1 | #include "boundary.hpp"
|
---|
2 | #include "linkedcell.hpp"
|
---|
3 | #include "molecules.hpp"
|
---|
4 | #include <gsl/gsl_matrix.h>
|
---|
5 | #include <gsl/gsl_linalg.h>
|
---|
6 | #include <gsl/gsl_multimin.h>
|
---|
7 | #include <gsl/gsl_permutation.h>
|
---|
8 |
|
---|
9 | #define DEBUG 1
|
---|
10 | #define DoSingleStepOutput 1
|
---|
11 | #define DoTecplotOutput 1
|
---|
12 | #define DoRaster3DOutput 1
|
---|
13 | #define DoVRMLOutput 1
|
---|
14 | #define TecplotSuffix ".dat"
|
---|
15 | #define Raster3DSuffix ".r3d"
|
---|
16 | #define VRMLSUffix ".wrl"
|
---|
17 | #define HULLEPSILON 1e-7
|
---|
18 |
|
---|
19 | // ======================================== Points on Boundary =================================
|
---|
20 |
|
---|
21 | BoundaryPointSet::BoundaryPointSet()
|
---|
22 | {
|
---|
23 | LinesCount = 0;
|
---|
24 | Nr = -1;
|
---|
25 | }
|
---|
26 | ;
|
---|
27 |
|
---|
28 | BoundaryPointSet::BoundaryPointSet(atom *Walker)
|
---|
29 | {
|
---|
30 | node = Walker;
|
---|
31 | LinesCount = 0;
|
---|
32 | Nr = Walker->nr;
|
---|
33 | }
|
---|
34 | ;
|
---|
35 |
|
---|
36 | BoundaryPointSet::~BoundaryPointSet()
|
---|
37 | {
|
---|
38 | cout << Verbose(5) << "Erasing point nr. " << Nr << "." << endl;
|
---|
39 | if (!lines.empty())
|
---|
40 | cerr << "WARNING: Memory Leak! I " << *this << " am still connected to some lines." << endl;
|
---|
41 | node = NULL;
|
---|
42 | }
|
---|
43 | ;
|
---|
44 |
|
---|
45 | void BoundaryPointSet::AddLine(class BoundaryLineSet *line)
|
---|
46 | {
|
---|
47 | cout << Verbose(6) << "Adding " << *this << " to line " << *line << "."
|
---|
48 | << endl;
|
---|
49 | if (line->endpoints[0] == this)
|
---|
50 | {
|
---|
51 | lines.insert(LinePair(line->endpoints[1]->Nr, line));
|
---|
52 | }
|
---|
53 | else
|
---|
54 | {
|
---|
55 | lines.insert(LinePair(line->endpoints[0]->Nr, line));
|
---|
56 | }
|
---|
57 | LinesCount++;
|
---|
58 | }
|
---|
59 | ;
|
---|
60 |
|
---|
61 | ostream &
|
---|
62 | operator <<(ostream &ost, BoundaryPointSet &a)
|
---|
63 | {
|
---|
64 | ost << "[" << a.Nr << "|" << a.node->Name << "]";
|
---|
65 | return ost;
|
---|
66 | }
|
---|
67 | ;
|
---|
68 |
|
---|
69 | // ======================================== Lines on Boundary =================================
|
---|
70 |
|
---|
71 | BoundaryLineSet::BoundaryLineSet()
|
---|
72 | {
|
---|
73 | for (int i = 0; i < 2; i++)
|
---|
74 | endpoints[i] = NULL;
|
---|
75 | TrianglesCount = 0;
|
---|
76 | Nr = -1;
|
---|
77 | }
|
---|
78 | ;
|
---|
79 |
|
---|
80 | BoundaryLineSet::BoundaryLineSet(class BoundaryPointSet *Point[2], int number)
|
---|
81 | {
|
---|
82 | // set number
|
---|
83 | Nr = number;
|
---|
84 | // set endpoints in ascending order
|
---|
85 | SetEndpointsOrdered(endpoints, Point[0], Point[1]);
|
---|
86 | // add this line to the hash maps of both endpoints
|
---|
87 | Point[0]->AddLine(this); //Taken out, to check whether we can avoid unwanted double adding.
|
---|
88 | Point[1]->AddLine(this); //
|
---|
89 | // clear triangles list
|
---|
90 | TrianglesCount = 0;
|
---|
91 | cout << Verbose(5) << "New Line with endpoints " << *this << "." << endl;
|
---|
92 | }
|
---|
93 | ;
|
---|
94 |
|
---|
95 | BoundaryLineSet::~BoundaryLineSet()
|
---|
96 | {
|
---|
97 | int Numbers[2];
|
---|
98 | Numbers[0] = endpoints[1]->Nr;
|
---|
99 | Numbers[1] = endpoints[0]->Nr;
|
---|
100 | for (int i = 0; i < 2; i++) {
|
---|
101 | cout << Verbose(5) << "Erasing Line Nr. " << Nr << " in boundary point " << *endpoints[i] << "." << endl;
|
---|
102 | endpoints[i]->lines.erase(Numbers[i]);
|
---|
103 | if (endpoints[i]->lines.empty()) {
|
---|
104 | cout << Verbose(5) << *endpoints[i] << " has no more lines it's attached to, erasing." << endl;
|
---|
105 | if (endpoints[i] != NULL) {
|
---|
106 | delete(endpoints[i]);
|
---|
107 | endpoints[i] = NULL;
|
---|
108 | } else
|
---|
109 | cerr << "ERROR: Endpoint " << i << " has already been free'd." << endl;
|
---|
110 | } else
|
---|
111 | cout << Verbose(5) << *endpoints[i] << " has still lines it's attached to." << endl;
|
---|
112 | }
|
---|
113 | if (!triangles.empty())
|
---|
114 | cerr << "WARNING: Memory Leak! I " << *this << " am still connected to some triangles." << endl;
|
---|
115 | }
|
---|
116 | ;
|
---|
117 |
|
---|
118 | void
|
---|
119 | BoundaryLineSet::AddTriangle(class BoundaryTriangleSet *triangle)
|
---|
120 | {
|
---|
121 | cout << Verbose(6) << "Add " << triangle->Nr << " to line " << *this << "."
