4000 NumLevels = 1 << (Order-1); // (int)pow(2,Order);
4001 FragmentLowerOrdersList[RootNr] = (Graph **) Malloc(sizeof(Graph *)*NumLevels, "molecule::FragmentBOSSANOVA: **FragmentLowerOrdersList[]");
4002
4003 // create top order where nothing is reduced
4004 *out << Verbose(0) << "==============================================================================================================" << endl;
4005 *out << Verbose(0) << "Creating KeySets of Bond Order " << Order << " for " << *Walker << ", NumLevels is " << NumLevels << ", " << (RootStack.size()-RootNr-1) << " Roots remaining." << endl;
4006
4007 // Create list of Graphs of current Bond Order (i.e. F_{ij})
4008 FragmentLowerOrdersList[RootNr][0] = new Graph;
4009 FragmentSearch.TEFactor = 1.;
4010 FragmentSearch.Leaflet = FragmentLowerOrdersList[RootNr][0]; // set to insertion graph
4011 FragmentSearch.Root = Walker;
4012 NumMoleculesOfOrder[RootNr] = PowerSetGenerator(out, Walker->AdaptiveOrder, FragmentSearch, CompleteMolecule);
4013 *out << Verbose(1) << "Number of resulting KeySets is: " << NumMoleculesOfOrder[RootNr] << "." << endl;
4014 NumMolecules = 0;
4015
4016 if ((NumLevels >> 1) > 0) {
4017 // create lower order fragments
4018 *out << Verbose(0) << "Creating list of unique fragments of lower Bond Order terms to be subtracted." << endl;
4019 Order = Walker->AdaptiveOrder;
4020 for (int source=0;source<(NumLevels >> 1);source++) { // 1-terms don't need any more splitting, that's why only half is gone through (shift again)
4021 // step down to next order at (virtual) boundary of powers of 2 in array
4022 while (source >= (1 << (Walker->AdaptiveOrder-Order))) // (int)pow(2,Walker->AdaptiveOrder-Order))
4023 Order--;
4024 *out << Verbose(0) << "Current Order is: " << Order << "." << endl;
4025 for (int SubOrder=Order-1;SubOrder>0;SubOrder--) {
4026 int dest = source + (1 << (Walker->AdaptiveOrder-(SubOrder+1)));
4027 *out << Verbose(0) << "--------------------------------------------------------------------------------------------------------------" << endl;
4028 *out << Verbose(0) << "Current SubOrder is: " << SubOrder << " with source " << source << " to destination " << dest << "." << endl;
4029
4030 // every molecule is split into a list of again (Order - 1) molecules, while counting all molecules
4031 //*out << Verbose(1) << "Splitting the " << (*FragmentLowerOrdersList[RootNr][source]).size() << " molecules of the " << source << "th cell in the array." << endl;
4032 //NumMolecules = 0;
4033 FragmentLowerOrdersList[RootNr][dest] = new Graph;
4034 for(Graph::iterator runner = (*FragmentLowerOrdersList[RootNr][source]).begin();runner != (*FragmentLowerOrdersList[RootNr][source]).end(); runner++) {
4035 for (KeySet::iterator sprinter = (*runner).first.begin();sprinter != (*runner).first.end(); sprinter++) {
4036 Graph TempFragmentList;
4037 FragmentSearch.TEFactor = -(*runner).second.second;
4038 FragmentSearch.Leaflet = &TempFragmentList; // set to insertion graph
4039 FragmentSearch.Root = FindAtom(*sprinter);
4040 NumMoleculesOfOrder[RootNr] += PowerSetGenerator(out, SubOrder, FragmentSearch, (*runner).first);
4041 // insert new keysets FragmentList into FragmentLowerOrdersList[Walker->AdaptiveOrder-1][dest]
4042 *out << Verbose(1) << "Merging resulting key sets with those present in destination " << dest << "." << endl;
4043 InsertGraphIntoGraph(out, *FragmentLowerOrdersList[RootNr][dest], TempFragmentList, &NumMolecules);
4044 }
4045 }
4046 *out << Verbose(1) << "Number of resulting molecules for SubOrder " << SubOrder << " is: " << NumMolecules << "." << endl;
4047 }
4048 }
4049 }
4050 // now, we have completely filled each cell of FragmentLowerOrdersList[] for the current Walker->AdaptiveOrder
4051 //NumMoleculesOfOrder[Walker->AdaptiveOrder-1] = NumMolecules;
4052 TotalNumMolecules += NumMoleculesOfOrder[RootNr];
4053 *out << Verbose(1) << "Number of resulting molecules for Order " << (int)Walker->GetTrueFather()->AdaptiveOrder << " is: " << NumMoleculesOfOrder[RootNr] << "." << endl;
