| 1 | //
 | 
|---|
| 2 | // shape.cc
 | 
|---|
| 3 | //
 | 
|---|
| 4 | // Copyright (C) 1996 Limit Point Systems, Inc.
 | 
|---|
| 5 | //
 | 
|---|
| 6 | // Author: Curtis Janssen <cljanss@limitpt.com>
 | 
|---|
| 7 | // Maintainer: LPS
 | 
|---|
| 8 | //
 | 
|---|
| 9 | // This file is part of the SC Toolkit.
 | 
|---|
| 10 | //
 | 
|---|
| 11 | // The SC Toolkit is free software; you can redistribute it and/or modify
 | 
|---|
| 12 | // it under the terms of the GNU Library General Public License as published by
 | 
|---|
| 13 | // the Free Software Foundation; either version 2, or (at your option)
 | 
|---|
| 14 | // any later version.
 | 
|---|
| 15 | //
 | 
|---|
| 16 | // The SC Toolkit is distributed in the hope that it will be useful,
 | 
|---|
| 17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
|---|
| 18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
|---|
| 19 | // GNU Library General Public License for more details.
 | 
|---|
| 20 | //
 | 
|---|
| 21 | // You should have received a copy of the GNU Library General Public License
 | 
|---|
| 22 | // along with the SC Toolkit; see the file COPYING.LIB.  If not, write to
 | 
|---|
| 23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
 | 
|---|
| 24 | //
 | 
|---|
| 25 | // The U.S. Government is granted a limited license as per AL 91-7.
 | 
|---|
| 26 | //
 | 
|---|
| 27 | 
 | 
|---|
| 28 | #ifdef __GNUC__
 | 
|---|
| 29 | #pragma implementation
 | 
|---|
| 30 | #endif
 | 
|---|
| 31 | 
 | 
|---|
| 32 | #include <stdio.h>
 | 
|---|
| 33 | #include <util/misc/math.h>
 | 
|---|
| 34 | 
 | 
|---|
| 35 | #include <util/misc/formio.h>
 | 
|---|
| 36 | #include <util/keyval/keyval.h>
 | 
|---|
| 37 | #include <math/isosurf/shape.h>
 | 
|---|
| 38 | 
 | 
|---|
| 39 | using namespace std;
 | 
|---|
| 40 | using namespace sc;
 | 
|---|
| 41 | 
 | 
|---|
| 42 | static const double shape_infinity = 1.0e23;
 | 
|---|
| 43 | 
 | 
|---|
| 44 | // given a vector X find which of the points in the vector of
 | 
|---|
| 45 | // vectors, A, is closest to it and return the distance
 | 
|---|
| 46 | static double
 | 
|---|
| 47 | closest_distance(SCVector3& X,SCVector3*A,int n,SCVector3*grad)
 | 
|---|
| 48 | {
 | 
|---|
| 49 |   SCVector3 T = X-A[0];
 | 
|---|
| 50 |   double min = T.dot(T);
 | 
|---|
| 51 |   int imin = 0;
 | 
|---|
| 52 |   for (int i=1; i<n; i++) {
 | 
|---|
| 53 |       T = X-A[i];
 | 
|---|
| 54 |       double tmp = T.dot(T);
 | 
|---|
| 55 |       if (tmp < min) {min = tmp; imin = i;}
 | 
|---|
| 56 |     }
 | 
|---|
| 57 |   if (grad) {
 | 
|---|
| 58 |       T = X - A[imin];
 | 
|---|
| 59 |       T.normalize();
 | 
|---|
| 60 |       *grad = T;
 | 
|---|
| 61 |     }
 | 
|---|
| 62 |   return sqrt(min);
 | 
|---|
| 63 | }
 | 
|---|
| 64 | 
 | 
|---|
| 65 | //////////////////////////////////////////////////////////////////////
 | 
|---|
| 66 | // Shape
 | 
|---|
| 67 | 
 | 
|---|
| 68 | static ClassDesc Shape_cd(
 | 
|---|
| 69 |   typeid(Shape),"Shape",1,"public Volume",
 | 
|---|
| 70 |   0, 0, 0);
 | 
|---|
| 71 | 
 | 
|---|
| 72 | Shape::Shape():
 | 
|---|
| 73 |   Volume()
 | 
|---|
| 74 | {
 | 
|---|
| 75 | }
 | 
|---|
| 76 | 
 | 
|---|
| 77 | Shape::Shape(const Ref<KeyVal>& keyval):
 | 
|---|
| 78 |   Volume(keyval)
 | 
|---|
| 79 | {
 | 
|---|
| 80 | }
 | 
|---|
| 81 | 
 | 
|---|
| 82 | Shape::~Shape()
 | 
|---|
| 83 | {
 | 
|---|
| 84 | }
 | 
|---|
| 85 | 
 | 
|---|
| 86 | void
 | 
|---|
| 87 | Shape::compute()
 | 
|---|
| 88 | {
 | 
|---|
| 89 |   SCVector3 r;
 | 
|---|
| 90 |   get_x(r);
 | 
|---|
| 91 |   if (gradient_needed()) {
 | 
|---|
| 92 |       if (!gradient_implemented()) {
 | 
|---|
| 93 |           ExEnv::errn() << "Shape::compute: gradient not implemented" << endl;
 | 
|---|
| 94 |           abort();
 | 
|---|
| 95 |         }
 | 
|---|
| 96 |       SCVector3 v;
 | 
|---|
| 97 |       set_value(distance_to_surface(r,&v));
 | 
|---|
| 98 |       set_actual_value_accuracy(desired_value_accuracy());
 | 
|---|
| 99 |       set_gradient(v);
 | 
|---|
| 100 |       set_actual_gradient_accuracy(desired_gradient_accuracy());
 | 
|---|
| 101 |     }
 | 
|---|
| 102 |   else if (value_needed()) {
 | 
|---|
| 103 |       set_value(distance_to_surface(r));
 | 
|---|
| 104 |       set_actual_value_accuracy(desired_value_accuracy());
 | 
|---|
| 105 |     }
 | 
|---|
| 106 |   if (hessian_needed()) {
 | 
|---|
| 107 |       ExEnv::errn() << "Shape::compute(): can't do hessian yet" << endl;
 | 
|---|
| 108 |       abort();
 | 
|---|
| 109 |     }
 | 
|---|
| 110 | }
 | 
|---|
| 111 | 
 | 
|---|
| 112 | int
 | 
|---|
| 113 | Shape::is_outside(const SCVector3&r) const
 | 
|---|
| 114 | {
 | 
|---|
| 115 |   if (distance_to_surface(r)>0.0) return 1;
 | 
|---|
| 116 |   return 0;
 | 
|---|
| 117 | }
 | 
|---|
| 118 | 
 | 
|---|
| 119 | // Shape overrides volume's interpolate so it always gets points on
 | 
|---|
| 120 | // the outside of the shape are always returned.
 | 
|---|
| 121 | 
 | 
|---|
| 122 | // interpolate using the bisection algorithm
 | 
|---|
| 123 | void
 | 
|---|
| 124 | Shape::interpolate(const SCVector3& A,
 | 
|---|
| 125 |                    const SCVector3& B,
 | 
|---|
| 126 |                    double val,
 | 
|---|
| 127 |                    SCVector3& result)
 | 
|---|
| 128 | {
 | 
|---|
| 129 |   if (val < 0.0) {
 | 
|---|
| 130 |       failure("Shape::interpolate(): val is < 0.0");
 | 
|---|
| 131 |     }
 | 
|---|
| 132 | 
 | 
|---|
| 133 |   set_x(A);
 | 
|---|
| 134 |   double value0 = value() - val;
 | 
|---|
| 135 | 
 | 
|---|
| 136 |   set_x(B);
 | 
|---|
| 137 |   double value1 = value() - val;
 | 
|---|
| 138 | 
 | 
|---|
| 139 |   if (value0*value1 > 0.0) {
 | 
|---|
| 140 |       failure("Shape::interpolate(): values at endpoints don't bracket val");
 | 
|---|
| 141 |     }
 | 
|---|
| 142 |   else if (value0 == 0.0) {
 | 
|---|
| 143 |       result = A;
 | 
|---|
| 144 |       return;
 | 
|---|
| 145 |     }
 | 
|---|
| 146 |   else if (value1 == 0.0) {
 | 
|---|
| 147 |       result = B;
 | 
|---|
| 148 |       return;
 | 
|---|
| 149 |     }
 | 
|---|
| 150 | 
 | 
|---|
| 151 |   SCVector3 BA = B - A;
 | 
|---|
| 152 | 
 | 
|---|
| 153 |   double length = BA.norm();
 | 
|---|
| 154 |   int niter = (int) (log(length/interpolation_accuracy())/M_LN2);
 | 
|---|
| 155 | 
 | 
|---|
| 156 |   double f0 = 0.0;
 | 
|---|
| 157 |   double f1 = 1.0;
 | 
|---|
| 158 |   double fnext = 0.5;
 | 
|---|
| 159 | 
 | 
|---|
| 160 |   SCVector3 X = A + fnext*BA;
 | 
|---|
| 161 |   set_x(X);
 | 
|---|
| 162 |   double valuenext = value() - val;
 | 
|---|
| 163 | 
 | 
|---|
| 164 |   do {
 | 
|---|
| 165 |       for (int i=0; i<niter; i++) {
 | 
|---|
| 166 |           if (valuenext*value0 <= 0.0) {
 | 
|---|
| 167 |               value1 = valuenext;
 | 
|---|
| 168 |               f1 = fnext;
 | 
|---|
| 169 |               fnext = (f0 + fnext)*0.5;
 | 
|---|
| 170 |             }
 | 
|---|
| 171 |           else {
 | 
