source: src/moleculelist.cpp@ 492279

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 492279 was e6317b, checked in by Tillmann Crueger <crueger@…>, 15 years ago

Broken: Merge commit 'Gitosis/stable' into stable

Conflicts:

molecuilder/src/Actions/AnalysisAction/PairCorrelationToPointAction.cpp
molecuilder/src/Actions/AnalysisAction/PairCorrelationToSurfaceAction.cpp
molecuilder/src/Makefile.am

  • Property mode set to 100755
File size: 47.3 KB
Line 
1/** \file MoleculeListClass.cpp
2 *
3 * Function implementations for the class MoleculeListClass.
4 *
5 */
6
7#include "Helpers/MemDebug.hpp"
8
9#include <cstring>
10
11#include "World.hpp"
12#include "atom.hpp"
13#include "bond.hpp"
14#include "boundary.hpp"
15#include "config.hpp"
16#include "element.hpp"
17#include "helpers.hpp"
18#include "linkedcell.hpp"
19#include "lists.hpp"
20#include "log.hpp"
21#include "molecule.hpp"
22#include "memoryallocator.hpp"
23#include "periodentafel.hpp"
24#include "Helpers/Assert.hpp"
25
26#include "Helpers/Assert.hpp"
27
28/*********************************** Functions for class MoleculeListClass *************************/
29
30/** Constructor for MoleculeListClass.
31 */
32MoleculeListClass::MoleculeListClass(World *_world) :
33 Observable("MoleculeListClass"),
34 world(_world)
35{
36 // empty lists
37 ListOfMolecules.clear();
38 MaxIndex = 1;
39};
40
41/** Destructor for MoleculeListClass.
42 */
43MoleculeListClass::~MoleculeListClass()
44{
45 DoLog(4) && (Log() << Verbose(4) << "Clearing ListOfMolecules." << endl);
46 for(MoleculeList::iterator MolRunner = ListOfMolecules.begin(); MolRunner != ListOfMolecules.end(); ++MolRunner)
47 (*MolRunner)->signOff(this);
48 ListOfMolecules.clear(); // empty list
49};
50
51/** Insert a new molecule into the list and set its number.
52 * \param *mol molecule to add to list.
53 */
54void MoleculeListClass::insert(molecule *mol)
55{
56 OBSERVE;
57 mol->IndexNr = MaxIndex++;
58 ListOfMolecules.push_back(mol);
59 mol->signOn(this);
60};
61
62/** Erases a molecule from the list.
63 * \param *mol molecule to add to list.
64 */
65void MoleculeListClass::erase(molecule *mol)
66{
67 OBSERVE;
68 mol->signOff(this);
69 ListOfMolecules.remove(mol);
70};
71
72/** Compare whether two molecules are equal.
73 * \param *a molecule one
74 * \param *n molecule two
75 * \return lexical value (-1, 0, +1)
76 */
77int MolCompare(const void *a, const void *b)
78{
79 int *aList = NULL, *bList = NULL;
80 int Count, Counter, aCounter, bCounter;
81 int flag;
82
83 // sort each atom list and put the numbers into a list, then go through
84 //Log() << Verbose(0) << "Comparing fragment no. " << *(molecule **)a << " to " << *(molecule **)b << "." << endl;
85 // Yes those types are awkward... but check it for yourself it checks out this way
86 molecule *const *mol1_ptr= static_cast<molecule *const *>(a);
87 molecule *mol1 = *mol1_ptr;
88 molecule *const *mol2_ptr= static_cast<molecule *const *>(b);
89 molecule *mol2 = *mol2_ptr;
90 if (mol1->getAtomCount() < mol2->getAtomCount()) {
91 return -1;
92 } else {
93 if (mol1->getAtomCount() > mol2->getAtomCount())
94 return +1;
95 else {
96 Count = mol1->getAtomCount();
97 aList = new int[Count];
98 bList = new int[Count];
99
100 // fill the lists
101 Counter = 0;
102 aCounter = 0;
103 bCounter = 0;
104 molecule::const_iterator aiter = mol1->begin();
105 molecule::const_iterator biter = mol2->begin();
106 for (;(aiter != mol1->end()) && (biter != mol2->end());
107 ++aiter, ++biter) {
108 if ((*aiter)->GetTrueFather() == NULL)
109 aList[Counter] = Count + (aCounter++);
110 else
111 aList[Counter] = (*aiter)->GetTrueFather()->nr;
112 if ((*biter)->GetTrueFather() == NULL)
113 bList[Counter] = Count + (bCounter++);
114 else
115 bList[Counter] = (*biter)->GetTrueFather()->nr;
116 Counter++;
117 }
118 // check if AtomCount was for real
119 flag = 0;
120 if ((aiter == mol1->end()) && (biter != mol2->end())) {
121 flag = -1;
122 } else {
123 if ((aiter != mol1->end()) && (biter == mol2->end()))
124 flag = 1;
125 }
126 if (flag == 0) {
127 // sort the lists
128 gsl_heapsort(aList, Count, sizeof(int), CompareDoubles);
129 gsl_heapsort(bList, Count, sizeof(int), CompareDoubles);
130 // compare the lists
131
132 flag = 0;
133 for (int i = 0; i < Count; i++) {
134 if (aList[i] < bList[i]) {
135 flag = -1;
136 } else {
137 if (aList[i] > bList[i])
138 flag = 1;
139 }
140 if (flag != 0)
141 break;
142 }
143 }
144 delete[] (aList);
145 delete[] (bList);
146 return flag;
147 }
148 }
149 return -1;
150};
151
152/** Output of a list of all molecules.
153 * \param *out output stream
154 */
155void MoleculeListClass::Enumerate(ostream *out)
156{
157 periodentafel *periode = World::getInstance().getPeriode();
158 std::map<atomicNumber_t,unsigned int> counts;
159 double size=0;
160 Vector Origin;
161
162 // header
163 (*out) << "Index\tName\t\tAtoms\tFormula\tCenter\tSize" << endl;
164 (*out) << "-----------------------------------------------" << endl;
165 if (ListOfMolecules.size() == 0)
166 (*out) << "\tNone" << endl;
167 else {
168 Origin.Zero();
169 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) {
170 // count atoms per element and determine size of bounding sphere
171 size=0.;
172 for (molecule::const_iterator iter = (*ListRunner)->begin(); iter != (*ListRunner)->end(); ++iter) {
173 counts[(*iter)->type->getNumber()]++;
174 if ((*iter)->x.DistanceSquared(Origin) > size)
175 size = (*iter)->x.DistanceSquared(Origin);
176 }
177 // output Index, Name, number of atoms, chemical formula
178 (*out) << ((*ListRunner)->ActiveFlag ? "*" : " ") << (*ListRunner)->IndexNr << "\t" << (*ListRunner)->name << "\t\t" << (*ListRunner)->getAtomCount() << "\t";
179
180 std::map<atomicNumber_t,unsigned int>::reverse_iterator iter;
181 for(iter=counts.rbegin(); iter!=counts.rend();++iter){
182 atomicNumber_t Z =(*iter).first;
183 (*out) << periode->FindElement(Z)->getSymbol() << (*iter).second;
184 }
185 // Center and size
186 (*out) << "\t" << (*ListRunner)->Center << "\t" << sqrt(size) << endl;
187 }
188 }
189};
190
191/** Returns the molecule with the given index \a index.
