source: src/boundary.cpp@ 02da9e

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 02da9e was 260b2f, checked in by Frederik Heber <heber@…>, 15 years ago

Cosmetical changes in Find_third_point_for_tesselation() and FinDistributionOfEllipsoids commented out in builder.

  • Property mode set to 100755
File size: 144.9 KB
Line 
1#include "boundary.hpp"
2#include "linkedcell.hpp"
3#include "molecules.hpp"
4#include <gsl/gsl_matrix.h>
5#include <gsl/gsl_linalg.h>
6#include <gsl/gsl_multimin.h>
7#include <gsl/gsl_permutation.h>
8
9#define DEBUG 1
10#define DoSingleStepOutput 1
11#define DoTecplotOutput 1
12#define DoRaster3DOutput 1
13#define DoVRMLOutput 1
14#define TecplotSuffix ".dat"
15#define Raster3DSuffix ".r3d"
16#define VRMLSUffix ".wrl"
17#define HULLEPSILON 1e-7
18
19// ======================================== Points on Boundary =================================
20
21BoundaryPointSet::BoundaryPointSet()
22{
23 LinesCount = 0;
24 Nr = -1;
25}
26;
27
28BoundaryPointSet::BoundaryPointSet(atom *Walker)
29{
30 node = Walker;
31 LinesCount = 0;
32 Nr = Walker->nr;
33}
34;
35
36BoundaryPointSet::~BoundaryPointSet()
37{
38 cout << Verbose(5) << "Erasing point nr. " << Nr << "." << endl;
39 if (!lines.empty())
40 cerr << "WARNING: Memory Leak! I " << *this << " am still connected to some lines." << endl;
41 node = NULL;
42}
43;
44
45void BoundaryPointSet::AddLine(class BoundaryLineSet *line)
46{
47 cout << Verbose(6) << "Adding " << *this << " to line " << *line << "."
48 << endl;
49 if (line->endpoints[0] == this)
50 {
51 lines.insert(LinePair(line->endpoints[1]->Nr, line));
52 }
53 else
54 {
55 lines.insert(LinePair(line->endpoints[0]->Nr, line));
56 }
57 LinesCount++;
58}
59;
60
61ostream &
62operator <<(ostream &ost, BoundaryPointSet &a)
63{
64 ost << "[" << a.Nr << "|" << a.node->Name << "]";
65 return ost;
66}
67;
68
69// ======================================== Lines on Boundary =================================
70
71BoundaryLineSet::BoundaryLineSet()
72{
73 for (int i = 0; i < 2; i++)
74 endpoints[i] = NULL;
75 TrianglesCount = 0;
76 Nr = -1;
77}
78;
79
80BoundaryLineSet::BoundaryLineSet(class BoundaryPointSet *Point[2], int number)
81{
82 // set number
83 Nr = number;
84 // set endpoints in ascending order
85 SetEndpointsOrdered(endpoints, Point[0], Point[1]);
86 // add this line to the hash maps of both endpoints
87 Point[0]->AddLine(this); //Taken out, to check whether we can avoid unwanted double adding.
88 Point[1]->AddLine(this); //
89 // clear triangles list
90 TrianglesCount = 0;
91 cout << Verbose(5) << "New Line with endpoints " << *this << "." << endl;
92}
93;
94
95BoundaryLineSet::~BoundaryLineSet()
96{
97 int Numbers[2];
98 Numbers[0] = endpoints[1]->Nr;
99 Numbers[1] = endpoints[0]->Nr;
100 for (int i = 0; i < 2; i++) {
101 cout << Verbose(5) << "Erasing Line Nr. " << Nr << " in boundary point " << *endpoints[i] << "." << endl;
102 endpoints[i]->lines.erase(Numbers[i]);
103 if (endpoints[i]->lines.empty()) {
104 cout << Verbose(5) << *endpoints[i] << " has no more lines it's attached to, erasing." << endl;
105 if (endpoints[i] != NULL) {
106 delete(endpoints[i]);
107 endpoints[i] = NULL;
108 } else
109 cerr << "ERROR: Endpoint " << i << " has already been free'd." << endl;
110 } else
111 cout << Verbose(5) << *endpoints[i] << " has still lines it's attached to." << endl;
112 }
113 if (!triangles.empty())
114 cerr << "WARNING: Memory Leak! I " << *this << " am still connected to some triangles." << endl;
115}
116;
117
118void
119BoundaryLineSet::AddTriangle(class BoundaryTriangleSet *triangle)
120{
121 cout << Verbose(6) << "Add " << triangle->Nr << " to line " << *this << "."
122 << endl;
123 triangles.insert(TrianglePair(triangle->Nr, triangle));
124 TrianglesCount++;
125}
126;
127
128ostream &
129operator <<(ostream &ost, BoundaryLineSet &a)
130{
131 ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << ","
132 << a.endpoints[1]->node->Name << "]";
133 return ost;
134}
135;
136
137// ======================================== Triangles on Boundary =================================
138
139
140BoundaryTriangleSet::BoundaryTriangleSet()
141{
142 for (int i = 0; i < 3; i++)
143 {
144 endpoints[i] = NULL;
145 lines[i] = NULL;
146 }
147 Nr = -1;
148}
149;
150
151BoundaryTriangleSet::BoundaryTriangleSet(class BoundaryLineSet *line[3], int number)
152{
153 // set number
154 Nr = number;
155 // set lines
156 cout << Verbose(5) << "New triangle " << Nr << ":" << endl;
157 for (int i = 0; i < 3; i++)
158 {
159 lines[i] = line[i];
160 lines[i]->AddTriangle(this);
161 }
162 // get ascending order of endpoints
163 map<int, class BoundaryPointSet *> OrderMap;
164 for (int i = 0; i < 3; i++)
165 // for all three lines
166 for (int j = 0; j < 2; j++)
167 { // for both endpoints
168 OrderMap.insert(pair<int, class BoundaryPointSet *> (
169 line[i]->endpoints[j]->Nr, line[i]->endpoints[j]));
170 // and we don't care whether insertion fails
171 }
172 // set endpoints
173 int Counter = 0;
174 cout << Verbose(6) << " with end points ";
175 for (map<int, class BoundaryPointSet *>::iterator runner = OrderMap.begin(); runner
176 != OrderMap.end(); runner++)
177 {
178 endpoints[Counter] = runner->second;
179 cout << " " << *endpoints[Counter];
180 Counter++;
181 }
182 if (Counter < 3)
183 {
184 cerr << "ERROR! We have a triangle with only two distinct endpoints!"
185 << endl;
186 //exit(1);
187 }
188 cout << "." << endl;
189}
190;
191
192BoundaryTriangleSet::~BoundaryTriangleSet()
193{
194 for (int i = 0; i < 3; i++) {
195 cout << Verbose(5) << "Erasing triangle Nr." << Nr << endl;
196 lines[i]->triangles.erase(Nr);
197 if (lines[i]->triangles.empty()) {
198 cout << Verbose(5) << *lines[i] << " is no more attached to any triangle, erasing." << endl;
199 if (lines[i] != NULL) {
200 delete (lines[i]);
201 lines[i] = NULL;
202 } else
203 cerr << "ERROR: This line " << i << " has already been free'd." << endl;
204 } else
205 cout << Verbose(5) << *lines[i] << " is still attached to a triangle." << endl;
206 }
207}
208;
209
210void
211BoundaryTriangleSet::GetNormalVector(Vector &OtherVector)
212{
213 // get normal vector
214 NormalVector.MakeNormalVector(&endpoints[0]->node->x, &endpoints[1]->node->x,
215 &endpoints[2]->node->x);
216
217 // make it always point inward (any offset vector onto plane projected onto normal vector suffices)
218 if (NormalVector.Projection(&OtherVector) > 0)
219 NormalVector.Scale(-1.);
220}
221;
222
223ostream &
224operator <<(ostream &ost, BoundaryTriangleSet &a)
225{
226 ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << ","
227 << a.endpoints[1]->node->Name << "," << a.endpoints[2]->node->Name << "]";
228 return ost;
229}
230;
231
232
233// ============================ CandidateForTesselation =============================
234
235CandidateForTesselation::CandidateForTesselation(
236 atom *candidate, BoundaryLineSet* line, Vector OptCandidateCenter, Vector OtherOptCandidateCenter
237) {
238 point = candidate;
239 BaseLine = line;
240 OptCenter.CopyVector(&OptCandidateCenter);
241 OtherOptCenter.CopyVector(&OtherOptCandidateCenter);
242}
243
244CandidateForTesselation::~CandidateForTesselation() {
245 point = NULL;
246}
247
248// ========================================== F U N C T I O N S =================================
249
250/** Finds the endpoint two lines are sharing.
251 * \param *line1 first line
252 * \param *line2 second line
253 * \return point which is shared or NULL if none
254 */
255class BoundaryPointSet *
256GetCommonEndpoint(class BoundaryLineSet * line1, class BoundaryLineSet * line2)
257{
258 class BoundaryLineSet * lines[2] =
259 { line1, line2 };
260 class BoundaryPointSet *node = NULL;
261 map<int, class BoundaryPointSet *> OrderMap;
262 pair<map<int, class BoundaryPointSet *>::iterator, bool> OrderTest;
263 for (int i = 0; i < 2; i++)
264 // for both lines
265 for (int j = 0; j < 2; j++)
266 { // for both endpoints
267 OrderTest = OrderMap.insert(pair<int, class BoundaryPointSet *> (
268 lines[i]->endpoints[j]->Nr, lines[i]->endpoints[j]));
269 if (!OrderTest.second)
270 { // if insertion fails, we have common endpoint
271 node = OrderTest.first->second;
272 cout << Verbose(5) << "Common endpoint of lines " << *line1
273 << " and " << *line2 << " is: " << *node << "." << endl;
274 j = 2;
275 i = 2;
276 break;
277 }
278 }
279 return node;
280}
281;
282
283/** Determines the boundary points of a cluster.
284 * Does a projection per axis onto the orthogonal plane, transforms into spherical coordinates, sorts them by the angle
285 * and looks at triples: if the middle has less a distance than the allowed maximum height of the triangle formed by the plane's
286 * center and first and last point in the triple, it is thrown out.
287 * \param *out output stream for debugging
288 * \param *mol molecule structure representing the cluster
289 */
290Boundaries *
291GetBoundaryPoints(ofstream *out, molecule *mol)
292{
293 atom *Walker = NULL;
294 PointMap PointsOnBoundary;
295 LineMap LinesOnBoundary;
296 TriangleMap TrianglesOnBoundary;
297
298 *out << Verbose(1) << "Finding all boundary points." << endl;
299 Boundaries *BoundaryPoints = new Boundaries[NDIM]; // first is alpha, second is (r, nr)
300 BoundariesTestPair BoundaryTestPair;
301 Vector AxisVector, AngleReferenceVector, AngleReferenceNormalVector;
302 double radius, angle;
303 // 3a. Go through every axis
304 for (int axis = 0; axis < NDIM; axis++)
305 {
306 AxisVector.Zero();
307 AngleReferenceVector.Zero();
308 AngleReferenceNormalVector.Zero();
309 AxisVector.x[axis] = 1.;
310 AngleReferenceVector.x[(axis + 1) % NDIM] = 1.;
311 AngleReferenceNormalVector.x[(axis + 2) % NDIM] = 1.;
312 // *out << Verbose(1) << "Axisvector is ";
313 // AxisVector.Output(out);
314 // *out << " and AngleReferenceVector is ";
315 // AngleReferenceVector.Output(out);
316 // *out << "." << endl;
317 // *out << " and AngleReferenceNormalVector is ";
318 // AngleReferenceNormalVector.Output(out);
319 // *out << "." << endl;
320 // 3b. construct set of all points, transformed into cylindrical system and with left and right neighbours
321 Walker = mol->start;
322 while (Walker->next != mol->end)
323 {
324 Walker = Walker->next;
325 Vector ProjectedVector;
326 ProjectedVector.CopyVector(&Walker->x);
327 ProjectedVector.ProjectOntoPlane(&AxisVector);
328 // correct for negative side
329 //if (Projection(y) < 0)
330 //angle = 2.*M_PI - angle;
331 radius = ProjectedVector.Norm();
332 if (fabs(radius) > MYEPSILON)
333 angle = ProjectedVector.Angle(&AngleReferenceVector);
334 else
335 angle = 0.; // otherwise it's a vector in Axis Direction and unimportant for boundary issues
336
337 //*out << "Checking sign in quadrant : " << ProjectedVector.Projection(&AngleReferenceNormalVector) << "." << endl;
338 if (ProjectedVector.Projection(&AngleReferenceNormalVector) > 0)
339 {
340 angle = 2. * M_PI - angle;
341 }
342 //*out << Verbose(2) << "Inserting " << *Walker << ": (r, alpha) = (" << radius << "," << angle << "): ";
343 //ProjectedVector.Output(out);
344 //*out << endl;
345 BoundaryTestPair = BoundaryPoints[axis].insert(BoundariesPair(angle,
346 DistancePair (radius, Walker)));
347 if (BoundaryTestPair.second)
348 { // successfully inserted
349 }
350 else
351 { // same point exists, check first r, then distance of original vectors to center of gravity
352 *out << Verbose(2)
353 << "Encountered two vectors whose projection onto axis "
354 << axis << " is equal: " << endl;
355 *out << Verbose(2) << "Present vector: ";
356 BoundaryTestPair.first->second.second->x.Output(out);
357 *out << endl;
358 *out << Verbose(2) << "New vector: ";
359 Walker->x.Output(out);
360 *out << endl;
361 double tmp = ProjectedVector.Norm();
362 if (tmp > BoundaryTestPair.first->second.first)
363 {
364 BoundaryTestPair.first->second.first = tmp;
365 BoundaryTestPair.first->second.second = Walker;
366 *out << Verbose(2) << "Keeping new vector." << endl;
367 }
368 else if (tmp == BoundaryTestPair.first->second.first)
369 {
370 if (BoundaryTestPair.first->second.second->x.ScalarProduct(
371 &BoundaryTestPair.first->second.second->x)
372 < Walker->x.ScalarProduct(&Walker->x))
373 { // Norm() does a sqrt, which makes it a lot slower
374 BoundaryTestPair.first->second.second = Walker;
375 *out << Verbose(2) << "Keeping new vector." << endl;
376 }
377 else
378 {
379 *out << Verbose(2) << "Keeping present vector." << endl;
380 }
381 }
382 else
383 {
384 *out << Verbose(2) << "Keeping present vector." << endl;
385 }
386 }
387 }
388 // printing all inserted for debugging
389 // {
390 // *out << Verbose(2) << "Printing list of candidates for axis " << axis << " which we have inserted so far." << endl;
391 // int i=0;
392 // for(Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++) {
393 // if (runner != BoundaryPoints[axis].begin())
394 // *out << ", " << i << ": " << *runner->second.second;
395 // else
396 // *out << i << ": " << *runner->second.second;
397 // i++;
398 // }
399 // *out << endl;
400 // }
401 // 3c. throw out points whose distance is less than the mean of left and right neighbours
402 bool flag = false;
403 do
404 { // do as long as we still throw one out per round
405 *out << Verbose(1)
406 << "Looking for candidates to kick out by convex condition ... "
407 << endl;
408 flag = false;
409 Boundaries::iterator left = BoundaryPoints[axis].end();
410 Boundaries::iterator right = BoundaryPoints[axis].end();
411 for (Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner
412 != BoundaryPoints[axis].end(); runner++)
413 {
414 // set neighbours correctly
415 if (runner == BoundaryPoints[axis].begin())
416 {
417 left = BoundaryPoints[axis].end();
418 }
419 else
420 {
421 left = runner;
422 }
423 left--;
424 right = runner;
425 right++;
426 if (right == BoundaryPoints[axis].end())
427 {
428 right = BoundaryPoints[axis].begin();
429 }
430 // check distance
431
432 // construct the vector of each side of the triangle on the projected plane (defined by normal vector AxisVector)
433 {
434 Vector SideA, SideB, SideC, SideH;
435 SideA.CopyVector(&left->second.second->x);
436 SideA.ProjectOntoPlane(&AxisVector);
437 // *out << "SideA: ";
438 // SideA.Output(out);
439 // *out << endl;
440
441 SideB.CopyVector(&right->second.second->x);
442 SideB.ProjectOntoPlane(&AxisVector);
443 // *out << "SideB: ";
444 // SideB.Output(out);
445 // *out << endl;
446
447 SideC.CopyVector(&left->second.second->x);
448 SideC.SubtractVector(&right->second.second->x);
449 SideC.ProjectOntoPlane(&AxisVector);
450 // *out << "SideC: ";
451 // SideC.Output(out);
452 // *out << endl;
453
454 SideH.CopyVector(&runner->second.second->x);
455 SideH.ProjectOntoPlane(&AxisVector);
456 // *out << "SideH: ";
457 // SideH.Output(out);
458 // *out << endl;
459
460 // calculate each length
461 double a = SideA.Norm();
462 //double b = SideB.Norm();
463 //double c = SideC.Norm();
464 double h = SideH.Norm();
465 // calculate the angles
466 double alpha = SideA.Angle(&SideH);
467 double beta = SideA.Angle(&SideC);
468 double gamma = SideB.Angle(&SideH);
469 double delta = SideC.Angle(&SideH);
470 double MinDistance = a * sin(beta) / (sin(delta)) * (((alpha
471 < M_PI / 2.) || (gamma < M_PI / 2.)) ? 1. : -1.);
472 // *out << Verbose(2) << " I calculated: a = " << a << ", h = " << h << ", beta(" << left->second.second->Name << "," << left->second.second->Name << "-" << right->second.second->Name << ") = " << beta << ", delta(" << left->second.second->Name << "," << runner->second.second->Name << ") = " << delta << ", Min = " << MinDistance << "." << endl;
473 //*out << Verbose(1) << "Checking CoG distance of runner " << *runner->second.second << " " << h << " against triangle's side length spanned by (" << *left->second.second << "," << *right->second.second << ") of " << MinDistance << "." << endl;
474 if ((fabs(h / fabs(h) - MinDistance / fabs(MinDistance))
475 < MYEPSILON) && (h < MinDistance))
476 {
477 // throw out point
478 //*out << Verbose(1) << "Throwing out " << *runner->second.second << "." << endl;
479 BoundaryPoints[axis].erase(runner);
480 flag = true;
481 }
482 }
483 }
484 }
485 while (flag);
486 }
487 return BoundaryPoints;
488}
489;
490
491/** Determines greatest diameters of a cluster defined by its convex envelope.