4054 RootStack.push_back(RootKeyNr); // put back on stack
4055 RootNr++;
4056
4057 // free Order-dependent entries of UniqueFragments structure for next loop cycle
4058 Free((void **)&FragmentSearch.BondsPerSPCount, "molecule::PowerSetGenerator: *BondsPerSPCount");
4059 for (int i=Order;i--;) {
4060 delete(FragmentSearch.BondsPerSPList[2*i]);
4061 delete(FragmentSearch.BondsPerSPList[2*i+1]);
4062 }
4063 Free((void **)&FragmentSearch.BondsPerSPList, "molecule::PowerSetGenerator: ***BondsPerSPList");
4064 }
4065 }
4066 *out << Verbose(0) << "==============================================================================================================" << endl;
4067 *out << Verbose(1) << "Total number of resulting molecules is: " << TotalNumMolecules << "." << endl;
4068 *out << Verbose(0) << "==============================================================================================================" << endl;
4069
4070 // cleanup FragmentSearch structure
4071 Free((void **)&FragmentSearch.ShortestPathList, "molecule::PowerSetGenerator: *ShortestPathList");
4072 Free((void **)&FragmentSearch.Labels, "molecule::PowerSetGenerator: *Labels");
4073 delete(FragmentSearch.FragmentSet);
4074
4075 // now, FragmentLowerOrdersList is complete, it looks - for BondOrder 5 - as this (number is the ANOVA Order of the terms therein)
4076 // 5433222211111111
4077 // 43221111
4078 // 3211
4079 // 21
4080 // 1
4081
4082 // Subsequently, we combine all into a single list (FragmentList)
4083
4084 *out << Verbose(0) << "Combining the lists of all orders per order and finally into a single one." << endl;
4085 if (FragmentList == NULL) {
4086 FragmentList = new Graph;
4087 counter = 0;
4088 } else {
4089 counter = FragmentList->size();
4090 }
4091 RootNr = 0;
4092 while (!RootStack.empty()) {
4093 RootKeyNr = RootStack.front();
4094 RootStack.pop_front();
4095 Walker = FindAtom(RootKeyNr);
4096 NumLevels = 1 << (Walker->AdaptiveOrder - 1);
4097 for(int i=0;i<NumLevels;i++) {
4098 InsertGraphIntoGraph(out, *FragmentList, (*FragmentLowerOrdersList[RootNr][i]), &counter);
4099 delete(FragmentLowerOrdersList[RootNr][i]);
4100 }
4101 Free((void **)&FragmentLowerOrdersList[RootNr], "molecule::FragmentBOSSANOVA: **FragmentLowerOrdersList[]");
4102 RootNr++;
4103 }
4104 Free((void **)&FragmentLowerOrdersList, "molecule::FragmentBOSSANOVA: ***FragmentLowerOrdersList");
4105 Free((void **)&NumMoleculesOfOrder, "molecule::FragmentBOSSANOVA: *NumMoleculesOfOrder");
4106
4107 *out << Verbose(0) << "End of FragmentBOSSANOVA." << endl;
4108};
4109
4110/** Comparison function for GSL heapsort on distances in two molecules.
4111 * \param *a
4112 * \param *b
4113 * \return <0, \a *a less than \a *b, ==0 if equal, >0 \a *a greater than \a *b
4114 */
4115inline int CompareDoubles (const void * a, const void * b)
4116{
4117 if (*(double *)a > *(double *)b)
4118 return -1;
4119 else if (*(double *)a < *(double *)b)
4120 return 1;
4121 else
4122 return 0;
4123};
4124
4125/** Determines whether two molecules actually contain the same atoms and coordination.
4126 * \param *out output stream for debugging
4127 * \param *OtherMolecule the molecule to compare this one to
4128 * \param threshold upper limit of difference when comparing the coordination.
4129 * \return NULL - not equal, otherwise an allocated (molecule::AtomCount) permutation map of the atom numbers (which corresponds to which)
4130 */
4131int * molecule::IsEqualToWithinThreshold(ofstream *out, molecule *OtherMolecule, double threshold)
4132{
4133 int flag;
4134 double *Distances = NULL, *OtherDistances = NULL;
4135 vector CenterOfGravity, OtherCenterOfGravity;
4136 size_t *PermMap = NULL, *OtherPermMap = NULL;
4137 int *PermutationMap = NULL;
4138 atom *Walker = NULL;
4139 bool result = true; // status of comparison
4140
4141 *out << Verbose(3) << "Begin of IsEqualToWithinThreshold." << endl;
4142 /// first count both their atoms and elements and update lists thereby ...
