source: src/molecule_dynamics.cpp@ d766b5

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since d766b5 was 456e78, checked in by Frederik Heber <heber@…>, 14 years ago

Removed ActOnAllUnitTest.

  • Till had replaced all ActOnAll by for_each() with boost::bind. Hence, ActOnAll is not used anymore.
  • Property mode set to 100644
File size: 31.5 KB
Line 
1/*
2 * Project: MoleCuilder
3 * Description: creates and alters molecular systems
4 * Copyright (C) 2010 University of Bonn. All rights reserved.
5 * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
6 */
7
8/*
9 * molecule_dynamics.cpp
10 *
11 * Created on: Oct 5, 2009
12 * Author: heber
13 */
14
15// include config.h
16#ifdef HAVE_CONFIG_H
17#include <config.h>
18#endif
19
20#include "Helpers/MemDebug.hpp"
21
22#include "World.hpp"
23#include "atom.hpp"
24#include "config.hpp"
25#include "element.hpp"
26#include "Helpers/Info.hpp"
27#include "Helpers/Verbose.hpp"
28#include "Helpers/Log.hpp"
29#include "molecule.hpp"
30#include "parser.hpp"
31#include "LinearAlgebra/Plane.hpp"
32#include "ThermoStatContainer.hpp"
33#include "Thermostats/Berendsen.hpp"
34
35#include <gsl/gsl_matrix.h>
36#include <gsl/gsl_vector.h>
37#include <gsl/gsl_linalg.h>
38
39/************************************* Functions for class molecule *********************************/
40
41/** Penalizes long trajectories.
42 * \param *Walker atom to check against others
43 * \param *mol molecule with other atoms
44 * \param &Params constraint potential parameters
45 * \return penalty times each distance
46 */
47double SumDistanceOfTrajectories(atom *Walker, molecule *mol, struct EvaluatePotential &Params)
48{
49 gsl_matrix *A = gsl_matrix_alloc(NDIM,NDIM);
50 gsl_vector *x = gsl_vector_alloc(NDIM);
51 atom *Sprinter = NULL;
52 Vector trajectory1, trajectory2, normal, TestVector;
53 double Norm1, Norm2, tmp, result = 0.;
54
55 for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) {
56 if ((*iter) == Walker) // hence, we only go up to the Walker, not beyond (similar to i=0; i<j; i++)
57 break;
58 // determine normalized trajectories direction vector (n1, n2)
59 Sprinter = Params.PermutationMap[Walker->nr]; // find first target point
60 trajectory1 = Sprinter->Trajectory.R.at(Params.endstep) - Walker->Trajectory.R.at(Params.startstep);
61 trajectory1.Normalize();
62 Norm1 = trajectory1.Norm();
63 Sprinter = Params.PermutationMap[(*iter)->nr]; // find second target point
64 trajectory2 = Sprinter->Trajectory.R.at(Params.endstep) - (*iter)->Trajectory.R.at(Params.startstep);
65 trajectory2.Normalize();
66 Norm2 = trajectory1.Norm();
67 // check whether either is zero()
68 if ((Norm1 < MYEPSILON) && (Norm2 < MYEPSILON)) {
69 tmp = Walker->Trajectory.R.at(Params.startstep).distance((*iter)->Trajectory.R.at(Params.startstep));
70 } else if (Norm1 < MYEPSILON) {
71 Sprinter = Params.PermutationMap[Walker->nr]; // find first target point
72 trajectory1 = Sprinter->Trajectory.R.at(Params.endstep) - (*iter)->Trajectory.R.at(Params.startstep);
73 trajectory2 *= trajectory1.ScalarProduct(trajectory2); // trajectory2 is scaled to unity, hence we don't need to divide by anything
74 trajectory1 -= trajectory2; // project the part in norm direction away
75 tmp = trajectory1.Norm(); // remaining norm is distance
76 } else if (Norm2 < MYEPSILON) {
77 Sprinter = Params.PermutationMap[(*iter)->nr]; // find second target point
78 trajectory2 = Sprinter->Trajectory.R.at(Params.endstep) - Walker->Trajectory.R.at(Params.startstep); // copy second offset
79 trajectory1 *= trajectory2.ScalarProduct(trajectory1); // trajectory1 is scaled to unity, hence we don't need to divide by anything
80 trajectory2 -= trajectory1; // project the part in norm direction away
81 tmp = trajectory2.Norm(); // remaining norm is distance