|
---|
122 | << endl;
|
---|
123 | triangles.insert(TrianglePair(triangle->Nr, triangle));
|
---|
124 | TrianglesCount++;
|
---|
125 | }
|
---|
126 | ;
|
---|
127 |
|
---|
128 | ostream &
|
---|
129 | operator <<(ostream &ost, BoundaryLineSet &a)
|
---|
130 | {
|
---|
131 | ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << ","
|
---|
132 | << a.endpoints[1]->node->Name << "]";
|
---|
133 | return ost;
|
---|
134 | }
|
---|
135 | ;
|
---|
136 |
|
---|
137 | // ======================================== Triangles on Boundary =================================
|
---|
138 |
|
---|
139 |
|
---|
140 | BoundaryTriangleSet::BoundaryTriangleSet()
|
---|
141 | {
|
---|
142 | for (int i = 0; i < 3; i++)
|
---|
143 | {
|
---|
144 | endpoints[i] = NULL;
|
---|
145 | lines[i] = NULL;
|
---|
146 | }
|
---|
147 | Nr = -1;
|
---|
148 | }
|
---|
149 | ;
|
---|
150 |
|
---|
151 | BoundaryTriangleSet::BoundaryTriangleSet(class BoundaryLineSet *line[3], int number)
|
---|
152 | {
|
---|
153 | // set number
|
---|
154 | Nr = number;
|
---|
155 | // set lines
|
---|
156 | cout << Verbose(5) << "New triangle " << Nr << ":" << endl;
|
---|
157 | for (int i = 0; i < 3; i++)
|
---|
158 | {
|
---|
159 | lines[i] = line[i];
|
---|
160 | lines[i]->AddTriangle(this);
|
---|
161 | }
|
---|
162 | // get ascending order of endpoints
|
---|
163 | map<int, class BoundaryPointSet *> OrderMap;
|
---|
164 | for (int i = 0; i < 3; i++)
|
---|
165 | // for all three lines
|
---|
166 | for (int j = 0; j < 2; j++)
|
---|
167 | { // for both endpoints
|
---|
168 | OrderMap.insert(pair<int, class BoundaryPointSet *> (
|
---|
169 | line[i]->endpoints[j]->Nr, line[i]->endpoints[j]));
|
---|
170 | // and we don't care whether insertion fails
|
---|
171 | }
|
---|
172 | // set endpoints
|
---|
173 | int Counter = 0;
|
---|
174 | cout << Verbose(6) << " with end points ";
|
---|
175 | for (map<int, class BoundaryPointSet *>::iterator runner = OrderMap.begin(); runner
|
---|
176 | != OrderMap.end(); runner++)
|
---|
177 | {
|
---|
178 | endpoints[Counter] = runner->second;
|
---|
179 | cout << " " << *endpoints[Counter];
|
---|
180 | Counter++;
|
---|
181 | }
|
---|
182 | if (Counter < 3)
|
---|
183 | {
|
---|
184 | cerr << "ERROR! We have a triangle with only two distinct endpoints!"
|
---|
185 | << endl;
|
---|
186 | //exit(1);
|
---|
187 | }
|
---|
188 | cout << "." << endl;
|
---|
189 | }
|
---|
190 | ;
|
---|
191 |
|
---|
192 | BoundaryTriangleSet::~BoundaryTriangleSet()
|
---|
193 | {
|
---|
194 | for (int i = 0; i < 3; i++) {
|
---|
195 | cout << Verbose(5) << "Erasing triangle Nr." << Nr << endl;
|
---|
196 | lines[i]->triangles.erase(Nr);
|
---|
197 | if (lines[i]->triangles.empty()) {
|
---|
198 | cout << Verbose(5) << *lines[i] << " is no more attached to any triangle, erasing." << endl;
|
---|
199 | if (lines[i] != NULL) {
|
---|
200 | delete (lines[i]);
|
---|
201 | lines[i] = NULL;
|
---|
202 | } else
|
---|
203 | cerr << "ERROR: This line " << i << " has already been free'd." << endl;
|
---|
204 | } else
|
---|
205 | cout << Verbose(5) << *lines[i] << " is still attached to a triangle." << endl;
|
---|
206 | }
|
---|
207 | }
|
---|
208 | ;
|
---|
209 |
|
---|
210 | void
|
---|
211 | BoundaryTriangleSet::GetNormalVector(Vector &OtherVector)
|
---|
212 | {
|
---|
213 | // get normal vector
|
---|
214 | NormalVector.MakeNormalVector(&endpoints[0]->node->x, &endpoints[1]->node->x,
|
---|
215 | &endpoints[2]->node->x);
|
---|
216 |
|
---|
217 | // make it always point inward (any offset vector onto plane projected onto normal vector suffices)
|
---|
218 | if (NormalVector.Projection(&OtherVector) > 0)
|
---|
219 | NormalVector.Scale(-1.);
|
---|
220 | }
|
---|
221 | ;
|
---|
222 |
|
---|
223 | ostream &
|
---|
224 | operator <<(ostream &ost, BoundaryTriangleSet &a)
|
---|
225 | {
|
---|
226 | ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << ","
|
---|
227 | << a.endpoints[1]->node->Name << "," << a.endpoints[2]->node->Name << "]";
|
---|
228 | return ost;
|
---|
229 | }
|
---|
230 | ;
|
---|
231 |
|
---|
232 |
|
---|
233 | // ============================ CandidateForTesselation =============================
|
---|
234 |
|
---|
235 | CandidateForTesselation::CandidateForTesselation(
|
---|
236 | atom *candidate, BoundaryLineSet* line, Vector OptCandidateCenter, Vector OtherOptCandidateCenter
|
---|
237 | ) {
|
---|
238 | point = candidate;
|
---|
239 | BaseLine = line;
|
---|
240 | OptCenter.CopyVector(&OptCandidateCenter);
|
---|
241 | OtherOptCenter.CopyVector(&OtherOptCandidateCenter);
|
---|
242 | }
|
---|
243 |
|
---|
244 | CandidateForTesselation::~CandidateForTesselation() {
|
---|
245 | point = NULL;
|
---|
246 | }
|
---|
247 |
|
---|
248 | // ========================================== F U N C T I O N S =================================
|
---|
249 |
|
---|
250 | /** Finds the endpoint two lines are sharing.