4143 //*out << Verbose(0) << "Counting atoms, updating list" << endl;
4144 CountAtoms(out);
4145 OtherMolecule->CountAtoms(out);
4146 CountElements();
4147 OtherMolecule->CountElements();
4148
4149 /// ... and compare:
4150 /// -# AtomCount
4151 if (result) {
4152 if (AtomCount != OtherMolecule->AtomCount) {
4153 *out << Verbose(4) << "AtomCounts don't match: " << AtomCount << " == " << OtherMolecule->AtomCount << endl;
4154 result = false;
4155 } else *out << Verbose(4) << "AtomCounts match: " << AtomCount << " == " << OtherMolecule->AtomCount << endl;
4156 }
4157 /// -# ElementCount
4158 if (result) {
4159 if (ElementCount != OtherMolecule->ElementCount) {
4160 *out << Verbose(4) << "ElementCount don't match: " << ElementCount << " == " << OtherMolecule->ElementCount << endl;
4161 result = false;
4162 } else *out << Verbose(4) << "ElementCount match: " << ElementCount << " == " << OtherMolecule->ElementCount << endl;
4163 }
4164 /// -# ElementsInMolecule
4165 if (result) {
4166 for (flag=MAX_ELEMENTS;flag--;) {
4167 //*out << Verbose(5) << "Element " << flag << ": " << ElementsInMolecule[flag] << " <-> " << OtherMolecule->ElementsInMolecule[flag] << "." << endl;
4168 if (ElementsInMolecule[flag] != OtherMolecule->ElementsInMolecule[flag])
4169 break;
4170 }
4171 if (flag < MAX_ELEMENTS) {
4172 *out << Verbose(4) << "ElementsInMolecule don't match." << endl;
4173 result = false;
4174 } else *out << Verbose(4) << "ElementsInMolecule match." << endl;
4175 }
4176 /// then determine and compare center of gravity for each molecule ...
4177 if (result) {
4178 *out << Verbose(5) << "Calculating Centers of Gravity" << endl;
4179 DetermineCenter(CenterOfGravity);
4180 OtherMolecule->DetermineCenter(OtherCenterOfGravity);
4181 *out << Verbose(5) << "Center of Gravity: ";
4182 CenterOfGravity.Output(out);
4183 *out << endl << Verbose(5) << "Other Center of Gravity: ";
4184 OtherCenterOfGravity.Output(out);
4185 *out << endl;
4186 if (CenterOfGravity.Distance(&OtherCenterOfGravity) > threshold) {
4187 *out << Verbose(4) << "Centers of gravity don't match." << endl;
4188 result = false;
4189 }
4190 }
4191
4192 /// ... then make a list with the euclidian distance to this center for each atom of both molecules
4193 if (result) {
4194 *out << Verbose(5) << "Calculating distances" << endl;
4195 Distances = (double *) Malloc(sizeof(double)*AtomCount, "molecule::IsEqualToWithinThreshold: Distances");
4196 OtherDistances = (double *) Malloc(sizeof(double)*AtomCount, "molecule::IsEqualToWithinThreshold: OtherDistances");
4197 Walker = start;
4198 while (Walker->next != end) {
4199 Walker = Walker->next;
4200 Distances[Walker->nr] = CenterOfGravity.Distance(&Walker->x);
4201 }
4202 Walker = OtherMolecule->start;
4203 while (Walker->next != OtherMolecule->end) {
4204 Walker = Walker->next;
4205 OtherDistances[Walker->nr] = OtherCenterOfGravity.Distance(&Walker->x);
4206 }
4207
4208 /// ... sort each list (using heapsort (o(N log N)) from GSL)
4209 *out << Verbose(5) << "Sorting distances" << endl;
4210 PermMap = (size_t *) Malloc(sizeof(size_t)*AtomCount, "molecule::IsEqualToWithinThreshold: *PermMap");
4211 OtherPermMap = (size_t *) Malloc(sizeof(size_t)*AtomCount, "molecule::IsEqualToWithinThreshold: *OtherPermMap");
4212 gsl_heapsort_index (PermMap, Distances, AtomCount, sizeof(double), CompareDoubles);
4213 gsl_heapsort_index (OtherPermMap, OtherDistances, AtomCount, sizeof(double), CompareDoubles);
4214 PermutationMap = (int *) Malloc(sizeof(int)*AtomCount, "molecule::IsEqualToWithinThreshold: *PermutationMap");