82 } else if ((fabs(trajectory1.ScalarProduct(trajectory2)/Norm1/Norm2) - 1.) < MYEPSILON) { // check whether they're linear dependent
83 // Log() << Verbose(3) << "Both trajectories of " << *Walker << " and " << *Runner << " are linear dependent: ";
84 // Log() << Verbose(0) << trajectory1;
85 // Log() << Verbose(0) << " and ";
86 // Log() << Verbose(0) << trajectory2;
87 tmp = Walker->Trajectory.R.at(Params.startstep).distance((*iter)->Trajectory.R.at(Params.startstep));
88 // Log() << Verbose(0) << " with distance " << tmp << "." << endl;
89 } else { // determine distance by finding minimum distance
90 // Log() << Verbose(3) << "Both trajectories of " << *Walker << " and " << *(*iter) << " are linear independent ";
91 // Log() << Verbose(0) << endl;
92 // Log() << Verbose(0) << "First Trajectory: ";
93 // Log() << Verbose(0) << trajectory1 << endl;
94 // Log() << Verbose(0) << "Second Trajectory: ";
95 // Log() << Verbose(0) << trajectory2 << endl;
96 // determine normal vector for both
97 normal = Plane(trajectory1, trajectory2,0).getNormal();
98 // print all vectors for debugging
99 // Log() << Verbose(0) << "Normal vector in between: ";
100 // Log() << Verbose(0) << normal << endl;
101 // setup matrix
102 for (int i=NDIM;i--;) {
103 gsl_matrix_set(A, 0, i, trajectory1[i]);
104 gsl_matrix_set(A, 1, i, trajectory2[i]);
105 gsl_matrix_set(A, 2, i, normal[i]);
106 gsl_vector_set(x,i, (Walker->Trajectory.R.at(Params.startstep)[i] - (*iter)->Trajectory.R.at(Params.startstep)[i]));
107 }
108 // solve the linear system by Householder transformations
109 gsl_linalg_HH_svx(A, x);
110 // distance from last component
111 tmp = gsl_vector_get(x,2);
112 // Log() << Verbose(0) << " with distance " << tmp << "." << endl;
113 // test whether we really have the intersection (by checking on c_1 and c_2)
114 trajectory1.Scale(gsl_vector_get(x,0));
115 trajectory2.Scale(gsl_vector_get(x,1));
116 normal.Scale(gsl_vector_get(x,2));
117 TestVector = (*iter)->Trajectory.R.at(Params.startstep) + trajectory2 + normal
118 - (Walker->Trajectory.R.at(Params.startstep) + trajectory1);
119 if (TestVector.Norm() < MYEPSILON) {
120 // Log() << Verbose(2) << "Test: ok.\tDistance of " << tmp << " is correct." << endl;
121 } else {
122 // Log() << Verbose(2) << "Test: failed.\tIntersection is off by ";
123 // Log() << Verbose(0) << TestVector;
124 // Log() << Verbose(0) << "." << endl;
125 }
126 }
127 // add up
128 tmp *= Params.IsAngstroem ? 1. : 1./AtomicLengthToAngstroem;
129 if (fabs(tmp) > MYEPSILON) {
130 result += Params.PenaltyConstants[1] * 1./tmp;
131 //Log() << Verbose(4) << "Adding " << 1./tmp*constants[1] << "." << endl;
132 }
133 }
134 return result;
135};
136
137/** Penalizes atoms heading to same target.
138 * \param *Walker atom to check against others
139 * \param *mol molecule with other atoms
140 * \param &Params constrained potential parameters
141 * \return \a penalty times the number of equal targets
142 */
143double PenalizeEqualTargets(atom *Walker, molecule *mol, struct EvaluatePotential &Params)
144{
145 double result = 0.;
146 for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) {
147 if ((Params.PermutationMap[Walker->nr] == Params.PermutationMap[(*iter)->nr]) && (Walker->nr < (*iter)->nr)) {
148 // atom *Sprinter = PermutationMap[Walker->nr];
149 // Log() << Verbose(0) << *Walker << " and " << *(*iter) << " are heading to the same target at ";
150 // Log() << Verbose(0) << Sprinter->Trajectory.R.at(endstep);
151 // Log() << Verbose(0) << ", penalting." << endl;
152 result += Params.PenaltyConstants[2];
153 //Log() << Verbose(4) << "Adding " << constants[2] << "." << endl;
154 }
155 }
156 return result;
157};
158
159/** Evaluates the potential energy used for constrained molecular dynamics.