192 * \param index index of the desired molecule
193 * \return pointer to molecule structure, NULL if not found
194 */
195molecule * MoleculeListClass::ReturnIndex(int index)
196{
197 for(MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++)
198 if ((*ListRunner)->IndexNr == index)
199 return (*ListRunner);
200 return NULL;
201};
202
203/** Simple merge of two molecules into one.
204 * \param *mol destination molecule
205 * \param *srcmol source molecule
206 * \return true - merge successful, false - merge failed (probably due to non-existant indices
207 */
208bool MoleculeListClass::SimpleMerge(molecule *mol, molecule *srcmol)
209{
210 if (srcmol == NULL)
211 return false;
212
213 // put all molecules of src into mol
214 molecule::iterator runner;
215 for (molecule::iterator iter = srcmol->begin(); iter != srcmol->end(); ++iter) {
216 runner = iter++;
217 srcmol->UnlinkAtom((*runner));
218 mol->AddAtom((*runner));
219 }
220
221 // remove src
222 ListOfMolecules.remove(srcmol);
223 World::getInstance().destroyMolecule(srcmol);
224 return true;
225};
226
227/** Simple add of one molecules into another.
228 * \param *mol destination molecule
229 * \param *srcmol source molecule
230 * \return true - merge successful, false - merge failed (probably due to non-existant indices
231 */
232bool MoleculeListClass::SimpleAdd(molecule *mol, molecule *srcmol)
233{
234 if (srcmol == NULL)
235 return false;
236
237 // put all molecules of src into mol
238 atom *Walker = NULL;
239 for (molecule::iterator iter = srcmol->begin(); iter != srcmol->end(); ++iter) {
240 Walker = mol->AddCopyAtom((*iter));
241 Walker->father = Walker;
242 }
243
244 return true;
245};
246
247/** Simple merge of a given set of molecules into one.
248 * \param *mol destination molecule
249 * \param *src index of set of source molecule
250 * \param N number of source molecules
251 * \return true - merge successful, false - some merges failed (probably due to non-existant indices)
252 */
253bool MoleculeListClass::SimpleMultiMerge(molecule *mol, int *src, int N)
254{
255 bool status = true;
256 // check presence of all source molecules
257 for (int i=0;i<N;i++) {
258 molecule *srcmol = ReturnIndex(src[i]);
259 status = status && SimpleMerge(mol, srcmol);
260 }
261 return status;
262};
263
264/** Simple add of a given set of molecules into one.
265 * \param *mol destination molecule
266 * \param *src index of set of source molecule
267 * \param N number of source molecules
268 * \return true - merge successful, false - some merges failed (probably due to non-existant indices)
269 */
270bool MoleculeListClass::SimpleMultiAdd(molecule *mol, int *src, int N)
271{
272 bool status = true;
273 // check presence of all source molecules
274 for (int i=0;i<N;i++) {
275 molecule *srcmol = ReturnIndex(src[i]);
276 status = status && SimpleAdd(mol, srcmol);
277 }
278 return status;
279};
280
281/** Scatter merge of a given set of molecules into one.
282 * Scatter merge distributes the molecules in such a manner that they don't overlap.
283 * \param *mol destination molecule
284 * \param *src index of set of source molecule
285 * \param N number of source molecules
286 * \return true - merge successful, false - merge failed (probably due to non-existant indices
287 * \TODO find scatter center for each src molecule
288 */
289bool MoleculeListClass::ScatterMerge(molecule *mol, int *src, int N)
290{
291 // check presence of all source molecules
292 for (int i=0;i<N;i++) {
293 // get pointer to src molecule
294 molecule *srcmol = ReturnIndex(src[i]);
295 if (srcmol == NULL)
296 return false;
297 }
298 // adapt each Center
299 for (int i=0;i<N;i++) {
300 // get pointer to src molecule
301 molecule *srcmol = ReturnIndex(src[i]);
302 //srcmol->Center.Zero();
303 srcmol->Translate(&srcmol->Center);
304 }
305 // perform a simple multi merge
306 SimpleMultiMerge(mol, src, N);
307 return true;
308};
309
310/** Embedding merge of a given set of molecules into one.
311 * Embedding merge inserts one molecule into the other.
312 * \param *mol destination molecule (fixed one)
313 * \param *srcmol source molecule (variable one, where atoms are taken from)
314 * \return true - merge successful, false - merge failed (probably due to non-existant indices)
315 * \TODO linked cell dimensions for boundary points has to be as big as inner diameter!
316 */
317bool MoleculeListClass::EmbedMerge(molecule *mol, molecule *srcmol)
318{
319 LinkedCell *LCList = NULL;
320 Tesselation *TesselStruct = NULL;
321 if ((srcmol == NULL) || (mol == NULL)) {
322 DoeLog(1) && (eLog()<< Verbose(1) << "Either fixed or variable molecule is given as NULL." << endl);
323 return false;
324 }
325
326 // calculate envelope for *mol
327 LCList = new LinkedCell(mol, 8.);
328 FindNonConvexBorder(mol, TesselStruct, (const LinkedCell *&)LCList, 4., NULL);
329 if (TesselStruct == NULL) {
330 DoeLog(1) && (eLog()<< Verbose(1) << "Could not tesselate the fixed molecule." << endl);
331 return false;
332 }
333 delete(LCList);
334 LCList = new LinkedCell(TesselStruct, 8.); // re-create with boundary points only!
335
336 // prepare index list for bonds
337 atom ** CopyAtoms = new atom*[srcmol->getAtomCount()];
338 for(int i=0;i<srcmol->getAtomCount();i++)
339 CopyAtoms[i] = NULL;
340
341 // for each of the source atoms check whether we are in- or outside and add copy atom
342 int nr=0;
343 for (molecule::const_iterator iter = srcmol->begin(); iter != srcmol->end(); ++iter) {
344 DoLog(2) && (Log() << Verbose(2) << "INFO: Current Walker is " << **iter << "." << endl);
345 if (!TesselStruct->IsInnerPoint((*iter)->x, LCList)) {
346 CopyAtoms[(*iter)->nr] = (*iter)->clone();
347 mol->AddAtom(CopyAtoms[(*iter)->nr]);
348 nr++;
349 } else {
350 // do nothing
351 }
352 }
353 DoLog(1) && (Log() << Verbose(1) << nr << " of " << srcmol->getAtomCount() << " atoms have been merged.");
354
355 // go through all bonds and add as well
356 for(molecule::iterator AtomRunner = srcmol->begin(); AtomRunner != srcmol->end(); ++AtomRunner)
357 for(BondList::iterator BondRunner = (*AtomRunner)->ListOfBonds.begin(); BondRunner != (*AtomRunner)->ListOfBonds.end(); ++BondRunner)
358 if ((*BondRunner)->leftatom == *AtomRunner) {
359 DoLog(3) && (Log() << Verbose(3) << "Adding Bond between " << *CopyAtoms[(*BondRunner)->leftatom->nr] << " and " << *CopyAtoms[(*BondRunner)->rightatom->nr]<< "." << endl);
360 mol->AddBond(CopyAtoms[(*BondRunner)->leftatom->nr], CopyAtoms[(*BondRunner)->rightatom->nr], (*BondRunner)->BondDegree);
361 }
362 delete(LCList);
363 return true;
364};
365
366/** Simple output of the pointers in ListOfMolecules.