|---|
| 172 |               value0 = valuenext;
 | 
|---|
| 173 |               f0 = fnext;
 | 
|---|
| 174 |               fnext = (fnext + f1)*0.5;
 | 
|---|
| 175 |             }
 | 
|---|
| 176 |           X = A + fnext*BA;
 | 
|---|
| 177 |           set_x(X);
 | 
|---|
| 178 |           valuenext = value() - val;
 | 
|---|
| 179 |         }
 | 
|---|
| 180 |       niter = 1;
 | 
|---|
| 181 |     } while (valuenext < 0.0);
 | 
|---|
| 182 | 
 | 
|---|
| 183 |   result = X;
 | 
|---|
| 184 | }
 | 
|---|
| 185 | 
 | 
|---|
| 186 | int
 | 
|---|
| 187 | Shape::value_implemented() const
 | 
|---|
| 188 | {
 | 
|---|
| 189 |   return 1;
 | 
|---|
| 190 | }
 | 
|---|
| 191 | 
 | 
|---|
| 192 | //////////////////////////////////////////////////////////////////////
 | 
|---|
| 193 | // SphereShape
 | 
|---|
| 194 | 
 | 
|---|
| 195 | static ClassDesc SphereShape_cd(
 | 
|---|
| 196 |   typeid(SphereShape),"SphereShape",1,"public Shape",
 | 
|---|
| 197 |   0, create<SphereShape>, 0);
 | 
|---|
| 198 | 
 | 
|---|
| 199 | SphereShape::SphereShape(const SCVector3&o,double r):
 | 
|---|
| 200 |   _origin(o),
 | 
|---|
| 201 |   _radius(r)
 | 
|---|
| 202 | {
 | 
|---|
| 203 | }
 | 
|---|
| 204 | 
 | 
|---|
| 205 | SphereShape::SphereShape(const SphereShape&s):
 | 
|---|
| 206 |   _origin(s._origin),
 | 
|---|
| 207 |   _radius(s._radius)
 | 
|---|
| 208 | {
 | 
|---|
| 209 | }
 | 
|---|
| 210 | 
 | 
|---|
| 211 | SphereShape::SphereShape(const Ref<KeyVal>& keyval):
 | 
|---|
| 212 |   _origin(new PrefixKeyVal(keyval,"origin")),
 | 
|---|
| 213 |   _radius(keyval->doublevalue("radius"))
 | 
|---|
| 214 | {
 | 
|---|
| 215 | }
 | 
|---|
| 216 | 
 | 
|---|
| 217 | SphereShape::~SphereShape()
 | 
|---|
| 218 | {
 | 
|---|
| 219 | }
 | 
|---|
| 220 | 
 | 
|---|
| 221 | double
 | 
|---|
| 222 | SphereShape::distance_to_surface(const SCVector3&p,SCVector3*grad) const
 | 
|---|
| 223 | {
 | 
|---|
| 224 |   int i;
 | 
|---|
| 225 |   double r2 = 0.0;
 | 
|---|
| 226 |   for (i=0; i<3; i++) {
 | 
|---|
| 227 |       double tmp = p[i] - _origin[i];
 | 
|---|
| 228 |       r2 += tmp*tmp;
 | 
|---|
| 229 |     }
 | 
|---|
| 230 |   double r = sqrt(r2);
 | 
|---|
| 231 |   double d = r - _radius;
 | 
|---|
| 232 |   if (grad) {
 | 
|---|
| 233 |       SCVector3 pv(p);
 | 
|---|
| 234 |       SCVector3 o(_origin);
 | 
|---|
| 235 |       SCVector3 unit = pv - o;
 | 
|---|
| 236 |       unit.normalize();
 | 
|---|
| 237 |       for (i=0; i<3; i++) grad->elem(i) = unit[i];
 | 
|---|
| 238 |     }
 | 
|---|
| 239 |   return d;
 | 
|---|
| 240 | }
 | 
|---|
| 241 | 
 | 
|---|
| 242 | void SphereShape::print(ostream&o) const
 | 
|---|
| 243 | {
 | 
|---|
| 244 |   o << indent
 | 
|---|
| 245 |     << scprintf("SphereShape: r = %8.4f o = (%8.4f %8.4f %8.4f)",
 | 
|---|
| 246 |                 radius(),origin()[0],origin()[1],origin()[2])
 | 
|---|
| 247 |     << endl;
 | 
|---|
| 248 | }
 | 
|---|
| 249 | 
 | 
|---|
| 250 | void
 | 
|---|
| 251 | SphereShape::boundingbox(double valuemin, double valuemax,
 | 
|---|
| 252 |                          SCVector3& p1,
 | 
|---|
| 253 |                          SCVector3& p2)
 | 
|---|
| 254 | {
 | 
|---|
| 255 |   if (valuemax < 0.0) valuemax = 0.0;
 | 
|---|
| 256 | 
 | 
|---|
| 257 |   int i;
 | 
|---|
| 258 |   for (i=0; i<3; i++) {
 | 
|---|
| 259 |       p1[i] = _origin[i] - _radius - valuemax;
 | 
|---|
| 260 |       p2[i] = _origin[i] + _radius + valuemax;
 | 
|---|
| 261 |     }
 | 
|---|
| 262 | }
 | 
|---|
| 263 | 
 | 
|---|
| 264 | int
 | 
|---|
| 265 | SphereShape::gradient_implemented() const
 | 
|---|
| 266 | {
 | 
|---|
| 267 |   return 1;
 | 
|---|
| 268 | }
 | 
|---|
| 269 | 
 | 
|---|
| 270 | ////////////////////////////////////////////////////////////////////////
 | 
|---|
| 271 | // UncappedTorusHoleShape
 | 
|---|
| 272 | 
 | 
|---|
| 273 | static ClassDesc UncappedTorusHoleShape_cd(
 | 
|---|
| 274 |   typeid(UncappedTorusHoleShape),"UncappedTorusHoleShape",1,"public Shape",
 | 
|---|
| 275 |   0, 0, 0);
 | 
|---|
| 276 | 
 | 
|---|
| 277 | UncappedTorusHoleShape::UncappedTorusHoleShape(double r,
 | 
|---|
| 278 |                                const SphereShape& s1,
 | 
|---|
| 279 |                                const SphereShape& s2):
 | 
|---|
| 280 | _s1(s1),
 | 
|---|
| 281 | _s2(s2),
 | 
|---|
| 282 | _r(r)
 | 
|---|
| 283 | {
 | 
|---|
| 284 | }
 | 
|---|
| 285 | 
 | 
|---|
| 286 | UncappedTorusHoleShape*
 | 
|---|
| 287 | UncappedTorusHoleShape::newUncappedTorusHoleShape(double r,
 | 
|---|
| 288 |                                                   const SphereShape&s1,
 | 
|---|
| 289 |                                                   const SphereShape&s2)
 | 
|---|
| 290 | {
 | 
|---|
| 291 |   // if the probe sphere fits between the two spheres, then there
 | 
|---|
| 292 |   // is no need to include this shape
 | 
|---|
| 293 |   SCVector3 A(s1.origin());
 | 
|---|
| 294 |   SCVector3 B(s2.origin());
 | 
|---|
| 295 |   SCVector3 BA = B - A;
 | 
|---|
| 296 |   if (2.0*r <  BA.norm() - s1.radius() - s2.radius()) return 0;
 | 
|---|
| 297 | 
 | 
|---|
| 298 |   // check to see if the surface is reentrant
 | 
|---|
| 299 |   double rrs1 = r+s1.radius();
 | 
|---|
| 300 |   double rrs2 = r+s2.radius();
 | 
|---|
| 301 |   SCVector3 R12 = ((SCVector3)s1.origin()) - ((SCVector3)s2.origin());
 | 
|---|
| 302 |   double r12 = sqrt(R12.dot(R12));
 | 
|---|
| 303 |   if (sqrt(rrs1*rrs1-r*r) + sqrt(rrs2*rrs2-r*r) < r12)
 | 
|---|
| 304 |     return new ReentrantUncappedTorusHoleShape(r,s1,s2);
 | 
|---|
| 305 | 
 | 
|---|
| 306 |   // otherwise create an ordinary torus hole
 | 
|---|
| 307 |   return new NonreentrantUncappedTorusHoleShape(r,s1,s2);
 | 
|---|
| 308 | }
 | 
|---|
| 309 | 
 | 
|---|
| 310 | // Given a node, finds a sphere in the plane of n and the centers
 | 
|---|
| 311 | // of _s1 and _s2 that touches the UncappedTorusHole.  There are two
 | 
|---|
| 312 | // candidates, the one closest to n is chosen.
 | 
|---|
| 313 | void
 | 
|---|
| 314 | UncappedTorusHoleShape::in_plane_sphere(
 | 
|---|
| 315 |     const SCVector3& n,
 | 
|---|
| 316 |     SCVector3& P) const
 | 
|---|
| 317 | {
 | 
|---|
| 318 |   // the center of the sphere is given by the vector equation
 | 
|---|
| 319 |   // P = A + a R(AB) + b U(perp),
 | 
|---|
| 320 |   // where
 | 
|---|
| 321 |   // A is the center of _s1
 | 
|---|
| 322 |   // B is the center of _s2
 | 
|---|
| 323 |   // R(AB) is the vector from A to B, R(AB) = B - A
 | 
|---|
| 324 |   // U(perp) is a unit vect perp to R(AB) and lies in the plane of n, A, and B
 | 
|---|
| 325 |   // The unknown scalars, a and b are given by solving the following
 | 
|---|
| 326 |   // equations:
 | 
|---|
| 327 |   // | P - A | = r(A) + _r, and
 | 
|---|
| 328 |   // | P - B | = r(B) + _r,
 | 
|---|
| 329 |   // which give
 | 
|---|
| 330 |   // | a R(AB) + b U(perp) | = r(A) + _r, and
 | 
|---|
| 331 |   // | (a-1) R(AB) + b U(perp) | = r(B) + _r.