160 * \f$V_i^{con} = c^{bond} \cdot | r_{P(i)} - R_i | + sum_{i \neq j} C^{min} \cdot \frac{1}{C_{ij}} + C^{inj} \Bigl (1 - \theta \bigl (\prod_{i \neq j} (P(i) - P(j)) \bigr ) \Bigr )\f$
161 * where the first term points to the target in minimum distance, the second is a penalty for trajectories lying too close to each other (\f$C_{ij}\f$ is minimum distance between
162 * trajectories i and j) and the third term is a penalty for two atoms trying to each the same target point.
163 * Note that for the second term we have to solve the following linear system:
164 * \f$-c_1 \cdot n_1 + c_2 \cdot n_2 + C \cdot n_3 = - p_2 + p_1\f$, where \f$c_1\f$, \f$c_2\f$ and \f$C\f$ are constants,
165 * offset vector \f$p_1\f$ in direction \f$n_1\f$, offset vector \f$p_2\f$ in direction \f$n_2\f$,
166 * \f$n_3\f$ is the normal vector to both directions. \f$C\f$ would be the minimum distance between the two lines.
167 * \sa molecule::MinimiseConstrainedPotential(), molecule::VerletForceIntegration()
168 * \param *out output stream for debugging
169 * \param &Params constrained potential parameters
170 * \return potential energy
171 * \note This routine is scaling quadratically which is not optimal.
172 * \todo There's a bit double counting going on for the first time, bu nothing to worry really about.
173 */
174double molecule::ConstrainedPotential(struct EvaluatePotential &Params)
175{
176 double tmp = 0.;
177 double result = 0.;
178 // go through every atom
179 atom *Runner = NULL;
180 for (molecule::const_iterator iter = begin(); iter != end(); ++iter) {
181 // first term: distance to target
182 Runner = Params.PermutationMap[(*iter)->nr]; // find target point
183 tmp = ((*iter)->Trajectory.R.at(Params.startstep).distance(Runner->Trajectory.R.at(Params.endstep)));
184 tmp *= Params.IsAngstroem ? 1. : 1./AtomicLengthToAngstroem;
185 result += Params.PenaltyConstants[0] * tmp;
186 //Log() << Verbose(4) << "Adding " << tmp*constants[0] << "." << endl;
187
188 // second term: sum of distances to other trajectories
189 result += SumDistanceOfTrajectories((*iter), this, Params);
190
191 // third term: penalty for equal targets
192 result += PenalizeEqualTargets((*iter), this, Params);
193 }
194
195 return result;
196};
197
198/** print the current permutation map.
199 * \param *out output stream for debugging
200 * \param &Params constrained potential parameters
201 * \param AtomCount number of atoms
202 */
203void PrintPermutationMap(int AtomCount, struct EvaluatePotential &Params)
204{
205 stringstream zeile1, zeile2;
206 int *DoubleList = new int[AtomCount];
207 for(int i=0;i<AtomCount;i++)
208 DoubleList[i] = 0;
209 int doubles = 0;
210 zeile1 << "PermutationMap: ";
211 zeile2 << " ";
212 for (int i=0;i<AtomCount;i++) {
213 Params.DoubleList[Params.PermutationMap[i]->nr]++;
214 zeile1 << i << " ";
215 zeile2 << Params.PermutationMap[i]->nr << " ";
216 }
217 for (int i=0;i<AtomCount;i++)
218 if (Params.DoubleList[i] > 1)
219 doubles++;
220 if (doubles >0)
221 DoLog(2) && (Log() << Verbose(2) << "Found " << doubles << " Doubles." << endl);
222 delete[](DoubleList);
223// Log() << Verbose(2) << zeile1.str() << endl << zeile2.str() << endl;
224};
225
226/** \f$O(N^2)\f$ operation of calculation distance between each atom pair and putting into DistanceList.
227 * \param *mol molecule to scan distances in
228 * \param &Params constrained potential parameters
229 */
230void FillDistanceList(molecule *mol, struct EvaluatePotential &Params)
231{
232 for (int i=mol->getAtomCount(); i--;) {
233 Params.DistanceList[i] = new DistanceMap; // is the distance sorted target list per atom
234 Params.DistanceList[i]->clear();
235 }
236
237 for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) {
238 for (molecule::const_iterator runner = mol->begin(); runner != mol->end(); ++runner) {
239 Params.DistanceList[(*iter)->nr]->insert( DistancePair((*iter)->Trajectory.R.at(Params.startstep).distance((*runner)->Trajectory.R.at(Params.endstep)), (*runner)) );
240 }
241 }
242};
243
244/** initialize lists.