|
---|
251 | * \param *line1 first line
|
---|
252 | * \param *line2 second line
|
---|
253 | * \return point which is shared or NULL if none
|
---|
254 | */
|
---|
255 | class BoundaryPointSet *
|
---|
256 | GetCommonEndpoint(class BoundaryLineSet * line1, class BoundaryLineSet * line2)
|
---|
257 | {
|
---|
258 | class BoundaryLineSet * lines[2] =
|
---|
259 | { line1, line2 };
|
---|
260 | class BoundaryPointSet *node = NULL;
|
---|
261 | map<int, class BoundaryPointSet *> OrderMap;
|
---|
262 | pair<map<int, class BoundaryPointSet *>::iterator, bool> OrderTest;
|
---|
263 | for (int i = 0; i < 2; i++)
|
---|
264 | // for both lines
|
---|
265 | for (int j = 0; j < 2; j++)
|
---|
266 | { // for both endpoints
|
---|
267 | OrderTest = OrderMap.insert(pair<int, class BoundaryPointSet *> (
|
---|
268 | lines[i]->endpoints[j]->Nr, lines[i]->endpoints[j]));
|
---|
269 | if (!OrderTest.second)
|
---|
270 | { // if insertion fails, we have common endpoint
|
---|
271 | node = OrderTest.first->second;
|
---|
272 | cout << Verbose(5) << "Common endpoint of lines " << *line1
|
---|
273 | << " and " << *line2 << " is: " << *node << "." << endl;
|
---|
274 | j = 2;
|
---|
275 | i = 2;
|
---|
276 | break;
|
---|
277 | }
|
---|
278 | }
|
---|
279 | return node;
|
---|
280 | }
|
---|
281 | ;
|
---|
282 |
|
---|
283 | /** Determines the boundary points of a cluster.
|
---|
284 | * Does a projection per axis onto the orthogonal plane, transforms into spherical coordinates, sorts them by the angle
|
---|
285 | * and looks at triples: if the middle has less a distance than the allowed maximum height of the triangle formed by the plane's
|
---|
286 | * center and first and last point in the triple, it is thrown out.
|
---|
287 | * \param *out output stream for debugging
|
---|
288 | * \param *mol molecule structure representing the cluster
|
---|
289 | */
|
---|
290 | Boundaries *
|
---|
291 | GetBoundaryPoints(ofstream *out, molecule *mol)
|
---|
292 | {
|
---|
293 | atom *Walker = NULL;
|
---|
294 | PointMap PointsOnBoundary;
|
---|
295 | LineMap LinesOnBoundary;
|
---|
296 | TriangleMap TrianglesOnBoundary;
|
---|
297 |
|
---|
298 | *out << Verbose(1) << "Finding all boundary points." << endl;
|
---|
299 | Boundaries *BoundaryPoints = new Boundaries[NDIM]; // first is alpha, second is (r, nr)
|
---|
300 | BoundariesTestPair BoundaryTestPair;
|
---|
301 | Vector AxisVector, AngleReferenceVector, AngleReferenceNormalVector;
|
---|
302 | double radius, angle;
|
---|
303 | // 3a. Go through every axis
|
---|
304 | for (int axis = 0; axis < NDIM; axis++)
|
---|
305 | {
|
---|
306 | AxisVector.Zero();
|
---|
307 | AngleReferenceVector.Zero();
|
---|
308 | AngleReferenceNormalVector.Zero();
|
---|
309 | AxisVector.x[axis] = 1.;
|
---|
310 | AngleReferenceVector.x[(axis + 1) % NDIM] = 1.;
|
---|
311 | AngleReferenceNormalVector.x[(axis + 2) % NDIM] = 1.;
|
---|
312 | // *out << Verbose(1) << "Axisvector is ";
|
---|
313 | // AxisVector.Output(out);
|
---|
314 | // *out << " and AngleReferenceVector is ";
|
---|
315 | // AngleReferenceVector.Output(out);
|
---|
316 | // *out << "." << endl;
|
---|
317 | // *out << " and AngleReferenceNormalVector is ";
|
---|
318 | // AngleReferenceNormalVector.Output(out);
|
---|
319 | // *out << "." << endl;
|
---|
320 | // 3b. construct set of all points, transformed into cylindrical system and with left and right neighbours
|
---|
321 | Walker = mol->start;
|
---|
322 | while (Walker->next != mol->end)
|
---|
323 | {
|
---|
324 | Walker = Walker->next;
|
---|
325 | Vector ProjectedVector;
|
---|
326 | ProjectedVector.CopyVector(&Walker->x);
|
---|
327 | ProjectedVector.ProjectOntoPlane(&AxisVector);
|
---|
328 | // correct for negative side
|
---|
329 | //if (Projection(y) < 0)
|
---|
330 | //angle = 2.*M_PI - angle;
|
---|
331 | radius = ProjectedVector.Norm();
|
---|
332 | if (fabs(radius) > MYEPSILON)
|
---|
333 | angle = ProjectedVector.Angle(&AngleReferenceVector);
|
---|
334 | else
|
---|
335 | angle = 0.; // otherwise it's a vector in Axis Direction and unimportant for boundary issues
|
---|
336 |
|
---|
337 | //*out << "Checking sign in quadrant : " << ProjectedVector.Projection(&AngleReferenceNormalVector) << "." << endl;
|
---|
338 | if (ProjectedVector.Projection(&AngleReferenceNormalVector) > 0)
|
---|
339 | {
|
---|
340 | angle = 2. * M_PI - angle;
|
---|
341 | }
|
---|
342 | //*out << Verbose(2) << "Inserting " << *Walker << ": (r, alpha) = (" << radius << "," << angle << "): ";
|
---|
343 | //ProjectedVector.Output(out);
|
---|
344 | //*out << endl;
|
---|
345 | BoundaryTestPair = BoundaryPoints[axis].insert(BoundariesPair(angle,
|
---|
346 | DistancePair (radius, Walker)));
|
---|
347 | if (BoundaryTestPair.second)
|
---|
348 | { // successfully inserted
|
---|
349 | }
|
---|
350 | else
|
---|
351 | { // same point exists, check first r, then distance of original vectors to center of gravity
|
---|
352 | *out << Verbose(2)
|
---|
353 | << "Encountered two vectors whose projection onto axis "
|
---|
354 | << axis << " is equal: " << endl;
|
---|
355 | *out << Verbose(2) << "Present vector: ";
|
---|
356 | BoundaryTestPair.first->second.second->x.Output(out);
|
---|
357 | *out << endl;
|
---|
358 | *out << Verbose(2) << "New vector: ";
|
---|
359 | Walker->x.Output(out);
|
---|
360 | *out << endl;
|
---|
361 | double tmp = ProjectedVector.Norm();
|
---|
362 | if (tmp > BoundaryTestPair.first->second.first)
|
---|
363 | {
|
---|
364 | BoundaryTestPair.first->second.first = tmp;
|
---|
365 | BoundaryTestPair.first->second.second = Walker;