 | 
|---|
| 332 |   // These further simplify to
 | 
|---|
| 333 |   // a^2 r(AB)^2 + b^2 = (r(A)+_r)^2, and
 | 
|---|
| 334 |   // (a-1)^2 r(AB)^2 + b^2 = (r(B)+_r)^2.
 | 
|---|
| 335 |   // Thus,
 | 
|---|
| 336 |   // a = (((r(A)+_r)^2 - (r(B)+_r)^2 )/(2 r(AB)^2)) + 1/2
 | 
|---|
| 337 |   // b^2 = (r(A)+r)^2 - a^2 r(AB)^2
 | 
|---|
| 338 | 
 | 
|---|
| 339 |   SCVector3 A = _s1.origin();
 | 
|---|
| 340 |   SCVector3 B = _s2.origin();
 | 
|---|
| 341 |   SCVector3 N = n;
 | 
|---|
| 342 |   SCVector3 R_AB = B - A;
 | 
|---|
| 343 |   SCVector3 R_AN = N - A;
 | 
|---|
| 344 | 
 | 
|---|
| 345 |   // vector projection of R_AN onto R_AB
 | 
|---|
| 346 |   SCVector3 P_AN_AB = R_AB * (R_AN.dot(R_AB)/R_AB.dot(R_AB));
 | 
|---|
| 347 |   // the perpendicular vector
 | 
|---|
| 348 |   SCVector3 U_perp = R_AN - P_AN_AB;
 | 
|---|
| 349 | 
 | 
|---|
| 350 |   // if |U| is tiny, then any vector perp to AB will do
 | 
|---|
| 351 |   double u = U_perp.dot(U_perp);
 | 
|---|
| 352 |   if (u<1.0e-23) {
 | 
|---|
| 353 |       SCVector3 vtry = R_AB;
 | 
|---|
| 354 |       vtry[0] += 1.0;
 | 
|---|
| 355 |       vtry = vtry - R_AB * (vtry.dot(R_AB)/R_AB.dot(R_AB));
 | 
|---|
| 356 |       if (vtry.dot(vtry) < 1.0e-23) {
 | 
|---|
| 357 |           vtry = R_AB;
 | 
|---|
| 358 |           vtry[1] += 1.0;
 | 
|---|
| 359 |           vtry = vtry - R_AB * (vtry.dot(R_AB)/R_AB.dot(R_AB));
 | 
|---|
| 360 |         }
 | 
|---|
| 361 |       U_perp = vtry;
 | 
|---|
| 362 |     }
 | 
|---|
| 363 | 
 | 
|---|
| 364 |   U_perp.normalize();
 | 
|---|
| 365 |   //ExEnv::outn() << "A: "; A.print();
 | 
|---|
| 366 |   //ExEnv::outn() << "U_perp: "; U_perp.print();
 | 
|---|
| 367 |   //ExEnv::outn() << "R_AB: "; R_AB.print();
 | 
|---|
| 368 | 
 | 
|---|
| 369 |   double r_AB = sqrt(R_AB.dot(R_AB));
 | 
|---|
| 370 |   double r_A = _s1.radius();
 | 
|---|
| 371 |   double r_B = _s2.radius();
 | 
|---|
| 372 | 
 | 
|---|
| 373 |   double r_Ar = r_A + _r;
 | 
|---|
| 374 |   double r_Br = r_B + _r;
 | 
|---|
| 375 |   double a = ((r_Ar*r_Ar - r_Br*r_Br)/(2.0*r_AB*r_AB)) + 0.5;
 | 
|---|
| 376 |   double b = sqrt(r_Ar*r_Ar - a*a*r_AB*r_AB);
 | 
|---|
| 377 | 
 | 
|---|
| 378 |   //ExEnv::outn() << scprintf("r_Ar = %f, r_AB = %f\n",r_Ar,r_AB);
 | 
|---|
| 379 |   //ExEnv::outn() << scprintf("a = %f, b = %f\n",a,b);
 | 
|---|
| 380 | 
 | 
|---|
| 381 |   P = A + a * R_AB + b * U_perp;
 | 
|---|
| 382 |   //ExEnv::outn() << "a*R_AB: "; (a*R_AB).print();
 | 
|---|
| 383 |   //ExEnv::outn() << "b*U_perp: "; (b*U_perp).print();
 | 
|---|
| 384 | }
 | 
|---|
| 385 | 
 | 
|---|
| 386 | void
 | 
|---|
| 387 | UncappedTorusHoleShape::print(ostream&o) const
 | 
|---|
| 388 | {
 | 
|---|
| 389 |   o << indent << "UncappedTorusHoleShape:" << endl;
 | 
|---|
| 390 |   o << incindent;
 | 
|---|
| 391 |   o << indent << "r = " << _r << endl;
 | 
|---|
| 392 |   o << indent << "s1 = ";
 | 
|---|
| 393 |   o << incindent << skipnextindent;
 | 
|---|
| 394 |   _s1.print(o);
 | 
|---|
| 395 |   o << decindent;
 | 
|---|
| 396 |   o << indent << "s2 = ";
 | 
|---|
| 397 |   o << incindent << skipnextindent;
 | 
|---|
| 398 |   _s2.print(o);
 | 
|---|
| 399 |   o << decindent;
 | 
|---|
| 400 |   o << decindent;
 | 
|---|
| 401 | }
 | 
|---|
| 402 | 
 | 
|---|
| 403 | void
 | 
|---|
| 404 | UncappedTorusHoleShape::boundingbox(double valuemin, double valuemax,
 | 
|---|
| 405 |                                     SCVector3& p1,
 | 
|---|
| 406 |                                     SCVector3& p2)
 | 
|---|
| 407 | {
 | 
|---|
| 408 |   SCVector3 p11;
 | 
|---|
| 409 |   SCVector3 p12;
 | 
|---|
| 410 |   SCVector3 p21;
 | 
|---|
| 411 |   SCVector3 p22;
 | 
|---|
| 412 | 
 | 
|---|
| 413 |   _s1.boundingbox(valuemin,valuemax,p11,p12);
 | 
|---|
| 414 |   _s2.boundingbox(valuemin,valuemax,p21,p22);
 | 
|---|
| 415 | 
 | 
|---|
| 416 |   int i;
 | 
|---|
| 417 |   for (i=0; i<3; i++) {
 | 
|---|
| 418 |       if (p11[i] < p21[i]) p1[i] = p11[i];
 | 
|---|
| 419 |       else p1[i] = p21[i];
 | 
|---|
| 420 |       if (p12[i] > p22[i]) p2[i] = p12[i];
 | 
|---|
| 421 |       else p2[i] = p22[i];
 | 
|---|
| 422 |     }
 | 
|---|
| 423 | }
 | 
|---|
| 424 | 
 | 
|---|
| 425 | int
 | 
|---|
| 426 | UncappedTorusHoleShape::gradient_implemented() const
 | 
|---|
| 427 | {
 | 
|---|
| 428 |   return 1;
 | 
|---|
| 429 | }
 | 
|---|
| 430 | 
 | 
|---|
| 431 | /////////////////////////////////////////////////////////////////////
 | 
|---|
| 432 | // is in triangle
 | 
|---|
| 433 | 
 | 
|---|
| 434 | static int
 | 
|---|
| 435 | is_in_unbounded_triangle(const SCVector3&XP,const SCVector3&AP,const SCVector3&BP)
 | 
|---|
| 436 | {
 | 
|---|
| 437 |   SCVector3 axis = BP.cross(AP);
 | 
|---|
| 438 | 
 | 
|---|
| 439 |   SCVector3 BP_perp = BP; BP_perp.rotate(M_PI_2,axis);
 | 
|---|
| 440 |   double u = BP_perp.dot(XP)/BP_perp.dot(AP);
 | 
|---|
| 441 |   if (u<0.0) return 0;
 | 
|---|
| 442 | 
 | 
|---|
| 443 |   SCVector3 AP_perp = AP; AP_perp.rotate(M_PI_2,axis);
 | 
|---|
| 444 |   double w = AP_perp.dot(XP)/AP_perp.dot(BP);
 | 
|---|
| 445 |   if (w<0.0) return 0;
 | 
|---|
| 446 | 
 | 
|---|
| 447 |   return 1;
 | 
|---|
| 448 | }
 | 
|---|
| 449 | 
 | 
|---|
| 450 | /////////////////////////////////////////////////////////////////////
 | 
|---|
| 451 | // ReentrantUncappedTorusHoleShape
 | 
|---|
| 452 | 
 | 
|---|
| 453 | static ClassDesc ReentrantUncappedTorusHoleShape_cd(
 | 
|---|
| 454 |   typeid(ReentrantUncappedTorusHoleShape),"ReentrantUncappedTorusHoleShape",1,"public UncappedTorusHoleShape",
 | 
|---|
| 455 |   0, 0, 0);
 | 
|---|
| 456 | 
 | 
|---|
| 457 | ReentrantUncappedTorusHoleShape::ReentrantUncappedTorusHoleShape(double r,
 | 
|---|
| 458 |                                                  const SphereShape& s1,
 | 
|---|
| 459 |                                                  const SphereShape& s2):
 | 
|---|
| 460 |   UncappedTorusHoleShape(r,s1,s2)
 | 
|---|
| 461 | {
 | 
|---|
| 462 |   rAP = r + s1.radius();
 | 
|---|
| 463 |   rBP = r + s2.radius();
 | 
|---|
| 464 |   BA = B() - A();
 | 
|---|
| 465 | 
 | 
|---|
| 466 |   // Find the points at the ends of the two cone-like objects, I[0] and I[1].