492 * Looks at lines parallel to one axis and where they intersect on the projected planes
493 * \param *out output stream for debugging
494 * \param *BoundaryPoints NDIM set of boundary points defining the convex envelope on each projected plane
495 * \param *mol molecule structure representing the cluster
496 * \param IsAngstroem whether we have angstroem or atomic units
497 * \return NDIM array of the diameters
498 */
499double *
500GetDiametersOfCluster(ofstream *out, Boundaries *BoundaryPtr, molecule *mol,
501 bool IsAngstroem)
502{
503 // get points on boundary of NULL was given as parameter
504 bool BoundaryFreeFlag = false;
505 Boundaries *BoundaryPoints = BoundaryPtr;
506 if (BoundaryPoints == NULL)
507 {
508 BoundaryFreeFlag = true;
509 BoundaryPoints = GetBoundaryPoints(out, mol);
510 }
511 else
512 {
513 *out << Verbose(1) << "Using given boundary points set." << endl;
514 }
515 // determine biggest "diameter" of cluster for each axis
516 Boundaries::iterator Neighbour, OtherNeighbour;
517 double *GreatestDiameter = new double[NDIM];
518 for (int i = 0; i < NDIM; i++)
519 GreatestDiameter[i] = 0.;
520 double OldComponent, tmp, w1, w2;
521 Vector DistanceVector, OtherVector;
522 int component, Othercomponent;
523 for (int axis = 0; axis < NDIM; axis++)
524 { // regard each projected plane
525 //*out << Verbose(1) << "Current axis is " << axis << "." << endl;
526 for (int j = 0; j < 2; j++)
527 { // and for both axis on the current plane
528 component = (axis + j + 1) % NDIM;
529 Othercomponent = (axis + 1 + ((j + 1) & 1)) % NDIM;
530 //*out << Verbose(1) << "Current component is " << component << ", Othercomponent is " << Othercomponent << "." << endl;
531 for (Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner
532 != BoundaryPoints[axis].end(); runner++)
533 {
534 //*out << Verbose(2) << "Current runner is " << *(runner->second.second) << "." << endl;
535 // seek for the neighbours pair where the Othercomponent sign flips
536 Neighbour = runner;
537 Neighbour++;
538 if (Neighbour == BoundaryPoints[axis].end()) // make it wrap around
539 Neighbour = BoundaryPoints[axis].begin();
540 DistanceVector.CopyVector(&runner->second.second->x);
541 DistanceVector.SubtractVector(&Neighbour->second.second->x);
542 do
543 { // seek for neighbour pair where it flips
544 OldComponent = DistanceVector.x[Othercomponent];
545 Neighbour++;
546 if (Neighbour == BoundaryPoints[axis].end()) // make it wrap around
547 Neighbour = BoundaryPoints[axis].begin();
548 DistanceVector.CopyVector(&runner->second.second->x);
549 DistanceVector.SubtractVector(&Neighbour->second.second->x);
550 //*out << Verbose(3) << "OldComponent is " << OldComponent << ", new one is " << DistanceVector.x[Othercomponent] << "." << endl;
551 }
552 while ((runner != Neighbour) && (fabs(OldComponent / fabs(
553 OldComponent) - DistanceVector.x[Othercomponent] / fabs(
554 DistanceVector.x[Othercomponent])) < MYEPSILON)); // as long as sign does not flip
555 if (runner != Neighbour)
556 {
557 OtherNeighbour = Neighbour;
558 if (OtherNeighbour == BoundaryPoints[axis].begin()) // make it wrap around
559 OtherNeighbour = BoundaryPoints[axis].end();
560 OtherNeighbour--;
561 //*out << Verbose(2) << "The pair, where the sign of OtherComponent flips, is: " << *(Neighbour->second.second) << " and " << *(OtherNeighbour->second.second) << "." << endl;
562 // now we have found the pair: Neighbour and OtherNeighbour
563 OtherVector.CopyVector(&runner->second.second->x);
564 OtherVector.SubtractVector(&OtherNeighbour->second.second->x);
565 //*out << Verbose(2) << "Distances to Neighbour and OtherNeighbour are " << DistanceVector.x[component] << " and " << OtherVector.x[component] << "." << endl;
566 //*out << Verbose(2) << "OtherComponents to Neighbour and OtherNeighbour are " << DistanceVector.x[Othercomponent] << " and " << OtherVector.x[Othercomponent] << "." << endl;
567 // do linear interpolation between points (is exact) to extract exact intersection between Neighbour and OtherNeighbour
568 w1 = fabs(OtherVector.x[Othercomponent]);
569 w2 = fabs(DistanceVector.x[Othercomponent]);
570 tmp = fabs((w1 * DistanceVector.x[component] + w2
571 * OtherVector.x[component]) / (w1 + w2));
572 // mark if it has greater diameter
573 //*out << Verbose(2) << "Comparing current greatest " << GreatestDiameter[component] << " to new " << tmp << "." << endl;
574 GreatestDiameter[component] = (GreatestDiameter[component]
575 > tmp) ? GreatestDiameter[component] : tmp;
576 } //else
577 //*out << Verbose(2) << "Saw no sign flip, probably top or bottom node." << endl;
578 }
579 }
580 }
581 *out << Verbose(0) << "RESULT: The biggest diameters are "
582 << GreatestDiameter[0] << " and " << GreatestDiameter[1] << " and "
583 << GreatestDiameter[2] << " " << (IsAngstroem ? "angstrom"
584 : "atomiclength") << "." << endl;
585
586 // free reference lists
587 if (BoundaryFreeFlag)
588 delete[] (BoundaryPoints);
589
590 return GreatestDiameter;
591}
592;
593
594/** Creates the objects in a VRML file.
595 * \param *out output stream for debugging
596 * \param *vrmlfile output stream for tecplot data
597 * \param *Tess Tesselation structure with constructed triangles
598 * \param *mol molecule structure with atom positions
599 */
600void write_vrml_file(ofstream *out, ofstream *vrmlfile, class Tesselation *Tess, class molecule *mol)
601{
602 atom *Walker = mol->start;
603 bond *Binder = mol->first;
604 int i;
605 Vector *center = mol->DetermineCenterOfAll(out);
606 if (vrmlfile != NULL) {
607 //cout << Verbose(1) << "Writing Raster3D file ... ";
608 *vrmlfile << "#VRML V2.0 utf8" << endl;
609 *vrmlfile << "#Created by molecuilder" << endl;
610 *vrmlfile << "#All atoms as spheres" << endl;
611 while (Walker->next != mol->end) {
612 Walker = Walker->next;
613 *vrmlfile << "Sphere {" << endl << " "; // 2 is sphere type
614 for (i=0;i<NDIM;i++)
615 *vrmlfile << Walker->x.x[i]+center->x[i] << " ";
616 *vrmlfile << "\t0.1\t1. 1. 1." << endl; // radius 0.05 and white as colour
617 }
618
619 *vrmlfile << "# All bonds as vertices" << endl;
620 while (Binder->next != mol->last) {
621 Binder = Binder->next;
622 *vrmlfile << "3" << endl << " "; // 2 is round-ended cylinder type
623 for (i=0;i<NDIM;i++)
624 *vrmlfile << Binder->leftatom->x.x[i]+center->x[i] << " ";
625 *vrmlfile << "\t0.03\t";
626 for (i=0;i<NDIM;i++)
627 *vrmlfile << Binder->rightatom->x.x[i]+center->x[i] << " ";
628 *vrmlfile << "\t0.03\t0. 0. 1." << endl; // radius 0.05 and blue as colour
629 }
630
631 *vrmlfile << "# All tesselation triangles" << endl;
632 for (TriangleMap::iterator TriangleRunner = Tess->TrianglesOnBoundary.begin(); TriangleRunner != Tess->TrianglesOnBoundary.end(); TriangleRunner++) {
633 *vrmlfile << "1" << endl << " "; // 1 is triangle type
634 for (i=0;i<3;i++) { // print each node
635 for (int j=0;j<NDIM;j++) // and for each node all NDIM coordinates
636 *vrmlfile << TriangleRunner->second->endpoints[i]->node->x.x[j]+center->x[j] << " ";
637 *vrmlfile << "\t";
638 }
639 *vrmlfile << "1. 0. 0." << endl; // red as colour
640 *vrmlfile << "18" << endl << " 0.5 0.5 0.5" << endl; // 18 is transparency type for previous object
641 }
642 } else {
643 cerr << "ERROR: Given vrmlfile is " << vrmlfile << "." << endl;
644 }
645 delete(center);
646};
647
648/** Creates the objects in a raster3d file (renderable with a header.r3d).
649 * \param *out output stream for debugging
650 * \param *rasterfile output stream for tecplot data
651 * \param *Tess Tesselation structure with constructed triangles
652 * \param *mol molecule structure with atom positions
653 */
654void write_raster3d_file(ofstream *out, ofstream *rasterfile, class Tesselation *Tess, class molecule *mol)
655{
656 atom *Walker = mol->start;
657 bond *Binder = mol->first;
658 int i;
659 Vector *center = mol->DetermineCenterOfAll(out);
660 if (rasterfile != NULL) {
661 //cout << Verbose(1) << "Writing Raster3D file ... ";
662 *rasterfile << "# Raster3D object description, created by MoleCuilder" << endl;
663 *rasterfile << "@header.r3d" << endl;
664 *rasterfile << "# All atoms as spheres" << endl;
665 while (Walker->next != mol->end) {
666 Walker = Walker->next;
667 *rasterfile << "2" << endl << " "; // 2 is sphere type
668 for (i=0;i<NDIM;i++)
669 *rasterfile << Walker->x.x[i]+center->x[i] << " ";
670 *rasterfile << "\t0.1\t1. 1. 1." << endl; // radius 0.05 and white as colour
671 }
672
673 *rasterfile << "# All bonds as vertices" << endl;
674 while (Binder->next != mol->last) {
675 Binder = Binder->next;
676 *rasterfile << "3" << endl << " "; // 2 is round-ended cylinder type
677 for (i=0;i<NDIM;i++)
678 *rasterfile << Binder->leftatom->x.x[i]+center->x[i] << " ";
679 *rasterfile << "\t0.03\t";
680 for (i=0;i<NDIM;i++)
681 *rasterfile << Binder->rightatom->x.x[i]+center->x[i] << " ";
682 *rasterfile << "\t0.03\t0. 0. 1." << endl; // radius 0.05 and blue as colour
683 }
684
685 *rasterfile << "# All tesselation triangles" << endl;
686 *rasterfile << "8\n 25. -1. 1. 1. 1. 0.0 0 0 0 2\n SOLID 1.0 0.0 0.0\n BACKFACE 0.3 0.3 1.0 0 0\n";
687 for (TriangleMap::iterator TriangleRunner = Tess->TrianglesOnBoundary.begin(); TriangleRunner != Tess->TrianglesOnBoundary.end(); TriangleRunner++) {
688 *rasterfile << "1" << endl << " "; // 1 is triangle type
689 for (i=0;i<3;i++) { // print each node
690 for (int j=0;j<NDIM;j++) // and for each node all NDIM coordinates
691 *rasterfile << TriangleRunner->second->endpoints[i]->node->x.x[j]+center->x[j] << " ";
692 *rasterfile << "\t";
693 }
694 *rasterfile << "1. 0. 0." << endl; // red as colour
695 //*rasterfile << "18" << endl << " 0.5 0.5 0.5" << endl; // 18 is transparency type for previous object
696 }
697 *rasterfile << "9\n terminating special property\n";
698 } else {
699 cerr << "ERROR: Given rasterfile is " << rasterfile << "." << endl;
700 }
701 delete(center);
702};
703
704/** This function creates the tecplot file, displaying the tesselation of the hull.
705 * \param *out output stream for debugging
706 * \param *tecplot output stream for tecplot data
707 * \param N arbitrary number to differentiate various zones in the tecplot format
708 */
709void
710write_tecplot_file(ofstream *out, ofstream *tecplot,
711 class Tesselation *TesselStruct, class molecule *mol, int N)
712{
713 if (tecplot != NULL)
714 {
715 *tecplot << "TITLE = \"3D CONVEX SHELL\"" << endl;
716 *tecplot << "VARIABLES = \"X\" \"Y\" \"Z\"" << endl;
717 *tecplot << "ZONE T=\"TRIANGLES" << N << "\", N="
718 << TesselStruct->PointsOnBoundaryCount << ", E="
719 << TesselStruct->TrianglesOnBoundaryCount
720 << ", DATAPACKING=POINT, ZONETYPE=FETRIANGLE" << endl;
721 int *LookupList = new int[mol->AtomCount];
722 for (int i = 0; i < mol->AtomCount; i++)
723 LookupList[i] = -1;
724
725 // print atom coordinates
726 *out << Verbose(2) << "The following triangles were created:";
727 int Counter = 1;
728 atom *Walker = NULL;
729 for (PointMap::iterator target = TesselStruct->PointsOnBoundary.begin(); target
730 != TesselStruct->PointsOnBoundary.end(); target++)
731 {
732 Walker = target->second->node;
733 LookupList[Walker->nr] = Counter++;
734 *tecplot << Walker->x.x[0] << " " << Walker->x.x[1] << " "
735 << Walker->x.x[2] << " " << endl;
736 }
737 *tecplot << endl;
738 // print connectivity
739 for (TriangleMap::iterator runner =
740 TesselStruct->TrianglesOnBoundary.begin(); runner
741 != TesselStruct->TrianglesOnBoundary.end(); runner++)
742 {
743 *out << " " << runner->second->endpoints[0]->node->Name << "<->"
744 << runner->second->endpoints[1]->node->Name << "<->"
745 << runner->second->endpoints[2]->node->Name;
746 *tecplot << LookupList[runner->second->endpoints[0]->node->nr] << " "
747 << LookupList[runner->second->endpoints[1]->node->nr] << " "
748 << LookupList[runner->second->endpoints[2]->node->nr] << endl;
749 }
750 delete[] (LookupList);
751 *out << endl;
752 }
753}
754
755/** Determines the volume of a cluster.
756 * Determines first the convex envelope, then tesselates it and calculates its volume.
757 * \param *out output stream for debugging
758 * \param *filename filename prefix for output of vertex data
759 * \param *configuration needed for path to store convex envelope file
760 * \param *BoundaryPoints NDIM set of boundary points on the projected plane per axis, on return if desired
761 * \param *mol molecule structure representing the cluster
762 * \return determined volume of the cluster in cubed config:GetIsAngstroem()
763 */
764double
765VolumeOfConvexEnvelope(ofstream *out, const char *filename, config *configuration,
766 Boundaries *BoundaryPtr, molecule *mol)
767{
768 bool IsAngstroem = configuration->GetIsAngstroem();
769 atom *Walker = NULL;
770 struct Tesselation *TesselStruct = new Tesselation;
771 bool BoundaryFreeFlag = false;
772 Boundaries *BoundaryPoints = BoundaryPtr;
773 double volume = 0.;
774 double PyramidVolume = 0.;
775 double G, h;
776 Vector x, y;
777 double a, b, c;
778
779 //Find_non_convex_border(out, tecplot, *TesselStruct, mol); // Is now called from command line.
780
781 // 1. calculate center of gravity
782 *out << endl;
783 Vector *CenterOfGravity = mol->DetermineCenterOfGravity(out);
784
785 // 2. translate all points into CoG
786 *out << Verbose(1) << "Translating system to Center of Gravity." << endl;
787 Walker = mol->start;
788 while (Walker->next != mol->end)
789 {
790 Walker = Walker->next;
791 Walker->x.Translate(CenterOfGravity);
792 }
793
794 // 3. Find all points on the boundary
795 if (BoundaryPoints == NULL)
796 {
797 BoundaryFreeFlag = true;
798 BoundaryPoints = GetBoundaryPoints(out, mol);
799 }
800 else
801 {
802 *out << Verbose(1) << "Using given boundary points set." << endl;
803 }
804
805 // 4. fill the boundary point list
806 for (int axis = 0; axis < NDIM; axis++)
807 for (Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner
808 != BoundaryPoints[axis].end(); runner++)
809 {
810 TesselStruct->AddPoint(runner->second.second);
811 }
812
813 *out << Verbose(2) << "I found " << TesselStruct->PointsOnBoundaryCount
814 << " points on the convex boundary." << endl;
815 // now we have the whole set of edge points in the BoundaryList
816
817 // listing for debugging
818 // *out << Verbose(1) << "Listing PointsOnBoundary:";
819 // for(PointMap::iterator runner = PointsOnBoundary.begin(); runner != PointsOnBoundary.end(); runner++) {
820 // *out << " " << *runner->second;
821 // }
822 // *out << endl;
823
824 // 5a. guess starting triangle
825 TesselStruct->GuessStartingTriangle(out);
826
827 // 5b. go through all lines, that are not yet part of two triangles (only of one so far)
828 TesselStruct->TesselateOnBoundary(out, configuration, mol);
829
830 *out << Verbose(2) << "I created " << TesselStruct->TrianglesOnBoundaryCount
831 << " triangles with " << TesselStruct->LinesOnBoundaryCount
832 << " lines and " << TesselStruct->PointsOnBoundaryCount << " points."
833 << endl;
834
835 // 6a. Every triangle forms a pyramid with the center of gravity as its peak, sum up the volumes
836 *out << Verbose(1)
837 << "Calculating the volume of the pyramids formed out of triangles and center of gravity."
838 << endl;
839 for (TriangleMap::iterator runner = TesselStruct->TrianglesOnBoundary.begin(); runner
840 != TesselStruct->TrianglesOnBoundary.end(); runner++)
841 { // go through every triangle, calculate volume of its pyramid with CoG as peak
842 x.CopyVector(&runner->second->endpoints[0]->node->x);
843 x.SubtractVector(&runner->second->endpoints[1]->node->x);
844 y.CopyVector(&runner->second->endpoints[0]->node->x);
845 y.SubtractVector(&runner->second->endpoints[2]->node->x);
846 a = sqrt(runner->second->endpoints[0]->node->x.DistanceSquared(
847 &runner->second->endpoints[1]->node->x));
848 b = sqrt(runner->second->endpoints[0]->node->x.DistanceSquared(
849 &runner->second->endpoints[2]->node->x));
850 c = sqrt(runner->second->endpoints[2]->node->x.DistanceSquared(
851 &runner->second->endpoints[1]->node->x));
852 G = sqrt(((a + b + c) * (a + b + c) - 2 * (a * a + b * b + c * c)) / 16.); // area of tesselated triangle
853 x.MakeNormalVector(&runner->second->endpoints[0]->node->x,
854 &runner->second->endpoints[1]->node->x,
855 &runner->second->endpoints[2]->node->x);
856 x.Scale(runner->second->endpoints[1]->node->x.Projection(&x));
857 h = x.Norm(); // distance of CoG to triangle
858 PyramidVolume = (1. / 3.) * G * h; // this formula holds for _all_ pyramids (independent of n-edge base or (not) centered peak)
859 *out << Verbose(2) << "Area of triangle is " << G << " "
860 << (IsAngstroem ? "angstrom" : "atomiclength") << "^2, height is "
861 << h << " and the volume is " << PyramidVolume << " "
862 << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
863 volume += PyramidVolume;
864 }
865 *out << Verbose(0) << "RESULT: The summed volume is " << setprecision(10)
866 << volume << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3."
867 << endl;
868
869 // 7. translate all points back from CoG
870 *out << Verbose(1) << "Translating system back from Center of Gravity."
871 << endl;
872 CenterOfGravity->Scale(-1);
873 Walker = mol->start;
874 while (Walker->next != mol->end)
875 {
876 Walker = Walker->next;
877 Walker->x.Translate(CenterOfGravity);
878 }
879
880 // 8. Store triangles in tecplot file
881 string OutputName(filename);
882 OutputName.append(TecplotSuffix);
883 ofstream *tecplot = new ofstream(OutputName.c_str());
884 write_tecplot_file(out, tecplot, TesselStruct, mol, 0);
885 tecplot->close();
886 delete(tecplot);
887
888 // free reference lists
889 if (BoundaryFreeFlag)
890 delete[] (BoundaryPoints);
891
892 return volume;
893}
894;
895
896/** Creates multiples of the by \a *mol given cluster and suspends them in water with a given final density.
897 * We get cluster volume by VolumeOfConvexEnvelope() and its diameters by GetDiametersOfCluster()
898 * \param *out output stream for debugging
899 * \param *configuration needed for path to store convex envelope file
900 * \param *mol molecule structure representing the cluster
901 * \param ClusterVolume guesstimated cluster volume, if equal 0 we used VolumeOfConvexEnvelope() instead.
902 * \param celldensity desired average density in final cell
903 */
904void
905PrepareClustersinWater(ofstream *out, config *configuration, molecule *mol,
906 double ClusterVolume, double celldensity)
907{
908 // transform to PAS
909 mol->PrincipalAxisSystem(out, true);
910
911 // some preparations beforehand
912 bool IsAngstroem = configuration->GetIsAngstroem();
913 Boundaries *BoundaryPoints = GetBoundaryPoints(out, mol);
914 double clustervolume;
915 if (ClusterVolume == 0)
916 clustervolume = VolumeOfConvexEnvelope(out, NULL, configuration,
917 BoundaryPoints, mol);
918 else
919 clustervolume = ClusterVolume;
920 double *GreatestDiameter = GetDiametersOfCluster(out, BoundaryPoints, mol,
921 IsAngstroem);
922 Vector BoxLengths;
923 int repetition[NDIM] =
924 { 1, 1, 1 };
925 int TotalNoClusters = 1;
926 for (int i = 0; i < NDIM; i++)
927 TotalNoClusters *= repetition[i];
928
929 // sum up the atomic masses
930 double totalmass = 0.;
931 atom *Walker = mol->start;
932 while (Walker->next != mol->end)
933 {
934 Walker = Walker->next;
935 totalmass += Walker->type->mass;
936 }
937 *out << Verbose(0) << "RESULT: The summed mass is " << setprecision(10)
938 << totalmass << " atomicmassunit." << endl;
939
940 *out << Verbose(0) << "RESULT: The average density is " << setprecision(10)
941 << totalmass / clustervolume << " atomicmassunit/"
942 << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
943
944 // solve cubic polynomial
945 *out << Verbose(1) << "Solving equidistant suspension in water problem ..."