367 * \param *out output stream
368 */
369void MoleculeListClass::Output(ofstream *out)
370{
371 DoLog(1) && (Log() << Verbose(1) << "MoleculeList: ");
372 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++)
373 DoLog(0) && (Log() << Verbose(0) << *ListRunner << "\t");
374 DoLog(0) && (Log() << Verbose(0) << endl);
375};
376
377/** Calculates necessary hydrogen correction due to unwanted interaction between saturated ones.
378 * If for a pair of two hydrogen atoms a and b, at least is a saturated one, and a and b are not
379 * bonded to the same atom, then we add for this pair a correction term constructed from a Morse
380 * potential function fit to QM calculations with respecting to the interatomic hydrogen distance.
381 * \param *out output stream for debugging
382 * \param *path path to file
383 */
384bool MoleculeListClass::AddHydrogenCorrection(char *path)
385{
386 bond *Binder = NULL;
387 double ***FitConstant = NULL, **correction = NULL;
388 int a, b;
389 ofstream output;
390 ifstream input;
391 string line;
392 stringstream zeile;
393 double distance;
394 char ParsedLine[1023];
395 double tmp;
396 char *FragmentNumber = NULL;
397
398 DoLog(1) && (Log() << Verbose(1) << "Saving hydrogen saturation correction ... ");
399 // 0. parse in fit constant files that should have the same dimension as the final energy files
400 // 0a. find dimension of matrices with constants
401 line = path;
402 line.append("/");
403 line += FRAGMENTPREFIX;
404 line += "1";
405 line += FITCONSTANTSUFFIX;
406 input.open(line.c_str());
407 if (input == NULL) {
408 DoLog(1) && (Log() << Verbose(1) << endl << "Unable to open " << line << ", is the directory correct?" << endl);
409 return false;
410 }
411 a = 0;
412 b = -1; // we overcount by one
413 while (!input.eof()) {
414 input.getline(ParsedLine, 1023);
415 zeile.str(ParsedLine);
416 int i = 0;
417 while (!zeile.eof()) {
418 zeile >> distance;
419 i++;
420 }
421 if (i > a)
422 a = i;
423 b++;
424 }
425 DoLog(0) && (Log() << Verbose(0) << "I recognized " << a << " columns and " << b << " rows, ");
426 input.close();
427
428 // 0b. allocate memory for constants
429 FitConstant = new double**[3];
430 for (int k = 0; k < 3; k++) {
431 FitConstant[k] = new double*[a];
432 for (int i = a; i--;) {
433 FitConstant[k][i] = new double[b];
434 for (int j = b; j--;) {
435 FitConstant[k][i][j] = 0.;
436 }
437 }
438 }
439 // 0c. parse in constants
440 for (int i = 0; i < 3; i++) {
441 line = path;
442 line.append("/");
443 line += FRAGMENTPREFIX;
444 sprintf(ParsedLine, "%d", i + 1);
445 line += ParsedLine;
446 line += FITCONSTANTSUFFIX;
447 input.open(line.c_str());
448 if (input == NULL) {
449 DoeLog(0) && (eLog()<< Verbose(0) << endl << "Unable to open " << line << ", is the directory correct?" << endl);
450 performCriticalExit();
451 return false;
452 }
453 int k = 0, l;
454 while ((!input.eof()) && (k < b)) {
455 input.getline(ParsedLine, 1023);
456 //Log() << Verbose(0) << "Current Line: " << ParsedLine << endl;
457 zeile.str(ParsedLine);
458 zeile.clear();
459 l = 0;
460 while ((!zeile.eof()) && (l < a)) {
461 zeile >> FitConstant[i][l][k];
462 //Log() << Verbose(0) << FitConstant[i][l][k] << "\t";
463 l++;
464 }
465 //Log() << Verbose(0) << endl;
466 k++;
467 }
468 input.close();
469 }
470 for (int k = 0; k < 3; k++) {
471 DoLog(0) && (Log() << Verbose(0) << "Constants " << k << ":" << endl);
472 for (int j = 0; j < b; j++) {
473 for (int i = 0; i < a; i++) {
474 DoLog(0) && (Log() << Verbose(0) << FitConstant[k][i][j] << "\t");
475 }
476 DoLog(0) && (Log() << Verbose(0) << endl);
477 }
478 DoLog(0) && (Log() << Verbose(0) << endl);
479 }
480
481 // 0d. allocate final correction matrix
482 correction = new double*[a];
483 for (int i = a; i--;)
484 correction[i] = new double[b];
485
486 // 1a. go through every molecule in the list
487 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) {
488 // 1b. zero final correction matrix
489 for (int k = a; k--;)
490 for (int j = b; j--;)
491 correction[k][j] = 0.;
492 // 2. take every hydrogen that is a saturated one
493 for (molecule::const_iterator iter = (*ListRunner)->begin(); iter != (*ListRunner)->end(); ++iter) {
494 //Log() << Verbose(1) << "(*iter): " << *(*iter) << " with first bond " << *((*iter)->ListOfBonds.begin()) << "." << endl;
495 if (((*iter)->type->Z == 1) && (((*iter)->father == NULL)
496 || ((*iter)->father->type->Z != 1))) { // if it's a hydrogen
497 for (molecule::const_iterator runner = (*ListRunner)->begin(); runner != (*ListRunner)->end(); ++runner) {
498 //Log() << Verbose(2) << "Runner: " << *(*runner) << " with first bond " << *((*iter)->ListOfBonds.begin()) << "." << endl;
499 // 3. take every other hydrogen that is the not the first and not bound to same bonding partner
500 Binder = *((*runner)->ListOfBonds.begin());
501 if (((*runner)->type->Z == 1) && ((*runner)->nr > (*iter)->nr) && (Binder->GetOtherAtom((*runner)) != Binder->GetOtherAtom((*iter)))) { // (hydrogens have only one bonding partner!)