|
---|
366 | *out << Verbose(2) << "Keeping new vector." << endl;
|
---|
367 | }
|
---|
368 | else if (tmp == BoundaryTestPair.first->second.first)
|
---|
369 | {
|
---|
370 | if (BoundaryTestPair.first->second.second->x.ScalarProduct(
|
---|
371 | &BoundaryTestPair.first->second.second->x)
|
---|
372 | < Walker->x.ScalarProduct(&Walker->x))
|
---|
373 | { // Norm() does a sqrt, which makes it a lot slower
|
---|
374 | BoundaryTestPair.first->second.second = Walker;
|
---|
375 | *out << Verbose(2) << "Keeping new vector." << endl;
|
---|
376 | }
|
---|
377 | else
|
---|
378 | {
|
---|
379 | *out << Verbose(2) << "Keeping present vector." << endl;
|
---|
380 | }
|
---|
381 | }
|
---|
382 | else
|
---|
383 | {
|
---|
384 | *out << Verbose(2) << "Keeping present vector." << endl;
|
---|
385 | }
|
---|
386 | }
|
---|
387 | }
|
---|
388 | // printing all inserted for debugging
|
---|
389 | // {
|
---|
390 | // *out << Verbose(2) << "Printing list of candidates for axis " << axis << " which we have inserted so far." << endl;
|
---|
391 | // int i=0;
|
---|
392 | // for(Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++) {
|
---|
393 | // if (runner != BoundaryPoints[axis].begin())
|
---|
394 | // *out << ", " << i << ": " << *runner->second.second;
|
---|
395 | // else
|
---|
396 | // *out << i << ": " << *runner->second.second;
|
---|
397 | // i++;
|
---|
398 | // }
|
---|
399 | // *out << endl;
|
---|
400 | // }
|
---|
401 | // 3c. throw out points whose distance is less than the mean of left and right neighbours
|
---|
402 | bool flag = false;
|
---|
403 | do
|
---|
404 | { // do as long as we still throw one out per round
|
---|
405 | *out << Verbose(1)
|
---|
406 | << "Looking for candidates to kick out by convex condition ... "
|
---|
407 | << endl;
|
---|
408 | flag = false;
|
---|
409 | Boundaries::iterator left = BoundaryPoints[axis].end();
|
---|
410 | Boundaries::iterator right = BoundaryPoints[axis].end();
|
---|
411 | for (Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner
|
---|
412 | != BoundaryPoints[axis].end(); runner++)
|
---|
413 | {
|
---|
414 | // set neighbours correctly
|
---|
415 | if (runner == BoundaryPoints[axis].begin())
|
---|
416 | {
|
---|
417 | left = BoundaryPoints[axis].end();
|
---|
418 | }
|
---|
419 | else
|
---|
420 | {
|
---|
421 | left = runner;
|
---|
422 | }
|
---|
423 | left--;
|
---|
424 | right = runner;
|
---|
425 | right++;
|
---|
426 | if (right == BoundaryPoints[axis].end())
|
---|
427 | {
|
---|
428 | right = BoundaryPoints[axis].begin();
|
---|
429 | }
|
---|
430 | // check distance
|
---|
431 |
|
---|
432 | // construct the vector of each side of the triangle on the projected plane (defined by normal vector AxisVector)
|
---|
433 | {
|
---|
434 | Vector SideA, SideB, SideC, SideH;
|
---|
435 | SideA.CopyVector(&left->second.second->x);
|
---|
436 | SideA.ProjectOntoPlane(&AxisVector);
|
---|
437 | // *out << "SideA: ";
|
---|
438 | // SideA.Output(out);
|
---|
439 | // *out << endl;
|
---|
440 |
|
---|
441 | SideB.CopyVector(&right->second.second->x);
|
---|
442 | SideB.ProjectOntoPlane(&AxisVector);
|
---|
443 | // *out << "SideB: ";
|
---|
444 | // SideB.Output(out);
|
---|
445 | // *out << endl;
|
---|
446 |
|
---|
447 | SideC.CopyVector(&left->second.second->x);
|
---|
448 | SideC.SubtractVector(&right->second.second->x);
|
---|
449 | SideC.ProjectOntoPlane(&AxisVector);
|
---|
450 | // *out << "SideC: ";
|
---|
451 | // SideC.Output(out);
|
---|
452 | // *out << endl;
|
---|
453 |
|
---|
454 | SideH.CopyVector(&runner->second.second->x);
|
---|
455 | SideH.ProjectOntoPlane(&AxisVector);
|
---|
456 | // *out << "SideH: ";
|
---|
457 | // SideH.Output(out);
|
---|
458 | // *out << endl;
|
---|
459 |
|
---|
460 | // calculate each length
|
---|
461 | double a = SideA.Norm();
|
---|
462 | //double b = SideB.Norm();
|
---|
463 | //double c = SideC.Norm();
|
---|
464 | double h = SideH.Norm();
|
---|
465 | // calculate the angles
|
---|
466 | double alpha = SideA.Angle(&SideH);
|
---|
467 | double beta = SideA.Angle(&SideC);
|
---|
468 | double gamma = SideB.Angle(&SideH);
|
---|
469 | double delta = SideC.Angle(&SideH);
|
---|
470 | double MinDistance = a * sin(beta) / (sin(delta)) * (((alpha
|
---|
471 | < M_PI / 2.) || (gamma < M_PI / 2.)) ? 1. : -1.);
|
---|
472 | // *out << Verbose(2) << " I calculated: a = " << a << ", h = " << h << ", beta(" << left->second.second->Name << "," << left->second.second->Name << "-" << right->second.second->Name << ") = " << beta << ", delta(" << left->second.second->Name << "," << runner->second.second->Name << ") = " << delta << ", Min = " << MinDistance << "." << endl;
|
---|
473 | //*out << Verbose(1) << "Checking CoG distance of runner " << *runner->second.second << " " << h << " against triangle's side length spanned by (" << *left->second.second << "," << *right->second.second << ") of " << MinDistance << "." << endl;
|
---|
474 | if ((fabs(h / fabs(h) - MinDistance / fabs(MinDistance))
|
---|
475 | < MYEPSILON) && (h < MinDistance))
|
---|
476 | {
|
---|
477 | // throw out point
|
---|
478 | //*out << Verbose(1) << "Throwing out " << *runner->second.second << "." << endl;
|
---|
479 | BoundaryPoints[axis].erase(runner);
|
---|
480 | flag = true;
|
---|
481 | }
|
---|
482 | }
|
---|
483 | }
|
---|
484 | }
|
---|
485 | while (flag);
|
---|
486 | }
|
---|
487 | return BoundaryPoints;
|
---|
488 | }
|
---|
489 | ;
|
---|
490 |
|
---|
491 | /** Determines greatest diameters of a cluster defined by its convex envelope.