245 * \param *out output stream for debugging
246 * \param *mol molecule to scan distances in
247 * \param &Params constrained potential parameters
248 */
249void CreateInitialLists(molecule *mol, struct EvaluatePotential &Params)
250{
251 for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) {
252 Params.StepList[(*iter)->nr] = Params.DistanceList[(*iter)->nr]->begin(); // stores the step to the next iterator that could be a possible next target
253 Params.PermutationMap[(*iter)->nr] = Params.DistanceList[(*iter)->nr]->begin()->second; // always pick target with the smallest distance
254 Params.DoubleList[Params.DistanceList[(*iter)->nr]->begin()->second->nr]++; // increase this target's source count (>1? not injective)
255 Params.DistanceIterators[(*iter)->nr] = Params.DistanceList[(*iter)->nr]->begin(); // and remember which one we picked
256 DoLog(2) && (Log() << Verbose(2) << **iter << " starts with distance " << Params.DistanceList[(*iter)->nr]->begin()->first << "." << endl);
257 }
258};
259
260/** Try the next nearest neighbour in order to make the permutation map injective.
261 * \param *out output stream for debugging
262 * \param *mol molecule
263 * \param *Walker atom to change its target
264 * \param &OldPotential old value of constraint potential to see if we do better with new target
265 * \param &Params constrained potential parameters
266 */
267double TryNextNearestNeighbourForInjectivePermutation(molecule *mol, atom *Walker, double &OldPotential, struct EvaluatePotential &Params)
268{
269 double Potential = 0;
270 DistanceMap::iterator NewBase = Params.DistanceIterators[Walker->nr]; // store old base
271 do {
272 NewBase++; // take next further distance in distance to targets list that's a target of no one
273 } while ((Params.DoubleList[NewBase->second->nr] != 0) && (NewBase != Params.DistanceList[Walker->nr]->end()));
274 if (NewBase != Params.DistanceList[Walker->nr]->end()) {
275 Params.PermutationMap[Walker->nr] = NewBase->second;
276 Potential = fabs(mol->ConstrainedPotential(Params));
277 if (Potential > OldPotential) { // undo
278 Params.PermutationMap[Walker->nr] = Params.DistanceIterators[Walker->nr]->second;
279 } else { // do
280 Params.DoubleList[Params.DistanceIterators[Walker->nr]->second->nr]--; // decrease the old entry in the doubles list
281 Params.DoubleList[NewBase->second->nr]++; // increase the old entry in the doubles list
282 Params.DistanceIterators[Walker->nr] = NewBase;
283 OldPotential = Potential;
284 DoLog(3) && (Log() << Verbose(3) << "Found a new permutation, new potential is " << OldPotential << "." << endl);
285 }
286 }
287 return Potential;
288};
289
290/** Permutes \a **&PermutationMap until the penalty is below constants[2].
291 * \param *out output stream for debugging
292 * \param *mol molecule to scan distances in
293 * \param &Params constrained potential parameters
294 */
295void MakeInjectivePermutation(molecule *mol, struct EvaluatePotential &Params)
296{
297 molecule::const_iterator iter = mol->begin();
298 DistanceMap::iterator NewBase;
299 double Potential = fabs(mol->ConstrainedPotential(Params));
300
301 if (mol->empty()) {
302 eLog() << Verbose(1) << "Molecule is empty." << endl;
303 return;
304 }
305 while ((Potential) > Params.PenaltyConstants[2]) {
306 PrintPermutationMap(mol->getAtomCount(), Params);
307 iter++;
308 if (iter == mol->end()) // round-robin at the end
309 iter = mol->begin();
310 if (Params.DoubleList[Params.DistanceIterators[(*iter)->nr]->second->nr] <= 1) // no need to make those injective that aren't
311 continue;
312 // now, try finding a new one
313 Potential = TryNextNearestNeighbourForInjectivePermutation(mol, (*iter), Potential, Params);
314 }
315 for (int i=mol->getAtomCount(); i--;) // now each single entry in the DoubleList should be <=1
316 if (Params.DoubleList[i] > 1) {
317 DoeLog(0) && (eLog()<< Verbose(0) << "Failed to create an injective PermutationMap!" << endl);
318 performCriticalExit();
319 }
320 DoLog(1) && (Log() << Verbose(1) << "done." << endl);
321};
322
323/** Minimises the extra potential for constrained molecular dynamics and gives forces and the constrained potential energy.