946 << endl;
947 double cellvolume;
948 if (IsAngstroem)
949 cellvolume = (TotalNoClusters * totalmass / SOLVENTDENSITY_A - (totalmass
950 / clustervolume)) / (celldensity - 1);
951 else
952 cellvolume = (TotalNoClusters * totalmass / SOLVENTDENSITY_a0 - (totalmass
953 / clustervolume)) / (celldensity - 1);
954 *out << Verbose(1) << "Cellvolume needed for a density of " << celldensity
955 << " g/cm^3 is " << cellvolume << " " << (IsAngstroem ? "angstrom"
956 : "atomiclength") << "^3." << endl;
957
958 double minimumvolume = TotalNoClusters * (GreatestDiameter[0]
959 * GreatestDiameter[1] * GreatestDiameter[2]);
960 *out << Verbose(1)
961 << "Minimum volume of the convex envelope contained in a rectangular box is "
962 << minimumvolume << " atomicmassunit/" << (IsAngstroem ? "angstrom"
963 : "atomiclength") << "^3." << endl;
964 if (minimumvolume > cellvolume)
965 {
966 cerr << Verbose(0)
967 << "ERROR: the containing box already has a greater volume than the envisaged cell volume!"
968 << endl;
969 cout << Verbose(0)
970 << "Setting Box dimensions to minimum possible, the greatest diameters."
971 << endl;
972 for (int i = 0; i < NDIM; i++)
973 BoxLengths.x[i] = GreatestDiameter[i];
974 mol->CenterEdge(out, &BoxLengths);
975 }
976 else
977 {
978 BoxLengths.x[0] = (repetition[0] * GreatestDiameter[0] + repetition[1]
979 * GreatestDiameter[1] + repetition[2] * GreatestDiameter[2]);
980 BoxLengths.x[1] = (repetition[0] * repetition[1] * GreatestDiameter[0]
981 * GreatestDiameter[1] + repetition[0] * repetition[2]
982 * GreatestDiameter[0] * GreatestDiameter[2] + repetition[1]
983 * repetition[2] * GreatestDiameter[1] * GreatestDiameter[2]);
984 BoxLengths.x[2] = minimumvolume - cellvolume;
985 double x0 = 0., x1 = 0., x2 = 0.;
986 if (gsl_poly_solve_cubic(BoxLengths.x[0], BoxLengths.x[1],
987 BoxLengths.x[2], &x0, &x1, &x2) == 1) // either 1 or 3 on return
988 *out << Verbose(0) << "RESULT: The resulting spacing is: " << x0
989 << " ." << endl;
990 else
991 {
992 *out << Verbose(0) << "RESULT: The resulting spacings are: " << x0
993 << " and " << x1 << " and " << x2 << " ." << endl;
994 x0 = x2; // sorted in ascending order
995 }
996
997 cellvolume = 1;
998 for (int i = 0; i < NDIM; i++)
999 {
1000 BoxLengths.x[i] = repetition[i] * (x0 + GreatestDiameter[i]);
1001 cellvolume *= BoxLengths.x[i];
1002 }
1003
1004 // set new box dimensions
1005 *out << Verbose(0) << "Translating to box with these boundaries." << endl;
1006 mol->CenterInBox((ofstream *) &cout, &BoxLengths);
1007 }
1008 // update Box of atoms by boundary
1009 mol->SetBoxDimension(&BoxLengths);
1010 *out << Verbose(0) << "RESULT: The resulting cell dimensions are: "
1011 << BoxLengths.x[0] << " and " << BoxLengths.x[1] << " and "
1012 << BoxLengths.x[2] << " with total volume of " << cellvolume << " "
1013 << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
1014}
1015;
1016
1017// =========================================================== class TESSELATION ===========================================
1018
1019/** Constructor of class Tesselation.
1020 */
1021Tesselation::Tesselation()
1022{
1023 PointsOnBoundaryCount = 0;
1024 LinesOnBoundaryCount = 0;
1025 TrianglesOnBoundaryCount = 0;
1026 TriangleFilesWritten = 0;
1027}
1028;
1029
1030/** Constructor of class Tesselation.
1031 * We have to free all points, lines and triangles.
1032 */
1033Tesselation::~Tesselation()
1034{
1035 cout << Verbose(1) << "Free'ing TesselStruct ... " << endl;
1036 for (TriangleMap::iterator runner = TrianglesOnBoundary.begin(); runner != TrianglesOnBoundary.end(); runner++) {
1037 if (runner->second != NULL) {
1038 delete (runner->second);
1039 runner->second = NULL;
1040 } else
1041 cerr << "ERROR: The triangle " << runner->first << " has already been free'd." << endl;
1042 }
1043}
1044;
1045
1046/** Gueses first starting triangle of the convex envelope.
1047 * We guess the starting triangle by taking the smallest distance between two points and looking for a fitting third.
1048 * \param *out output stream for debugging
1049 * \param PointsOnBoundary set of boundary points defining the convex envelope of the cluster
1050 */
1051void
1052Tesselation::GuessStartingTriangle(ofstream *out)
1053{
1054 // 4b. create a starting triangle
1055 // 4b1. create all distances
1056 DistanceMultiMap DistanceMMap;
1057 double distance, tmp;
1058 Vector PlaneVector, TrialVector;
1059 PointMap::iterator A, B, C; // three nodes of the first triangle
1060 A = PointsOnBoundary.begin(); // the first may be chosen arbitrarily
1061
1062 // with A chosen, take each pair B,C and sort
1063 if (A != PointsOnBoundary.end())
1064 {
1065 B = A;
1066 B++;
1067 for (; B != PointsOnBoundary.end(); B++)
1068 {
1069 C = B;
1070 C++;
1071 for (; C != PointsOnBoundary.end(); C++)
1072 {
1073 tmp = A->second->node->x.DistanceSquared(&B->second->node->x);
1074 distance = tmp * tmp;
1075 tmp = A->second->node->x.DistanceSquared(&C->second->node->x);
1076 distance += tmp * tmp;
1077 tmp = B->second->node->x.DistanceSquared(&C->second->node->x);
1078 distance += tmp * tmp;
1079 DistanceMMap.insert(DistanceMultiMapPair(distance, pair<
1080 PointMap::iterator, PointMap::iterator> (B, C)));
1081 }
1082 }
1083 }
1084 // // listing distances
1085 // *out << Verbose(1) << "Listing DistanceMMap:";
1086 // for(DistanceMultiMap::iterator runner = DistanceMMap.begin(); runner != DistanceMMap.end(); runner++) {
1087 // *out << " " << runner->first << "(" << *runner->second.first->second << ", " << *runner->second.second->second << ")";
1088 // }
1089 // *out << endl;
1090 // 4b2. pick three baselines forming a triangle
1091 // 1. we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate
1092 DistanceMultiMap::iterator baseline = DistanceMMap.begin();
1093 for (; baseline != DistanceMMap.end(); baseline++)
1094 {
1095 // we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate
1096 // 2. next, we have to check whether all points reside on only one side of the triangle
1097 // 3. construct plane vector
1098 PlaneVector.MakeNormalVector(&A->second->node->x,
1099 &baseline->second.first->second->node->x,
1100 &baseline->second.second->second->node->x);
1101 *out << Verbose(2) << "Plane vector of candidate triangle is ";
1102 PlaneVector.Output(out);
1103 *out << endl;
1104 // 4. loop over all points
1105 double sign = 0.;
1106 PointMap::iterator checker = PointsOnBoundary.begin();
1107 for (; checker != PointsOnBoundary.end(); checker++)
1108 {
1109 // (neglecting A,B,C)
1110 if ((checker == A) || (checker == baseline->second.first) || (checker
1111 == baseline->second.second))
1112 continue;
1113 // 4a. project onto plane vector
1114 TrialVector.CopyVector(&checker->second->node->x);
1115 TrialVector.SubtractVector(&A->second->node->x);
1116 distance = TrialVector.Projection(&PlaneVector);
1117 if (fabs(distance) < 1e-4) // we need to have a small epsilon around 0 which is still ok
1118 continue;
1119 *out << Verbose(3) << "Projection of " << checker->second->node->Name
1120 << " yields distance of " << distance << "." << endl;
1121 tmp = distance / fabs(distance);
1122 // 4b. Any have different sign to than before? (i.e. would lie outside convex hull with this starting triangle)
1123 if ((sign != 0) && (tmp != sign))
1124 {
1125 // 4c. If so, break 4. loop and continue with next candidate in 1. loop
1126 *out << Verbose(2) << "Current candidates: "
1127 << A->second->node->Name << ","
1128 << baseline->second.first->second->node->Name << ","
1129 << baseline->second.second->second->node->Name << " leave "
1130 << checker->second->node->Name << " outside the convex hull."
1131 << endl;
1132 break;
1133 }
1134 else
1135 { // note the sign for later
1136 *out << Verbose(2) << "Current candidates: "
1137 << A->second->node->Name << ","
1138 << baseline->second.first->second->node->Name << ","
1139 << baseline->second.second->second->node->Name << " leave "
1140 << checker->second->node->Name << " inside the convex hull."
1141 << endl;
1142 sign = tmp;
1143 }
1144 // 4d. Check whether the point is inside the triangle (check distance to each node
1145 tmp = checker->second->node->x.DistanceSquared(&A->second->node->x);
1146 int innerpoint = 0;
1147 if ((tmp < A->second->node->x.DistanceSquared(
1148 &baseline->second.first->second->node->x)) && (tmp
1149 < A->second->node->x.DistanceSquared(
1150 &baseline->second.second->second->node->x)))
1151 innerpoint++;
1152 tmp = checker->second->node->x.DistanceSquared(
1153 &baseline->second.first->second->node->x);
1154 if ((tmp < baseline->second.first->second->node->x.DistanceSquared(
1155 &A->second->node->x)) && (tmp
1156 < baseline->second.first->second->node->x.DistanceSquared(
1157 &baseline->second.second->second->node->x)))
1158 innerpoint++;
1159 tmp = checker->second->node->x.DistanceSquared(
1160 &baseline->second.second->second->node->x);
1161 if ((tmp < baseline->second.second->second->node->x.DistanceSquared(
1162 &baseline->second.first->second->node->x)) && (tmp
1163 < baseline->second.second->second->node->x.DistanceSquared(
1164 &A->second->node->x)))
1165 innerpoint++;
1166 // 4e. If so, break 4. loop and continue with next candidate in 1. loop
1167 if (innerpoint == 3)
1168 break;
1169 }
1170 // 5. come this far, all on same side? Then break 1. loop and construct triangle
1171 if (checker == PointsOnBoundary.end())
1172 {
1173 *out << "Looks like we have a candidate!" << endl;
1174 break;
1175 }
1176 }
1177 if (baseline != DistanceMMap.end())
1178 {
1179 BPS[0] = baseline->second.first->second;
1180 BPS[1] = baseline->second.second->second;
1181 BLS[0] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
1182 BPS[0] = A->second;
1183 BPS[1] = baseline->second.second->second;
1184 BLS[1] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
1185 BPS[0] = baseline->second.first->second;
1186 BPS[1] = A->second;
1187 BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
1188
1189 // 4b3. insert created triangle
1190 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
1191 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
1192 TrianglesOnBoundaryCount++;
1193 for (int i = 0; i < NDIM; i++)
1194 {
1195 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BTS->lines[i]));
1196 LinesOnBoundaryCount++;
1197 }
1198
1199 *out << Verbose(1) << "Starting triangle is " << *BTS << "." << endl;
1200 }
1201 else
1202 {
1203 *out << Verbose(1) << "No starting triangle found." << endl;
1204 exit(255);
1205 }
1206}
1207;
1208
1209/** Tesselates the convex envelope of a cluster from a single starting triangle.
1210 * The starting triangle is made out of three baselines. Each line in the final tesselated cluster may belong to at most
1211 * 2 triangles. Hence, we go through all current lines:
1212 * -# if the lines contains to only one triangle
1213 * -# We search all points in the boundary
1214 * -# if the triangle with the baseline and the current point has the smallest of angles (comparison between normal vectors
1215 * -# if the triangle is in forward direction of the baseline (at most 90 degrees angle between vector orthogonal to
1216 * baseline in triangle plane pointing out of the triangle and normal vector of new triangle)
1217 * -# then we have a new triangle, whose baselines we again add (or increase their TriangleCount)
1218 * \param *out output stream for debugging
1219 * \param *configuration for IsAngstroem
1220 * \param *mol the cluster as a molecule structure
1221 */
1222void
1223Tesselation::TesselateOnBoundary(ofstream *out, config *configuration,
1224 molecule *mol)
1225{
1226 bool flag;
1227 PointMap::iterator winner;
1228 class BoundaryPointSet *peak = NULL;
1229 double SmallestAngle, TempAngle;
1230 Vector NormalVector, VirtualNormalVector, CenterVector, TempVector,
1231 PropagationVector;
1232 LineMap::iterator LineChecker[2];
1233 do
1234 {
1235 flag = false;
1236 for (LineMap::iterator baseline = LinesOnBoundary.begin(); baseline
1237 != LinesOnBoundary.end(); baseline++)
1238 if (baseline->second->TrianglesCount == 1)
1239 {
1240 *out << Verbose(2) << "Current baseline is between "
1241 << *(baseline->second) << "." << endl;
1242 // 5a. go through each boundary point if not _both_ edges between either endpoint of the current line and this point exist (and belong to 2 triangles)
1243 SmallestAngle = M_PI;
1244 BTS = baseline->second->triangles.begin()->second; // there is only one triangle so far
1245 // get peak point with respect to this base line's only triangle
1246 for (int i = 0; i < 3; i++)
1247 if ((BTS->endpoints[i] != baseline->second->endpoints[0])
1248 && (BTS->endpoints[i] != baseline->second->endpoints[1]))
1249 peak = BTS->endpoints[i];
1250 *out << Verbose(3) << " and has peak " << *peak << "." << endl;
1251 // normal vector of triangle
1252 BTS->GetNormalVector(NormalVector);
1253 *out << Verbose(4) << "NormalVector of base triangle is ";
1254 NormalVector.Output(out);
1255 *out << endl;
1256 // offset to center of triangle
1257 CenterVector.Zero();
1258 for (int i = 0; i < 3; i++)
1259 CenterVector.AddVector(&BTS->endpoints[i]->node->x);
1260 CenterVector.Scale(1. / 3.);
1261 *out << Verbose(4) << "CenterVector of base triangle is ";
1262 CenterVector.Output(out);
1263 *out << endl;
1264 // vector in propagation direction (out of triangle)
1265 // project center vector onto triangle plane (points from intersection plane-NormalVector to plane-CenterVector intersection)
1266 TempVector.CopyVector(&baseline->second->endpoints[0]->node->x);
1267 TempVector.SubtractVector(&baseline->second->endpoints[1]->node->x);
1268 PropagationVector.MakeNormalVector(&TempVector, &NormalVector);
1269 TempVector.CopyVector(&CenterVector);
1270 TempVector.SubtractVector(&baseline->second->endpoints[0]->node->x); // TempVector is vector on triangle plane pointing from one baseline egde towards center!
1271 //*out << Verbose(2) << "Projection of propagation onto temp: " << PropagationVector.Projection(&TempVector) << "." << endl;
1272 if (PropagationVector.Projection(&TempVector) > 0) // make sure normal propagation vector points outward from baseline
1273 PropagationVector.Scale(-1.);
1274 *out << Verbose(4) << "PropagationVector of base triangle is ";
1275 PropagationVector.Output(out);
1276 *out << endl;
1277 winner = PointsOnBoundary.end();
1278 for (PointMap::iterator target = PointsOnBoundary.begin(); target
1279 != PointsOnBoundary.end(); target++)
1280 if ((target->second != baseline->second->endpoints[0])
1281 && (target->second != baseline->second->endpoints[1]))
1282 { // don't take the same endpoints
1283 *out << Verbose(3) << "Target point is " << *(target->second)
1284 << ":";
1285 bool continueflag = true;
1286
1287 VirtualNormalVector.CopyVector(
1288 &baseline->second->endpoints[0]->node->x);
1289 VirtualNormalVector.AddVector(
1290 &baseline->second->endpoints[0]->node->x);
1291 VirtualNormalVector.Scale(-1. / 2.); // points now to center of base line
1292 VirtualNormalVector.AddVector(&target->second->node->x); // points from center of base line to target
1293 TempAngle = VirtualNormalVector.Angle(&PropagationVector);
1294 continueflag = continueflag && (TempAngle < (M_PI/2.)); // no bends bigger than Pi/2 (90 degrees)
1295 if (!continueflag)
1296 {
1297 *out << Verbose(4)
1298 << "Angle between propagation direction and base line to "
1299 << *(target->second) << " is " << TempAngle
1300 << ", bad direction!" << endl;
1301 continue;
1302 }
1303 else
1304 *out << Verbose(4)
1305 << "Angle between propagation direction and base line to "
1306 << *(target->second) << " is " << TempAngle
1307 << ", good direction!" << endl;
1308 LineChecker[0] = baseline->second->endpoints[0]->lines.find(
1309 target->first);
1310 LineChecker[1] = baseline->second->endpoints[1]->lines.find(
1311 target->first);
1312 // if (LineChecker[0] != baseline->second->endpoints[0]->lines.end())
1313 // *out << Verbose(4) << *(baseline->second->endpoints[0]) << " has line " << *(LineChecker[0]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[0]->second->TrianglesCount << " triangles." << endl;
1314 // else
1315 // *out << Verbose(4) << *(baseline->second->endpoints[0]) << " has no line to " << *(target->second) << " as endpoint." << endl;
1316 // if (LineChecker[1] != baseline->second->endpoints[1]->lines.end())
1317 // *out << Verbose(4) << *(baseline->second->endpoints[1]) << " has line " << *(LineChecker[1]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[1]->second->TrianglesCount << " triangles." << endl;
1318 // else
1319 // *out << Verbose(4) << *(baseline->second->endpoints[1]) << " has no line to " << *(target->second) << " as endpoint." << endl;
1320 // check first endpoint (if any connecting line goes to target or at least not more than 1)
1321 continueflag = continueflag && (((LineChecker[0]
1322 == baseline->second->endpoints[0]->lines.end())
1323 || (LineChecker[0]->second->TrianglesCount == 1)));
1324 if (!continueflag)
1325 {
1326 *out << Verbose(4) << *(baseline->second->endpoints[0])
1327 << " has line " << *(LineChecker[0]->second)
1328 << " to " << *(target->second)
1329 << " as endpoint with "
1330 << LineChecker[0]->second->TrianglesCount
1331 << " triangles." << endl;
1332 continue;
1333 }
1334 // check second endpoint (if any connecting line goes to target or at least not more than 1)
1335 continueflag = continueflag && (((LineChecker[1]
1336 == baseline->second->endpoints[1]->lines.end())
1337 || (LineChecker[1]->second->TrianglesCount == 1)));
1338 if (!continueflag)
1339 {
1340 *out << Verbose(4) << *(baseline->second->endpoints[1])
1341 << " has line " << *(LineChecker[1]->second)
1342 << " to " << *(target->second)
1343 << " as endpoint with "
1344 << LineChecker[1]->second->TrianglesCount
1345 << " triangles." << endl;
1346 continue;
1347 }
1348 // check whether the envisaged triangle does not already exist (if both lines exist and have same endpoint)
1349 continueflag = continueflag && (!(((LineChecker[0]
1350 != baseline->second->endpoints[0]->lines.end())
1351 && (LineChecker[1]
1352 != baseline->second->endpoints[1]->lines.end())
1353 && (GetCommonEndpoint(LineChecker[0]->second,
1354 LineChecker[1]->second) == peak))));
1355 if (!continueflag)
1356 {
1357 *out << Verbose(4) << "Current target is peak!" << endl;
1358 continue;
1359 }
1360 // in case NOT both were found
1361 if (continueflag)
1362 { // create virtually this triangle, get its normal vector, calculate angle
1363 flag = true;
1364 VirtualNormalVector.MakeNormalVector(
1365 &baseline->second->endpoints[0]->node->x,
1366 &baseline->second->endpoints[1]->node->x,
1367 &target->second->node->x);
1368 // make it always point inward
1369 if (baseline->second->endpoints[0]->node->x.Projection(
1370 &VirtualNormalVector) > 0)
1371 VirtualNormalVector.Scale(-1.);
1372 // calculate angle
1373 TempAngle = NormalVector.Angle(&VirtualNormalVector);
1374 *out << Verbose(4) << "NormalVector is ";
1375 VirtualNormalVector.Output(out);
1376 *out << " and the angle is " << TempAngle << "." << endl;
1377 if (SmallestAngle > TempAngle)
1378 { // set to new possible winner
1379 SmallestAngle = TempAngle;
1380 winner = target;
1381 }
1382 }
1383 }
1384 // 5b. The point of the above whose triangle has the greatest angle with the triangle the current line belongs to (it only belongs to one, remember!): New triangle
1385 if (winner != PointsOnBoundary.end())
1386 {
1387 *out << Verbose(2) << "Winning target point is "
1388 << *(winner->second) << " with angle " << SmallestAngle
1389 << "." << endl;
1390 // create the lins of not yet present
1391 BLS[0] = baseline->second;
1392 // 5c. add lines to the line set if those were new (not yet part of a triangle), delete lines that belong to two triangles)
1393 LineChecker[0] = baseline->second->endpoints[0]->lines.find(
1394 winner->first);
1395 LineChecker[1] = baseline->second->endpoints[1]->lines.find(
1396 winner->first);
1397 if (LineChecker[0]
1398 == baseline->second->endpoints[0]->lines.end())
1399 { // create
1400 BPS[0] = baseline->second->endpoints[0];
1401 BPS[1] = winner->second;
1402 BLS[1] = new class BoundaryLineSet(BPS,
1403 LinesOnBoundaryCount);
1404 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount,
1405 BLS[1]));
1406 LinesOnBoundaryCount++;
1407 }
1408 else
1409 BLS[1] = LineChecker[0]->second;
1410 if (LineChecker[1]
1411 == baseline->second->endpoints[1]->lines.end())
1412 { // create
1413 BPS[0] = baseline->second->endpoints[1];
1414 BPS[1] = winner->second;
1415 BLS[2] = new class BoundaryLineSet(BPS,
1416 LinesOnBoundaryCount);
1417 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount,
1418 BLS[2]));
1419 LinesOnBoundaryCount++;
1420 }
1421 else
1422 BLS[2] = LineChecker[1]->second;
1423 BTS = new class BoundaryTriangleSet(BLS,
1424 TrianglesOnBoundaryCount);
1425 TrianglesOnBoundary.insert(TrianglePair(
1426 TrianglesOnBoundaryCount, BTS));
1427 TrianglesOnBoundaryCount++;
1428 }
1429 else
1430 {
1431 *out << Verbose(1)
1432 << "I could not determine a winner for this baseline "
1433 << *(baseline->second) << "." << endl;
1434 }
1435
1436 // 5d. If the set of lines is not yet empty, go to 5. and continue
1437 }
1438 else
1439 *out << Verbose(2) << "Baseline candidate " << *(baseline->second)
1440 << " has a triangle count of "
1441 << baseline->second->TrianglesCount << "." << endl;
1442 }
1443 while (flag);
1444
1445}
1446;
1447
1448/** Adds an atom to the tesselation::PointsOnBoundary list.