|
---|
492 | * Looks at lines parallel to one axis and where they intersect on the projected planes
|
---|
493 | * \param *out output stream for debugging
|
---|
494 | * \param *BoundaryPoints NDIM set of boundary points defining the convex envelope on each projected plane
|
---|
495 | * \param *mol molecule structure representing the cluster
|
---|
496 | * \param IsAngstroem whether we have angstroem or atomic units
|
---|
497 | * \return NDIM array of the diameters
|
---|
498 | */
|
---|
499 | double *
|
---|
500 | GetDiametersOfCluster(ofstream *out, Boundaries *BoundaryPtr, molecule *mol,
|
---|
501 | bool IsAngstroem)
|
---|
502 | {
|
---|
503 | // get points on boundary of NULL was given as parameter
|
---|
504 | bool BoundaryFreeFlag = false;
|
---|
505 | Boundaries *BoundaryPoints = BoundaryPtr;
|
---|
506 | if (BoundaryPoints == NULL)
|
---|
507 | {
|
---|
508 | BoundaryFreeFlag = true;
|
---|
509 | BoundaryPoints = GetBoundaryPoints(out, mol);
|
---|
510 | }
|
---|
511 | else
|
---|
512 | {
|
---|
513 | *out << Verbose(1) << "Using given boundary points set." << endl;
|
---|
514 | }
|
---|
515 | // determine biggest "diameter" of cluster for each axis
|
---|
516 | Boundaries::iterator Neighbour, OtherNeighbour;
|
---|
517 | double *GreatestDiameter = new double[NDIM];
|
---|
518 | for (int i = 0; i < NDIM; i++)
|
---|
519 | GreatestDiameter[i] = 0.;
|
---|
520 | double OldComponent, tmp, w1, w2;
|
---|
521 | Vector DistanceVector, OtherVector;
|
---|
522 | int component, Othercomponent;
|
---|
523 | for (int axis = 0; axis < NDIM; axis++)
|
---|
524 | { // regard each projected plane
|
---|
525 | //*out << Verbose(1) << "Current axis is " << axis << "." << endl;
|
---|
526 | for (int j = 0; j < 2; j++)
|
---|
527 | { // and for both axis on the current plane
|
---|
528 | component = (axis + j + 1) % NDIM;
|
---|
529 | Othercomponent = (axis + 1 + ((j + 1) & 1)) % NDIM;
|
---|
530 | //*out << Verbose(1) << "Current component is " << component << ", Othercomponent is " << Othercomponent << "." << endl;
|
---|
531 | for (Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner
|
---|
532 | != BoundaryPoints[axis].end(); runner++)
|
---|
533 | {
|
---|
534 | //*out << Verbose(2) << "Current runner is " << *(runner->second.second) << "." << endl;
|
---|
535 | // seek for the neighbours pair where the Othercomponent sign flips
|
---|
536 | Neighbour = runner;
|
---|
537 | Neighbour++;
|
---|
538 | if (Neighbour == BoundaryPoints[axis].end()) // make it wrap around
|
---|
539 | Neighbour = BoundaryPoints[axis].begin();
|
---|
540 | DistanceVector.CopyVector(&runner->second.second->x);
|
---|
541 | DistanceVector.SubtractVector(&Neighbour->second.second->x);
|
---|
542 | do
|
---|
543 | { // seek for neighbour pair where it flips
|
---|
544 | OldComponent = DistanceVector.x[Othercomponent];
|
---|
545 | Neighbour++;
|
---|
546 | if (Neighbour == BoundaryPoints[axis].end()) // make it wrap around
|
---|
547 | Neighbour = BoundaryPoints[axis].begin();
|
---|
548 | DistanceVector.CopyVector(&runner->second.second->x);
|
---|
549 | DistanceVector.SubtractVector(&Neighbour->second.second->x);
|
---|
550 | //*out << Verbose(3) << "OldComponent is " << OldComponent << ", new one is " << DistanceVector.x[Othercomponent] << "." << endl;
|
---|
551 | }
|
---|
552 | while ((runner != Neighbour) && (fabs(OldComponent / fabs(
|
---|
553 | OldComponent) - DistanceVector.x[Othercomponent] / fabs(
|
---|
554 | DistanceVector.x[Othercomponent])) < MYEPSILON)); // as long as sign does not flip
|
---|
555 | if (runner != Neighbour)
|
---|
556 | {
|
---|
557 | OtherNeighbour = Neighbour;
|
---|
558 | if (OtherNeighbour == BoundaryPoints[axis].begin()) // make it wrap around
|
---|
559 | OtherNeighbour = BoundaryPoints[axis].end();
|
---|
560 | OtherNeighbour--;
|
---|
561 | //*out << Verbose(2) << "The pair, where the sign of OtherComponent flips, is: " << *(Neighbour->second.second) << " and " << *(OtherNeighbour->second.second) << "." << endl;
|
---|
562 | // now we have found the pair: Neighbour and OtherNeighbour
|
---|
563 | OtherVector.CopyVector(&runner->second.second->x);
|
---|
564 | OtherVector.SubtractVector(&OtherNeighbour->second.second->x);
|
---|
565 | //*out << Verbose(2) << "Distances to Neighbour and OtherNeighbour are " << DistanceVector.x[component] << " and " << OtherVector.x[component] << "." << endl;
|
---|