324 * We do the following:
325 * -# Generate a distance list from all source to all target points
326 * -# Sort this per source point
327 * -# Take for each source point the target point with minimum distance, use this as initial permutation
328 * -# check whether molecule::ConstrainedPotential() is greater than injective penalty
329 * -# If so, we go through each source point, stepping down in the sorted target point distance list and re-checking potential.
330 * -# Next, we only apply transformations that keep the injectivity of the permutations list.
331 * -# Hence, for one source point we step down the ladder and seek the corresponding owner of this new target
332 * point and try to change it for one with lesser distance, or for the next one with greater distance, but only
333 * if this decreases the conditional potential.
334 * -# finished.
335 * -# Then, we calculate the forces by taking the spatial derivative, where we scale the potential to such a degree,
336 * that the total force is always pointing in direction of the constraint force (ensuring that we move in the
337 * right direction).
338 * -# Finally, we calculate the potential energy and return.
339 * \param *out output stream for debugging
340 * \param **PermutationMap on return: mapping between the atom label of the initial and the final configuration
341 * \param startstep current MD step giving initial position between which and \a endstep we perform the constrained MD (as further steps are always concatenated)
342 * \param endstep step giving final position in constrained MD
343 * \param IsAngstroem whether coordinates are in angstroem (true) or bohrradius (false)
344 * \sa molecule::VerletForceIntegration()
345 * \return potential energy (and allocated **PermutationMap (array of molecule::AtomCount ^2)
346 * \todo The constrained potential's constants are set to fixed values right now, but they should scale based on checks of the system in order
347 * to ensure they're properties (e.g. constants[2] always greater than the energy of the system).
348 * \bug this all is not O(N log N) but O(N^2)
349 */
350double molecule::MinimiseConstrainedPotential(atom **&PermutationMap, int startstep, int endstep, bool IsAngstroem)
351{
352 double Potential, OldPotential, OlderPotential;
353 struct EvaluatePotential Params;
354 Params.PermutationMap = new atom *[getAtomCount()];
355 Params.DistanceList = new DistanceMap *[getAtomCount()];
356 Params.DistanceIterators = new DistanceMap::iterator[getAtomCount()];
357 Params.DoubleList = new int[getAtomCount()];
358 Params.StepList = new DistanceMap::iterator[getAtomCount()];
359 int round;
360 atom *Sprinter = NULL;
361 DistanceMap::iterator Rider, Strider;
362
363 // set to zero
364 for (int i=0;i<getAtomCount();i++) {
365 Params.PermutationMap[i] = NULL;
366 Params.DoubleList[i] = 0;
367 }
368
369 /// Minimise the potential
370 // set Lagrange multiplier constants
371 Params.PenaltyConstants[0] = 10.;
372 Params.PenaltyConstants[1] = 1.;
373 Params.PenaltyConstants[2] = 1e+7; // just a huge penalty
374 // generate the distance list
375 DoLog(1) && (Log() << Verbose(1) << "Allocating, initializting and filling the distance list ... " << endl);
376 FillDistanceList(this, Params);
377
378 // create the initial PermutationMap (source -> target)
379 CreateInitialLists(this, Params);
380
381 // make the PermutationMap injective by checking whether we have a non-zero constants[2] term in it
382 DoLog(1) && (Log() << Verbose(1) << "Making the PermutationMap injective ... " << endl);
383 MakeInjectivePermutation(this, Params);
384 delete[](Params.DoubleList);
385
386 // argument minimise the constrained potential in this injective PermutationMap
387 DoLog(1) && (Log() << Verbose(1) << "Argument minimising the PermutationMap." << endl);
388 OldPotential = 1e+10;
389 round = 0;
390 do {
391 DoLog(2) && (Log() << Verbose(2) << "Starting round " << ++round << ", at current potential " << OldPotential << " ... " << endl);
392 OlderPotential = OldPotential;
393 molecule::const_iterator iter;
394 do {
395 iter = begin();
396 for (; iter != end(); ++iter) {
397 PrintPermutationMap(getAtomCount(), Params);
398 Sprinter = Params.DistanceIterators[(*iter)->nr]->second; // store initial partner