502 // 4. evaluate the morse potential for each matrix component and add up
503 distance = (*runner)->x.distance((*iter)->x);
504 //Log() << Verbose(0) << "Fragment " << (*ListRunner)->name << ": " << *(*runner) << "<= " << distance << "=>" << *(*iter) << ":" << endl;
505 for (int k = 0; k < a; k++) {
506 for (int j = 0; j < b; j++) {
507 switch (k) {
508 case 1:
509 case 7:
510 case 11:
511 tmp = pow(FitConstant[0][k][j] * (1. - exp(-FitConstant[1][k][j] * (distance - FitConstant[2][k][j]))), 2);
512 break;
513 default:
514 tmp = FitConstant[0][k][j] * pow(distance, FitConstant[1][k][j]) + FitConstant[2][k][j];
515 };
516 correction[k][j] -= tmp; // ground state is actually lower (disturbed by additional interaction)
517 //Log() << Verbose(0) << tmp << "\t";
518 }
519 //Log() << Verbose(0) << endl;
520 }
521 //Log() << Verbose(0) << endl;
522 }
523 }
524 }
525 }
526 // 5. write final matrix to file
527 line = path;
528 line.append("/");
529 line += FRAGMENTPREFIX;
530 FragmentNumber = FixedDigitNumber(ListOfMolecules.size(), (*ListRunner)->IndexNr);
531 line += FragmentNumber;
532 delete[] (FragmentNumber);
533 line += HCORRECTIONSUFFIX;
534 output.open(line.c_str());
535 output << "Time\t\tTotal\t\tKinetic\t\tNonLocal\tCorrelation\tExchange\tPseudo\t\tHartree\t\t-Gauss\t\tEwald\t\tIonKin\t\tETotal" << endl;
536 for (int j = 0; j < b; j++) {
537 for (int i = 0; i < a; i++)
538 output << correction[i][j] << "\t";
539 output << endl;
540 }
541 output.close();
542 }
543 for (int i = a; i--;)
544 delete[](correction[i]);
545 delete[](correction);
546
547 line = path;
548 line.append("/");
549 line += HCORRECTIONSUFFIX;
550 output.open(line.c_str());
551 output << "Time\t\tTotal\t\tKinetic\t\tNonLocal\tCorrelation\tExchange\tPseudo\t\tHartree\t\t-Gauss\t\tEwald\t\tIonKin\t\tETotal" << endl;
552 for (int j = 0; j < b; j++) {
553 for (int i = 0; i < a; i++)
554 output << 0 << "\t";
555 output << endl;
556 }
557 output.close();
558 // 6. free memory of parsed matrices
559 for (int k = 0; k < 3; k++) {
560 for (int i = a; i--;) {
561 delete[](FitConstant[k][i]);
562 }
563 delete[](FitConstant[k]);
564 }
565 delete[](FitConstant);
566 DoLog(0) && (Log() << Verbose(0) << "done." << endl);
567 return true;
568};
569
570/** Store force indices, i.e. the connection between the nuclear index in the total molecule config and the respective atom in fragment config.
571 * \param *out output stream for debugging
572 * \param *path path to file
573 * \param *SortIndex Index to map from the BFS labeling to the sequence how of Ion_Type in the config
574 * \return true - file written successfully, false - writing failed
575 */
576bool MoleculeListClass::StoreForcesFile(char *path,
577 int *SortIndex)
578{
579 bool status = true;
580 ofstream ForcesFile;
581 stringstream line;
582 periodentafel *periode=World::getInstance().getPeriode();
583
584 // open file for the force factors
585 DoLog(1) && (Log() << Verbose(1) << "Saving force factors ... ");
586 line << path << "/" << FRAGMENTPREFIX << FORCESFILE;
587 ForcesFile.open(line.str().c_str(), ios::out);
588 if (ForcesFile != NULL) {
589 //Log() << Verbose(1) << "Final AtomicForcesList: ";
590 //output << prefix << "Forces" << endl;
591 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) {
592 periodentafel::const_iterator elemIter;
593 for(elemIter=periode->begin();elemIter!=periode->end();++elemIter){
594 if ((*ListRunner)->ElementsInMolecule[(*elemIter).first]) { // if this element got atoms
595 for(molecule::iterator atomIter = (*ListRunner)->begin(); atomIter !=(*ListRunner)->end();++atomIter){
596 if ((*atomIter)->type->getNumber() == (*elemIter).first) {
597 if (((*atomIter)->GetTrueFather() != NULL) && ((*atomIter)->GetTrueFather() != (*atomIter))) {// if there is a rea
598 //Log() << Verbose(0) << "Walker is " << *Walker << " with true father " << *( Walker->GetTrueFather()) << ", it
599 ForcesFile << SortIndex[(*atomIter)->GetTrueFather()->nr] << "\t";
600 } else
601 // otherwise a -1 to indicate an added saturation hydrogen
602 ForcesFile << "-1\t";
603 }
604 }
605 }
606 }
607 ForcesFile << endl;
608 }
609 ForcesFile.close();
610 DoLog(1) && (Log() << Verbose(1) << "done." << endl);
611 } else {
612 status = false;
613 DoLog(1) && (Log() << Verbose(1) << "failed to open file " << line.str() << "." << endl);
614 }
615 ForcesFile.close();
616
617 return status;
618};
619
620/** Writes a config file for each molecule in the given \a **FragmentList.
621 * \param *out output stream for debugging
622 * \param *configuration standard configuration to attach atoms in fragment molecule to.
623 * \param *SortIndex Index to map from the BFS labeling to the sequence how of Ion_Type in the config
624 * \return true - success (each file was written), false - something went wrong.
625 */
626bool MoleculeListClass::OutputConfigForListOfFragments(config *configuration, int *SortIndex)
627{
628 ofstream outputFragment;
629 char FragmentName[MAXSTRINGSIZE];
630 char PathBackup[MAXSTRINGSIZE];
631 bool result = true;
632 bool intermediateResult = true;
633 Vector BoxDimension;
634 char *FragmentNumber = NULL;
635 char *path = NULL;
636 int FragmentCounter = 0;
637 ofstream output;
638 double cell_size_backup[6];
639 double * const cell_size = World::getInstance().getDomain();
640
641 // backup cell_size
642 for (int i=0;i<6;i++)
643 cell_size_backup[i] = cell_size[i];
644 // store the fragments as config and as xyz
645 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) {
646 // save default path as it is changed for each fragment
647 path = configuration->GetDefaultPath();
648 if (path != NULL)
649 strcpy(PathBackup, path);
650 else {
651 DoeLog(0) && (eLog()<< Verbose(0) << "OutputConfigForListOfFragments: NULL default path obtained from config!" << endl);
652 performCriticalExit();
653 }
654
655 // correct periodic
656 (*ListRunner)->ScanForPeriodicCorrection();
657
658 // output xyz file
659 FragmentNumber = FixedDigitNumber(ListOfMolecules.size(), FragmentCounter++);
660 sprintf(FragmentName, "%s/%s%s.conf.xyz", configuration->configpath, FRAGMENTPREFIX, FragmentNumber);
661 outputFragment.open(FragmentName, ios::out);
662 DoLog(2) && (Log() << Verbose(2) << "Saving bond fragment No. " << FragmentNumber << "/" << FragmentCounter - 1 << " as XYZ ...");
663 if ((intermediateResult = (*ListRunner)->OutputXYZ(&outputFragment)))
664 DoLog(0) && (Log() << Verbose(0) << " done." << endl);
665 else
666 DoLog(0) && (Log() << Verbose(0) << " failed." << endl);
667 result = result && intermediateResult;
668 outputFragment.close();
669 outputFragment.clear();
670
671 // list atoms in fragment for debugging
672 DoLog(2) && (Log() << Verbose(2) << "Contained atoms: ");
673 for (molecule::const_iterator iter = (*ListRunner)->begin(); iter != (*ListRunner)->end(); ++iter) {
674 DoLog(0) && (Log() << Verbose(0) << (*iter)->getName() << " ");
675 }
676 DoLog(0) && (Log() << Verbose(0) << endl);
677
678 // center on edge
679 (*ListRunner)->CenterEdge(&BoxDimension);
680 (*ListRunner)->SetBoxDimension(&BoxDimension); // update Box of atoms by boundary
681 int j = -1;
682 for (int k = 0; k < NDIM; k++) {