 | 
|---|
| 467 |   // they are given by:
 | 
|---|
| 468 |   //   I = z BA, where BA = B-A and I is actually IA = I - A
 | 
|---|
| 469 |   //   r^2 = PI.PI, where PI = PA-I and P is the center of a probe sphere
 | 
|---|
| 470 |   // this gives
 | 
|---|
| 471 |   //  z^2 BA.BA - 2z PA.BA + PA.PA - r^2 = 0
 | 
|---|
| 472 | 
 | 
|---|
| 473 |   SCVector3 arbitrary; 
 | 
|---|
| 474 |   arbitrary[0] = arbitrary[1] = arbitrary[2] = 0.0;
 | 
|---|
| 475 |   SCVector3 P;
 | 
|---|
| 476 |   in_plane_sphere(arbitrary,P);
 | 
|---|
| 477 |   SCVector3 PA = P - A();
 | 
|---|
| 478 | 
 | 
|---|
| 479 |   double a = BA.dot(BA);
 | 
|---|
| 480 |   double minus_b = 2.0 * PA.dot(BA);
 | 
|---|
| 481 |   double c = PA.dot(PA) - r*r;
 | 
|---|
| 482 |   double b2m4ac = minus_b*minus_b - 4*a*c;
 | 
|---|
| 483 |   double sb2m4ac;
 | 
|---|
| 484 |   if (b2m4ac >= 0.0) {
 | 
|---|
| 485 |       sb2m4ac = sqrt(b2m4ac);
 | 
|---|
| 486 |     }
 | 
|---|
| 487 |   else if (b2m4ac > -1.0e-10) {
 | 
|---|
| 488 |       sb2m4ac = 0.0;
 | 
|---|
| 489 |     }
 | 
|---|
| 490 |   else {
 | 
|---|
| 491 |       ExEnv::errn() << "ReentrantUncappedTorusHoleShape:: imaginary point" << endl;
 | 
|---|
| 492 |       abort();
 | 
|---|
| 493 |     }
 | 
|---|
| 494 |   double zA = (minus_b - sb2m4ac)/(2.0*a);
 | 
|---|
| 495 |   double zB = (minus_b + sb2m4ac)/(2.0*a);
 | 
|---|
| 496 |   I[0] = BA * zA + A();
 | 
|---|
| 497 |   I[1] = BA * zB + A();
 | 
|---|
| 498 | }
 | 
|---|
| 499 | ReentrantUncappedTorusHoleShape::~ReentrantUncappedTorusHoleShape()
 | 
|---|
| 500 | {
 | 
|---|
| 501 | }
 | 
|---|
| 502 | int
 | 
|---|
| 503 | ReentrantUncappedTorusHoleShape::
 | 
|---|
| 504 |   is_outside(const SCVector3&X) const
 | 
|---|
| 505 | {
 | 
|---|
| 506 |   SCVector3 Xv(X);
 | 
|---|
| 507 | 
 | 
|---|
| 508 |   SCVector3 P;
 | 
|---|
| 509 |   in_plane_sphere(X,P);
 | 
|---|
| 510 |   SCVector3 XP = Xv - P;
 | 
|---|
| 511 |   double rXP = XP.norm();
 | 
|---|
| 512 |   if (rXP > rAP || rXP > rBP) return 1;
 | 
|---|
| 513 | 
 | 
|---|
| 514 |   SCVector3 AP = A() - P;
 | 
|---|
| 515 |   SCVector3 BP = B() - P;
 | 
|---|
| 516 | 
 | 
|---|
| 517 |   if (!is_in_unbounded_triangle(XP,AP,BP)) return 1;
 | 
|---|
| 518 | 
 | 
|---|
| 519 |   if (rXP < radius()) {
 | 
|---|
| 520 |       return 1;
 | 
|---|
| 521 |     }
 | 
|---|
| 522 | 
 | 
|---|
| 523 |   return 0;
 | 
|---|
| 524 | }
 | 
|---|
| 525 | double
 | 
|---|
| 526 | ReentrantUncappedTorusHoleShape::
 | 
|---|
| 527 |   distance_to_surface(const SCVector3&X,SCVector3*grad) const
 | 
|---|
| 528 | {
 | 
|---|
| 529 |   SCVector3 Xv(X);
 | 
|---|
| 530 | 
 | 
|---|
| 531 |   SCVector3 P;
 | 
|---|
| 532 |   in_plane_sphere(X,P);
 | 
|---|
| 533 |   SCVector3 XP = Xv - P;
 | 
|---|
| 534 |   double rXP = XP.norm();
 | 
|---|
| 535 |   if (rXP > rAP || rXP > rBP) return shape_infinity;
 | 
|---|
| 536 | 
 | 
|---|
| 537 |   SCVector3 AP = A() - P;
 | 
|---|
| 538 |   SCVector3 BP = B() - P;
 | 
|---|
| 539 | 
 | 
|---|
| 540 |   if (!is_in_unbounded_triangle(XP,AP,BP)) return shape_infinity;
 | 
|---|
| 541 | 
 | 
|---|
| 542 |   SCVector3 I1P = I[0] - P;
 | 
|---|
| 543 |   SCVector3 I2P = I[1] - P;
 | 
|---|
| 544 | 
 | 
|---|
| 545 |   if (!is_in_unbounded_triangle(XP,I1P,I2P)) {
 | 
|---|
| 546 |       if (rXP < radius()) {
 | 
|---|
| 547 |           if (grad) {
 | 
|---|
| 548 |               SCVector3 unit(XP);
 | 
|---|
| 549 |               unit.normalize();
 | 
|---|
| 550 |               *grad = unit;
 | 
|---|
| 551 |             }
 | 
|---|
| 552 |           return radius() - rXP;
 | 
|---|
| 553 |         }
 | 
|---|
| 554 |       else return -1.0;
 | 
|---|
| 555 |     }
 | 
|---|
| 556 | 
 | 
|---|
| 557 |   return closest_distance(Xv,(SCVector3*)I,2,grad);
 | 
|---|
| 558 | }
 | 
|---|
| 559 | 
 | 
|---|
| 560 | int
 | 
|---|
| 561 | ReentrantUncappedTorusHoleShape::gradient_implemented() const
 | 
|---|
| 562 | {
 | 
|---|
| 563 |   return 1;
 | 
|---|
| 564 | }
 | 
|---|
| 565 | 
 | 
|---|
| 566 | /////////////////////////////////////////////////////////////////////
 | 
|---|
| 567 | // NonreentrantUncappedTorusHoleShape
 | 
|---|
| 568 | 
 | 
|---|
| 569 | static ClassDesc NonreentrantUncappedTorusHoleShape_cd(
 | 
|---|
| 570 |   typeid(NonreentrantUncappedTorusHoleShape),"NonreentrantUncappedTorusHoleShape",1,"public UncappedTorusHoleShape",
 | 
|---|
| 571 |   0, 0, 0);
 | 
|---|
| 572 | 
 | 
|---|
| 573 | NonreentrantUncappedTorusHoleShape::
 | 
|---|
| 574 |   NonreentrantUncappedTorusHoleShape(double r,
 | 
|---|
| 575 |                                      const SphereShape& s1,
 | 
|---|
| 576 |                                      const SphereShape& s2):
 | 
|---|
| 577 |   UncappedTorusHoleShape(r,s1,s2)
 | 
|---|
| 578 | {
 | 
|---|
| 579 |   rAP = r + s1.radius();
 | 
|---|
| 580 |   rBP = r + s2.radius();
 | 
|---|
| 581 |   BA = B() - A();
 | 
|---|
| 582 | }
 | 
|---|
| 583 | NonreentrantUncappedTorusHoleShape::~NonreentrantUncappedTorusHoleShape()
 | 
|---|
| 584 | {
 | 
|---|
| 585 | }
 | 
|---|
| 586 | double NonreentrantUncappedTorusHoleShape::
 | 
|---|
| 587 |   distance_to_surface(const SCVector3&X,SCVector3* grad) const
 | 
|---|
| 588 | {
 | 
|---|
| 589 |   SCVector3 Xv(X);
 | 
|---|
| 590 | 
 | 
|---|
| 591 |   SCVector3 P;
 | 
|---|
| 592 |   in_plane_sphere(X,P);
 | 
|---|
| 593 |   SCVector3 PX = P - Xv;
 | 
|---|
| 594 |   double rPX = PX.norm();
 | 
|---|
| 595 |   if (rPX > rAP || rPX > rBP) return shape_infinity;
 | 
|---|
| 596 | 
 | 
|---|
| 597 |   SCVector3 PA = P - A();
 | 
|---|
| 598 |   SCVector3 XA = Xv - A();
 | 
|---|
| 599 | 
 | 
|---|
| 600 |   SCVector3 axis = BA.cross(PA);
 | 
|---|
| 601 | 
 | 
|---|
| 602 |   SCVector3 BA_perp = BA; BA_perp.rotate(M_PI_2,axis);
 | 
|---|
| 603 |   double u = BA_perp.dot(XA)/BA_perp.dot(PA);
 | 
|---|
| 604 |   if (u<0.0 || u>1.0) return shape_infinity;
 | 
|---|
| 605 | 
 | 
|---|
| 606 |   SCVector3 PA_perp = PA; PA_perp.rotate(M_PI_2,axis);
 | 
|---|
| 607 |   double w = PA_perp.dot(XA)/PA_perp.dot(BA);
 | 
|---|
| 608 |   if (w<0.0 || w>1.0) return shape_infinity;
 | 
|---|
| 609 | 
 | 
|---|
| 610 |   double uw = u+w;
 | 
|---|
| 611 |   if (uw<0.0 || uw>1.0) return shape_infinity;
 | 
|---|
| 612 | 
 | 
|---|
| 613 |   if (rPX < radius()) {
 | 
|---|
| 614 |       if (grad) {
 | 
|---|
| 615 |           SCVector3 unit(PX);
 | 
|---|
| 616 |           unit.normalize();
 | 
|---|
| 617 |           *grad = unit;
 | 
|---|
| 618 |         }
 | 
|---|
| 619 |       return radius() - rPX;
 | 
|---|
| 620 |     }
 | 
|---|
| 621 | 
 | 
|---|
| 622 |   return -1;
 | 
|---|
| 623 | }
 | 
|---|
| 624 | 
 | 
|---|
| 625 | int
 | 
|---|
| 626 | NonreentrantUncappedTorusHoleShape::gradient_implemented() const
 | 
|---|
| 627 | {
 | 
|---|
| 628 |   return 1;