399 Strider = Params.DistanceIterators[(*iter)->nr]; //remember old iterator
400 Params.DistanceIterators[(*iter)->nr] = Params.StepList[(*iter)->nr];
401 if (Params.DistanceIterators[(*iter)->nr] == Params.DistanceList[(*iter)->nr]->end()) {// stop, before we run through the list and still on
402 Params.DistanceIterators[(*iter)->nr] == Params.DistanceList[(*iter)->nr]->begin();
403 break;
404 }
405 //Log() << Verbose(2) << "Current Walker: " << *(*iter) << " with old/next candidate " << *Sprinter << "/" << *DistanceIterators[(*iter)->nr]->second << "." << endl;
406 // find source of the new target
407 molecule::const_iterator runner = begin();
408 for (; runner != end(); ++runner) { // find the source whose toes we might be stepping on (Walker's new target should be in use by another already)
409 if (Params.PermutationMap[(*runner)->nr] == Params.DistanceIterators[(*iter)->nr]->second) {
410 //Log() << Verbose(2) << "Found the corresponding owner " << *(*runner) << " to " << *PermutationMap[(*runner)->nr] << "." << endl;
411 break;
412 }
413 }
414 if (runner != end()) { // we found the other source
415 // then look in its distance list for Sprinter
416 Rider = Params.DistanceList[(*runner)->nr]->begin();
417 for (; Rider != Params.DistanceList[(*runner)->nr]->end(); Rider++)
418 if (Rider->second == Sprinter)
419 break;
420 if (Rider != Params.DistanceList[(*runner)->nr]->end()) { // if we have found one
421 //Log() << Verbose(2) << "Current Other: " << *(*runner) << " with old/next candidate " << *PermutationMap[(*runner)->nr] << "/" << *Rider->second << "." << endl;
422 // exchange both
423 Params.PermutationMap[(*iter)->nr] = Params.DistanceIterators[(*iter)->nr]->second; // put next farther distance into PermutationMap
424 Params.PermutationMap[(*runner)->nr] = Sprinter; // and hand the old target to its respective owner
425 PrintPermutationMap(getAtomCount(), Params);
426 // calculate the new potential
427 //Log() << Verbose(2) << "Checking new potential ..." << endl;
428 Potential = ConstrainedPotential(Params);
429 if (Potential > OldPotential) { // we made everything worse! Undo ...
430 //Log() << Verbose(3) << "Nay, made the potential worse: " << Potential << " vs. " << OldPotential << "!" << endl;
431 //Log() << Verbose(3) << "Setting " << *(*runner) << "'s source to " << *Params.DistanceIterators[(*runner)->nr]->second << "." << endl;
432 // Undo for Runner (note, we haven't moved the iteration yet, we may use this)
433 Params.PermutationMap[(*runner)->nr] = Params.DistanceIterators[(*runner)->nr]->second;
434 // Undo for Walker
435 Params.DistanceIterators[(*iter)->nr] = Strider; // take next farther distance target
436 //Log() << Verbose(3) << "Setting " << *(*iter) << "'s source to " << *Params.DistanceIterators[(*iter)->nr]->second << "." << endl;
437 Params.PermutationMap[(*iter)->nr] = Params.DistanceIterators[(*iter)->nr]->second;
438 } else {
439 Params.DistanceIterators[(*runner)->nr] = Rider; // if successful also move the pointer in the iterator list
440 DoLog(3) && (Log() << Verbose(3) << "Found a better permutation, new potential is " << Potential << " vs." << OldPotential << "." << endl);
441 OldPotential = Potential;
442 }
443 if (Potential > Params.PenaltyConstants[2]) {
444 DoeLog(1) && (eLog()<< Verbose(1) << "The two-step permutation procedure did not maintain injectivity!" << endl);
445 exit(255);
446 }
447 //Log() << Verbose(0) << endl;
448 } else {
449 DoeLog(1) && (eLog()<< Verbose(1) << **runner << " was not the owner of " << *Sprinter << "!" << endl);
450 exit(255);
451 }
452 } else {
453 Params.PermutationMap[(*iter)->nr] = Params.DistanceIterators[(*iter)->nr]->second; // new target has no source!
454 }
455 Params.StepList[(*iter)->nr]++; // take next farther distance target
456 }
457 } while (++iter != end());
458 } while ((OlderPotential - OldPotential) > 1e-3);
459 DoLog(1) && (Log() << Verbose(1) << "done." << endl);
460
461
462 /// free memory and return with evaluated potential
463 for (int i=getAtomCount(); i--;)
464 Params.DistanceList[i]->clear();
465 delete[](Params.DistanceList);
466 delete[](Params.DistanceIterators);
467 return ConstrainedPotential(Params);
468};
469
470
471/** Evaluates the (distance-related part) of the constrained potential for the constrained forces.