683 j += k + 1;
684 BoxDimension[k] = 2.5 * (configuration->GetIsAngstroem() ? 1. : 1. / AtomicLengthToAngstroem);
685 cell_size[j] = BoxDimension[k] * 2.;
686 }
687 (*ListRunner)->Translate(&BoxDimension);
688
689 // also calculate necessary orbitals
690 (*ListRunner)->CountElements(); // this is a bugfix, atoms should shoulds actually be added correctly to this fragment
691 (*ListRunner)->CalculateOrbitals(*configuration);
692
693 // change path in config
694 //strcpy(PathBackup, configuration->configpath);
695 sprintf(FragmentName, "%s/%s%s/", PathBackup, FRAGMENTPREFIX, FragmentNumber);
696 configuration->SetDefaultPath(FragmentName);
697
698 // and save as config
699 sprintf(FragmentName, "%s/%s%s.conf", configuration->configpath, FRAGMENTPREFIX, FragmentNumber);
700 DoLog(2) && (Log() << Verbose(2) << "Saving bond fragment No. " << FragmentNumber << "/" << FragmentCounter - 1 << " as config ...");
701 if ((intermediateResult = configuration->Save(FragmentName, (*ListRunner)->elemente, (*ListRunner))))
702 DoLog(0) && (Log() << Verbose(0) << " done." << endl);
703 else
704 DoLog(0) && (Log() << Verbose(0) << " failed." << endl);
705 result = result && intermediateResult;
706
707 // restore old config
708 configuration->SetDefaultPath(PathBackup);
709
710 // and save as mpqc input file
711 sprintf(FragmentName, "%s/%s%s.conf", configuration->configpath, FRAGMENTPREFIX, FragmentNumber);
712 DoLog(2) && (Log() << Verbose(2) << "Saving bond fragment No. " << FragmentNumber << "/" << FragmentCounter - 1 << " as mpqc input ...");
713 if ((intermediateResult = configuration->SaveMPQC(FragmentName, (*ListRunner))))
714 DoLog(2) && (Log() << Verbose(2) << " done." << endl);
715 else
716 DoLog(0) && (Log() << Verbose(0) << " failed." << endl);
717
718 result = result && intermediateResult;
719 //outputFragment.close();
720 //outputFragment.clear();
721 delete[](FragmentNumber);
722 }
723 DoLog(0) && (Log() << Verbose(0) << " done." << endl);
724
725 // printing final number
726 DoLog(2) && (Log() << Verbose(2) << "Final number of fragments: " << FragmentCounter << "." << endl);
727
728 // restore cell_size
729 for (int i=0;i<6;i++)
730 cell_size[i] = cell_size_backup[i];
731
732 return result;
733};
734
735/** Counts the number of molecules with the molecule::ActiveFlag set.
736 * \return number of molecules with ActiveFlag set to true.
737 */
738int MoleculeListClass::NumberOfActiveMolecules()
739{
740 int count = 0;
741 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++)
742 count += ((*ListRunner)->ActiveFlag ? 1 : 0);
743 return count;
744};
745
746/** Dissects given \a *mol into connected subgraphs and inserts them as new molecules but with old atoms into \a this.
747 * \param *out output stream for debugging
748 * \param *periode periodentafel
749 * \param *configuration config with BondGraph
750 */
751void MoleculeListClass::DissectMoleculeIntoConnectedSubgraphs(const periodentafel * const periode, config * const configuration)
752{
753 // 0a. remove all present molecules
754 vector<molecule *> allmolecules = World::getInstance().getAllMolecules();
755 for (vector<molecule *>::iterator MolRunner = allmolecules.begin(); MolRunner != allmolecules.end(); ++MolRunner) {
756 erase(*MolRunner);
757 World::getInstance().destroyMolecule(*MolRunner);
758 }
759 // 0b. remove all bonds and construct a molecule with all atoms
760 molecule *mol = World::getInstance().createMolecule();
761 vector <atom *> allatoms = World::getInstance().getAllAtoms();
762 for(vector<atom *>::iterator AtomRunner = allatoms.begin(); AtomRunner != allatoms.end(); ++AtomRunner) {
763 for(BondList::iterator BondRunner = (*AtomRunner)->ListOfBonds.begin(); !(*AtomRunner)->ListOfBonds.empty(); BondRunner = (*AtomRunner)->ListOfBonds.begin())
764 delete(*BondRunner);
765 mol->AddAtom(*AtomRunner);
766 }
767
768 // 1. dissect the molecule into connected subgraphs
769 if (!configuration->BG->ConstructBondGraph(mol)) {
770 World::getInstance().destroyMolecule(mol);
771 DoeLog(1) && (eLog()<< Verbose(1) << "There are no bonds." << endl);
772 return;
773 }
774
775 // 2. scan for connected subgraphs
776 MoleculeLeafClass *Subgraphs = NULL; // list of subgraphs from DFS analysis
777 class StackClass<bond *> *BackEdgeStack = NULL;
778 Subgraphs = mol->DepthFirstSearchAnalysis(BackEdgeStack);
779 delete(BackEdgeStack);
780 if ((Subgraphs == NULL) || (Subgraphs->next == NULL)) {
781 World::getInstance().destroyMolecule(mol);
782 DoeLog(1) && (eLog()<< Verbose(1) << "There are no atoms." << endl);
783 return;
784 }
785
786 // 3. dissect (the following construct is needed to have the atoms not in the order of the DFS, but in
787 // the original one as parsed in)
788 // TODO: Optimize this, when molecules just contain pointer list of global atoms!
789
790 // 4a. create array of molecules to fill
791 const int MolCount = Subgraphs->next->Count();
792 char number[MAXSTRINGSIZE];
793 molecule **molecules = new molecule *[MolCount];
794 MoleculeLeafClass *MolecularWalker = Subgraphs;
795 for (int i=0;i<MolCount;i++) {
796 MolecularWalker = MolecularWalker->next;
797 molecules[i] = World::getInstance().createMolecule();
798 molecules[i]->ActiveFlag = true;
799 strncpy(molecules[i]->name, mol->name, MAXSTRINGSIZE);
800 if (MolCount > 1) {
801 sprintf(number, "-%d", i+1);
802 strncat(molecules[i]->name, number, MAXSTRINGSIZE - strlen(mol->name) - 1);
803 }
804 DoLog(1) && (Log() << Verbose(1) << "MolName is " << molecules[i]->name << ", id is " << molecules[i]->getId() << endl);
805 for (molecule::iterator iter = MolecularWalker->Leaf->begin(); iter != MolecularWalker->Leaf->end(); ++iter) {
806 DoLog(1) && (Log() << Verbose(1) << **iter << endl);
807 }
808 insert(molecules[i]);
809 }
810
811 // 4b. create and fill map of which atom is associated to which connected molecule (note, counting starts at 1)
812 int FragmentCounter = 0;
813 map<int, atom *> AtomToFragmentMap;
814 MolecularWalker = Subgraphs;
815 while (MolecularWalker->next != NULL) {
816 MolecularWalker = MolecularWalker->next;
817 for (molecule::iterator iter = MolecularWalker->Leaf->begin(); !MolecularWalker->Leaf->empty(); iter = MolecularWalker->Leaf->begin()) {
818 atom * Walker = *iter;
819 DoLog(1) && (Log() << Verbose(1) << "Re-linking " << Walker << "..." << endl);
820 MolecularWalker->Leaf->erase(iter);
821 molecules[FragmentCounter]->AddAtom(Walker); // counting starts at 1
822 }
823 FragmentCounter++;
824 }
825 World::getInstance().destroyMolecule(mol);
826
827 // 4d. we don't need to redo bonds, as they are connected subgraphs and still maintain their ListOfBonds, but we have to remove them from first..last list
828 // TODO: check whether this is really not needed anymore
829 // 4e. free Leafs
830 MolecularWalker = Subgraphs;
831 while (MolecularWalker->next != NULL) {
832 MolecularWalker = MolecularWalker->next;
833 delete(MolecularWalker->previous);
834 }
835 delete(MolecularWalker);
836 delete[](molecules);
837 DoLog(1) && (Log() << Verbose(1) << "I scanned " << FragmentCounter << " molecules." << endl);
838};
839
840/** Count all atoms in each molecule.