 | 
|---|
| 629 | }
 | 
|---|
| 630 | 
 | 
|---|
| 631 | /////////////////////////////////////////////////////////////////////
 | 
|---|
| 632 | // Uncapped5SphereExclusionShape
 | 
|---|
| 633 | 
 | 
|---|
| 634 | static ClassDesc Uncapped5SphereExclusionShape_cd(
 | 
|---|
| 635 |   typeid(Uncapped5SphereExclusionShape),"Uncapped5SphereExclusionShape",1,"public Shape",
 | 
|---|
| 636 |   0, 0, 0);
 | 
|---|
| 637 | 
 | 
|---|
| 638 | Uncapped5SphereExclusionShape*
 | 
|---|
| 639 | Uncapped5SphereExclusionShape::
 | 
|---|
| 640 |   newUncapped5SphereExclusionShape(double r,
 | 
|---|
| 641 |                                    const SphereShape& s1,
 | 
|---|
| 642 |                                    const SphereShape& s2,
 | 
|---|
| 643 |                                    const SphereShape& s3)
 | 
|---|
| 644 | {
 | 
|---|
| 645 |   Uncapped5SphereExclusionShape* s =
 | 
|---|
| 646 |     new Uncapped5SphereExclusionShape(r,s1,s2,s3);
 | 
|---|
| 647 |   if (s->solution_exists()) {
 | 
|---|
| 648 |       return s;
 | 
|---|
| 649 |     }
 | 
|---|
| 650 |   delete s;
 | 
|---|
| 651 |   return 0;
 | 
|---|
| 652 | }
 | 
|---|
| 653 | static int verbose = 0;
 | 
|---|
| 654 | Uncapped5SphereExclusionShape::
 | 
|---|
| 655 |   Uncapped5SphereExclusionShape(double radius,
 | 
|---|
| 656 |                                 const SphereShape&s1,
 | 
|---|
| 657 |                                 const SphereShape&s2,
 | 
|---|
| 658 |                                 const SphereShape&s3):
 | 
|---|
| 659 |   _s1(s1),
 | 
|---|
| 660 |   _s2(s2),
 | 
|---|
| 661 |   _s3(s3),
 | 
|---|
| 662 |   _r(radius)
 | 
|---|
| 663 | {
 | 
|---|
| 664 |   double rAr = rA() + r();
 | 
|---|
| 665 |   double rAr2 = rAr*rAr;
 | 
|---|
| 666 |   double rBr = rB() + r();
 | 
|---|
| 667 |   double rBr2 = rBr*rBr;
 | 
|---|
| 668 |   double rCr = rC() + r();
 | 
|---|
| 669 |   double rCr2 = rCr*rCr;
 | 
|---|
| 670 |   double A2 = A().dot(A());
 | 
|---|
| 671 |   double B2 = B().dot(B());
 | 
|---|
| 672 |   double C2 = C().dot(C());
 | 
|---|
| 673 |   SCVector3 BA = B()-A();
 | 
|---|
| 674 |   double DdotBA = 0.5*(rAr2 - rBr2 + B2 - A2);
 | 
|---|
| 675 |   double DAdotBA = DdotBA - A().dot(BA);
 | 
|---|
| 676 |   double BA2 = BA.dot(BA);
 | 
|---|
| 677 |   SCVector3 CA = C() - A();
 | 
|---|
| 678 |   double CAdotBA = CA.dot(BA);
 | 
|---|
| 679 |   SCVector3 CA_perpBA = CA - (CAdotBA/BA2)*BA;
 | 
|---|
| 680 |   double CA_perpBA2 = CA_perpBA.dot(CA_perpBA);
 | 
|---|
| 681 |   if (CA_perpBA2 < 1.0e-23) {
 | 
|---|
| 682 |       _solution_exists = 0;
 | 
|---|
| 683 |       return;
 | 
|---|
| 684 |     }
 | 
|---|
| 685 |   double DdotCA_perpBA = 0.5*(rAr2 - rCr2 + C2 - A2)
 | 
|---|
| 686 |     - CAdotBA*DdotBA/BA2;
 | 
|---|
| 687 |   double DAdotCA_perpBA = DdotCA_perpBA - A().dot(CA_perpBA);
 | 
|---|
| 688 |   double rAt2 = DAdotBA*DAdotBA/BA2 + DAdotCA_perpBA*DAdotCA_perpBA/CA_perpBA2;
 | 
|---|
| 689 |   double h2 = rAr2 - rAt2;
 | 
|---|
| 690 |   if (h2 <= 0.0) {
 | 
|---|
| 691 |       _solution_exists = 0;
 | 
|---|
| 692 |       return;
 | 
|---|
| 693 |     }
 | 
|---|
| 694 |   _solution_exists = 1;
 | 
|---|
| 695 | 
 | 
|---|
| 696 |   double h = sqrt(h2);
 | 
|---|
| 697 |   if (h<r()) {
 | 
|---|
| 698 |       _reentrant = 1;
 | 
|---|
| 699 |       //ExEnv::outn() << "WARNING: throwing out reentrant shape" << endl;
 | 
|---|
| 700 |       //_solution_exists = 0;
 | 
|---|
| 701 |       //return;
 | 
|---|
| 702 |     }
 | 
|---|
| 703 |   else {
 | 
|---|
| 704 |       _reentrant = 0;
 | 
|---|
| 705 |       //ExEnv::outn() << "WARNING: throwing out nonreentrant shape" << endl;
 | 
|---|
| 706 |       //_solution_exists = 0;
 | 
|---|
| 707 |       //return;
 | 
|---|
| 708 |     }
 | 
|---|
| 709 | 
 | 
|---|
| 710 |   // The projection of D into the ABC plane
 | 
|---|
| 711 |   SCVector3 MA = (DAdotBA/BA2)*BA + (DAdotCA_perpBA/CA_perpBA2)*CA_perpBA;
 | 
|---|
| 712 |   M = MA + A();
 | 
|---|
| 713 |   SCVector3 BAxCA = BA.cross(CA);
 | 
|---|
| 714 |   D[0] = M + h * BAxCA * ( 1.0/BAxCA.norm() );
 | 
|---|
| 715 |   D[1] = M - h * BAxCA * ( 1.0/BAxCA.norm() );
 | 
|---|
| 716 | 
 | 
|---|
| 717 |   // The projection of D into the ABC plane, M, does not lie in the
 | 
|---|
| 718 |   // ABC triangle, then this shape must be treated carefully and it
 | 
|---|
| 719 |   // will be designated as folded.
 | 
|---|
| 720 |   SCVector3 MC = M - C();
 | 
|---|
| 721 |   if (!(is_in_unbounded_triangle(MA, BA, CA)
 | 
|---|
| 722 |         &&is_in_unbounded_triangle(MC, B() - C(), A() - C()))) {
 | 
|---|
| 723 |       _folded = 1;
 | 
|---|
| 724 |       SCVector3 MB = M - B();
 | 
|---|
| 725 |       double MA2 = MA.dot(MA);
 | 
|---|
| 726 |       double MB2 = MB.dot(MB);
 | 
|---|
| 727 |       double MC2 = MC.dot(MC);
 | 
|---|
| 728 |       if (MA2 < MB2) {
 | 
|---|
| 729 |           F1 = A();
 | 
|---|
| 730 |           if (MB2 < MC2) F2 = B();
 | 
|---|
| 731 |           else F2 = C();
 | 
|---|
| 732 |         }
 | 
|---|
| 733 |       else {
 | 
|---|
| 734 |           F1 = B();
 | 
|---|
| 735 |           if (MA2 < MC2) F2 = A();
 | 
|---|
| 736 |           else F2 = C();
 | 
|---|
| 737 |         }
 | 
|---|
| 738 |     }
 | 
|---|
| 739 |   else _folded = 0;
 | 
|---|
| 740 |   
 | 
|---|
| 741 |   //ExEnv::outn() << scprintf("r = %14.8f, h = %14.8f\n",r(),h);
 | 
|---|
| 742 |   //M.print();
 | 
|---|
| 743 |   //D[0].print();
 | 
|---|
| 744 |   //D[1].print();
 | 
|---|
| 745 |   //A().print();
 | 
|---|
| 746 |   //B().print();
 | 
|---|
| 747 |   //C().print();
 | 
|---|
| 748 | 
 | 
|---|
| 749 |   int i;
 | 
|---|
| 750 |   for (i=0; i<2; i++) {
 | 
|---|
| 751 |       SCVector3 AD = A() - D[i];
 | 
|---|
| 752 |       SCVector3 BD = B() - D[i];
 | 
|---|
| 753 |       SCVector3 CD = C() - D[i];
 | 
|---|
| 754 |       BDxCD[i] = BD.cross(CD);
 | 
|---|
| 755 |       BDxCDdotAD[i] = BDxCD[i].dot(AD);
 | 
|---|
| 756 |       CDxAD[i] = CD.cross(AD);
 | 
|---|
| 757 |       CDxADdotBD[i] = CDxAD[i].dot(BD);
 | 
|---|
| 758 |       ADxBD[i] = AD.cross(BD);
 | 
|---|
| 759 |       ADxBDdotCD[i] = ADxBD[i].dot(CD);
 | 
|---|
| 760 |     }
 | 
|---|
| 761 | 
 | 
|---|
| 762 |   for (i=0; i<2; i++) MD[i] = M - D[i];
 | 
|---|
| 763 | 
 | 
|---|
| 764 |   // reentrant surfaces need a whole bunch more to be able to compute
 | 
|---|
| 765 |   // the distance to the surface
 | 
|---|
| 766 |   if (_reentrant) {
 | 
|---|
| 767 |       int i;
 | 
|---|
| 768 |       double rMD = MD[0].norm(); // this is the same as rMD[1]
 | 
|---|
| 769 |       theta_intersect = M_PI_2 - asin(rMD/r());
 | 
|---|
| 770 |       r_intersect = r() * sin(theta_intersect);
 | 
|---|
| 771 | 
 | 
|---|
| 772 |       {
 | 
|---|
| 773 |         // Does the circle of intersection intersect with BA?