1449 * \param *Walker atom to add
1450 */
1451void
1452Tesselation::AddPoint(atom *Walker)
1453{
1454 PointTestPair InsertUnique;
1455 BPS[0] = new class BoundaryPointSet(Walker);
1456 InsertUnique = PointsOnBoundary.insert(PointPair(Walker->nr, BPS[0]));
1457 if (InsertUnique.second) // if new point was not present before, increase counter
1458 PointsOnBoundaryCount++;
1459}
1460;
1461
1462/** Adds point to Tesselation::PointsOnBoundary if not yet present.
1463 * Tesselation::TPS is set to either this new BoundaryPointSet or to the existing one of not unique.
1464 * @param Candidate point to add
1465 * @param n index for this point in Tesselation::TPS array
1466 */
1467void
1468Tesselation::AddTrianglePoint(atom* Candidate, int n)
1469{
1470 PointTestPair InsertUnique;
1471 TPS[n] = new class BoundaryPointSet(Candidate);
1472 InsertUnique = PointsOnBoundary.insert(PointPair(Candidate->nr, TPS[n]));
1473 if (InsertUnique.second) // if new point was not present before, increase counter
1474 {
1475 PointsOnBoundaryCount++;
1476 }
1477 else
1478 {
1479 delete TPS[n];
1480 cout << Verbose(2) << "Atom " << *((InsertUnique.first)->second->node)
1481 << " gibt's schon in der PointMap." << endl;
1482 TPS[n] = (InsertUnique.first)->second;
1483 }
1484}
1485;
1486
1487/** Function tries to add line from current Points in BPS to BoundaryLineSet.
1488 * If successful it raises the line count and inserts the new line into the BLS,
1489 * if unsuccessful, it writes the line which had been present into the BLS, deleting the new constructed one.
1490 * @param *a first endpoint
1491 * @param *b second endpoint
1492 * @param n index of Tesselation::BLS giving the line with both endpoints
1493 */
1494void Tesselation::AddTriangleLine(class BoundaryPointSet *a, class BoundaryPointSet *b, int n) {
1495 bool insertNewLine = true;
1496
1497 if (a->lines.find(b->node->nr) != a->lines.end()) {
1498 LineMap::iterator FindLine;
1499 pair<LineMap::iterator,LineMap::iterator> FindPair;
1500 FindPair = a->lines.equal_range(b->node->nr);
1501
1502 for (FindLine = FindPair.first; FindLine != FindPair.second; ++FindLine) {
1503 // If there is a line with less than two attached triangles, we don't need a new line.
1504 if (FindLine->second->TrianglesCount < 2) {
1505 insertNewLine = false;
1506 cout << Verbose(2)
1507 << "Using existing line " << *FindLine->second << endl;
1508
1509 BPS[0] = FindLine->second->endpoints[0];
1510 BPS[1] = FindLine->second->endpoints[1];
1511 BLS[n] = FindLine->second;
1512
1513 break;
1514 }
1515 }
1516 }
1517
1518 if (insertNewLine) {
1519 AlwaysAddTriangleLine(a, b, n);
1520 }
1521}
1522;
1523
1524/**
1525 * Adds lines from each of the current points in the BPS to BoundaryLineSet.
1526 * Raises the line count and inserts the new line into the BLS.
1527 *
1528 * @param *a first endpoint
1529 * @param *b second endpoint
1530 * @param n index of Tesselation::BLS giving the line with both endpoints
1531 */
1532void Tesselation::AlwaysAddTriangleLine(class BoundaryPointSet *a, class BoundaryPointSet *b, int n)
1533{
1534 cout << Verbose(2)
1535 << "Adding line which has not been used before between "
1536 << *(a->node) << " and " << *(b->node) << "." << endl;
1537 BPS[0] = a;
1538 BPS[1] = b;
1539 BLS[n] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
1540
1541 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[n]));
1542 LinesOnBoundaryCount++;
1543};
1544
1545/** Function tries to add Triangle just created to Triangle and remarks if already existent (Failure of algorithm).
1546 * Furthermore it adds the triangle to all of its lines, in order to recognize those which are saturated later.
1547 */
1548void
1549Tesselation::AddTriangleToLines()
1550{
1551
1552 cout << Verbose(1) << "Adding triangle to its lines" << endl;
1553 int i = 0;
1554 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
1555 TrianglesOnBoundaryCount++;
1556
1557 /*
1558 * this is apparently done when constructing triangle
1559
1560 for (i=0; i<3; i++)
1561 {
1562 BLS[i]->AddTriangle(BTS);
1563 }
1564 */
1565}
1566;
1567
1568
1569double det_get(gsl_matrix *A, int inPlace) {
1570 /*
1571 inPlace = 1 => A is replaced with the LU decomposed copy.
1572 inPlace = 0 => A is retained, and a copy is used for LU.
1573 */
1574
1575 double det;
1576 int signum;
1577 gsl_permutation *p = gsl_permutation_alloc(A->size1);
1578 gsl_matrix *tmpA;
1579
1580 if (inPlace)
1581 tmpA = A;
1582 else {
1583 gsl_matrix *tmpA = gsl_matrix_alloc(A->size1, A->size2);
1584 gsl_matrix_memcpy(tmpA , A);
1585 }
1586
1587
1588 gsl_linalg_LU_decomp(tmpA , p , &signum);
1589 det = gsl_linalg_LU_det(tmpA , signum);
1590 gsl_permutation_free(p);
1591 if (! inPlace)
1592 gsl_matrix_free(tmpA);
1593
1594 return det;
1595};
1596
1597void get_sphere(Vector *center, Vector &a, Vector &b, Vector &c, double RADIUS)
1598{
1599 gsl_matrix *A = gsl_matrix_calloc(3,3);
1600 double m11, m12, m13, m14;
1601
1602 for(int i=0;i<3;i++) {
1603 gsl_matrix_set(A, i, 0, a.x[i]);
1604 gsl_matrix_set(A, i, 1, b.x[i]);
1605 gsl_matrix_set(A, i, 2, c.x[i]);
1606 }
1607 m11 = det_get(A, 1);
1608
1609 for(int i=0;i<3;i++) {
1610 gsl_matrix_set(A, i, 0, a.x[i]*a.x[i] + b.x[i]*b.x[i] + c.x[i]*c.x[i]);
1611 gsl_matrix_set(A, i, 1, b.x[i]);
1612 gsl_matrix_set(A, i, 2, c.x[i]);
1613 }
1614 m12 = det_get(A, 1);
1615
1616 for(int i=0;i<3;i++) {
1617 gsl_matrix_set(A, i, 0, a.x[i]*a.x[i] + b.x[i]*b.x[i] + c.x[i]*c.x[i]);
1618 gsl_matrix_set(A, i, 1, a.x[i]);
1619 gsl_matrix_set(A, i, 2, c.x[i]);
1620 }
1621 m13 = det_get(A, 1);
1622
1623 for(int i=0;i<3;i++) {
1624 gsl_matrix_set(A, i, 0, a.x[i]*a.x[i] + b.x[i]*b.x[i] + c.x[i]*c.x[i]);
1625 gsl_matrix_set(A, i, 1, a.x[i]);
1626 gsl_matrix_set(A, i, 2, b.x[i]);
1627 }
1628 m14 = det_get(A, 1);
1629
1630 if (fabs(m11) < MYEPSILON)
1631 cerr << "ERROR: three points are colinear." << endl;
1632
1633 center->x[0] = 0.5 * m12/ m11;
1634 center->x[1] = -0.5 * m13/ m11;
1635 center->x[2] = 0.5 * m14/ m11;
1636
1637 if (fabs(a.Distance(center) - RADIUS) > MYEPSILON)
1638 cerr << "ERROR: The given center is further way by " << fabs(a.Distance(center) - RADIUS) << " from a than RADIUS." << endl;
1639
1640 gsl_matrix_free(A);
1641};
1642
1643
1644
1645/**
1646 * Function returns center of sphere with RADIUS, which rests on points a, b, c
1647 * @param Center this vector will be used for return
1648 * @param a vector first point of triangle
1649 * @param b vector second point of triangle
1650 * @param c vector third point of triangle
1651 * @param *Umkreismittelpunkt new cneter point of circumference
1652 * @param Direction vector indicates up/down
1653 * @param AlternativeDirection vecotr, needed in case the triangles have 90 deg angle
1654 * @param Halfplaneindicator double indicates whether Direction is up or down
1655 * @param AlternativeIndicator doube indicates in case of orthogonal triangles which direction of AlternativeDirection is suitable
1656 * @param alpha double angle at a
1657 * @param beta double, angle at b
1658 * @param gamma, double, angle at c
1659 * @param Radius, double
1660 * @param Umkreisradius double radius of circumscribing circle
1661 */
1662void Get_center_of_sphere(Vector* Center, Vector a, Vector b, Vector c, Vector *NewUmkreismittelpunkt, Vector* Direction, Vector* AlternativeDirection,
1663 double HalfplaneIndicator, double AlternativeIndicator, double alpha, double beta, double gamma, double RADIUS, double Umkreisradius)
1664{
1665 Vector TempNormal, helper;
1666 double Restradius;
1667 Vector OtherCenter;
1668 cout << Verbose(3) << "Begin of Get_center_of_sphere.\n";
1669 Center->Zero();
1670 helper.CopyVector(&a);
1671 helper.Scale(sin(2.*alpha));
1672 Center->AddVector(&helper);
1673 helper.CopyVector(&b);
1674 helper.Scale(sin(2.*beta));
1675 Center->AddVector(&helper);
1676 helper.CopyVector(&c);
1677 helper.Scale(sin(2.*gamma));
1678 Center->AddVector(&helper);
1679 //*Center = a * sin(2.*alpha) + b * sin(2.*beta) + c * sin(2.*gamma) ;
1680 Center->Scale(1./(sin(2.*alpha) + sin(2.*beta) + sin(2.*gamma)));
1681 NewUmkreismittelpunkt->CopyVector(Center);
1682 cout << Verbose(4) << "Center of new circumference is " << *NewUmkreismittelpunkt << ".\n";
1683 // Here we calculated center of circumscribing circle, using barycentric coordinates
1684 cout << Verbose(4) << "Center of circumference is " << *Center << " in direction " << *Direction << ".\n";
1685
1686 TempNormal.CopyVector(&a);
1687 TempNormal.SubtractVector(&b);
1688 helper.CopyVector(&a);
1689 helper.SubtractVector(&c);
1690 TempNormal.VectorProduct(&helper);
1691 if (fabs(HalfplaneIndicator) < MYEPSILON)
1692 {
1693 if ((TempNormal.ScalarProduct(AlternativeDirection) <0 and AlternativeIndicator >0) or (TempNormal.ScalarProduct(AlternativeDirection) >0 and AlternativeIndicator <0))
1694 {
1695 TempNormal.Scale(-1);
1696 }
1697 }
1698 else
1699 {
1700 if (TempNormal.ScalarProduct(Direction)<0 && HalfplaneIndicator >0 || TempNormal.ScalarProduct(Direction)>0 && HalfplaneIndicator<0)
1701 {
1702 TempNormal.Scale(-1);
1703 }
1704 }
1705
1706 TempNormal.Normalize();
1707 Restradius = sqrt(RADIUS*RADIUS - Umkreisradius*Umkreisradius);
1708 cout << Verbose(4) << "Height of center of circumference to center of sphere is " << Restradius << ".\n";
1709 TempNormal.Scale(Restradius);
1710 cout << Verbose(4) << "Shift vector to sphere of circumference is " << TempNormal << ".\n";
1711
1712 Center->AddVector(&TempNormal);
1713 cout << Verbose(0) << "Center of sphere of circumference is " << *Center << ".\n";
1714 get_sphere(&OtherCenter, a, b, c, RADIUS);
1715 cout << Verbose(0) << "OtherCenter of sphere of circumference is " << OtherCenter << ".\n";
1716 cout << Verbose(3) << "End of Get_center_of_sphere.\n";
1717};
1718
1719
1720
1721/** This recursive function finds a third point, to form a triangle with two given ones.
1722 * Two atoms are fixed, a candidate is supplied, additionally two vectors for direction distinction, a Storage area to \
1723 * supply results to the calling function, the radius of the sphere which the triangle shall support and the molecule \
1724 * upon which we operate.
1725 * If the candidate is more fitting to support the sphere than the already stored atom is, then we write its general \
1726 * direction and angle into Storage.
1727 * We the determine the recursive level we have reached and if this is not on the threshold yet, call this function again, \
1728 * with all neighbours of the candidate.
1729 * @param a first point
1730 * @param b second point
1731 * *param c atom old third point of old triangle
1732 * @param Candidate base point along whose bonds to start looking from
1733 * @param Parent point to avoid during search as its wrong direction
1734 * @param RecursionLevel contains current recursion depth
1735 * @param Chord baseline vector of first and second point
1736 * @param direction1 second in plane vector (along with \a Chord) of the triangle the baseline belongs to
1737 * @param OldNormal normal of the triangle which the baseline belongs to
1738 * @param ReferencePoint Vector of center of circumscribing circle from which we look towards center of sphere
1739 * @param Opt_Candidate candidate reference to return
1740 * @param Storage array containing two angles of current Opt_Candidate
1741 * @param RADIUS radius of ball
1742 * @param mol molecule structure with atoms and bonds
1743 */
1744void Tesselation::Find_next_suitable_point_via_Angle_of_Sphere(atom* a, atom* b, atom* c, atom* Candidate, atom* Parent,
1745 int RecursionLevel, Vector *Chord, Vector *direction1, Vector *OldNormal, Vector ReferencePoint,
1746 atom*& Opt_Candidate, double *Storage, const double RADIUS, molecule* mol)
1747{
1748 cout << Verbose(2) << "Begin of Find_next_suitable_point_via_Angle_of_Sphere, recursion level " << RecursionLevel << ".\n";
1749 cout << Verbose(3) << "Candidate is "<< *Candidate << endl;
1750 cout << Verbose(4) << "Baseline vector is " << *Chord << "." << endl;
1751 cout << Verbose(4) << "ReferencePoint is " << ReferencePoint << "." << endl;
1752 cout << Verbose(4) << "Normal of base triangle is " << *OldNormal << "." << endl;
1753 cout << Verbose(4) << "Search direction is " << *direction1 << "." << endl;
1754 /* OldNormal is normal vector on the old triangle
1755 * direction1 is normal on the triangle line, from which we come, as well as on OldNormal.
1756 * Chord points from b to a!!!
1757 */
1758 Vector dif_a; //Vector from a to candidate
1759 Vector dif_b; //Vector from b to candidate
1760 Vector AngleCheck;
1761 Vector TempNormal, Umkreismittelpunkt;
1762 Vector Mittelpunkt;
1763
1764 double CurrentEpsilon = 0.1;
1765 double alpha, beta, gamma, SideA, SideB, SideC, sign, Umkreisradius, Restradius, Distance;
1766 double BallAngle, AlternativeSign;
1767 atom *Walker; // variable atom point
1768
1769 Vector NewUmkreismittelpunkt;
1770
1771 if (a != Candidate and b != Candidate and c != Candidate) {
1772 cout << Verbose(3) << "We have a unique candidate!" << endl;
1773 dif_a.CopyVector(&(a->x));
1774 dif_a.SubtractVector(&(Candidate->x));
1775 dif_b.CopyVector(&(b->x));
1776 dif_b.SubtractVector(&(Candidate->x));
1777 AngleCheck.CopyVector(&(Candidate->x));
1778 AngleCheck.SubtractVector(&(a->x));
1779 AngleCheck.ProjectOntoPlane(Chord);
1780
1781 SideA = dif_b.Norm();
1782 SideB = dif_a.Norm();
1783 SideC = Chord->Norm();
1784 //Chord->Scale(-1);
1785
1786 alpha = Chord->Angle(&dif_a);
1787 beta = M_PI - Chord->Angle(&dif_b);
1788 gamma = dif_a.Angle(&dif_b);
1789
1790 cout << Verbose(2) << "Base triangle has sides " << dif_a << ", " << dif_b << ", " << *Chord << " with angles " << alpha/M_PI*180. << ", " << beta/M_PI*180. << ", " << gamma/M_PI*180. << "." << endl;
1791
1792 if (fabs(M_PI - alpha - beta - gamma) > MYEPSILON) {
1793 cerr << Verbose(0) << "WARNING: sum of angles for base triangle " << (alpha + beta + gamma)/M_PI*180. << " != 180.\n";
1794 cout << Verbose(1) << "Base triangle has sides " << dif_a << ", " << dif_b << ", " << *Chord << " with angles " << alpha/M_PI*180. << ", " << beta/M_PI*180. << ", " << gamma/M_PI*180. << "." << endl;
1795 }
1796
1797 if ((M_PI*179./180. > alpha) && (M_PI*179./180. > beta) && (M_PI*179./180. > gamma)) {
1798 Umkreisradius = SideA / 2.0 / sin(alpha);
1799 //cout << Umkreisradius << endl;
1800 //cout << SideB / 2.0 / sin(beta) << endl;
1801 //cout << SideC / 2.0 / sin(gamma) << endl;
1802
1803 if (Umkreisradius < RADIUS) { //Checking whether ball will at least rest on points.