841 * \return number of atoms in the MoleculeListClass.
842 * TODO: the inner loop should be done by some (double molecule::CountAtom()) function
843 */
844int MoleculeListClass::CountAllAtoms() const
845{
846 int AtomNo = 0;
847 for (MoleculeList::const_iterator MolWalker = ListOfMolecules.begin(); MolWalker != ListOfMolecules.end(); MolWalker++) {
848 AtomNo += (*MolWalker)->size();
849 }
850 return AtomNo;
851}
852
853/***********
854 * Methods Moved here from the menus
855 */
856
857void MoleculeListClass::flipChosen() {
858 int j;
859 Log() << Verbose(0) << "Enter index of molecule: ";
860 cin >> j;
861 for(MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++)
862 if ((*ListRunner)->IndexNr == j)
863 (*ListRunner)->ActiveFlag = !(*ListRunner)->ActiveFlag;
864}
865
866void MoleculeListClass::createNewMolecule(periodentafel *periode) {
867 OBSERVE;
868 molecule *mol = NULL;
869 mol = World::getInstance().createMolecule();
870 insert(mol);
871};
872
873void MoleculeListClass::loadFromXYZ(periodentafel *periode){
874 molecule *mol = NULL;
875 Vector center;
876 char filename[MAXSTRINGSIZE];
877 Log() << Verbose(0) << "Format should be XYZ with: ShorthandOfElement\tX\tY\tZ" << endl;
878 mol = World::getInstance().createMolecule();
879 do {
880 Log() << Verbose(0) << "Enter file name: ";
881 cin >> filename;
882 } while (!mol->AddXYZFile(filename));
883 mol->SetNameFromFilename(filename);
884 // center at set box dimensions
885 mol->CenterEdge(&center);
886 World::getInstance().getDomain()[0] = center[0];
887 World::getInstance().getDomain()[1] = 0;
888 World::getInstance().getDomain()[2] = center[1];
889 World::getInstance().getDomain()[3] = 0;
890 World::getInstance().getDomain()[4] = 0;
891 World::getInstance().getDomain()[5] = center[2];
892 insert(mol);
893}
894
895void MoleculeListClass::setMoleculeFilename() {
896 char filename[MAXSTRINGSIZE];
897 int nr;
898 molecule *mol = NULL;
899 do {
900 Log() << Verbose(0) << "Enter index of molecule: ";
901 cin >> nr;
902 mol = ReturnIndex(nr);
903 } while (mol == NULL);
904 Log() << Verbose(0) << "Enter name: ";
905 cin >> filename;
906 mol->SetNameFromFilename(filename);
907}
908
909void MoleculeListClass::parseXYZIntoMolecule(){
910 char filename[MAXSTRINGSIZE];
911 int nr;
912 molecule *mol = NULL;
913 mol = NULL;
914 do {
915 Log() << Verbose(0) << "Enter index of molecule: ";
916 cin >> nr;
917 mol = ReturnIndex(nr);
918 } while (mol == NULL);
919 Log() << Verbose(0) << "Format should be XYZ with: ShorthandOfElement\tX\tY\tZ" << endl;
920 do {
921 Log() << Verbose(0) << "Enter file name: ";
922 cin >> filename;
923 } while (!mol->AddXYZFile(filename));
924 mol->SetNameFromFilename(filename);
925};
926
927void MoleculeListClass::eraseMolecule(){
928 int nr;
929 molecule *mol = NULL;
930 Log() << Verbose(0) << "Enter index of molecule: ";
931 cin >> nr;
932 for(MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++)
933 if (nr == (*ListRunner)->IndexNr) {
934 mol = *ListRunner;
935 ListOfMolecules.erase(ListRunner);
936 World::getInstance().destroyMolecule(mol);
937 break;
938 }
939};
940
941
942/******************************************* Class MoleculeLeafClass ************************************************/
943
944/** Constructor for MoleculeLeafClass root leaf.
945 * \param *Up Leaf on upper level
946 * \param *PreviousLeaf NULL - We are the first leaf on this level, otherwise points to previous in list
947 */
948//MoleculeLeafClass::MoleculeLeafClass(MoleculeLeafClass *Up = NULL, MoleculeLeafClass *Previous = NULL)
949MoleculeLeafClass::MoleculeLeafClass(MoleculeLeafClass *PreviousLeaf = NULL)
950{
951 // if (Up != NULL)
952 // if (Up->DownLeaf == NULL) // are we the first down leaf for the upper leaf?
953 // Up->DownLeaf = this;
954 // UpLeaf = Up;
955 // DownLeaf = NULL;
956 Leaf = NULL;
957 previous = PreviousLeaf;
958 if (previous != NULL) {
959 MoleculeLeafClass *Walker = previous->next;
960 previous->next = this;
961 next = Walker;
962 } else {
963 next = NULL;
964 }
965};
966
967/** Destructor for MoleculeLeafClass.
968 */
969MoleculeLeafClass::~MoleculeLeafClass()
970{
971 // if (DownLeaf != NULL) {// drop leaves further down
972 // MoleculeLeafClass *Walker = DownLeaf;
973 // MoleculeLeafClass *Next;
974 // do {
975 // Next = Walker->NextLeaf;
976 // delete(Walker);
977 // Walker = Next;
978 // } while (Walker != NULL);
979 // // Last Walker sets DownLeaf automatically to NULL
980 // }
981 // remove the leaf itself
982 if (Leaf != NULL) {
983 World::getInstance().destroyMolecule(Leaf);
984 Leaf = NULL;
985 }
986 // remove this Leaf from level list
987 if (previous != NULL)
988 previous->next = next;
989 // } else { // we are first in list (connects to UpLeaf->DownLeaf)
990 // if ((NextLeaf != NULL) && (NextLeaf->UpLeaf == NULL))
991 // NextLeaf->UpLeaf = UpLeaf; // either null as we are top level or the upleaf of the first node
992 // if (UpLeaf != NULL)
993 // UpLeaf->DownLeaf = NextLeaf; // either null as we are only leaf or NextLeaf if we are just the first
994 // }
995 // UpLeaf = NULL;
996 if (next != NULL) // are we last in list
997 next->previous = previous;
998 next = NULL;
999 previous = NULL;
1000};
1001
1002/** Adds \a molecule leaf to the tree.