566 | //*out << Verbose(2) << "OtherComponents to Neighbour and OtherNeighbour are " << DistanceVector.x[Othercomponent] << " and " << OtherVector.x[Othercomponent] << "." << endl;
|
---|
567 | // do linear interpolation between points (is exact) to extract exact intersection between Neighbour and OtherNeighbour
|
---|
568 | w1 = fabs(OtherVector.x[Othercomponent]);
|
---|
569 | w2 = fabs(DistanceVector.x[Othercomponent]);
|
---|
570 | tmp = fabs((w1 * DistanceVector.x[component] + w2
|
---|
571 | * OtherVector.x[component]) / (w1 + w2));
|
---|
572 | // mark if it has greater diameter
|
---|
573 | //*out << Verbose(2) << "Comparing current greatest " << GreatestDiameter[component] << " to new " << tmp << "." << endl;
|
---|
574 | GreatestDiameter[component] = (GreatestDiameter[component]
|
---|
575 | > tmp) ? GreatestDiameter[component] : tmp;
|
---|
576 | } //else
|
---|
577 | //*out << Verbose(2) << "Saw no sign flip, probably top or bottom node." << endl;
|
---|
578 | }
|
---|
579 | }
|
---|
580 | }
|
---|
581 | *out << Verbose(0) << "RESULT: The biggest diameters are "
|
---|
582 | << GreatestDiameter[0] << " and " << GreatestDiameter[1] << " and "
|
---|
583 | << GreatestDiameter[2] << " " << (IsAngstroem ? "angstrom"
|
---|
584 | : "atomiclength") << "." << endl;
|
---|
585 |
|
---|
586 | // free reference lists
|
---|
587 | if (BoundaryFreeFlag)
|
---|
588 | delete[] (BoundaryPoints);
|
---|
589 |
|
---|
590 | return GreatestDiameter;
|
---|
591 | }
|
---|
592 | ;
|
---|
593 |
|
---|
594 | /** Creates the objects in a VRML file.
|
---|
595 | * \param *out output stream for debugging
|
---|
596 | * \param *vrmlfile output stream for tecplot data
|
---|
597 | * \param *Tess Tesselation structure with constructed triangles
|
---|
598 | * \param *mol molecule structure with atom positions
|
---|
599 | */
|
---|
600 | void write_vrml_file(ofstream *out, ofstream *vrmlfile, class Tesselation *Tess, class molecule *mol)
|
---|
601 | {
|
---|
602 | atom *Walker = mol->start;
|
---|
603 | bond *Binder = mol->first;
|
---|
604 | int i;
|
---|
605 | Vector *center = mol->DetermineCenterOfAll(out);
|
---|
606 | if (vrmlfile != NULL) {
|
---|
607 | //cout << Verbose(1) << "Writing Raster3D file ... ";
|
---|
608 | *vrmlfile << "#VRML V2.0 utf8" << endl;
|
---|
609 | *vrmlfile << "#Created by molecuilder" << endl;
|
---|
610 | *vrmlfile << "#All atoms as spheres" << endl;
|
---|
611 | while (Walker->next != mol->end) {
|
---|
612 | Walker = Walker->next;
|
---|
613 | *vrmlfile << "Sphere {" << endl << " "; // 2 is sphere type
|
---|
614 | for (i=0;i<NDIM;i++)
|
---|
615 | *vrmlfile << Walker->x.x[i]+center->x[i] << " ";
|
---|
616 | *vrmlfile << "\t0.1\t1. 1. 1." << endl; // radius 0.05 and white as colour
|
---|
617 | }
|
---|
618 |
|
---|
619 | *vrmlfile << "# All bonds as vertices" << endl;
|
---|
620 | while (Binder->next != mol->last) {
|
---|
621 | Binder = Binder->next;
|
---|
622 | *vrmlfile << "3" << endl << " "; // 2 is round-ended cylinder type
|
---|
623 | for (i=0;i<NDIM;i++)
|
---|
624 | *vrmlfile << Binder->leftatom->x.x[i]+center->x[i] << " ";
|
---|
625 | *vrmlfile << "\t0.03\t";
|
---|
626 | for (i=0;i<NDIM;i++)
|
---|
627 | *vrmlfile << Binder->rightatom->x.x[i]+center->x[i] << " ";
|
---|
628 | *vrmlfile << "\t0.03\t0. 0. 1." << endl; // radius 0.05 and blue as colour
|
---|
629 | }
|
---|
630 |
|
---|
631 | *vrmlfile << "# All tesselation triangles" << endl;
|
---|
632 | for (TriangleMap::iterator TriangleRunner = Tess->TrianglesOnBoundary.begin(); TriangleRunner != Tess->TrianglesOnBoundary.end(); TriangleRunner++) {
|
---|
633 | *vrmlfile << "1" << endl << " "; // 1 is triangle type
|
---|
634 | for (i=0;i<3;i++) { // print each node
|
---|
635 | for (int j=0;j<NDIM;j++) // and for each node all NDIM coordinates
|
---|
636 | *vrmlfile << TriangleRunner->second->endpoints[i]->node->x.x[j]+center->x[j] << " ";
|
---|
637 | *vrmlfile << "\t";
|
---|
638 | }
|
---|
639 | *vrmlfile << "1. 0. 0." << endl; // red as colour
|
---|
640 | *vrmlfile << "18" << endl << " 0.5 0.5 0.5" << endl; // 18 is transparency type for previous object
|
---|
641 | }
|
---|
642 | } else {
|
---|
643 | cerr << "ERROR: Given vrmlfile is " << vrmlfile << "." << endl;
|
---|
644 | }
|
---|
645 | delete(center);
|
---|
646 | };
|
---|
647 |
|
---|
648 | /** Creates the objects in a raster3d file (renderable with a header.r3d).