1804 cout << Verbose(3) << "Circle of circumference would fit: " << Umkreisradius << " < " << RADIUS << "." << endl;
1805 cout << Verbose(2) << "Candidate is "<< *Candidate << endl;
1806 sign = AngleCheck.ScalarProduct(direction1);
1807 if (fabs(sign)<MYEPSILON) {
1808 if (AngleCheck.ScalarProduct(OldNormal)<0) {
1809 sign =0;
1810 AlternativeSign=1;
1811 } else {
1812 sign =0;
1813 AlternativeSign=-1;
1814 }
1815 } else {
1816 sign /= fabs(sign);
1817 }
1818 if (sign >= 0) {
1819 cout << Verbose(3) << "Candidate is in search direction: " << sign << "." << endl;
1820
1821 Get_center_of_sphere(&Mittelpunkt, (a->x), (b->x), (Candidate->x), &NewUmkreismittelpunkt, OldNormal, direction1, sign, AlternativeSign, alpha, beta, gamma, RADIUS, Umkreisradius);
1822
1823 Mittelpunkt.SubtractVector(&ReferencePoint);
1824 cout << Verbose(3) << "Reference vector to sphere's center is " << Mittelpunkt << "." << endl;
1825
1826 BallAngle = Mittelpunkt.Angle(OldNormal);
1827 cout << Verbose(3) << "Angle between normal of base triangle and center of ball sphere is :" << BallAngle << "." << endl;
1828
1829 //cout << "direction1 is " << *direction1 << "." << endl;
1830 //cout << "Mittelpunkt is " << Mittelpunkt << "."<< endl;
1831
1832 //cout << Verbose(3) << "BallAngle is " << BallAngle << " Sign is " << sign << endl;
1833
1834 NewUmkreismittelpunkt.SubtractVector(&ReferencePoint);
1835
1836 if ((Mittelpunkt.ScalarProduct(direction1) >=0) || (fabs(NewUmkreismittelpunkt.Norm()) < MYEPSILON)) {
1837 if (Storage[0]< -1.5) { // first Candidate at all
1838 if (1) {//if (CheckPresenceOfTriangle((ofstream *)&cout,a,b,Candidate)) {
1839 cout << Verbose(2) << "First good candidate is " << *Candidate << " with ";
1840 Opt_Candidate = Candidate;
1841 Storage[0] = sign;
1842 Storage[1] = AlternativeSign;
1843 Storage[2] = BallAngle;
1844 cout << " angle " << Storage[2] << " and Up/Down "
1845 << Storage[0] << endl;
1846 } else
1847 cout << "Candidate " << *Candidate << " does not belong to a valid triangle." << endl;
1848 } else {
1849 if ( Storage[2] > BallAngle) {
1850 if (1) { //if (CheckPresenceOfTriangle((ofstream *)&cout,a,b,Candidate)) {
1851 cout << Verbose(2) << "Next better candidate is " << *Candidate << " with ";
1852 Opt_Candidate = Candidate;
1853 Storage[0] = sign;
1854 Storage[1] = AlternativeSign;
1855 Storage[2] = BallAngle;
1856 cout << " angle " << Storage[2] << " and Up/Down "
1857 << Storage[0] << endl;
1858 } else
1859 cout << "Candidate " << *Candidate << " does not belong to a valid triangle." << endl;
1860 } else {
1861 if (DEBUG) {
1862 cout << Verbose(3) << *Candidate << " looses against better candidate " << *Opt_Candidate << "." << endl;
1863 }
1864 }
1865 }
1866 } else {
1867 if (DEBUG) {
1868 cout << Verbose(3) << *Candidate << " refused due to Up/Down sign which is " << sign << endl;
1869 }
1870 }
1871 } else {
1872 if (DEBUG) {
1873 cout << Verbose(3) << *Candidate << " is not in search direction." << endl;
1874 }
1875 }
1876 } else {
1877 if (DEBUG) {
1878 cout << Verbose(3) << *Candidate << " would have circumference of " << Umkreisradius << " bigger than ball's radius " << RADIUS << "." << endl;
1879 }
1880 }
1881 } else {
1882 if (DEBUG) {
1883 cout << Verbose(0) << "Triangle consisting of " << *Candidate << ", " << *a << " and " << *b << " has an angle >150!" << endl;
1884 }
1885 }
1886 } else {
1887 if (DEBUG) {
1888 cout << Verbose(3) << *Candidate << " is either " << *a << " or " << *b << "." << endl;
1889 }
1890 }
1891
1892 if (RecursionLevel < 5) { // Seven is the recursion level threshold.
1893 for (int i = 0; i < mol->NumberOfBondsPerAtom[Candidate->nr]; i++) { // go through all bond
1894 Walker = mol->ListOfBondsPerAtom[Candidate->nr][i]->GetOtherAtom(Candidate);
1895 if (Walker == Parent) { // don't go back the same bond
1896 continue;
1897 } else {
1898 Find_next_suitable_point_via_Angle_of_Sphere(a, b, c, Walker, Candidate, RecursionLevel+1, Chord, direction1, OldNormal, ReferencePoint, Opt_Candidate, Storage, RADIUS, mol); //call function again
1899 }
1900 }
1901 }
1902 cout << Verbose(2) << "End of Find_next_suitable_point_via_Angle_of_Sphere, recursion level " << RecursionLevel << ".\n";
1903}
1904;
1905
1906
1907/** Constructs the center of the circumcircle defined by three points \a *a, \a *b and \a *c.
1908 * \param *Center new center on return
1909 * \param *a first point
1910 * \param *b second point
1911 * \param *c third point
1912 */
1913void GetCenterofCircumcircle(Vector *Center, Vector *a, Vector *b, Vector *c)
1914{
1915 Vector helper;
1916 double alpha, beta, gamma;
1917 Vector SideA, SideB, SideC;
1918 SideA.CopyVector(b);
1919 SideA.SubtractVector(c);
1920 SideB.CopyVector(c);
1921 SideB.SubtractVector(a);
1922 SideC.CopyVector(a);
1923 SideC.SubtractVector(b);
1924 alpha = M_PI - SideB.Angle(&SideC);
1925 beta = M_PI - SideC.Angle(&SideA);
1926 gamma = M_PI - SideA.Angle(&SideB);
1927 cout << Verbose(3) << "INFO: alpha = " << alpha/M_PI*180. << ", beta = " << beta/M_PI*180. << ", gamma = " << gamma/M_PI*180. << "." << endl;
1928 if (fabs(M_PI - alpha - beta - gamma) > HULLEPSILON)
1929 cerr << "Sum of angles " << (alpha+beta+gamma)/M_PI*180. << " > 180 degrees by " << fabs(M_PI - alpha - beta - gamma)/M_PI*180. << "!" << endl;
1930
1931 Center->Zero();
1932 helper.CopyVector(a);
1933 helper.Scale(sin(2.*alpha));
1934 Center->AddVector(&helper);
1935 helper.CopyVector(b);
1936 helper.Scale(sin(2.*beta));
1937 Center->AddVector(&helper);
1938 helper.CopyVector(c);
1939 helper.Scale(sin(2.*gamma));
1940 Center->AddVector(&helper);
1941 Center->Scale(1./(sin(2.*alpha) + sin(2.*beta) + sin(2.*gamma)));
1942};
1943
1944/** Returns the parameter "path length" for a given \a NewSphereCenter relative to \a OldSphereCenter on a circle on the plane \a CirclePlaneNormal with center \a CircleCenter and radius \a CircleRadius.
1945 * Test whether the \a NewSphereCenter is really on the given plane and in distance \a CircleRadius from \a CircleCenter.
1946 * It calculates the angle, making it unique on [0,2.*M_PI) by comparing to SearchDirection.
1947 * Also the new center is invalid if it the same as the old one and does not lie right above (\a NormalVector) the base line (\a CircleCenter).
1948 * \param CircleCenter Center of the parameter circle
1949 * \param CirclePlaneNormal normal vector to plane of the parameter circle
1950 * \param CircleRadius radius of the parameter circle
1951 * \param NewSphereCenter new center of a circumcircle
1952 * \param OldSphereCenter old center of a circumcircle, defining the zero "path length" on the parameter circle
1953 * \param NormalVector normal vector
1954 * \param SearchDirection search direction to make angle unique on return.
1955 * \return Angle between \a NewSphereCenter and \a OldSphereCenter relative to \a CircleCenter, 2.*M_PI if one test fails
1956 */
1957double GetPathLengthonCircumCircle(Vector &CircleCenter, Vector &CirclePlaneNormal, double CircleRadius, Vector &NewSphereCenter, Vector &OldSphereCenter, Vector &NormalVector, Vector &SearchDirection)
1958{
1959 Vector helper;
1960 double radius, alpha;
1961
1962 helper.CopyVector(&NewSphereCenter);
1963 // test whether new center is on the parameter circle's plane
1964 if (fabs(helper.ScalarProduct(&CirclePlaneNormal)) > HULLEPSILON) {
1965 cerr << "ERROR: Something's very wrong here: NewSphereCenter is not on the band's plane as desired by " <<fabs(helper.ScalarProduct(&CirclePlaneNormal)) << "!" << endl;
1966 helper.ProjectOntoPlane(&CirclePlaneNormal);
1967 }
1968 radius = helper.ScalarProduct(&helper);
1969 // test whether the new center vector has length of CircleRadius
1970 if (fabs(radius - CircleRadius) > HULLEPSILON)
1971 cerr << Verbose(1) << "ERROR: The projected center of the new sphere has radius " << radius << " instead of " << CircleRadius << "." << endl;
1972 alpha = helper.Angle(&OldSphereCenter);
1973 // make the angle unique by checking the halfplanes/search direction
1974 if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON) // acos is not unique on [0, 2.*M_PI), hence extra check to decide between two half intervals
1975 alpha = 2.*M_PI - alpha;
1976 cout << Verbose(2) << "INFO: RelativeNewSphereCenter is " << helper << ", RelativeOldSphereCenter is " << OldSphereCenter << " and resulting angle is " << alpha << "." << endl;
1977 radius = helper.Distance(&OldSphereCenter);
1978 helper.ProjectOntoPlane(&NormalVector);
1979 // check whether new center is somewhat away or at least right over the current baseline to prevent intersecting triangles
1980 if ((radius > HULLEPSILON) || (helper.Norm() < HULLEPSILON)) {
1981 cout << Verbose(2) << "INFO: Distance between old and new center is " << radius << " and between new center and baseline center is " << helper.Norm() << "." << endl;
1982 return alpha;
1983 } else {
1984 cout << Verbose(1) << "INFO: NewSphereCenter " << helper << " is too close to OldSphereCenter" << OldSphereCenter << "." << endl;
1985 return 2.*M_PI;
1986 }
1987};
1988
1989
1990/** This recursive function finds a third point, to form a triangle with two given ones.
1991 * The idea is as follows: A sphere with fixed radius is (almost) uniquely defined in space by three points
1992 * that sit on its boundary. Hence, when two points are given and we look for the (next) third point, then
1993 * the center of the sphere is still fixed up to a single parameter. The band of possible values
1994 * describes a circle in 3D-space. The old center of the sphere for the current base triangle gives
1995 * us the "null" on this circle, the new center of the candidate point will be some way along this
1996 * circle. The shorter the way the better is the candidate. Note that the direction is clearly given
1997 * by the normal vector of the base triangle that always points outwards by construction.
1998 * Hence, we construct a Center of this circle which sits right in the middle of the current base line.
1999 * We construct the normal vector that defines the plane this circle lies in, it is just in the
2000 * direction of the baseline. And finally, we need the radius of the circle, which is given by the rest
2001 * with respect to the length of the baseline and the sphere's fixed \a RADIUS.
2002 * Note that there is one difficulty: The circumcircle is uniquely defined, but for the circumsphere's center
2003 * there are two possibilities which becomes clear from the construction as seen below. Hence, we must check
2004 * both.
2005 * Note also that the acos() function is not unique on [0, 2.*M_PI). Hence, we need an additional check
2006 * to decide for one of the two possible angles. Therefore we need a SearchDirection and to make this check
2007 * sensible we need OldSphereCenter to be orthogonal to it. Either we construct SearchDirection orthogonal
2008 * right away, or -- what we do here -- we rotate the relative sphere centers such that this orthogonality
2009 * holds. Then, the normalized projection onto the SearchDirection is either +1 or -1 and thus states whether
2010 * the angle is uniquely in either (0,M_PI] or [M_PI, 2.*M_PI).
2011 * @param BaseTriangle BoundaryTriangleSet of the current base triangle with all three points
2012 * @param BaseLine BoundaryLineSet of BaseTriangle with the current base line
2013 * @param OptCandidate candidate reference on return
2014 * @param OptCandidateCenter candidate's sphere center on return
2015 * @param ShortestAngle the current path length on this circle band for the current Opt_Candidate
2016 * @param RADIUS radius of sphere
2017 * @param *LC LinkedCell structure with neighbouring atoms
2018 */
2019// void Find_next_suitable_point(class BoundaryTriangleSet *BaseTriangle, class BoundaryLineSet *BaseLine, atom*& OptCandidate, Vector *OptCandidateCenter, double *ShortestAngle, const double RADIUS, LinkedCell *LC)
2020// {
2021// atom *Walker = NULL;
2022// Vector CircleCenter; // center of the circle, i.e. of the band of sphere's centers
2023// Vector CirclePlaneNormal; // normal vector defining the plane this circle lives in
2024// Vector OldSphereCenter; // center of the sphere defined by the three points of BaseTriangle
2025// Vector NewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, first possibility
2026// Vector OtherNewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, second possibility
2027// Vector NewNormalVector; // normal vector of the Candidate's triangle
2028// Vector SearchDirection; // vector that points out of BaseTriangle and is orthonormal to its NormalVector (i.e. the desired direction for the best Candidate)
2029// Vector helper;
2030// LinkedAtoms *List = NULL;
2031// double CircleRadius; // radius of this circle
2032// double radius;
2033// double alpha, Otheralpha; // angles (i.e. parameter for the circle).
2034// double Nullalpha; // angle between OldSphereCenter and NormalVector of base triangle
2035// int N[NDIM], Nlower[NDIM], Nupper[NDIM];
2036// atom *Candidate = NULL;
2037//
2038// cout << Verbose(1) << "Begin of Find_next_suitable_point" << endl;
2039//
2040// cout << Verbose(2) << "INFO: NormalVector of BaseTriangle is " << BaseTriangle->NormalVector << "." << endl;
2041//
2042// // construct center of circle
2043// CircleCenter.CopyVector(&(BaseLine->endpoints[0]->node->x));
2044// CircleCenter.AddVector(&BaseLine->endpoints[1]->node->x);
2045// CircleCenter.Scale(0.5);
2046//
2047// // construct normal vector of circle
2048// CirclePlaneNormal.CopyVector(&BaseLine->endpoints[0]->node->x);
2049// CirclePlaneNormal.SubtractVector(&BaseLine->endpoints[1]->node->x);
2050//
2051// // calculate squared radius of circle
2052// radius = CirclePlaneNormal.ScalarProduct(&CirclePlaneNormal);
2053// if (radius/4. < RADIUS*RADIUS) {
2054// CircleRadius = RADIUS*RADIUS - radius/4.;
2055// CirclePlaneNormal.Normalize();
2056// cout << Verbose(2) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl;
2057//
2058// // construct old center
2059// GetCenterofCircumcircle(&OldSphereCenter, &(BaseTriangle->endpoints[0]->node->x), &(BaseTriangle->endpoints[1]->node->x), &(BaseTriangle->endpoints[2]->node->x));
2060// helper.CopyVector(&BaseTriangle->NormalVector); // normal vector ensures that this is correct center of the two possible ones
2061// radius = BaseLine->endpoints[0]->node->x.DistanceSquared(&OldSphereCenter);
2062// helper.Scale(sqrt(RADIUS*RADIUS - radius));
2063// OldSphereCenter.AddVector(&helper);
2064// OldSphereCenter.SubtractVector(&CircleCenter);
2065// cout << Verbose(2) << "INFO: OldSphereCenter is at " << OldSphereCenter << "." << endl;
2066//
2067// // test whether old center is on the band's plane
2068// if (fabs(OldSphereCenter.ScalarProduct(&CirclePlaneNormal)) > HULLEPSILON) {
2069// cerr << "ERROR: Something's very wrong here: OldSphereCenter is not on the band's plane as desired by " << fabs(OldSphereCenter.ScalarProduct(&CirclePlaneNormal)) << "!" << endl;
2070// OldSphereCenter.ProjectOntoPlane(&CirclePlaneNormal);
2071// }
2072// radius = OldSphereCenter.ScalarProduct(&OldSphereCenter);
2073// if (fabs(radius - CircleRadius) < HULLEPSILON) {
2074//
2075// // construct SearchDirection
2076// SearchDirection.MakeNormalVector(&BaseTriangle->NormalVector, &CirclePlaneNormal);
2077// helper.CopyVector(&BaseLine->endpoints[0]->node->x);
2078// for(int i=0;i<3;i++) // just take next different endpoint
2079// if ((BaseTriangle->endpoints[i]->node != BaseLine->endpoints[0]->node) && (BaseTriangle->endpoints[i]->node != BaseLine->endpoints[1]->node)) {
2080// helper.SubtractVector(&BaseTriangle->endpoints[i]->node->x);
2081// }
2082// if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON) // ohoh, SearchDirection points inwards!
2083// SearchDirection.Scale(-1.);
2084// SearchDirection.ProjectOntoPlane(&OldSphereCenter);
2085// SearchDirection.Normalize();
2086// cout << Verbose(2) << "INFO: SearchDirection is " << SearchDirection << "." << endl;
2087// if (fabs(OldSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) { // rotated the wrong way!