1003 * \param *ptr ptr to molecule to be added
1004 * \param *Previous previous MoleculeLeafClass referencing level and which on the level
1005 * \return true - success, false - something went wrong
1006 */
1007bool MoleculeLeafClass::AddLeaf(molecule *ptr, MoleculeLeafClass *Previous)
1008{
1009 return false;
1010};
1011
1012/** Fills the bond structure of this chain list subgraphs that are derived from a complete \a *reference molecule.
1013 * Calls this routine in each MoleculeLeafClass::next subgraph if it's not NULL.
1014 * \param *out output stream for debugging
1015 * \param *reference reference molecule with the bond structure to be copied
1016 * \param &FragmentCounter Counter needed to address \a **ListOfLocalAtoms
1017 * \param ***ListOfLocalAtoms Lookup table for each subgraph and index of each atom in \a *reference, may be NULL on start, then it is filled
1018 * \param FreeList true - ***ListOfLocalAtoms is free'd before return, false - it is not
1019 * \return true - success, false - faoilure
1020 */
1021bool MoleculeLeafClass::FillBondStructureFromReference(const molecule * const reference, int &FragmentCounter, atom ***&ListOfLocalAtoms, bool FreeList)
1022{
1023 atom *OtherWalker = NULL;
1024 atom *Father = NULL;
1025 bool status = true;
1026 int AtomNo;
1027
1028 DoLog(1) && (Log() << Verbose(1) << "Begin of FillBondStructureFromReference." << endl);
1029 // fill ListOfLocalAtoms if NULL was given
1030 if (!FillListOfLocalAtoms(ListOfLocalAtoms, FragmentCounter, reference->getAtomCount(), FreeList)) {
1031 DoLog(1) && (Log() << Verbose(1) << "Filling of ListOfLocalAtoms failed." << endl);
1032 return false;
1033 }
1034
1035 if (status) {
1036 DoLog(1) && (Log() << Verbose(1) << "Creating adjacency list for subgraph " << Leaf << "." << endl);
1037 // remove every bond from the list
1038 for(molecule::iterator AtomRunner = Leaf->begin(); AtomRunner != Leaf->end(); ++AtomRunner)
1039 for(BondList::iterator BondRunner = (*AtomRunner)->ListOfBonds.begin(); !(*AtomRunner)->ListOfBonds.empty(); BondRunner = (*AtomRunner)->ListOfBonds.begin())
1040 if ((*BondRunner)->leftatom == *AtomRunner)
1041 delete((*BondRunner));
1042
1043 for(molecule::const_iterator iter = Leaf->begin(); iter != Leaf->end(); ++iter) {
1044 Father = (*iter)->GetTrueFather();
1045 AtomNo = Father->nr; // global id of the current walker
1046 for (BondList::const_iterator Runner = Father->ListOfBonds.begin(); Runner != Father->ListOfBonds.end(); (++Runner)) {
1047 OtherWalker = ListOfLocalAtoms[FragmentCounter][(*Runner)->GetOtherAtom((*iter)->GetTrueFather())->nr]; // local copy of current bond partner of walker
1048 if (OtherWalker != NULL) {
1049 if (OtherWalker->nr > (*iter)->nr)
1050 Leaf->AddBond((*iter), OtherWalker, (*Runner)->BondDegree);
1051 } else {
1052 DoLog(1) && (Log() << Verbose(1) << "OtherWalker = ListOfLocalAtoms[" << FragmentCounter << "][" << (*Runner)->GetOtherAtom((*iter)->GetTrueFather())->nr << "] is NULL!" << endl);
1053 status = false;
1054 }
1055 }
1056 }
1057 }
1058
1059 if ((FreeList) && (ListOfLocalAtoms != NULL)) {
1060 // free the index lookup list
1061 delete[](ListOfLocalAtoms[FragmentCounter]);
1062 if (FragmentCounter == 0) // first fragments frees the initial pointer to list
1063 delete[](ListOfLocalAtoms);
1064 }
1065 DoLog(1) && (Log() << Verbose(1) << "End of FillBondStructureFromReference." << endl);
1066 return status;
1067};
1068
1069/** Fills the root stack for sites to be used as root in fragmentation depending on order or adaptivity criteria
1070 * Again, as in \sa FillBondStructureFromReference steps recursively through each Leaf in this chain list of molecule's.
1071 * \param *out output stream for debugging
1072 * \param *&RootStack stack to be filled
1073 * \param *AtomMask defines true/false per global Atom::nr to mask in/out each nuclear site
1074 * \param &FragmentCounter counts through the fragments in this MoleculeLeafClass
1075 * \return true - stack is non-empty, fragmentation necessary, false - stack is empty, no more sites to update
1076 */
1077bool MoleculeLeafClass::FillRootStackForSubgraphs(KeyStack *&RootStack, bool *AtomMask, int &FragmentCounter)
1078{
1079 atom *Father = NULL;
1080
1081 if (RootStack != NULL) {
1082 // find first root candidates
1083 if (&(RootStack[FragmentCounter]) != NULL) {
1084 RootStack[FragmentCounter].clear();
1085 for(molecule::const_iterator iter = Leaf->begin(); iter != Leaf->end(); ++iter) {
1086 Father = (*iter)->GetTrueFather();
1087 if (AtomMask[Father->nr]) // apply mask
1088#ifdef ADDHYDROGEN
1089 if ((*iter)->type->Z != 1) // skip hydrogen
1090#endif
1091 RootStack[FragmentCounter].push_front((*iter)->nr);
1092 }
1093 if (next != NULL)
1094 next->FillRootStackForSubgraphs(RootStack, AtomMask, ++FragmentCounter);
1095 } else {
1096 DoLog(1) && (Log() << Verbose(1) << "Rootstack[" << FragmentCounter << "] is NULL." << endl);
1097 return false;
1098 }
1099 FragmentCounter--;
1100 return true;
1101 } else {
1102 DoLog(1) && (Log() << Verbose(1) << "Rootstack is NULL." << endl);
1103 return false;
1104 }
1105};
1106
1107/** Fills a lookup list of father's Atom::nr -> atom for each subgraph.
1108 * \param *out output stream from debugging
1109 * \param ***ListOfLocalAtoms Lookup table for each subgraph and index of each atom in global molecule, may be NULL on start, then it is filled
1110 * \param FragmentCounter counts the fragments as we move along the list
1111 * \param GlobalAtomCount number of atoms in the complete molecule
1112 * \param &FreeList true - ***ListOfLocalAtoms is free'd before return, false - it is not
1113 * \return true - success, false - failure
1114 */
1115bool MoleculeLeafClass::FillListOfLocalAtoms(atom ***&ListOfLocalAtoms, const int FragmentCounter, const int GlobalAtomCount, bool &FreeList)
1116{
1117 bool status = true;
1118
1119 if (ListOfLocalAtoms == NULL) { // allocated initial pointer
1120 // allocate and set each field to NULL
1121 const int Counter = Count();
1122 ASSERT(FragmentCounter < Counter, "FillListOfLocalAtoms: FragmenCounter greater than present fragments.");
1123 ListOfLocalAtoms = new atom**[Counter];
1124 if (ListOfLocalAtoms == NULL) {
1125 FreeList = FreeList && false;
1126 status = false;
1127 }
1128 for (int i=0;i<Counter;i++)
1129 ListOfLocalAtoms[i] = NULL;
1130 }
1131
1132 if ((ListOfLocalAtoms != NULL) && (ListOfLocalAtoms[FragmentCounter] == NULL)) { // allocate and fill list of this fragment/subgraph
1133 status = status && Leaf->CreateFatherLookupTable(ListOfLocalAtoms[FragmentCounter], GlobalAtomCount);
1134 FreeList = FreeList && true;
1135 }
1136
1137 return status;
1138};
1139
1140/** The indices per keyset are compared to the respective father's Atom::nr in each subgraph and thus put into \a **&FragmentList.