472 * \param *out output stream for debugging
473 * \param startstep current MD step giving initial position between which and \a endstep we perform the constrained MD (as further steps are always concatenated)
474 * \param endstep step giving final position in constrained MD
475 * \param **PermutationMap mapping between the atom label of the initial and the final configuration
476 * \param *Force ForceMatrix containing force vectors from the external energy functional minimisation.
477 * \todo the constant for the constrained potential distance part is hard-coded independently of the hard-coded value in MinimiseConstrainedPotential()
478 */
479void molecule::EvaluateConstrainedForces(int startstep, int endstep, atom **PermutationMap, ForceMatrix *Force)
480{
481 /// evaluate forces (only the distance to target dependent part) with the final PermutationMap
482 DoLog(1) && (Log() << Verbose(1) << "Calculating forces and adding onto ForceMatrix ... " << endl);
483 for_each(atoms.begin(),
484 atoms.end(),
485 boost::bind(&atom::EvaluateConstrainedForce,_1,startstep,endstep,PermutationMap,Force));
486 DoLog(1) && (Log() << Verbose(1) << "done." << endl);
487};
488
489/** Performs a linear interpolation between two desired atomic configurations with a given number of steps.
490 * Note, step number is config::MaxOuterStep
491 * \param *out output stream for debugging
492 * \param startstep stating initial configuration in molecule::Trajectories
493 * \param endstep stating final configuration in molecule::Trajectories
494 * \param &prefix path and prefix
495 * \param &config configuration structure
496 * \param MapByIdentity if true we just use the identity to map atoms in start config to end config, if not we find mapping by \sa MinimiseConstrainedPotential()
497 * \return true - success in writing step files, false - error writing files or only one step in molecule::Trajectories
498 */
499bool molecule::LinearInterpolationBetweenConfiguration(int startstep, int endstep, std::string prefix, config &configuration, bool MapByIdentity)
500{
501 // TODO: rewrite permutationMaps using enumeration objects
502 molecule *mol = NULL;
503 bool status = true;
504 int MaxSteps = configuration.MaxOuterStep;
505 MoleculeListClass *MoleculePerStep = new MoleculeListClass(World::getPointer());
506 // Get the Permutation Map by MinimiseConstrainedPotential
507 atom **PermutationMap = NULL;
508 atom *Sprinter = NULL;
509 if (!MapByIdentity)
510 MinimiseConstrainedPotential(PermutationMap, startstep, endstep, configuration.GetIsAngstroem());
511 else {
512 // TODO: construction of enumeration goes here
513 PermutationMap = new atom *[getAtomCount()];
514 for(internal_iterator iter = atoms.begin(); iter != atoms.end();++iter){
515 PermutationMap[(*iter)->nr] = (*iter);
516 }
517 }
518
519 // check whether we have sufficient space in Trajectories for each atom
520 for_each(atoms.begin(),atoms.end(),bind2nd(mem_fun(&atom::ResizeTrajectory),MaxSteps));
521 // push endstep to last one
522 for_each(atoms.begin(),atoms.end(),boost::bind(&atom::CopyStepOnStep,_1,MaxSteps,endstep));
523 endstep = MaxSteps;
524
525 // go through all steps and add the molecular configuration to the list and to the Trajectories of \a this molecule
526 DoLog(1) && (Log() << Verbose(1) << "Filling intermediate " << MaxSteps << " steps with MDSteps of " << MDSteps << "." << endl);
527 for (int step = 0; step <= MaxSteps; step++) {
528 mol = World::getInstance().createMolecule();
529 MoleculePerStep->insert(mol);
530 for (molecule::const_iterator iter = begin(); iter != end(); ++iter) {
531 // add to molecule list
532 Sprinter = mol->AddCopyAtom((*iter));
533 for (int n=NDIM;n--;) {
534 Sprinter->set(n, (*iter)->Trajectory.R.at(startstep)[n] + (PermutationMap[(*iter)->nr]->Trajectory.R.at(endstep)[n] - (*iter)->Trajectory.R.at(startstep)[n])*((double)step/(double)MaxSteps));
535 // add to Trajectories
536 //Log() << Verbose(3) << step << ">=" << MDSteps-1 << endl;
537 if (step < MaxSteps) {
538 (*iter)->Trajectory.R.at(step)[n] = (*iter)->Trajectory.R.at(startstep)[n] + (PermutationMap[(*iter)->nr]->Trajectory.R.at(endstep)[n] - (*iter)->Trajectory.R.at(startstep)[n])*((double)step/(double)MaxSteps);
539 (*iter)->Trajectory.U.at(step)[n] = 0.;
540 (*iter)->Trajectory.F.at(step)[n] = 0.;
541 }
542 }
543 }
544 }
545 MDSteps = MaxSteps+1; // otherwise new Trajectories' points aren't stored on save&exit
546
547 // store the list to single step files
548 int *SortIndex = new int[getAtomCount()];
549 for (int i=getAtomCount(); i--; )
550 SortIndex[i] = i;
551
552 status = MoleculePerStep->OutputConfigForListOfFragments(prefix, SortIndex);
553 delete[](SortIndex);
554
555 // free and return
556 delete[](PermutationMap);
557 delete(MoleculePerStep);
558 return status;
559};
560
561/** Parses nuclear forces from file and performs Verlet integration.