2088// cerr << "ERROR: SearchDirection and RelativeOldSphereCenter are still not orthogonal!" << endl;
2089// }
2090//
2091// if (LC->SetIndexToVector(&CircleCenter)) { // get cell for the starting atom
2092// for(int i=0;i<NDIM;i++) // store indices of this cell
2093// N[i] = LC->n[i];
2094// cout << Verbose(2) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
2095// } else {
2096// cerr << "ERROR: Vector " << CircleCenter << " is outside of LinkedCell's bounding box." << endl;
2097// return;
2098// }
2099// // then go through the current and all neighbouring cells and check the contained atoms for possible candidates
2100// cout << Verbose(2) << "LC Intervals:";
2101// for (int i=0;i<NDIM;i++) {
2102// Nlower[i] = ((N[i]-1) >= 0) ? N[i]-1 : 0;
2103// Nupper[i] = ((N[i]+1) < LC->N[i]) ? N[i]+1 : LC->N[i]-1;
2104// cout << " [" << Nlower[i] << "," << Nupper[i] << "] ";
2105// }
2106// cout << endl;
2107// for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
2108// for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
2109// for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
2110// List = LC->GetCurrentCell();
2111// cout << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
2112// if (List != NULL) {
2113// for (LinkedAtoms::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
2114// Candidate = (*Runner);
2115//
2116// // check for three unique points
2117// if ((Candidate != BaseTriangle->endpoints[0]->node) && (Candidate != BaseTriangle->endpoints[1]->node) && (Candidate != BaseTriangle->endpoints[2]->node)) {
2118// cout << Verbose(1) << "INFO: Current Candidate is " << *Candidate << " at " << Candidate->x << "." << endl;
2119//
2120// // construct both new centers
2121// GetCenterofCircumcircle(&NewSphereCenter, &(BaseLine->endpoints[0]->node->x), &(BaseLine->endpoints[1]->node->x), &(Candidate->x));
2122// OtherNewSphereCenter.CopyVector(&NewSphereCenter);
2123//
2124// if ((NewNormalVector.MakeNormalVector(&(BaseLine->endpoints[0]->node->x), &(BaseLine->endpoints[1]->node->x), &(Candidate->x))) && (fabs(NewNormalVector.ScalarProduct(&NewNormalVector)) > HULLEPSILON)) {
2125// helper.CopyVector(&NewNormalVector);
2126// cout << Verbose(2) << "INFO: NewNormalVector is " << NewNormalVector << "." << endl;
2127// radius = BaseLine->endpoints[0]->node->x.DistanceSquared(&NewSphereCenter);
2128// if (radius < RADIUS*RADIUS) {
2129// helper.Scale(sqrt(RADIUS*RADIUS - radius));
2130// cout << Verbose(3) << "INFO: Distance of NewCircleCenter to NewSphereCenter is " << helper.Norm() << "." << endl;
2131// NewSphereCenter.AddVector(&helper);
2132// NewSphereCenter.SubtractVector(&CircleCenter);
2133// cout << Verbose(2) << "INFO: NewSphereCenter is at " << NewSphereCenter << "." << endl;
2134//
2135// helper.Scale(-1.); // OtherNewSphereCenter is created by the same vector just in the other direction
2136// OtherNewSphereCenter.AddVector(&helper);
2137// OtherNewSphereCenter.SubtractVector(&CircleCenter);
2138// cout << Verbose(2) << "INFO: OtherNewSphereCenter is at " << OtherNewSphereCenter << "." << endl;
2139//
2140// // check both possible centers
2141// alpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, NewSphereCenter, OldSphereCenter, BaseTriangle->NormalVector, SearchDirection);
2142// Otheralpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, OtherNewSphereCenter, OldSphereCenter, BaseTriangle->NormalVector, SearchDirection);
2143// alpha = min(alpha, Otheralpha);
2144// if (*ShortestAngle > alpha) {
2145// OptCandidate = Candidate;
2146// *ShortestAngle = alpha;
2147// if (alpha != Otheralpha)
2148// OptCandidateCenter->CopyVector(&NewSphereCenter);
2149// else
2150// OptCandidateCenter->CopyVector(&OtherNewSphereCenter);
2151// cout << Verbose(1) << "We have found a better candidate: " << *OptCandidate << " with " << alpha << " and circumsphere's center at " << *OptCandidateCenter << "." << endl;
2152// } else {
2153// if (OptCandidate != NULL)
2154// cout << Verbose(1) << "REJECT: Old candidate: " << *OptCandidate << " is better than " << alpha << " with " << *ShortestAngle << "." << endl;
2155// else
2156// cout << Verbose(2) << "REJECT: Candidate " << *Candidate << " with " << alpha << " was rejected." << endl;
2157// }
2158//
2159// } else {
2160// cout << Verbose(1) << "REJECT: NewSphereCenter " << NewSphereCenter << " is too far away: " << radius << "." << endl;
2161// }
2162// } else {
2163// cout << Verbose(1) << "REJECT: Three points from " << *BaseLine << " and Candidate " << *Candidate << " are linear-dependent." << endl;
2164// }
2165// } else {
2166// cout << Verbose(1) << "REJECT: Base triangle " << *BaseTriangle << " contains Candidate " << *Candidate << "." << endl;
2167// }
2168// }
2169// }
2170// }
2171// } else {
2172// cerr << Verbose(1) << "ERROR: The projected center of the old sphere has radius " << radius << " instead of " << CircleRadius << "." << endl;
2173// }
2174// } else {
2175// cout << Verbose(1) << "Circumcircle for base line " << *BaseLine << " and base triangle " << *BaseTriangle << " is too big!" << endl;
2176// }
2177//
2178// cout << Verbose(1) << "End of Find_next_suitable_point" << endl;
2179// };
2180
2181
2182/** Checks whether the triangle consisting of the three atoms is already present.
2183 * Searches for the points in Tesselation::PointsOnBoundary and checks their
2184 * lines. If any of the three edges already has two triangles attached, false is
2185 * returned.
2186 * \param *out output stream for debugging
2187 * \param *Candidates endpoints of the triangle candidate
2188 * \return integer 0 if no triangle exists, 1 if one triangle exists, 2 if two
2189 * triangles exist which is the maximum for three points
2190 */
2191int Tesselation::CheckPresenceOfTriangle(ofstream *out, atom *Candidates[3]) {
2192 LineMap::iterator FindLine;
2193 PointMap::iterator FindPoint;
2194 TriangleMap::iterator FindTriangle;
2195 int adjacentTriangleCount = 0;
2196 class BoundaryPointSet *Points[3];
2197
2198 *out << Verbose(2) << "Begin of CheckPresenceOfTriangle" << endl;
2199 // builds a triangle point set (Points) of the end points
2200 for (int i = 0; i < 3; i++) {
2201 FindPoint = PointsOnBoundary.find(Candidates[i]->nr);
2202 if (FindPoint != PointsOnBoundary.end()) {
2203 Points[i] = FindPoint->second;
2204 } else {
2205 Points[i] = NULL;
2206 }
2207 }
2208
2209 // checks lines between the points in the Points for their adjacent triangles
2210 for (int i = 0; i < 3; i++) {
2211 if (Points[i] != NULL) {
2212 for (int j = i; j < 3; j++) {
2213 if (Points[j] != NULL) {
2214 FindLine = Points[i]->lines.find(Points[j]->node->nr);
2215 if (FindLine != Points[i]->lines.end()) {
2216 for (; FindLine->first == Points[j]->node->nr; FindLine++) {
2217 FindTriangle = FindLine->second->triangles.begin();
2218 for (; FindTriangle != FindLine->second->triangles.end(); FindTriangle++) {
2219 if ((
2220 (FindTriangle->second->endpoints[0] == Points[0])
2221 || (FindTriangle->second->endpoints[0] == Points[1])
2222 || (FindTriangle->second->endpoints[0] == Points[2])
2223 ) && (
2224 (FindTriangle->second->endpoints[1] == Points[0])
2225 || (FindTriangle->second->endpoints[1] == Points[1])
2226 || (FindTriangle->second->endpoints[1] == Points[2])
2227 ) && (
2228 (FindTriangle->second->endpoints[2] == Points[0])
2229 || (FindTriangle->second->endpoints[2] == Points[1])
2230 || (FindTriangle->second->endpoints[2] == Points[2])
2231 )
2232 ) {
2233 adjacentTriangleCount++;
2234 }
2235 }
2236 }
2237 // Only one of the triangle lines must be considered for the triangle count.
2238 *out << Verbose(2) << "Found " << adjacentTriangleCount << " adjacent triangles for the point set." << endl;
2239 return adjacentTriangleCount;
2240
2241 }
2242 }
2243 }
2244 }
2245 }
2246
2247 *out << Verbose(2) << "Found " << adjacentTriangleCount << " adjacent triangles for the point set." << endl;
2248 return adjacentTriangleCount;
2249};
2250
2251/** This recursive function finds a third point, to form a triangle with two given ones.
2252 * Note that this function is for the starting triangle.
2253 * The idea is as follows: A sphere with fixed radius is (almost) uniquely defined in space by three points
2254 * that sit on its boundary. Hence, when two points are given and we look for the (next) third point, then
2255 * the center of the sphere is still fixed up to a single parameter. The band of possible values
2256 * describes a circle in 3D-space. The old center of the sphere for the current base triangle gives
2257 * us the "null" on this circle, the new center of the candidate point will be some way along this
2258 * circle. The shorter the way the better is the candidate. Note that the direction is clearly given
2259 * by the normal vector of the base triangle that always points outwards by construction.
2260 * Hence, we construct a Center of this circle which sits right in the middle of the current base line.
2261 * We construct the normal vector that defines the plane this circle lies in, it is just in the
2262 * direction of the baseline. And finally, we need the radius of the circle, which is given by the rest
2263 * with respect to the length of the baseline and the sphere's fixed \a RADIUS.
2264 * Note that there is one difficulty: The circumcircle is uniquely defined, but for the circumsphere's center
2265 * there are two possibilities which becomes clear from the construction as seen below. Hence, we must check
2266 * both.
2267 * Note also that the acos() function is not unique on [0, 2.*M_PI). Hence, we need an additional check
2268 * to decide for one of the two possible angles. Therefore we need a SearchDirection and to make this check
2269 * sensible we need OldSphereCenter to be orthogonal to it. Either we construct SearchDirection orthogonal
2270 * right away, or -- what we do here -- we rotate the relative sphere centers such that this orthogonality
2271 * holds. Then, the normalized projection onto the SearchDirection is either +1 or -1 and thus states whether
2272 * the angle is uniquely in either (0,M_PI] or [M_PI, 2.*M_PI).
2273 * @param NormalVector normal direction of the base triangle (here the unit axis vector, \sa Find_starting_triangle())
2274 * @param SearchDirection general direction where to search for the next point, relative to center of BaseLine
2275 * @param OldSphereCenter center of sphere for base triangle, relative to center of BaseLine, giving null angle for the parameter circle
2276 * @param BaseLine BoundaryLineSet with the current base line
2277 * @param ThirdNode third atom to avoid in search
2278 * @param candidates list of equally good candidates to return
2279 * @param ShortestAngle the current path length on this circle band for the current Opt_Candidate
2280 * @param RADIUS radius of sphere
2281 * @param *LC LinkedCell structure with neighbouring atoms
2282 */
2283void Find_third_point_for_Tesselation(
2284 Vector NormalVector, Vector SearchDirection, Vector OldSphereCenter,
2285 class BoundaryLineSet *BaseLine, atom *ThirdNode, CandidateList* &candidates,
2286 double *ShortestAngle, const double RADIUS, LinkedCell *LC
2287) {
2288 atom *Walker = NULL;
2289 Vector CircleCenter; // center of the circle, i.e. of the band of sphere's centers
2290 Vector CirclePlaneNormal; // normal vector defining the plane this circle lives in
2291 Vector SphereCenter;
2292 Vector NewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, first possibility
2293 Vector OtherNewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, second possibility
2294 Vector NewNormalVector; // normal vector of the Candidate's triangle
2295 Vector helper, OptCandidateCenter, OtherOptCandidateCenter;
2296 LinkedAtoms *List = NULL;
2297 double CircleRadius; // radius of this circle
2298 double radius;
2299 double alpha, Otheralpha; // angles (i.e. parameter for the circle).
2300 double Nullalpha; // angle between OldSphereCenter and NormalVector of base triangle
2301 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
2302 atom *Candidate = NULL;
2303 CandidateForTesselation *optCandidate;
2304
2305 cout << Verbose(1) << "Begin of Find_third_point_for_Tesselation" << endl;
2306
2307 cout << Verbose(2) << "INFO: NormalVector of BaseTriangle is " << NormalVector << "." << endl;
2308
2309 // construct center of circle
2310 CircleCenter.CopyVector(&(BaseLine->endpoints[0]->node->x));
2311 CircleCenter.AddVector(&BaseLine->endpoints[1]->node->x);
2312 CircleCenter.Scale(0.5);
2313
2314 // construct normal vector of circle
2315 CirclePlaneNormal.CopyVector(&BaseLine->endpoints[0]->node->x);
2316 CirclePlaneNormal.SubtractVector(&BaseLine->endpoints[1]->node->x);
2317
2318 // calculate squared radius atom *ThirdNode,f circle
2319 radius = CirclePlaneNormal.ScalarProduct(&CirclePlaneNormal);
2320 if (radius/4. < RADIUS*RADIUS) {
2321 CircleRadius = RADIUS*RADIUS - radius/4.;
2322 CirclePlaneNormal.Normalize();
2323 cout << Verbose(2) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl;
2324
2325 // test whether old center is on the band's plane
2326 if (fabs(OldSphereCenter.ScalarProduct(&CirclePlaneNormal)) > HULLEPSILON) {
2327 cerr << "ERROR: Something's very wrong here: OldSphereCenter is not on the band's plane as desired by " << fabs(OldSphereCenter.ScalarProduct(&CirclePlaneNormal)) << "!" << endl;
2328 OldSphereCenter.ProjectOntoPlane(&CirclePlaneNormal);
2329 }
2330 radius = OldSphereCenter.ScalarProduct(&OldSphereCenter);
2331 if (fabs(radius - CircleRadius) < HULLEPSILON) {
2332
2333 // check SearchDirection
2334 cout << Verbose(2) << "INFO: SearchDirection is " << SearchDirection << "." << endl;
2335 if (fabs(OldSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) { // rotated the wrong way!
2336 cerr << "ERROR: SearchDirection and RelativeOldSphereCenter are not orthogonal!" << endl;
2337 }
2338
2339 // get cell for the starting atom
2340 if (LC->SetIndexToVector(&CircleCenter)) {
2341 for(int i=0;i<NDIM;i++) // store indices of this cell
2342 N[i] = LC->n[i];
2343 cout << Verbose(2) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
2344 } else {
2345 cerr << "ERROR: Vector " << CircleCenter << " is outside of LinkedCell's bounding box." << endl;
2346 return;
2347 }
2348 // then go through the current and all neighbouring cells and check the contained atoms for possible candidates
2349 cout << Verbose(2) << "LC Intervals:";
2350 for (int i=0;i<NDIM;i++) {
2351 Nlower[i] = ((N[i]-1) >= 0) ? N[i]-1 : 0;
2352 Nupper[i] = ((N[i]+1) < LC->N[i]) ? N[i]+1 : LC->N[i]-1;
2353 cout << " [" << Nlower[i] << "," << Nupper[i] << "] ";
2354 }
2355 cout << endl;
2356 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
2357 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
2358 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
2359 List = LC->GetCurrentCell();
2360 //cout << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
2361 if (List != NULL) {
2362 for (LinkedAtoms::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
2363 Candidate = (*Runner);
2364
2365 // check for three unique points
2366 cout << Verbose(1) << "INFO: Current Candidate is " << *Candidate << " at " << Candidate->x << "." << endl;
2367 if ((Candidate != BaseLine->endpoints[0]->node) && (Candidate != BaseLine->endpoints[1]->node) ){
2368
2369 // construct both new centers
2370 GetCenterofCircumcircle(&NewSphereCenter, &(BaseLine->endpoints[0]->node->x), &(BaseLine->endpoints[1]->node->x), &(Candidate->x));
2371 OtherNewSphereCenter.CopyVector(&NewSphereCenter);
2372
2373 if ((NewNormalVector.MakeNormalVector(&(BaseLine->endpoints[0]->node->x), &(BaseLine->endpoints[1]->node->x), &(Candidate->x)))
2374 && (fabs(NewNormalVector.ScalarProduct(&NewNormalVector)) > HULLEPSILON)
2375 ) {
2376 helper.CopyVector(&NewNormalVector);
2377 cout << Verbose(2) << "INFO: NewNormalVector is " << NewNormalVector << "." << endl;
2378 radius = BaseLine->endpoints[0]->node->x.DistanceSquared(&NewSphereCenter);
2379 if (radius < RADIUS*RADIUS) {
2380 helper.Scale(sqrt(RADIUS*RADIUS - radius));
2381 cout << Verbose(2) << "INFO: Distance of NewCircleCenter to NewSphereCenter is " << helper.Norm() << " with sphere radius " << RADIUS << "." << endl;
2382 NewSphereCenter.AddVector(&helper);
2383 NewSphereCenter.SubtractVector(&CircleCenter);
2384 cout << Verbose(2) << "INFO: NewSphereCenter is at " << NewSphereCenter << "." << endl;
2385
2386 // OtherNewSphereCenter is created by the same vector just in the other direction
2387 helper.Scale(-1.);
2388 OtherNewSphereCenter.AddVector(&helper);
2389 OtherNewSphereCenter.SubtractVector(&CircleCenter);
2390 cout << Verbose(2) << "INFO: OtherNewSphereCenter is at " << OtherNewSphereCenter << "." << endl;
2391
2392 alpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, NewSphereCenter, OldSphereCenter, NormalVector, SearchDirection);
2393 Otheralpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, OtherNewSphereCenter, OldSphereCenter, NormalVector, SearchDirection);
2394 alpha = min(alpha, Otheralpha);
2395 // if there is a better candidate, drop the current list and add the new candidate
2396 // otherwise ignore the new candidate and keep the list
2397 if (*ShortestAngle > (alpha - HULLEPSILON)) {
2398 optCandidate = new CandidateForTesselation(Candidate, BaseLine, OptCandidateCenter, OtherOptCandidateCenter);
2399 if (fabs(alpha - Otheralpha) > MYEPSILON) {
2400 optCandidate->OptCenter.CopyVector(&NewSphereCenter);
2401 optCandidate->OtherOptCenter.CopyVector(&OtherNewSphereCenter);
2402 } else {
2403 optCandidate->OptCenter.CopyVector(&OtherNewSphereCenter);
2404 optCandidate->OtherOptCenter.CopyVector(&NewSphereCenter);
2405 }
2406 // if there is an equal candidate, add it to the list without clearing the list
2407 if ((*ShortestAngle - HULLEPSILON) < alpha) {
2408 candidates->push_back(optCandidate);
2409 cout << Verbose(1) << "ACCEPT: We have found an equally good candidate: " << *(optCandidate->point) << " with "
2410 << alpha << " and circumsphere's center at " << optCandidate->OptCenter << "." << endl;
2411 } else {
2412 candidates->clear();
2413 candidates->push_back(optCandidate);
2414 cout << Verbose(1) << "ACCEPT: We have found a better candidate: " << *(optCandidate->point) << " with "
2415 << alpha << " and circumsphere's center at " << optCandidate->OptCenter << "." << endl;
2416 }
2417 *ShortestAngle = alpha;
2418 cout << Verbose(2) << "INFO: There are " << candidates->size() << " candidates in the list now." << endl;
2419 } else {
2420 if ((optCandidate != NULL) && (optCandidate->point != NULL))
2421 cout << Verbose(1) << "REJECT: Old candidate: " << *(optCandidate->point) << " is better than " << alpha << " with " << *ShortestAngle << "." << endl;
2422 else
2423 cout << Verbose(2) << "REJECT: Candidate " << *Candidate << " with " << alpha << " was rejected." << endl;
2424 }
2425
2426 } else {
2427 cout << Verbose(1) << "REJECT: NewSphereCenter " << NewSphereCenter << " is too far away: " << radius << "." << endl;
2428 }
2429 } else {
2430 cout << Verbose(1) << "REJECT: Three points from " << *BaseLine << " and Candidate " << *Candidate << " are linear-dependent." << endl;
2431 }
2432 } else {
2433 if (ThirdNode != NULL)
2434 cout << Verbose(1) << "REJECT: Base triangle " << *BaseLine << " and " << *ThirdNode << " contains Candidate " << *Candidate << "." << endl;
2435 else
2436 cout << Verbose(1) << "REJECT: Base triangle " << *BaseLine << " contains Candidate " << *Candidate << "." << endl;
2437 }
2438 }
2439 }
2440 }
2441 } else {
2442 cerr << Verbose(1) << "ERROR: The projected center of the old sphere has radius " << radius << " instead of " << CircleRadius << "." << endl;
2443 }
2444 } else {
2445 if (ThirdNode != NULL)
2446 cout << Verbose(1) << "Circumcircle for base line " << *BaseLine << " and third node " << *ThirdNode << " is too big!" << endl;
2447 else
2448 cout << Verbose(1) << "Circumcircle for base line " << *BaseLine << " is too big!" << endl;
2449 }
2450
2451 cout << Verbose(1) << "INFO: Sorting candidate list ..." << endl;
2452 if (candidates->size() > 1) {
2453 candidates->unique();
2454 candidates->sort(sortCandidates);
2455 }
2456
2457 cout << Verbose(1) << "End of Find_third_point_for_Tesselation" << endl;
2458};
2459
2460/**
2461 * Finds the preferable out of two third-point candidates with equal angles.