|
---|
649 | * \param *out output stream for debugging
|
---|
650 | * \param *rasterfile output stream for tecplot data
|
---|
651 | * \param *Tess Tesselation structure with constructed triangles
|
---|
652 | * \param *mol molecule structure with atom positions
|
---|
653 | */
|
---|
654 | void write_raster3d_file(ofstream *out, ofstream *rasterfile, class Tesselation *Tess, class molecule *mol)
|
---|
655 | {
|
---|
656 | atom *Walker = mol->start;
|
---|
657 | bond *Binder = mol->first;
|
---|
658 | int i;
|
---|
659 | Vector *center = mol->DetermineCenterOfAll(out);
|
---|
660 | if (rasterfile != NULL) {
|
---|
661 | //cout << Verbose(1) << "Writing Raster3D file ... ";
|
---|
662 | *rasterfile << "# Raster3D object description, created by MoleCuilder" << endl;
|
---|
663 | *rasterfile << "@header.r3d" << endl;
|
---|
664 | *rasterfile << "# All atoms as spheres" << endl;
|
---|
665 | while (Walker->next != mol->end) {
|
---|
666 | Walker = Walker->next;
|
---|
667 | *rasterfile << "2" << endl << " "; // 2 is sphere type
|
---|
668 | for (i=0;i<NDIM;i++)
|
---|
669 | *rasterfile << Walker->x.x[i]+center->x[i] << " ";
|
---|
670 | *rasterfile << "\t0.1\t1. 1. 1." << endl; // radius 0.05 and white as colour
|
---|
671 | }
|
---|
672 |
|
---|
673 | *rasterfile << "# All bonds as vertices" << endl;
|
---|
674 | while (Binder->next != mol->last) {
|
---|
675 | Binder = Binder->next;
|
---|
676 | *rasterfile << "3" << endl << " "; // 2 is round-ended cylinder type
|
---|
677 | for (i=0;i<NDIM;i++)
|
---|
678 | *rasterfile << Binder->leftatom->x.x[i]+center->x[i] << " ";
|
---|
679 | *rasterfile << "\t0.03\t";
|
---|
680 | for (i=0;i<NDIM;i++)
|
---|
681 | *rasterfile << Binder->rightatom->x.x[i]+center->x[i] << " ";
|
---|
682 | *rasterfile << "\t0.03\t0. 0. 1." << endl; // radius 0.05 and blue as colour
|
---|
683 | }
|
---|
684 |
|
---|
685 | *rasterfile << "# All tesselation triangles" << endl;
|
---|
686 | *rasterfile << "8\n 25. -1. 1. 1. 1. 0.0 0 0 0 2\n SOLID 1.0 0.0 0.0\n BACKFACE 0.3 0.3 1.0 0 0\n";
|
---|
687 | for (TriangleMap::iterator TriangleRunner = Tess->TrianglesOnBoundary.begin(); TriangleRunner != Tess->TrianglesOnBoundary.end(); TriangleRunner++) {
|
---|
688 | *rasterfile << "1" << endl << " "; // 1 is triangle type
|
---|
689 | for (i=0;i<3;i++) { // print each node
|
---|
690 | for (int j=0;j<NDIM;j++) // and for each node all NDIM coordinates
|
---|
691 | *rasterfile << TriangleRunner->second->endpoints[i]->node->x.x[j]+center->x[j] << " ";
|
---|
692 | *rasterfile << "\t";
|
---|
693 | }
|
---|
694 | *rasterfile << "1. 0. 0." << endl; // red as colour
|
---|
695 | //*rasterfile << "18" << endl << " 0.5 0.5 0.5" << endl; // 18 is transparency type for previous object
|
---|
696 | }
|
---|
697 | *rasterfile << "9\n terminating special property\n";
|
---|
698 | } else {
|
---|
699 | cerr << "ERROR: Given rasterfile is " << rasterfile << "." << endl;
|
---|
700 | }
|
---|
701 | delete(center);
|
---|
702 | };
|
---|
703 |
|
---|
704 | /** This function creates the tecplot file, displaying the tesselation of the hull.
|
---|
705 | * \param *out output stream for debugging
|
---|
706 | * \param *tecplot output stream for tecplot data
|
---|
707 | * \param N arbitrary number to differentiate various zones in the tecplot format
|
---|
708 | */
|
---|
709 | void
|
---|
710 | write_tecplot_file(ofstream *out, ofstream *tecplot,
|
---|
711 | class Tesselation *TesselStruct, class molecule *mol, int N)
|
---|
712 | {
|
---|
713 | if (tecplot != NULL)
|
---|
714 | {
|
---|
715 | *tecplot << "TITLE = \"3D CONVEX SHELL\"" << endl;
|
---|
716 | *tecplot << "VARIABLES = \"X\" \"Y\" \"Z\"" << endl;
|
---|
717 | *tecplot << "ZONE T=\"TRIANGLES" << N << "\", N="
|
---|
718 | << TesselStruct->PointsOnBoundaryCount << ", E="
|
---|
719 | << TesselStruct->TrianglesOnBoundaryCount
|
---|
720 | << ", DATAPACKING=POINT, ZONETYPE=FETRIANGLE" << endl;
|
---|
721 | int *LookupList = new int[mol->AtomCount];
|
---|
722 | for (int i = 0; i < mol->AtomCount; i++)
|
---|
723 | LookupList[i] = -1;
|
---|
724 |
|
---|
725 | // print atom coordinates
|
---|
726 | *out << Verbose(2) << "The following triangles were created:";
|
---|
727 | int Counter = 1;
|
---|
728 | atom *Walker = NULL;
|
---|
729 | for (PointMap::iterator target = TesselStruct->PointsOnBoundary.begin(); target
|
---|
730 | != TesselStruct->PointsOnBoundary.end(); target++)
|
---|
731 | {
|
---|
732 | Walker = target->second->node;
|
---|
733 | LookupList[Walker->nr] = Counter++;
|
---|
734 | *tecplot << Walker->x.x[0] << " " << Walker->x.x[1] << " "
|
---|
735 | << Walker->x.x[2] << " " << endl;
|
---|
736 | }
|
---|
737 | *tecplot << endl;
|
---|
738 | // print connectivity
|
---|
739 | for (TriangleMap::iterator runner =
|
---|
740 | TesselStruct->TrianglesOnBoundary.begin(); runner
|
---|
741 | != TesselStruct->TrianglesOnBoundary.end(); runner++)
|
---|
742 | {
|
---|
743 | *out << " " << runner->second->endpoints[0]->node->Name << "<->"
|
---|
744 | << runner->second->endpoints[1]->node->Name << "<->"
|
---|
745 | << runner->second->endpoints[2]->node->Name;
|
---|
746 | *tecplot << LookupList[runner->second->endpoints[0]->node->nr] << " "
|
---|
747 | << LookupList[runner->second->endpoints[1]->node->nr] << " "
|
---|
748 | << LookupList[runner->second->endpoints[2]->node->nr] << endl;
|
---|
749 | }
|
---|
750 | delete[] (LookupList);
|
---|
751 | *out << endl;
|
---|
752 | }
|
---|
753 | }
|
---|
754 |
|
---|
755 | /** Determines the volume of a cluster.