1141 * \param *out output stream fro debugging
1142 * \param *reference reference molecule with the bond structure to be copied
1143 * \param *KeySetList list with all keysets
1144 * \param ***ListOfLocalAtoms Lookup table for each subgraph and index of each atom in global molecule, may be NULL on start, then it is filled
1145 * \param **&FragmentList list to be allocated and returned
1146 * \param &FragmentCounter counts the fragments as we move along the list
1147 * \param FreeList true - ***ListOfLocalAtoms is free'd before return, false - it is not
1148 * \retuen true - success, false - failure
1149 */
1150bool MoleculeLeafClass::AssignKeySetsToFragment(molecule *reference, Graph *KeySetList, atom ***&ListOfLocalAtoms, Graph **&FragmentList, int &FragmentCounter, bool FreeList)
1151{
1152 bool status = true;
1153 int KeySetCounter = 0;
1154
1155 DoLog(1) && (Log() << Verbose(1) << "Begin of AssignKeySetsToFragment." << endl);
1156 // fill ListOfLocalAtoms if NULL was given
1157 if (!FillListOfLocalAtoms(ListOfLocalAtoms, FragmentCounter, reference->getAtomCount(), FreeList)) {
1158 DoLog(1) && (Log() << Verbose(1) << "Filling of ListOfLocalAtoms failed." << endl);
1159 return false;
1160 }
1161
1162 // allocate fragment list
1163 if (FragmentList == NULL) {
1164 KeySetCounter = Count();
1165 FragmentList = new Graph*[KeySetCounter];
1166 for (int i=0;i<KeySetCounter;i++)
1167 FragmentList[i] = NULL;
1168 KeySetCounter = 0;
1169 }
1170
1171 if ((KeySetList != NULL) && (KeySetList->size() != 0)) { // if there are some scanned keysets at all
1172 // assign scanned keysets
1173 if (FragmentList[FragmentCounter] == NULL)
1174 FragmentList[FragmentCounter] = new Graph;
1175 KeySet *TempSet = new KeySet;
1176 for (Graph::iterator runner = KeySetList->begin(); runner != KeySetList->end(); runner++) { // key sets contain global numbers!
1177 if (ListOfLocalAtoms[FragmentCounter][reference->FindAtom(*((*runner).first.begin()))->nr] != NULL) {// as we may assume that that bond structure is unchanged, we only test the first key in each set
1178 // translate keyset to local numbers
1179 for (KeySet::iterator sprinter = (*runner).first.begin(); sprinter != (*runner).first.end(); sprinter++)
1180 TempSet->insert(ListOfLocalAtoms[FragmentCounter][reference->FindAtom(*sprinter)->nr]->nr);
1181 // insert into FragmentList
1182 FragmentList[FragmentCounter]->insert(GraphPair(*TempSet, pair<int, double> (KeySetCounter++, (*runner).second.second)));
1183 }
1184 TempSet->clear();
1185 }
1186 delete (TempSet);
1187 if (KeySetCounter == 0) {// if there are no keysets, delete the list
1188 DoLog(1) && (Log() << Verbose(1) << "KeySetCounter is zero, deleting FragmentList." << endl);
1189 delete (FragmentList[FragmentCounter]);
1190 } else
1191 DoLog(1) && (Log() << Verbose(1) << KeySetCounter << " keysets were assigned to subgraph " << FragmentCounter << "." << endl);
1192 FragmentCounter++;
1193 if (next != NULL)
1194 next->AssignKeySetsToFragment(reference, KeySetList, ListOfLocalAtoms, FragmentList, FragmentCounter, FreeList);
1195 FragmentCounter--;
1196 } else
1197 DoLog(1) && (Log() << Verbose(1) << "KeySetList is NULL or empty." << endl);
1198
1199 if ((FreeList) && (ListOfLocalAtoms != NULL)) {
1200 // free the index lookup list
1201 delete[](ListOfLocalAtoms[FragmentCounter]);
1202 if (FragmentCounter == 0) // first fragments frees the initial pointer to list
1203 delete[](ListOfLocalAtoms);
1204 }
1205 DoLog(1) && (Log() << Verbose(1) << "End of AssignKeySetsToFragment." << endl);
1206 return status;
1207};
1208
1209/** Translate list into global numbers (i.e. ones that are valid in "this" molecule, not in MolecularWalker->Leaf)
1210 * \param *out output stream for debugging
1211 * \param **FragmentList Graph with local numbers per fragment
1212 * \param &FragmentCounter counts the fragments as we move along the list
1213 * \param &TotalNumberOfKeySets global key set counter
1214 * \param &TotalGraph Graph to be filled with global numbers
1215 */
1216void MoleculeLeafClass::TranslateIndicesToGlobalIDs(Graph **FragmentList, int &FragmentCounter, int &TotalNumberOfKeySets, Graph &TotalGraph)
1217{
1218 DoLog(1) && (Log() << Verbose(1) << "Begin of TranslateIndicesToGlobalIDs." << endl);
1219 KeySet *TempSet = new KeySet;
1220 if (FragmentList[FragmentCounter] != NULL) {
1221 for (Graph::iterator runner = FragmentList[FragmentCounter]->begin(); runner != FragmentList[FragmentCounter]->end(); runner++) {
1222 for (KeySet::iterator sprinter = (*runner).first.begin(); sprinter != (*runner).first.end(); sprinter++)
1223 TempSet->insert((Leaf->FindAtom(*sprinter))->GetTrueFather()->nr);
1224 TotalGraph.insert(GraphPair(*TempSet, pair<int, double> (TotalNumberOfKeySets++, (*runner).second.second)));
1225 TempSet->clear();
1226 }
1227 delete (TempSet);
1228 } else {
1229 DoLog(1) && (Log() << Verbose(1) << "FragmentList is NULL." << endl);
1230 }
1231 if (next != NULL)
1232 next->TranslateIndicesToGlobalIDs(FragmentList, ++FragmentCounter, TotalNumberOfKeySets, TotalGraph);
1233 FragmentCounter--;
1234 DoLog(1) && (Log() << Verbose(1) << "End of TranslateIndicesToGlobalIDs." << endl);
1235};
1236
1237/** Simply counts the number of items in the list, from given MoleculeLeafClass.
1238 * \return number of items
1239 */
1240int MoleculeLeafClass::Count() const
1241{
1242 if (next != NULL)
1243 return next->Count() + 1;
1244 else
1245 return 1;
1246};
1247
Note: See TracBrowser for help on using the repository browser.