2462 *
2463 * @param Candidate - this and the second parameter are evaluated
2464 * @param OptCandidate - this and the second parameter are evaluated
2465 * @param current base line
2466 * @param third node of the base triangle
2467 * @param tesselation object
2468 *
2469 * @return true if Candidate should be taken, false if OptCandidate should be kept
2470 */
2471bool Choose_preferable_third_point(
2472 atom *Candidate, atom *OptCandidate, class BoundaryLineSet *BaseLine,
2473 atom *ThirdNode, Tesselation *Tess
2474) {
2475 bool takeNewCandidate;
2476
2477 ofstream *out = new ofstream();
2478 atom *Atoms[3];
2479 bool optCandidateAndBaseLineFormTriangle = (ThirdNode != NULL) && (OptCandidate == ThirdNode);
2480 bool candidateAndBaseLineFormTriangle = (ThirdNode != NULL) && (Candidate == ThirdNode);
2481 Atoms[0] = Candidate;
2482 Atoms[1] = OptCandidate;
2483 Atoms[2] = BaseLine->endpoints[0]->node;
2484 bool candidatesAndBaseLineNode0FormTriangle = (Tess->CheckPresenceOfTriangle(out, Atoms) > 0);
2485 Atoms[0] = Candidate;
2486 Atoms[1] = OptCandidate;
2487 Atoms[2] = BaseLine->endpoints[1]->node;
2488 bool candidatesAndBaseLineNode1FormTriangle = (Tess->CheckPresenceOfTriangle(out, Atoms) > 0);
2489 Vector halfBaseLine;
2490 halfBaseLine.CopyVector(&BaseLine->endpoints[0]->node->x);
2491 halfBaseLine.AddVector(&BaseLine->endpoints[1]->node->x);
2492 halfBaseLine.Scale(0.5);
2493
2494 if (optCandidateAndBaseLineFormTriangle) {
2495 takeNewCandidate = (!existsIntersection(Candidate->x, halfBaseLine, OptCandidate->x, BaseLine->endpoints[0]->node->x)
2496 && !existsIntersection(Candidate->x, halfBaseLine, OptCandidate->x, BaseLine->endpoints[1]->node->x));
2497 } else if (candidateAndBaseLineFormTriangle) {
2498 takeNewCandidate = (existsIntersection(OptCandidate->x, halfBaseLine, Candidate->x, BaseLine->endpoints[0]->node->x)
2499 || existsIntersection(OptCandidate->x, halfBaseLine, Candidate->x, BaseLine->endpoints[1]->node->x));
2500 } else if (candidatesAndBaseLineNode0FormTriangle) {
2501 takeNewCandidate = !existsIntersection(OptCandidate->x, BaseLine->endpoints[0]->node->x, Candidate->x, halfBaseLine);
2502 } else if (candidatesAndBaseLineNode1FormTriangle) {
2503 takeNewCandidate = !existsIntersection(OptCandidate->x, BaseLine->endpoints[1]->node->x, Candidate->x, halfBaseLine);
2504 } else {
2505 takeNewCandidate = (ThirdNode == NULL)
2506 || ((!existsIntersection(Candidate->x, halfBaseLine, ThirdNode->x, BaseLine->endpoints[0]->node->x)
2507 && !existsIntersection(Candidate->x, halfBaseLine, ThirdNode->x, BaseLine->endpoints[1]->node->x)));
2508 }
2509
2510 return takeNewCandidate;
2511};
2512
2513
2514struct Intersection {
2515 Vector x1;
2516 Vector x2;
2517 Vector x3;
2518 Vector x4;
2519};
2520
2521/**
2522 * Intersection calculation function.
2523 *
2524 * @param x to find the result for
2525 * @param function parameter
2526 */
2527double MinIntersectDistance(const gsl_vector * x, void *params) {
2528 double retval = 0;
2529 struct Intersection *I = (struct Intersection *)params;
2530 Vector intersection;
2531 Vector SideA,SideB,HeightA, HeightB;
2532 for (int i=0;i<NDIM;i++)
2533 intersection.x[i] = gsl_vector_get(x, i);
2534
2535 SideA.CopyVector(&(I->x1));
2536 SideA.SubtractVector(&I->x2);
2537 HeightA.CopyVector(&intersection);
2538 HeightA.SubtractVector(&I->x1);
2539 HeightA.ProjectOntoPlane(&SideA);
2540
2541 SideB.CopyVector(&I->x3);
2542 SideB.SubtractVector(&I->x4);
2543 HeightB.CopyVector(&intersection);
2544 HeightB.SubtractVector(&I->x3);
2545 HeightB.ProjectOntoPlane(&SideB);
2546
2547 retval = HeightA.ScalarProduct(&HeightA) + HeightB.ScalarProduct(&HeightB);
2548 //cout << Verbose(2) << "MinIntersectDistance called, result: " << retval << endl;
2549
2550 return retval;
2551};
2552
2553
2554/**
2555 * Calculates whether there is an intersection between two lines. The first line
2556 * always goes through point 1 and point 2 and the second line is given by the
2557 * connection between point 4 and point 5.
2558 *
2559 * @param point 1 of line 1
2560 * @param point 2 of line 1
2561 * @param point 1 of line 2
2562 * @param point 2 of line 2
2563 *
2564 * @return true if there is an intersection between the given lines, false otherwise
2565 */
2566bool existsIntersection(Vector point1, Vector point2, Vector point3, Vector point4) {
2567 bool result;
2568
2569 struct Intersection par;
2570 par.x1.CopyVector(&point1);
2571 par.x2.CopyVector(&point2);
2572 par.x3.CopyVector(&point3);
2573 par.x4.CopyVector(&point4);
2574
2575 const gsl_multimin_fminimizer_type *T = gsl_multimin_fminimizer_nmsimplex;
2576 gsl_multimin_fminimizer *s = NULL;
2577 gsl_vector *ss, *x;
2578 gsl_multimin_function minex_func;
2579
2580 size_t iter = 0;
2581 int status;
2582 double size;
2583
2584 /* Starting point */
2585 x = gsl_vector_alloc(NDIM);
2586 gsl_vector_set(x, 0, point1.x[0]);
2587 gsl_vector_set(x, 1, point1.x[1]);
2588 gsl_vector_set(x, 2, point1.x[2]);
2589
2590 /* Set initial step sizes to 1 */
2591 ss = gsl_vector_alloc(NDIM);
2592 gsl_vector_set_all(ss, 1.0);
2593
2594 /* Initialize method and iterate */
2595 minex_func.n = NDIM;
2596 minex_func.f = &MinIntersectDistance;
2597 minex_func.params = (void *)&par;
2598
2599 s = gsl_multimin_fminimizer_alloc(T, NDIM);
2600 gsl_multimin_fminimizer_set(s, &minex_func, x, ss);
2601
2602 do {
2603 iter++;
2604 status = gsl_multimin_fminimizer_iterate(s);
2605
2606 if (status) {
2607 break;
2608 }
2609
2610 size = gsl_multimin_fminimizer_size(s);
2611 status = gsl_multimin_test_size(size, 1e-2);
2612
2613 if (status == GSL_SUCCESS) {
2614 cout << Verbose(2) << "converged to minimum" << endl;
2615 }
2616 } while (status == GSL_CONTINUE && iter < 100);
2617
2618 // check whether intersection is in between or not
2619 Vector intersection, SideA, SideB, HeightA, HeightB;
2620 double t1, t2;
2621 for (int i = 0; i < NDIM; i++) {
2622 intersection.x[i] = gsl_vector_get(s->x, i);
2623 }
2624
2625 SideA.CopyVector(&par.x2);
2626 SideA.SubtractVector(&par.x1);
2627 HeightA.CopyVector(&intersection);
2628 HeightA.SubtractVector(&par.x1);
2629
2630 t1 = HeightA.Projection(&SideA)/SideA.ScalarProduct(&SideA);
2631
2632 SideB.CopyVector(&par.x4);
2633 SideB.SubtractVector(&par.x3);
2634 HeightB.CopyVector(&intersection);
2635 HeightB.SubtractVector(&par.x3);
2636
2637 t2 = HeightB.Projection(&SideB)/SideB.ScalarProduct(&SideB);
2638
2639 cout << Verbose(2) << "Intersection " << intersection << " is at "
2640 << t1 << " for (" << point1 << "," << point2 << ") and at "
2641 << t2 << " for (" << point3 << "," << point4 << "): ";
2642
2643 if (((t1 >= 0) && (t1 <= 1)) && ((t2 >= 0) && (t2 <= 1))) {
2644 cout << "true intersection." << endl;
2645 result = true;
2646 } else {
2647 cout << "intersection out of region of interest." << endl;
2648 result = false;
2649 }
2650
2651 // free minimizer stuff
2652 gsl_vector_free(x);
2653 gsl_vector_free(ss);
2654 gsl_multimin_fminimizer_free(s);
2655
2656 return result;
2657}
2658
2659/** Finds the second point of starting triangle.
2660 * \param *a first atom
2661 * \param *Candidate pointer to candidate atom on return
2662 * \param Oben vector indicating the outside
2663 * \param Opt_Candidate reference to recommended candidate on return
2664 * \param Storage[3] array storing angles and other candidate information
2665 * \param RADIUS radius of virtual sphere
2666 * \param *LC LinkedCell structure with neighbouring atoms
2667 */
2668void Find_second_point_for_Tesselation(atom* a, atom* Candidate, Vector Oben, atom*& Opt_Candidate, double Storage[3], double RADIUS, LinkedCell *LC)
2669{
2670 cout << Verbose(2) << "Begin of Find_second_point_for_Tesselation" << endl;
2671 int i;
2672 Vector AngleCheck;
2673 atom* Walker;
2674 double norm = -1., angle;
2675 LinkedAtoms *List = NULL;
2676 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
2677
2678 if (LC->SetIndexToAtom(a)) { // get cell for the starting atom
2679 for(int i=0;i<NDIM;i++) // store indices of this cell
2680 N[i] = LC->n[i];
2681 } else {
2682 cerr << "ERROR: Atom " << *a << " is not found in cell " << LC->index << "." << endl;
2683 return;
2684 }
2685 // then go through the current and all neighbouring cells and check the contained atoms for possible candidates
2686 cout << Verbose(2) << "LC Intervals from [";
2687 for (int i=0;i<NDIM;i++) {
2688 cout << " " << N[i] << "<->" << LC->N[i];
2689 }
2690 cout << "] :";
2691 for (int i=0;i<NDIM;i++) {
2692 Nlower[i] = ((N[i]-1) >= 0) ? N[i]-1 : 0;
2693 Nupper[i] = ((N[i]+1) < LC->N[i]) ? N[i]+1 : LC->N[i]-1;
2694 cout << " [" << Nlower[i] << "," << Nupper[i] << "] ";
2695 }
2696 cout << endl;
2697
2698
2699 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
2700 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
2701 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
2702 List = LC->GetCurrentCell();
2703 cout << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
2704 if (List != NULL) {
2705 for (LinkedAtoms::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
2706 Candidate = (*Runner);
2707 cout << Verbose(2) << "Current candidate is " << *Candidate << ": ";
2708 // check if we only have one unique point yet ...
2709 if (a != Candidate) {
2710 // Calculate center of the circle with radius RADIUS through points a and Candidate
2711 Vector OrthogonalizedOben, a_Candidate, Center;
2712 double distance, scaleFactor;
2713
2714 OrthogonalizedOben.CopyVector(&Oben);
2715 a_Candidate.CopyVector(&(a->x));
2716 a_Candidate.SubtractVector(&(Candidate->x));
2717 OrthogonalizedOben.ProjectOntoPlane(&a_Candidate);
2718 OrthogonalizedOben.Normalize();
2719 distance = 0.5 * a_Candidate.Norm();
2720 scaleFactor = sqrt(((RADIUS * RADIUS) - (distance * distance)));
2721 OrthogonalizedOben.Scale(scaleFactor);
2722
2723 Center.CopyVector(&(Candidate->x));
2724 Center.AddVector(&(a->x));
2725 Center.Scale(0.5);
2726 Center.AddVector(&OrthogonalizedOben);
2727
2728 AngleCheck.CopyVector(&Center);
2729 AngleCheck.SubtractVector(&(a->x));
2730 norm = a_Candidate.Norm();
2731 // second point shall have smallest angle with respect to Oben vector
2732 if (norm < RADIUS) {
2733 angle = AngleCheck.Angle(&Oben);
2734 if (angle < Storage[0]) {
2735 //cout << Verbose(1) << "Old values of Storage: %lf %lf \n", Storage[0], Storage[1]);
2736 cout << "Is a better candidate with distance " << norm << " and angle " << angle << " to oben " << Oben << ".\n";
2737 Opt_Candidate = Candidate;
2738 Storage[0] = angle;
2739 //cout << Verbose(1) << "Changing something in Storage: %lf %lf. \n", Storage[0], Storage[2]);
2740 } else {
2741 cout << "Looses with angle " << angle << " to a better candidate " << *Opt_Candidate << endl;
2742 }
2743 } else {
2744 cout << "Refused due to Radius " << norm << endl;
2745 }
2746 } else {
2747 cout << " Candidate is equal to first endpoint " << *a << "." << endl;
2748 }
2749 }
2750 } else {
2751 cout << "Linked cell list is empty." << endl;
2752 }
2753 }
2754 cout << Verbose(2) << "End of Find_second_point_for_Tesselation" << endl;
2755};
2756
2757/** Finds the starting triangle for find_non_convex_border().
2758 * Looks at the outermost atom per axis, then Find_second_point_for_Tesselation()
2759 * for the second and Find_next_suitable_point_via_Angle_of_Sphere() for the third
2760 * point are called.
2761 * \param RADIUS radius of virtual rolling sphere
2762 * \param *LC LinkedCell structure with neighbouring atoms
2763 */
2764void Tesselation::Find_starting_triangle(ofstream *out, molecule *mol, const double RADIUS, LinkedCell *LC)
2765{
2766 cout << Verbose(1) << "Begin of Find_starting_triangle\n";
2767 int i = 0;
2768 LinkedAtoms *List = NULL;
2769 atom* Walker;
2770 atom* FirstPoint;
2771 atom* SecondPoint;
2772 atom* MaxAtom[NDIM];
2773 double max_coordinate[NDIM];
2774 Vector Oben;
2775 Vector helper;
2776 Vector Chord;
2777 Vector SearchDirection;
2778
2779 Oben.Zero();
2780
2781 for (i = 0; i < 3; i++) {
2782 MaxAtom[i] = NULL;
2783 max_coordinate[i] = -1;
2784 }
2785
2786 // 1. searching topmost atom with respect to each axis
2787 for (int i=0;i<NDIM;i++) { // each axis
2788 LC->n[i] = LC->N[i]-1; // current axis is topmost cell
2789 for (LC->n[(i+1)%NDIM]=0;LC->n[(i+1)%NDIM]<LC->N[(i+1)%NDIM];LC->n[(i+1)%NDIM]++)
2790 for (LC->n[(i+2)%NDIM]=0;LC->n[(i+2)%NDIM]<LC->N[(i+2)%NDIM];LC->n[(i+2)%NDIM]++) {
2791 List = LC->GetCurrentCell();
2792 //cout << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
2793 if (List != NULL) {
2794 for (LinkedAtoms::iterator Runner = List->begin();Runner != List->end();Runner++) {
2795 cout << Verbose(2) << "Current atom is " << *(*Runner) << "." << endl;
2796 if ((*Runner)->x.x[i] > max_coordinate[i]) {
2797 max_coordinate[i] = (*Runner)->x.x[i];
2798 MaxAtom[i] = (*Runner);
2799 }
2800 }
2801 } else {
2802 cerr << "ERROR: The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!" << endl;
2803 }
2804 }
2805 }
2806
2807 cout << Verbose(2) << "Found maximum coordinates: ";
2808 for (int i=0;i<NDIM;i++)
2809 cout << i << ": " << *MaxAtom[i] << "\t";
2810 cout << endl;
2811 const int k = 1; // arbitrary choice
2812 Oben.x[k] = 1.;
2813 FirstPoint = MaxAtom[k];
2814 cout << Verbose(1) << "Coordinates of start atom " << *FirstPoint << " at " << FirstPoint->x << "." << endl;
2815
2816 double ShortestAngle;
2817 atom* Opt_Candidate = NULL;
2818 ShortestAngle = 999999.; // This will contain the angle, which will be always positive (when looking for second point), when looking for third point this will be the quadrant.
2819
2820 Find_second_point_for_Tesselation(FirstPoint, NULL, Oben, Opt_Candidate, &ShortestAngle, RADIUS, LC); // we give same point as next candidate as its bonds are looked into in find_second_...
2821 SecondPoint = Opt_Candidate;
2822 cout << Verbose(1) << "Found second point is " << *SecondPoint << " at " << SecondPoint->x << ".\n";
2823
2824 helper.CopyVector(&(FirstPoint->x));
2825 helper.SubtractVector(&(SecondPoint->x));
2826 helper.Normalize();
2827 Oben.ProjectOntoPlane(&helper);
2828 Oben.Normalize();
2829 helper.VectorProduct(&Oben);
2830 ShortestAngle = 2.*M_PI; // This will indicate the quadrant.
2831
2832 Chord.CopyVector(&(FirstPoint->x)); // bring into calling function
2833 Chord.SubtractVector(&(SecondPoint->x));
2834 double radius = Chord.ScalarProduct(&Chord);
2835 double CircleRadius = sqrt(RADIUS*RADIUS - radius/4.);
2836 helper.CopyVector(&Oben);
2837 helper.Scale(CircleRadius);
2838 // Now, oben and helper are two orthonormalized vectors in the plane defined by Chord (not normalized)
2839
2840 cout << Verbose(2) << "Looking for third point candidates \n";
2841 // look in one direction of baseline for initial candidate
2842 CandidateList *Opt_Candidates = new CandidateList();
2843 SearchDirection.MakeNormalVector(&Chord, &Oben); // whether we look "left" first or "right" first is not important ...
2844
2845 // adding point 1 and point 2 and the line between them
2846 AddTrianglePoint(FirstPoint, 0);
2847 AddTrianglePoint(SecondPoint, 1);
2848 AddTriangleLine(TPS[0], TPS[1], 0);
2849
2850 cout << Verbose(1) << "Looking for third point candidates ...\n";
2851 cout << Verbose(2) << "INFO: OldSphereCenter is at " << helper << ".\n";
2852 Find_third_point_for_Tesselation(
2853 Oben, SearchDirection, helper, BLS[0], NULL, *&Opt_Candidates, &ShortestAngle, RADIUS, LC
2854 );
2855 cout << Verbose(1) << "Third Points are ";
2856 CandidateList::iterator it;
2857 for (it = Opt_Candidates->begin(); it != Opt_Candidates->end(); ++it) {
2858 cout << " " << *(*it)->point;
2859 }
2860 cout << endl;
2861
2862 for (it = Opt_Candidates->begin(); it != Opt_Candidates->end(); ++it) {
2863 // add third triangle point
2864 AddTrianglePoint((*it)->point, 2);
2865 // add the second and third line
2866 AddTriangleLine(TPS[1], TPS[2], 1);
2867 AddTriangleLine(TPS[0], TPS[2], 2);
2868 // ... and triangles to the Maps of the Tesselation class
2869 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
2870 AddTriangleToLines();
2871 // ... and calculate its normal vector (with correct orientation)
2872 (*it)->OptCenter.Scale(-1.);
2873 cout << Verbose(2) << "Anti-Oben is currently " << (*it)->OptCenter << "." << endl;
2874 BTS->GetNormalVector((*it)->OptCenter); // vector to compare with should point inwards
2875 cout << Verbose(0) << "==> Found starting triangle consists of " << *FirstPoint << ", " << *SecondPoint << " and "
2876 << *(*it)->point << " with normal vector " << BTS->NormalVector << ".\n";
2877
2878 // if we do not reach the end with the next step of iteration, we need to setup a new first line
2879 if (it != Opt_Candidates->end()--) {
2880 FirstPoint = (*it)->BaseLine->endpoints[0]->node;
2881 SecondPoint = (*it)->point;
2882 // adding point 1 and point 2 and the line between them
2883 AddTrianglePoint(FirstPoint, 0);
2884 AddTrianglePoint(SecondPoint, 1);
2885 AddTriangleLine(TPS[0], TPS[1], 0);
2886 }
2887 }
2888 cout << Verbose(2) << "Projection is " << BTS->NormalVector.Projection(&Oben) << "." << endl;
2889 cout << Verbose(1) << "End of Find_starting_triangle\n";
2890};
2891
2892/** This function finds a triangle to a line, adjacent to an existing one.