4215 *out << Verbose(5) << "Combining Permutation Maps" << endl;
4216 for(int i=AtomCount;i--;)
4217 PermutationMap[PermMap[i]] = (int) OtherPermMap[i];
4218
4219 /// ... and compare them step by step, whether the difference is individiually(!) below \a threshold for all
4220 *out << Verbose(4) << "Comparing distances" << endl;
4221 flag = 0;
4222 for (int i=0;i<AtomCount;i++) {
4223 *out << Verbose(5) << "Distances: |" << Distances[PermMap[i]] << " - " << OtherDistances[OtherPermMap[i]] << "| = " << fabs(Distances[PermMap[i]] - OtherDistances[OtherPermMap[i]]) << " ?<? " << threshold << endl;
4224 if (fabs(Distances[PermMap[i]] - OtherDistances[OtherPermMap[i]]) > threshold)
4225 flag = 1;
4226 }
4227 Free((void **)&PermMap, "molecule::IsEqualToWithinThreshold: *PermMap");
4228 Free((void **)&OtherPermMap, "molecule::IsEqualToWithinThreshold: *OtherPermMap");
4229
4230 /// free memory
4231 Free((void **)&Distances, "molecule::IsEqualToWithinThreshold: Distances");
4232 Free((void **)&OtherDistances, "molecule::IsEqualToWithinThreshold: OtherDistances");
4233 if (flag) { // if not equal
4234 Free((void **)&PermutationMap, "molecule::IsEqualToWithinThreshold: *PermutationMap");
4235 result = false;
4236 }
4237 }
4238 /// return pointer to map if all distances were below \a threshold
4239 *out << Verbose(3) << "End of IsEqualToWithinThreshold." << endl;
4240 if (result) {
4241 *out << Verbose(3) << "Result: Equal." << endl;
4242 return PermutationMap;
4243 } else {
4244 *out << Verbose(3) << "Result: Not equal." << endl;
4245 return NULL;
4246 }
4247};
4248
4249/** Returns an index map for two father-son-molecules.
4250 * The map tells which atom in this molecule corresponds to which one in the other molecul with their fathers.
4251 * \param *out output stream for debugging
4252 * \param *OtherMolecule corresponding molecule with fathers
4253 * \return allocated map of size molecule::AtomCount with map
4254 * \todo make this with a good sort O(n), not O(n^2)
4255 */
4256int * molecule::GetFatherSonAtomicMap(ofstream *out, molecule *OtherMolecule)
4257{
4258 atom *Walker = NULL, *OtherWalker = NULL;
4259 *out << Verbose(3) << "Begin of GetFatherAtomicMap." << endl;
4260 int *AtomicMap = (int *) Malloc(sizeof(int)*AtomCount, "molecule::GetAtomicMap: *AtomicMap"); //Calloc
4261 for (int i=AtomCount;i--;)
4262 AtomicMap[i] = -1;
4263 if (OtherMolecule == this) { // same molecule
4264 for (int i=AtomCount;i--;) // no need as -1 means already that there is trivial correspondence
4265 AtomicMap[i] = i;
4266 *out << Verbose(4) << "Map is trivial." << endl;
4267 } else {
4268 *out << Verbose(4) << "Map is ";
4269 Walker = start;
4270 while (Walker->next != end) {
4271 Walker = Walker->next;
4272 if (Walker->father == NULL) {
4273 AtomicMap[Walker->nr] = -2;
4274 } else {
4275 OtherWalker = OtherMolecule->start;
4276 while (OtherWalker->next != OtherMolecule->end) {
4277 OtherWalker = OtherWalker->next;
4278 //for (int i=0;i<AtomCount;i++) { // search atom
4279 //for (int j=0;j<OtherMolecule->AtomCount;j++) {
4280 //*out << Verbose(4) << "Comparing father " << Walker->father << " with the other one " << OtherWalker->father << "." << endl;
4281 if (Walker->father == OtherWalker)
4282 AtomicMap[Walker->nr] = OtherWalker->nr;
4283 }
4284 }
4285 *out << AtomicMap[Walker->nr] << "\t";
4286 }
4287 *out << endl;
4288 }
4289 *out << Verbose(3) << "End of GetFatherAtomicMap." << endl;
4290 return AtomicMap;
4291};
4292
Note: See TracBrowser for help on using the repository browser.