 | 
|---|
| 774 |         SCVector3 MA = M - A();
 | 
|---|
| 775 |         SCVector3 uBA = B() - A(); uBA.normalize();
 | 
|---|
| 776 |         SCVector3 XA = uBA * MA.dot(uBA);
 | 
|---|
| 777 |         SCVector3 XM = XA - MA;
 | 
|---|
| 778 |         double rXM2 = XM.dot(XM);
 | 
|---|
| 779 |         double d_intersect_from_x2 = r_intersect*r_intersect - rXM2;
 | 
|---|
| 780 |         if (d_intersect_from_x2 > 0.0) {
 | 
|---|
| 781 |             _intersects_AB = 1;
 | 
|---|
| 782 |             double tmp = sqrt(d_intersect_from_x2);
 | 
|---|
| 783 |             double d_intersect_from_x[2];
 | 
|---|
| 784 |             d_intersect_from_x[0] = tmp;
 | 
|---|
| 785 |             d_intersect_from_x[1] = -tmp;
 | 
|---|
| 786 |             for (i=0; i<2; i++) {
 | 
|---|
| 787 |                 for (int j=0; j<2; j++) {
 | 
|---|
| 788 |                     IABD[i][j] = XM + d_intersect_from_x[j]*uBA + MD[i];
 | 
|---|
| 789 |                   }
 | 
|---|
| 790 |               }
 | 
|---|
| 791 |           }
 | 
|---|
| 792 |         else _intersects_AB = 0;
 | 
|---|
| 793 |       }
 | 
|---|
| 794 | 
 | 
|---|
| 795 |       {
 | 
|---|
| 796 |         // Does the circle of intersection intersect with BC?
 | 
|---|
| 797 |         SCVector3 MC = M - C();
 | 
|---|
| 798 |         SCVector3 uBC = B() - C(); uBC.normalize();
 | 
|---|
| 799 |         SCVector3 XC = uBC * MC.dot(uBC);
 | 
|---|
| 800 |         SCVector3 XM = XC - MC;
 | 
|---|
| 801 |         double rXM2 = XM.dot(XM);
 | 
|---|
| 802 |         double d_intersect_from_x2 = r_intersect*r_intersect - rXM2;
 | 
|---|
| 803 |         if (d_intersect_from_x2 > 0.0) {
 | 
|---|
| 804 |             _intersects_BC = 1;
 | 
|---|
| 805 |             double tmp = sqrt(d_intersect_from_x2);
 | 
|---|
| 806 |             double d_intersect_from_x[2];
 | 
|---|
| 807 |             d_intersect_from_x[0] = tmp;
 | 
|---|
| 808 |             d_intersect_from_x[1] = -tmp;
 | 
|---|
| 809 |             for (i=0; i<2; i++) {
 | 
|---|
| 810 |                 for (int j=0; j<2; j++) {
 | 
|---|
| 811 |                     IBCD[i][j] = XM + d_intersect_from_x[j]*uBC + MD[i];
 | 
|---|
| 812 |                   }
 | 
|---|
| 813 |               }
 | 
|---|
| 814 |           }
 | 
|---|
| 815 |         else _intersects_BC = 0;
 | 
|---|
| 816 |       }
 | 
|---|
| 817 | 
 | 
|---|
| 818 |       {
 | 
|---|
| 819 |         // Does the circle of intersection intersect with CA?
 | 
|---|
| 820 |         SCVector3 MA = M - A();
 | 
|---|
| 821 |         SCVector3 uCA = C() - A(); uCA.normalize();
 | 
|---|
| 822 |         SCVector3 XA = uCA * MA.dot(uCA);
 | 
|---|
| 823 |         SCVector3 XM = XA - MA;
 | 
|---|
| 824 |         double rXM2 = XM.dot(XM);
 | 
|---|
| 825 |         double d_intersect_from_x2 = r_intersect*r_intersect - rXM2;
 | 
|---|
| 826 |         if (d_intersect_from_x2 > 0.0) {
 | 
|---|
| 827 |             _intersects_CA = 1;
 | 
|---|
| 828 |             double tmp = sqrt(d_intersect_from_x2);
 | 
|---|
| 829 |             double d_intersect_from_x[2];
 | 
|---|
| 830 |             d_intersect_from_x[0] = tmp;
 | 
|---|
| 831 |             d_intersect_from_x[1] = -tmp;
 | 
|---|
| 832 |             for (i=0; i<2; i++) {
 | 
|---|
| 833 |                 for (int j=0; j<2; j++) {
 | 
|---|
| 834 |                     ICAD[i][j] = XM + d_intersect_from_x[j]*uCA + MD[i];
 | 
|---|
| 835 |                   }
 | 
|---|
| 836 |               }
 | 
|---|
| 837 |           }
 | 
|---|
| 838 |         else _intersects_CA = 0;
 | 
|---|
| 839 |       }
 | 
|---|
| 840 | 
 | 
|---|
| 841 |     }
 | 
|---|
| 842 | 
 | 
|---|
| 843 | #if 0 // test code
 | 
|---|
| 844 |   ExEnv::outn() << "Uncapped5SphereExclusionShape: running some tests" << endl;
 | 
|---|
| 845 |   verbose = 1;
 | 
|---|
| 846 | 
 | 
|---|
| 847 |   FILE* testout = fopen("testout.vect", "w");
 | 
|---|
| 848 | 
 | 
|---|
| 849 |   const double scalefactor_inc = 0.05;
 | 
|---|
| 850 |   const double start = -10.0;
 | 
|---|
| 851 |   const double end = 10.0;
 | 
|---|
| 852 | 
 | 
|---|
| 853 |   SCVector3 middle = (1.0/3.0)*(A()+B()+C());
 | 
|---|
| 854 | 
 | 
|---|
| 855 |   int nlines = 1;
 | 
|---|
| 856 |   int nvert = (int) ( (end-start) / scalefactor_inc);
 | 
|---|
| 857 |   int ncolor = nvert;
 | 
|---|
| 858 | 
 | 
|---|
| 859 |   fprintf(testout, "VECT\n%d %d %d\n", nlines, nvert, ncolor);
 | 
|---|
| 860 | 
 | 
|---|
| 861 |   fprintf(testout, "%d\n", nvert);
 | 
|---|
| 862 |   fprintf(testout, "%d\n", ncolor);
 | 
|---|
| 863 | 
 | 
|---|
| 864 |   double scalefactor = start;
 | 
|---|
| 865 |   for (int ii = 0; ii<nvert; ii++) {
 | 
|---|
| 866 |       SCVector3 position = (D[0] - middle) * scalefactor + middle;
 | 
|---|
| 867 |       double d = distance_to_surface(position);
 | 
|---|
| 868 |       fprintf(testout, "%f %f %f # value = %f\n",
 | 
|---|
| 869 |               position[0], position[1], position[2], d);
 | 
|---|
| 870 |       scalefactor += scalefactor_inc;
 | 
|---|
| 871 |     }
 | 
|---|
| 872 |   scalefactor = start;
 | 
|---|
| 873 |   for (ii = 0; ii<nvert; ii++) {
 | 
|---|
| 874 |       SCVector3 position = (D[0] - middle) * scalefactor + middle;
 | 
|---|
| 875 |       double d = distance_to_surface(position);
 | 
|---|
| 876 |       ExEnv::outn() << scprintf("d = %f\n", d);
 | 
|---|
| 877 |       if (d<0.0) fprintf(testout,"1.0 0.0 0.0 0.5\n");
 | 
|---|
| 878 |       else fprintf(testout,"0.0 0.0 1.0 0.5\n");
 | 
|---|
| 879 |       scalefactor += scalefactor_inc;
 | 
|---|
| 880 |     }
 | 
|---|
| 881 | 
 | 
|---|
| 882 |   fclose(testout);
 | 
|---|
| 883 |   ExEnv::outn() << "testout.vect written" << endl;
 | 
|---|
| 884 | 
 | 
|---|
| 885 |   verbose = 0;
 | 
|---|
| 886 | #endif // test code
 | 
|---|
| 887 |   
 | 
|---|
| 888 | }
 | 
|---|
| 889 | int
 | 
|---|
| 890 | Uncapped5SphereExclusionShape::is_outside(const SCVector3&X) const
 | 
|---|
| 891 | {
 | 
|---|
| 892 |   SCVector3 Xv(X);
 | 
|---|
| 893 | 
 | 
|---|
| 894 |   if (verbose) ExEnv::outn() << scprintf("point %14.8f %14.8f %14.8f\n",X(0),X(1),X(2));
 | 
|---|
| 895 | 
 | 
|---|
| 896 |   // The folded case isn't handled correctly here, so use
 | 
|---|
| 897 |   // the less efficient distance_to_surface routine.