2893 * @param out output stream for debugging
2894 * @param *mol molecule with Atom's and Bond's
2895 * @param Line current baseline to search from
2896 * @param T current triangle which \a Line is edge of
2897 * @param RADIUS radius of the rolling ball
2898 * @param N number of found triangles
2899 * @param *filename filename base for intermediate envelopes
2900 * @param *LC LinkedCell structure with neighbouring atoms
2901 */
2902bool Tesselation::Find_next_suitable_triangle(ofstream *out,
2903 molecule *mol, BoundaryLineSet &Line, BoundaryTriangleSet &T,
2904 const double& RADIUS, int N, const char *tempbasename, LinkedCell *LC)
2905{
2906 cout << Verbose(1) << "Begin of Find_next_suitable_triangle\n";
2907 ofstream *tempstream = NULL;
2908 char NumberName[255];
2909 double tmp;
2910 bool result = true;
2911 CandidateList *Opt_Candidates = new CandidateList();
2912
2913 Vector CircleCenter;
2914 Vector CirclePlaneNormal;
2915 Vector OldSphereCenter;
2916 Vector SearchDirection;
2917 Vector helper;
2918 atom *ThirdNode = NULL;
2919 LineMap::iterator testline;
2920 double ShortestAngle = 2.*M_PI; // This will indicate the quadrant.
2921 double radius, CircleRadius;
2922
2923 cout << Verbose(1) << "Current baseline is " << Line << " of triangle " << T << "." << endl;
2924 for (int i=0;i<3;i++)
2925 if ((T.endpoints[i]->node != Line.endpoints[0]->node) && (T.endpoints[i]->node != Line.endpoints[1]->node))
2926 ThirdNode = T.endpoints[i]->node;
2927
2928 // construct center of circle
2929 CircleCenter.CopyVector(&Line.endpoints[0]->node->x);
2930 CircleCenter.AddVector(&Line.endpoints[1]->node->x);
2931 CircleCenter.Scale(0.5);
2932
2933 // construct normal vector of circle
2934 CirclePlaneNormal.CopyVector(&Line.endpoints[0]->node->x);
2935 CirclePlaneNormal.SubtractVector(&Line.endpoints[1]->node->x);
2936
2937 // calculate squared radius of circle
2938 radius = CirclePlaneNormal.ScalarProduct(&CirclePlaneNormal);
2939 if (radius/4. < RADIUS*RADIUS) {
2940 CircleRadius = RADIUS*RADIUS - radius/4.;
2941 CirclePlaneNormal.Normalize();
2942 cout << Verbose(2) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl;
2943
2944 // construct old center
2945 GetCenterofCircumcircle(&OldSphereCenter, &(T.endpoints[0]->node->x), &(T.endpoints[1]->node->x), &(T.endpoints[2]->node->x));
2946 helper.CopyVector(&T.NormalVector); // normal vector ensures that this is correct center of the two possible ones
2947 radius = Line.endpoints[0]->node->x.DistanceSquared(&OldSphereCenter);
2948 helper.Scale(sqrt(RADIUS*RADIUS - radius));
2949 OldSphereCenter.AddVector(&helper);
2950 OldSphereCenter.SubtractVector(&CircleCenter);
2951 cout << Verbose(2) << "INFO: OldSphereCenter is at " << OldSphereCenter << "." << endl;
2952
2953 // construct SearchDirection
2954 SearchDirection.MakeNormalVector(&T.NormalVector, &CirclePlaneNormal);
2955 helper.CopyVector(&Line.endpoints[0]->node->x);
2956 helper.SubtractVector(&ThirdNode->x);
2957 if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON)// ohoh, SearchDirection points inwards!
2958 SearchDirection.Scale(-1.);
2959 SearchDirection.ProjectOntoPlane(&OldSphereCenter);
2960 SearchDirection.Normalize();
2961 cout << Verbose(2) << "INFO: SearchDirection is " << SearchDirection << "." << endl;
2962 if (fabs(OldSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) {
2963 // rotated the wrong way!
2964 cerr << "ERROR: SearchDirection and RelativeOldSphereCenter are still not orthogonal!" << endl;
2965 }
2966
2967 // add third point
2968 cout << Verbose(1) << "Looking for third point candidates for triangle ... " << endl;
2969 Find_third_point_for_Tesselation(
2970 T.NormalVector, SearchDirection, OldSphereCenter, &Line, ThirdNode, Opt_Candidates,
2971 &ShortestAngle, RADIUS, LC
2972 );
2973
2974 } else {
2975 cout << Verbose(1) << "Circumcircle for base line " << Line << " and base triangle " << T << " is too big!" << endl;
2976 }
2977
2978 if (Opt_Candidates->begin() == Opt_Candidates->end()) {
2979 cerr << "WARNING: Could not find a suitable candidate." << endl;
2980 return false;
2981 }
2982 cout << Verbose(1) << "Third Points are ";
2983 CandidateList::iterator it;
2984 for (it = Opt_Candidates->begin(); it != Opt_Candidates->end(); ++it) {
2985 cout << " " << *(*it)->point;
2986 }
2987 cout << endl;
2988
2989 BoundaryLineSet *BaseRay = &Line;
2990 for (it = Opt_Candidates->begin(); it != Opt_Candidates->end(); ++it) {
2991 cout << Verbose(1) << " Third point candidate is " << *(*it)->point
2992 << " with circumsphere's center at " << (*it)->OptCenter << "." << endl;
2993 cout << Verbose(1) << " Baseline is " << BaseRay << endl;
2994
2995 // check whether all edges of the new triangle still have space for one more triangle (i.e. TriangleCount <2)
2996 atom *AtomCandidates[3];
2997 AtomCandidates[0] = (*it)->point;
2998 AtomCandidates[1] = BaseRay->endpoints[0]->node;
2999 AtomCandidates[2] = BaseRay->endpoints[1]->node;
3000 int existentTrianglesCount = CheckPresenceOfTriangle(out, AtomCandidates);
3001
3002 BTS = NULL;
3003 // If there is no triangle, add it regularly.
3004 if (existentTrianglesCount == 0) {
3005 AddTrianglePoint((*it)->point, 0);
3006 AddTrianglePoint(BaseRay->endpoints[0]->node, 1);
3007 AddTrianglePoint(BaseRay->endpoints[1]->node, 2);
3008
3009 AddTriangleLine(TPS[0], TPS[1], 0);
3010 AddTriangleLine(TPS[0], TPS[2], 1);
3011 AddTriangleLine(TPS[1], TPS[2], 2);
3012
3013 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
3014 AddTriangleToLines();
3015 (*it)->OptCenter.Scale(-1.);
3016 BTS->GetNormalVector((*it)->OptCenter);
3017 (*it)->OptCenter.Scale(-1.);
3018
3019 cout << "--> New triangle with " << *BTS << " and normal vector " << BTS->NormalVector
3020 << " for this triangle ... " << endl;
3021 cout << Verbose(1) << "We have "<< TrianglesOnBoundaryCount << " for line " << BaseRay << "." << endl;
3022 } else if (existentTrianglesCount == 1) { // If there is a planar region within the structure, we need this triangle a second time.
3023 AddTrianglePoint((*it)->point, 0);
3024 AddTrianglePoint(BaseRay->endpoints[0]->node, 1);
3025 AddTrianglePoint(BaseRay->endpoints[1]->node, 2);
3026
3027 AddTriangleLine(TPS[0], TPS[1], 0);
3028 AddTriangleLine(TPS[0], TPS[2], 1);
3029 AddTriangleLine(TPS[1], TPS[2], 2);
3030
3031 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
3032 //TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
3033 AddTriangleToLines();
3034
3035 (*it)->OtherOptCenter.Scale(-1.);
3036 BTS->GetNormalVector((*it)->OtherOptCenter);
3037 (*it)->OtherOptCenter.Scale(-1.);
3038
3039 cout << "--> WARNING: Special new triangle with " << *BTS << " and normal vector " << BTS->NormalVector
3040 << " for this triangle ... " << endl;
3041 cout << Verbose(1) << "We have "<< BaseRay->TrianglesCount << " for line " << BaseRay << "." << endl;
3042 } else {
3043 cout << Verbose(1) << "This triangle consisting of ";
3044 cout << *(*it)->point << ", ";
3045 cout << *BaseRay->endpoints[0]->node << " and ";
3046 cout << *BaseRay->endpoints[1]->node << " ";
3047 cout << "is invalid!" << endl;
3048 result = false;
3049 }
3050
3051 if ((existentTrianglesCount < 2) && (DoSingleStepOutput && (TrianglesOnBoundaryCount % 1 == 0))) { // if we have a new triangle and want to output each new triangle configuration
3052 sprintf(NumberName, "-%04d-%s_%s_%s", TriangleFilesWritten, BTS->endpoints[0]->node->Name, BTS->endpoints[1]->node->Name, BTS->endpoints[2]->node->Name);
3053 if (DoTecplotOutput) {
3054 string NameofTempFile(tempbasename);
3055 NameofTempFile.append(NumberName);
3056 for(size_t npos = NameofTempFile.find_first_of(' '); npos != -1; npos = NameofTempFile.find(' ', npos))
3057 NameofTempFile.erase(npos, 1);
3058 NameofTempFile.append(TecplotSuffix);
3059 cout << Verbose(1) << "Writing temporary non convex hull to file " << NameofTempFile << ".\n";
3060 tempstream = new ofstream(NameofTempFile.c_str(), ios::trunc);
3061 write_tecplot_file(out, tempstream, this, mol, TriangleFilesWritten);
3062 tempstream->close();
3063 tempstream->flush();
3064 delete(tempstream);
3065 }
3066
3067 if (DoRaster3DOutput) {
3068 string NameofTempFile(tempbasename);
3069 NameofTempFile.append(NumberName);
3070 for(size_t npos = NameofTempFile.find_first_of(' '); npos != -1; npos = NameofTempFile.find(' ', npos))
3071 NameofTempFile.erase(npos, 1);
3072 NameofTempFile.append(Raster3DSuffix);
3073 cout << Verbose(1) << "Writing temporary non convex hull to file " << NameofTempFile << ".\n";
3074 tempstream = new ofstream(NameofTempFile.c_str(), ios::trunc);
3075 write_raster3d_file(out, tempstream, this, mol);
3076 // include the current position of the virtual sphere in the temporary raster3d file
3077 // make the circumsphere's center absolute again
3078 helper.CopyVector(&BaseRay->endpoints[0]->node->x);
3079 helper.AddVector(&BaseRay->endpoints[1]->node->x);
3080 helper.Scale(0.5);
3081 (*it)->OptCenter.AddVector(&helper);
3082 Vector *center = mol->DetermineCenterOfAll(out);
3083 (*it)->OptCenter.AddVector(center);
3084 delete(center);
3085 // and add to file plus translucency object
3086 *tempstream << "# current virtual sphere\n";
3087 *tempstream << "8\n 25.0 0.6 -1.0 -1.0 -1.0 0.2 0 0 0 0\n";
3088 *tempstream << "2\n " << (*it)->OptCenter.x[0] << " "
3089 << (*it)->OptCenter.x[1] << " " << (*it)->OptCenter.x[2]
3090 << "\t" << RADIUS << "\t1 0 0\n";
3091 *tempstream << "9\n terminating special property\n";
3092 tempstream->close();
3093 tempstream->flush();
3094 delete(tempstream);
3095 }
3096 if (DoTecplotOutput || DoRaster3DOutput)
3097 TriangleFilesWritten++;
3098 }
3099
3100 // set baseline to new ray from ref point (here endpoints[0]->node) to current candidate (here (*it)->point))
3101 BaseRay = BLS[0];
3102// LineMap::iterator LineIterator = Line.endpoints[0]->lines.find((*it)->point->nr);
3103// for (; LineIterator != Line.endpoints[0]->lines.end(); LineIterator++) {
3104// if ((*LineIterator->second).TrianglesCount != 2)
3105// break;
3106// }
3107// if (LineIterator == Line.endpoints[0]->lines.end())
3108// cout << Verbose(1) << "ERROR: I could not find a suitable line with less than two triangles connected!" << endl;
3109 }
3110
3111 cout << Verbose(1) << "End of Find_next_suitable_triangle\n";
3112 return result;
3113};
3114
3115/**
3116 * Sort function for the candidate list.
3117 */
3118bool sortCandidates(CandidateForTesselation* candidate1, CandidateForTesselation* candidate2) {
3119 Vector BaseLineVector, OrthogonalVector, helper;
3120 if (candidate1->BaseLine != candidate2->BaseLine) { // sanity check
3121 cout << Verbose(0) << "ERROR: sortCandidates was called for two different baselines: " << candidate1->BaseLine << " and " << candidate2->BaseLine << "." << endl;
3122 //return false;
3123 exit(1);
3124 }
3125 // create baseline vector
3126 BaseLineVector.CopyVector(&(candidate1->BaseLine->endpoints[1]->node->x));
3127 BaseLineVector.SubtractVector(&(candidate1->BaseLine->endpoints[0]->node->x));
3128 BaseLineVector.Normalize();
3129
3130 // create normal in-plane vector to cope with acos() non-uniqueness on [0,2pi] (note that is pointing in the "right" direction already, hence ">0" test!)
3131 helper.CopyVector(&(candidate1->BaseLine->endpoints[0]->node->x));
3132 helper.SubtractVector(&(candidate1->point->x));
3133 OrthogonalVector.CopyVector(&helper);
3134 helper.VectorProduct(&BaseLineVector);
3135 OrthogonalVector.SubtractVector(&helper);
3136 OrthogonalVector.Normalize();
3137
3138 // calculate both angles and correct with in-plane vector
3139 helper.CopyVector(&(candidate1->point->x));
3140 helper.SubtractVector(&(candidate1->BaseLine->endpoints[0]->node->x));
3141 double phi = BaseLineVector.Angle(&helper);
3142 if (OrthogonalVector.ScalarProduct(&helper) > 0) {
3143 phi = 2.*M_PI - phi;
3144 }
3145 helper.CopyVector(&(candidate2->point->x));
3146 helper.SubtractVector(&(candidate1->BaseLine->endpoints[0]->node->x));
3147 double psi = BaseLineVector.Angle(&helper);
3148 if (OrthogonalVector.ScalarProduct(&helper) > 0) {
3149 psi = 2.*M_PI - psi;
3150 }
3151
3152 cout << Verbose(2) << *candidate1->point << " has angle " << phi << endl;
3153 cout << Verbose(2) << *candidate2->point << " has angle " << psi << endl;
3154
3155 // return comparison
3156 return phi < psi;
3157}
3158
3159/** Tesselates the non convex boundary by rolling a virtual sphere along the surface of the molecule.
3160 * \param *out output stream for debugging
3161 * \param *mol molecule structure with Atom's and Bond's
3162 * \param *Tess Tesselation filled with points, lines and triangles on boundary on return
3163 * \param *filename filename prefix for output of vertex data
3164 * \para RADIUS radius of the virtual sphere
3165 */
3166void Find_non_convex_border(ofstream *out, molecule* mol, class Tesselation *Tess, class LinkedCell *LCList, const char *filename, const double RADIUS)
3167{
3168 int N = 0;
3169 bool freeTess = false;
3170 bool freeLC = false;
3171 *out << Verbose(1) << "Entering search for non convex hull. " << endl;
3172 if (Tess == NULL) {
3173 *out << Verbose(1) << "Allocating Tesselation struct ..." << endl;
3174 Tess = new Tesselation;
3175 freeTess = true;
3176 }
3177 LineMap::iterator baseline;
3178 LineMap::iterator testline;
3179 *out << Verbose(0) << "Begin of Find_non_convex_border\n";
3180 bool flag = false; // marks whether we went once through all baselines without finding any without two triangles
3181 bool failflag = false;
3182
3183 if (LCList == NULL) {
3184 LCList = new LinkedCell(mol, 2.*RADIUS);
3185 freeLC = true;
3186 }
3187
3188 Tess->Find_starting_triangle(out, mol, RADIUS, LCList);
3189
3190 baseline = Tess->LinesOnBoundary.begin();
3191 while ((baseline != Tess->LinesOnBoundary.end()) || (flag)) {
3192 if (baseline->second->TrianglesCount == 1) {
3193 failflag = Tess->Find_next_suitable_triangle(out, mol, *(baseline->second), *(((baseline->second->triangles.begin()))->second), RADIUS, N, filename, LCList); //the line is there, so there is a triangle, but only one.
3194 flag = flag || failflag;
3195 if (!failflag)
3196 cerr << "WARNING: Find_next_suitable_triangle failed." << endl;
3197
3198 // we inserted new lines, hence show list with connected triangles
3199 cout << Verbose(1) << "List of Baselines with connected triangles so far:" << endl;
3200 for (testline = Tess->LinesOnBoundary.begin(); testline != Tess->LinesOnBoundary.end(); testline++) {
3201 cout << Verbose(1) << *testline->second << "\t" << testline->second->TrianglesCount << endl;
3202 }
3203 } else {
3204 cout << Verbose(1) << "Line " << *baseline->second << " has " << baseline->second->TrianglesCount << " triangles adjacent" << endl;
3205 if (baseline->second->TrianglesCount != 2)
3206 cout << Verbose(1) << "ERROR: TESSELATION FINISHED WITH INVALID TRIANGLE COUNT!" << endl;
3207 }
3208
3209 N++;
3210 baseline++;
3211 if ((baseline == Tess->LinesOnBoundary.end()) && (flag)) {
3212 baseline = Tess->LinesOnBoundary.begin(); // restart if we reach end due to newly inserted lines
3213 flag = false;
3214 }
3215 }
3216 if (1) { //failflag) {
3217 *out << Verbose(1) << "Writing final tecplot file\n";
3218 if (DoTecplotOutput) {
3219 string OutputName(filename);
3220 OutputName.append(TecplotSuffix);
3221 ofstream *tecplot = new ofstream(OutputName.c_str());
3222 write_tecplot_file(out, tecplot, Tess, mol, -1);
3223 tecplot->close();
3224 delete(tecplot);
3225 }
3226 if (DoRaster3DOutput) {
3227 string OutputName(filename);
3228 OutputName.append(Raster3DSuffix);
3229 ofstream *raster = new ofstream(OutputName.c_str());
3230 write_raster3d_file(out, raster, Tess, mol);
3231 raster->close();
3232 delete(raster);
3233 }
3234 } else {
3235 cerr << "ERROR: Could definitively not find all necessary triangles!" << endl;
3236 }
3237 if (freeTess)
3238 delete(Tess);
3239 if (freeLC)
3240 delete(LCList);
3241 *out << Verbose(0) << "End of Find_non_convex_border\n";
3242};
3243
3244/** Finds a hole of sufficient size in \a this molecule to embed \a *srcmol into it.
3245 * \param *out output stream for debugging
3246 * \param *srcmol molecule to embed into
3247 * \return *Vector new center of \a *srcmol for embedding relative to \a this
3248 */
3249Vector* molecule::FindEmbeddingHole(ofstream *out, molecule *srcmol)
3250{
3251 Vector *Center = new Vector;
3252 Center->Zero();
3253 // calculate volume/shape of \a *srcmol
3254
3255 // find embedding holes
3256
3257 // if more than one, let user choose
3258
3259 // return embedding center
3260 return Center;
3261};
3262
Note: See TracBrowser for help on using the repository browser.