562 * Note that we assume the parsed forces to be in atomic units (hence, if coordinates are in angstroem, we
563 * have to transform them).
564 * This adds a new MD step to the config file.
565 * \param *file filename
566 * \param config structure with config::Deltat, config::IsAngstroem, config::DoConstrained
567 * \param offset offset in matrix file to the first force component
568 * \return true - file found and parsed, false - file not found or imparsable
569 * \todo This is not yet checked if it is correctly working with DoConstrained set to true.
570 */
571bool molecule::VerletForceIntegration(char *file, config &configuration, const size_t offset)
572{
573 Info FunctionInfo(__func__);
574 ifstream input(file);
575 string token;
576 stringstream item;
577 double IonMass, ConstrainedPotentialEnergy, ActualTemp;
578 Vector Velocity;
579 ForceMatrix Force;
580
581 const int AtomCount = getAtomCount();
582 // check file
583 if (input == NULL) {
584 return false;
585 } else {
586 // parse file into ForceMatrix
587 if (!Force.ParseMatrix(file, 0,0,0)) {
588 DoeLog(0) && (eLog()<< Verbose(0) << "Could not parse Force Matrix file " << file << "." << endl);
589 performCriticalExit();
590 return false;
591 }
592 if (Force.RowCounter[0] != AtomCount) {
593 DoeLog(0) && (eLog()<< Verbose(0) << "Mismatch between number of atoms in file " << Force.RowCounter[0] << " and in molecule " << getAtomCount() << "." << endl);
594 performCriticalExit();
595 return false;
596 }
597 // correct Forces
598 Velocity.Zero();
599 for(int i=0;i<AtomCount;i++)
600 for(int d=0;d<NDIM;d++) {
601 Velocity[d] += Force.Matrix[0][i][d+offset];
602 }
603 for(int i=0;i<AtomCount;i++)
604 for(int d=0;d<NDIM;d++) {
605 Force.Matrix[0][i][d+offset] -= Velocity[d]/static_cast<double>(AtomCount);
606 }
607 // solve a constrained potential if we are meant to
608 if (configuration.DoConstrainedMD) {
609 // calculate forces and potential
610 atom **PermutationMap = NULL;
611 ConstrainedPotentialEnergy = MinimiseConstrainedPotential(PermutationMap,configuration.DoConstrainedMD, 0, configuration.GetIsAngstroem());
612 EvaluateConstrainedForces(configuration.DoConstrainedMD, 0, PermutationMap, &Force);
613 delete[](PermutationMap);
614 }
615
616 // and perform Verlet integration for each atom with position, velocity and force vector
617 // check size of vectors
618 for_each(atoms.begin(),
619 atoms.end(),
620 boost::bind(&atom::VelocityVerletUpdate,_1,MDSteps+1, &configuration, &Force, (const size_t) 0));
621 }
622 // correct velocities (rather momenta) so that center of mass remains motionless
623 Velocity = atoms.totalMomentumAtStep(MDSteps+1);
624 IonMass = atoms.totalMass();
625
626 // correct velocities (rather momenta) so that center of mass remains motionless
627 Velocity *= 1./IonMass;
628
629 atoms.addVelocityAtStep(-1*Velocity,MDSteps+1);
630 ActualTemp = atoms.totalTemperatureAtStep(MDSteps+1);
631 Berendsen berendsen = Berendsen();
632 berendsen.addToContainer(configuration.Thermostats);
633 double ekin = berendsen.scaleAtoms(MDSteps,ActualTemp,atoms);
634 DoLog(1) && (Log() << Verbose(1) << "Kinetic energy is " << ekin << "." << endl);
635 MDSteps++;
636
637 // exit
638 return true;
639};
Note: See TracBrowser for help on using the repository browser.