 | 
|---|
| 898 |   if (_folded) {
 | 
|---|
| 899 |       return distance_to_surface(X) >= 0.0;
 | 
|---|
| 900 |     }
 | 
|---|
| 901 | 
 | 
|---|
| 902 |   for (int i=0; i<2; i++) {
 | 
|---|
| 903 |       SCVector3 XD = Xv - D[i];
 | 
|---|
| 904 |       double rXD = XD.norm();
 | 
|---|
| 905 |       if (rXD <= r()) return 1;
 | 
|---|
| 906 |       double u = BDxCD[i].dot(XD)/BDxCDdotAD[i];
 | 
|---|
| 907 |       if (u <= 0.0) return 1;
 | 
|---|
| 908 |       double v = CDxAD[i].dot(XD)/CDxADdotBD[i];
 | 
|---|
| 909 |       if (v <= 0.0) return 1;
 | 
|---|
| 910 |       double w = ADxBD[i].dot(XD)/ADxBDdotCD[i];
 | 
|---|
| 911 |       if (w <= 0.0) return 1;
 | 
|---|
| 912 |     }
 | 
|---|
| 913 | 
 | 
|---|
| 914 |   if (verbose) ExEnv::outn() << "is_inside" << endl;
 | 
|---|
| 915 | 
 | 
|---|
| 916 |   return 0;
 | 
|---|
| 917 | }
 | 
|---|
| 918 | static int
 | 
|---|
| 919 | is_contained_in_unbounded_pyramid(SCVector3 XD,
 | 
|---|
| 920 |                                   SCVector3 AD,
 | 
|---|
| 921 |                                   SCVector3 BD,
 | 
|---|
| 922 |                                   SCVector3 CD)
 | 
|---|
| 923 | {
 | 
|---|
| 924 |   SCVector3 BDxCD = BD.cross(CD);
 | 
|---|
| 925 |   SCVector3 CDxAD = CD.cross(AD);
 | 
|---|
| 926 |   SCVector3 ADxBD = AD.cross(BD);
 | 
|---|
| 927 |   double u = BDxCD.dot(XD)/BDxCD.dot(AD);
 | 
|---|
| 928 |   if (u <= 0.0) return 0;
 | 
|---|
| 929 |   double v = CDxAD.dot(XD)/CDxAD.dot(BD);
 | 
|---|
| 930 |   if (v <= 0.0) return 0;
 | 
|---|
| 931 |   double w = ADxBD.dot(XD)/ADxBD.dot(CD);
 | 
|---|
| 932 |   if (w <= 0.0) return 0;
 | 
|---|
| 933 |   return 1;
 | 
|---|
| 934 | }
 | 
|---|
| 935 | double
 | 
|---|
| 936 | Uncapped5SphereExclusionShape::
 | 
|---|
| 937 |   distance_to_surface(const SCVector3&X,SCVector3*grad) const
 | 
|---|
| 938 | {
 | 
|---|
| 939 |   SCVector3 Xv(X);
 | 
|---|
| 940 | 
 | 
|---|
| 941 |   // Find out if I'm on the D[0] side or the D[1] side of the ABC plane.
 | 
|---|
| 942 |   int side;
 | 
|---|
| 943 |   SCVector3 XM = Xv - M;
 | 
|---|
| 944 |   if (MD[0].dot(XM) > 0.0) side = 1;
 | 
|---|
| 945 |   else side = 0;
 | 
|---|
| 946 | 
 | 
|---|
| 947 |   if (verbose) {
 | 
|---|
| 948 |       ExEnv::outn() << scprintf("distance_to_surface: folded = %d, side = %d\n",
 | 
|---|
| 949 |                        _folded, side);
 | 
|---|
| 950 |       ExEnv::outn() << "XM = "; XM.print();
 | 
|---|
| 951 |       ExEnv::outn() << "MD[0] = "; MD[0].print();
 | 
|---|
| 952 |       ExEnv::outn() << "MD[0].dot(XM) = " << MD[0].dot(XM) << endl;
 | 
|---|
| 953 |     }
 | 
|---|
| 954 | 
 | 
|---|
| 955 |   SCVector3 XD = Xv - D[side];
 | 
|---|
| 956 |   double u = BDxCD[side].dot(XD)/BDxCDdotAD[side];
 | 
|---|
| 957 |   if (verbose) ExEnv::outn() << scprintf("u = %14.8f\n", u);
 | 
|---|
| 958 |   if (u <= 0.0) return shape_infinity;
 | 
|---|
| 959 |   double v = CDxAD[side].dot(XD)/CDxADdotBD[side];
 | 
|---|
| 960 |   if (verbose) ExEnv::outn() << scprintf("v = %14.8f\n", v);
 | 
|---|
| 961 |   if (v <= 0.0) return shape_infinity;
 | 
|---|
| 962 |   double w = ADxBD[side].dot(XD)/ADxBDdotCD[side];
 | 
|---|
| 963 |   if (verbose) ExEnv::outn() << scprintf("w = %14.8f\n", w);
 | 
|---|
| 964 |   if (w <= 0.0) return shape_infinity;
 | 
|---|
| 965 |   double rXD = XD.norm();
 | 
|---|
| 966 |   if (verbose) ExEnv::outn() << scprintf("r() - rXD = %14.8f\n", r() - rXD);
 | 
|---|
| 967 |   if (rXD <= r()) {
 | 
|---|
| 968 |       if (!_reentrant) return r() - rXD;
 | 
|---|
| 969 |       // this shape is reentrant
 | 
|---|
| 970 |       // make sure that we're on the right side
 | 
|---|
| 971 |       if ((side == 1) || (u + v + w <= 1.0)) {
 | 
|---|
| 972 |           // see if we're outside the cone that intersects
 | 
|---|
| 973 |           // the opposite sphere
 | 
|---|
| 974 |           double angle = acos(fabs(XD.dot(MD[side]))
 | 
|---|
| 975 |                               /(XD.norm()*MD[side].norm()));
 | 
|---|
| 976 |           if (angle >= theta_intersect) {
 | 
|---|
| 977 |               if (grad) {
 | 
|---|
| 978 |                   *grad = (-1.0/rXD)*XD;
 | 
|---|
| 979 |                 }
 | 
|---|
| 980 |               return r() - rXD;
 | 
|---|
| 981 |             }
 | 
|---|
| 982 |           if (_intersects_AB
 | 
|---|
| 983 |               &&is_contained_in_unbounded_pyramid(XD,
 | 
|---|
| 984 |                                                   MD[side],
 | 
|---|
| 985 |                                                   IABD[side][0],
 | 
|---|
| 986 |                                                   IABD[side][1])) {
 | 
|---|
| 987 |               //ExEnv::outn() << scprintf("XD: "); XD.print();
 | 
|---|
| 988 |               //ExEnv::outn() << scprintf("MD[%d]: ",i); MD[i].print();
 | 
|---|
| 989 |               //ExEnv::outn() << scprintf("IABD[%d][0]: ",i); IABD[i][0].print();
 | 
|---|
| 990 |               //ExEnv::outn() << scprintf("IABD[%d][1]: ",i); IABD[i][1].print();
 | 
|---|
| 991 |               return closest_distance(XD,(SCVector3*)IABD[side],2,grad);
 | 
|---|
| 992 |             }
 | 
|---|
| 993 |           if (_intersects_BC
 | 
|---|
| 994 |               &&is_contained_in_unbounded_pyramid(XD,
 | 
|---|
| 995 |                                                   MD[side],
 | 
|---|
| 996 |                                                   IBCD[side][0],
 | 
|---|
| 997 |                                                   IBCD[side][1])) {
 | 
|---|
| 998 |               return closest_distance(XD,(SCVector3*)IBCD[side],2,grad);
 | 
|---|
| 999 |             }
 | 
|---|
| 1000 |           if (_intersects_CA
 | 
|---|
| 1001 |               &&is_contained_in_unbounded_pyramid(XD,
 | 
|---|
| 1002 |                                                   MD[side],
 | 
|---|
| 1003 |                                                   ICAD[side][0],
 | 
|---|
| 1004 |                                                   ICAD[side][1])) {
 | 
|---|
| 1005 |               return closest_distance(XD,(SCVector3*)ICAD[side],2,grad);
 | 
|---|
| 1006 |             }
 | 
|---|
| 1007 |           // at this point we are closest to the ring formed
 | 
|---|
| 1008 |           // by the intersection of the two probe spheres
 | 
|---|
| 1009 |           double distance_to_plane;
 | 
|---|
| 1010 |           double distance_to_ring_in_plane;
 | 
|---|
| 1011 |           double MDnorm = MD[side].norm();
 | 
|---|
| 1012 |           SCVector3 XM = XD - MD[side];
 | 
|---|
| 1013 |           SCVector3 XM_in_plane;
 | 
|---|
| 1014 |           if (MDnorm<1.0e-16) {
 | 
|---|
| 1015 |               distance_to_plane = 0.0;
 | 
|---|
| 1016 |               XM_in_plane = XD;
 | 
|---|
| 1017 |             }
 | 
|---|
| 1018 |           else {
 | 
|---|
| 1019 |               distance_to_plane = XM.dot(MD[side])/MDnorm;
 | 
|---|
| 1020 |               XM_in_plane = XM - (distance_to_plane/MDnorm)*MD[side];
 | 
|---|
| 1021 |             }
 | 
|---|
| 1022 |           if (grad) {
 | 
|---|
| 1023 |               double XM_in_plane_norm = XM_in_plane.norm();
 | 
|---|
| 1024 |               if (XM_in_plane_norm < 1.e-8) {
 | 
|---|
| 1025 |                   // the grad points along MD
 | 
|---|
| 1026 |                   double scale = - distance_to_plane
 | 
|---|
| 1027 |                          /(MDnorm*sqrt(r_intersect*r_intersect
 | 
|---|
| 1028 |                                        + distance_to_plane*distance_to_plane));
 | 
|---|
| 1029 |                   *grad = MD[side] * scale;
 | 
|---|
| 1030 |                 }
 | 
|---|
| 1031 |               else {
 | 
|---|
| 1032 |                   SCVector3 point_on_ring;
 | 
|---|
| 1033 |                   point_on_ring = XM_in_plane
 | 
|---|
| 1034 |                                 * (r_intersect/XM_in_plane_norm) + M;
 | 
|---|
| 1035 |                   SCVector3 gradv = Xv - point_on_ring;
 | 
|---|
| 1036 |                   gradv.normalize();
 | 
|---|
| 1037 |                   *grad = gradv;
 | 
|---|
| 1038 |                 }
 | 
|---|
| 1039 |             }
 | 
|---|
| 1040 |           distance_to_ring_in_plane =
 | 
|---|
| 1041 |                          r_intersect - sqrt(XM_in_plane.dot(XM_in_plane));
 | 
|---|
| 1042 |           return sqrt(distance_to_ring_in_plane*distance_to_ring_in_plane
 | 
|---|
| 1043 |                       +distance_to_plane*distance_to_plane);
 | 
|---|
| 1044 |         }
 | 
|---|
| 1045 |     }
 | 
|---|
| 1046 | 
 | 
|---|
| 1047 |   if (verbose) ExEnv::outn() << "returning -1.0" << endl;
 | 
|---|
| 1048 |   return -1.0;
 | 
|---|
| 1049 | }
 | 
|---|
| 1050 | 
 | 
|---|
| 1051 | void
 | 
|---|
| 1052 | Uncapped5SphereExclusionShape::boundingbox(double valuemin, double valuemax,
 | 
|---|
| 1053 |                                            SCVector3& p1,
 | 
|---|
| 1054 |                                            SCVector3& p2)
 | 
|---|
| 1055 | {
 | 
|---|
| 1056 |   SCVector3 p11;
 | 
|---|
| 1057 |   SCVector3 p12;
 | 
|---|
| 1058 |   SCVector3 p21;
 | 
|---|
| 1059 |   SCVector3 p22;
 | 
|---|
| 1060 |   SCVector3 p31;
 | 
|---|
| 1061 |   SCVector3 p32;
 | 
|---|
| 1062 | 
 | 
|---|
| 1063 |   _s1.boundingbox(valuemin,valuemax,p11,p12);
 | 
|---|
| 1064 |   _s2.boundingbox(valuemin,valuemax,p21,p22);
 | 
|---|
| 1065 |   _s3.boundingbox(valuemin,valuemax,p31,p32);
 | 
|---|
| 1066 | 
 | 
|---|
| 1067 |   int i;
 | 
|---|
| 1068 |   for (i=0; i<3; i++) {
 | 
|---|
| 1069 |       if (p11[i] < p21[i]) p1[i] = p11[i];
 | 
|---|
| 1070 |       else p1[i] = p21[i];
 | 
|---|
| 1071 |       if (p31[i] < p1[i]) p1[i] = p31[i];
 | 
|---|
| 1072 |       if (p12[i] > p22[i]) p2[i] = p12[i];
 | 
|---|
| 1073 |       else p2[i] = p22[i];
 | 
|---|
| 1074 |       if (p32[i] > p2[i]) p2[i] = p32[i];
 | 
|---|
| 1075 |     }
 | 
|---|
| 1076 | }
 | 
|---|
| 1077 | 
 | 
|---|
| 1078 | int
 | 
|---|
| 1079 | Uncapped5SphereExclusionShape::gradient_implemented() const
 | 
|---|
| 1080 | {
 | 
|---|
| 1081 |   return 1;
 | 
|---|
| 1082 | }
 | 
|---|
| 1083 | 
 | 
|---|
| 1084 | /////////////////////////////////////////////////////////////////////
 | 
|---|
| 1085 | // Unionshape
 | 
|---|
| 1086 | 
 | 
|---|
| 1087 | static ClassDesc UnionShape_cd(
 | 
|---|
| 1088 |   typeid(UnionShape),"UnionShape",1,"public Shape",
 | 
|---|
| 1089 |   0, 0, 0);
 | 
|---|
| 1090 | 
 | 
|---|
| 1091 | UnionShape::UnionShape()
 | 
|---|
| 1092 | {
 | 
|---|
| 1093 | }
 | 
|---|
| 1094 | 
 | 
|---|
| 1095 | UnionShape::~UnionShape()
 | 
|---|
| 1096 | {
 | 
|---|
| 1097 | }
 | 
|---|
| 1098 | 
 | 
|---|
| 1099 | void
 | 
|---|
| 1100 | UnionShape::add_shape(Ref<Shape> s)
 | 
|---|
| 1101 | {
 | 
|---|
| 1102 |   _shapes.insert(s);
 | 
|---|
| 1103 | }
 | 
|---|
| 1104 | 
 | 
|---|
| 1105 | // NOTE: this underestimates the distance to the surface when
 | 
|---|
| 1106 | //inside the surface
 | 
|---|
| 1107 | double
 | 
|---|
| 1108 | UnionShape::distance_to_surface(const SCVector3&p,SCVector3* grad) const
 | 
|---|
| 1109 | {
 | 
|---|
| 1110 |   std::set<Ref<Shape> >::const_iterator imin = _shapes.begin();
 | 
|---|
| 1111 |   if (imin == _shapes.end()) return 0.0;
 | 
|---|
| 1112 |   double min = (*imin)->distance_to_surface(p);
 | 
|---|
| 1113 |   for (std::set<Ref<Shape> >::const_iterator i=imin; i!=_shapes.end(); i++) {
 | 
|---|
| 1114 |       double d = (*i)->distance_to_surface(p);
 | 
|---|
| 1115 |       if (min <= 0.0) {
 | 
|---|
| 1116 |           if (d < 0.0 && d > min) { min = d; imin = i; }
 | 
|---|
| 1117 |         }
 | 
|---|
| 1118 |       else {
 | 
|---|
| 1119 |           if (min > d) { min = d; imin = i; }
 | 
|---|
| 1120 |         }
 | 
|---|
| 1121 |     }
 | 
|---|
| 1122 | 
 | 
|---|
| 1123 |   if (grad) {
 | 
|---|
| 1124 |       (*imin)->distance_to_surface(p,grad);
 | 
|---|
| 1125 |     }
 | 
|---|
| 1126 |   return min;
 | 
|---|
| 1127 | }
 | 
|---|
| 1128 | 
 | 
|---|
| 1129 | int
 | 
|---|
| 1130 | UnionShape::is_outside(const SCVector3&p) const
 | 
|---|
| 1131 | {
 | 
|---|
| 1132 |   for (std::set<Ref<Shape> >::const_iterator i=_shapes.begin();
 | 
|---|
| 1133 |        i!=_shapes.end(); i++) {
 | 
|---|
| 1134 |       if (!(*i)->is_outside(p)) return 0;
 | 
|---|
| 1135 |     }
 | 
|---|
| 1136 | 
 | 
|---|
| 1137 |   return 1;
 | 
|---|
| 1138 | }
 | 
|---|
| 1139 | 
 | 
|---|
| 1140 | void
 | 
|---|
| 1141 | UnionShape::boundingbox(double valuemin, double valuemax,
 | 
|---|
| 1142 |                         SCVector3& p1,
 | 
|---|
| 1143 |                         SCVector3& p2)
 | 
|---|
| 1144 | {
 | 
|---|
| 1145 |   if (_shapes.begin() == _shapes.end()) {
 | 
|---|
| 1146 |       for (int i=0; i<3; i++) p1[i] = p2[i] = 0.0;
 | 
|---|
| 1147 |       return;
 | 
|---|
| 1148 |     }
 | 
|---|
| 1149 |   
 | 
|---|
| 1150 |   SCVector3 pt1;
 | 
|---|
| 1151 |   SCVector3 pt2;
 | 
|---|
| 1152 |   
 | 
|---|
| 1153 |   std::set<Ref<Shape> >::iterator j = _shapes.begin();
 | 
|---|
| 1154 |   int i;
 | 
|---|
| 1155 |   (*j)->boundingbox(valuemin,valuemax,p1,p2);
 | 
|---|
| 1156 |   for (j++; j!=_shapes.end(); j++) {
 | 
|---|
| 1157 |       (*j)->boundingbox(valuemin,valuemax,pt1,pt2);
 | 
|---|
| 1158 |       for (i=0; i<3; i++) {
 | 
|---|
| 1159 |           if (pt1[i] < p1[i]) p1[i] = pt1[i];
 | 
|---|
| 1160 |           if (pt2[i] > p2[i]) p2[i] = pt2[i];
 | 
|---|
| 1161 |         }
 | 
|---|
| 1162 |     }
 | 
|---|
| 1163 | }
 | 
|---|
| 1164 | 
 | 
|---|
| 1165 | int
 | 
|---|
| 1166 | UnionShape::gradient_implemented() const
 | 
|---|
| 1167 | {
 | 
|---|
| 1168 |   for (std::set<Ref<Shape> >::const_iterator j=_shapes.begin();
 | 
|---|
| 1169 |        j!=_shapes.end(); j++) {
 | 
|---|
| 1170 |       if (!(*j)->gradient_implemented()) return 0;
 | 
|---|
| 1171 |     }
 | 
|---|
| 1172 |   return 1;
 | 
|---|
| 1173 | }
 | 
|---|
| 1174 | 
 | 
|---|
| 1175 | /////////////////////////////////////////////////////////////////////////////
 | 
|---|
| 1176 | 
 | 
|---|
| 1177 | // Local Variables:
 | 
|---|
| 1178 | // mode: c++
 | 
|---|
| 1179 | // c-file-style: "CLJ"
 | 
|---|
| 1180 | // End:
 | 
|---|