|
---|
756 | * Determines first the convex envelope, then tesselates it and calculates its volume.
|
---|
757 | * \param *out output stream for debugging
|
---|
758 | * \param *filename filename prefix for output of vertex data
|
---|
759 | * \param *configuration needed for path to store convex envelope file
|
---|
760 | * \param *BoundaryPoints NDIM set of boundary points on the projected plane per axis, on return if desired
|
---|
761 | * \param *mol molecule structure representing the cluster
|
---|
762 | * \return determined volume of the cluster in cubed config:GetIsAngstroem()
|
---|
763 | */
|
---|
764 | double
|
---|
765 | VolumeOfConvexEnvelope(ofstream *out, const char *filename, config *configuration,
|
---|
766 | Boundaries *BoundaryPtr, molecule *mol)
|
---|
767 | {
|
---|
768 | bool IsAngstroem = configuration->GetIsAngstroem();
|
---|
769 | atom *Walker = NULL;
|
---|
770 | struct Tesselation *TesselStruct = new Tesselation;
|
---|
771 | bool BoundaryFreeFlag = false;
|
---|
772 | Boundaries *BoundaryPoints = BoundaryPtr;
|
---|
773 | double volume = 0.;
|
---|
774 | double PyramidVolume = 0.;
|
---|
775 | double G, h;
|
---|
776 | Vector x, y;
|
---|
777 | double a, b, c;
|
---|
778 |
|
---|
779 | //Find_non_convex_border(out, tecplot, *TesselStruct, mol); // Is now called from command line.
|
---|
780 |
|
---|
781 | // 1. calculate center of gravity
|
---|
782 | *out << endl;
|
---|
783 | Vector *CenterOfGravity = mol->DetermineCenterOfGravity(out);
|
---|
784 |
|
---|
785 | // 2. translate all points into CoG
|
---|
786 | *out << Verbose(1) << "Translating system to Center of Gravity." << endl;
|
---|
787 | Walker = mol->start;
|
---|
788 | while (Walker->next != mol->end)
|
---|
789 | {
|
---|
790 | Walker = Walker->next;
|
---|
791 | Walker->x.Translate(CenterOfGravity);
|
---|
792 | }
|
---|
793 |
|
---|
794 | // 3. Find all points on the boundary
|
---|
795 | if (BoundaryPoints == NULL)
|
---|
796 | {
|
---|
797 | BoundaryFreeFlag = true;
|
---|
798 | BoundaryPoints = GetBoundaryPoints(out, mol);
|
---|
799 | }
|
---|
800 | else
|
---|
801 | {
|
---|
802 | *out << Verbose(1) << "Using given boundary points set." << endl;
|
---|
803 | }
|
---|
804 |
|
---|
805 | // 4. fill the boundary point list
|
---|
806 | for (int axis = 0; axis < NDIM; axis++)
|
---|
807 | for (Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner
|
---|
808 | != BoundaryPoints[axis].end(); runner++)
|
---|
809 | {
|
---|
810 | TesselStruct->AddPoint(runner->second.second);
|
---|
811 | }
|
---|
812 |
|
---|
813 | *out << Verbose(2) << "I found " << TesselStruct->PointsOnBoundaryCount
|
---|
814 | << " points on the convex boundary." << endl;
|
---|
815 | // now we have the whole set of edge points in the BoundaryList
|
---|
816 |
|
---|
817 | // listing for debugging
|
---|
818 | // *out << Verbose(1) << "Listing PointsOnBoundary:";
|
---|
819 | // for(PointMap::iterator runner = PointsOnBoundary.begin(); runner != PointsOnBoundary.end(); runner++) {
|
---|
820 | // *out << " " << *runner->second;
|
---|
821 | // }
|
---|
822 | // *out << endl;
|
---|
823 |
|
---|
824 | // 5a. guess starting triangle
|
---|
825 | TesselStruct->GuessStartingTriangle(out);
|
---|
826 |
|
---|
827 | // 5b. go through all lines, that are not yet part of two triangles (only of one so far)
|
---|
828 | TesselStruct->TesselateOnBoundary(out, configuration, mol);
|
---|
829 |
|
---|
830 | *out << Verbose(2) << "I created " << TesselStruct->TrianglesOnBoundaryCount
|
---|
831 | << " triangles with " << TesselStruct->LinesOnBoundaryCount
|
---|
832 | << " lines and " << TesselStruct->PointsOnBoundaryCount << " points."
|
---|
833 | << endl;
|
---|
834 |
|
---|
835 | // 6a. Every triangle forms a pyramid with the center of gravity as its peak, sum up the volumes
|
---|
836 | *out << Verbose(1)
|
---|
837 | << "Calculating the volume of the pyramids formed out of triangles and center of gravity."
|
---|
838 | << endl;
|
---|
839 | for (TriangleMap::iterator runner = TesselStruct->TrianglesOnBoundary.begin(); runner
|
---|
840 | != TesselStruct->TrianglesOnBoundary.end(); runner++)
|
---|
841 | { // go through every triangle, calculate volume of its pyramid with CoG as peak
|
---|
842 | x.CopyVector(&runner->second->endpoints[0]->node->x);
|
---|
843 | x.SubtractVector(&runner->second->endpoints[1]->node->x);
|
---|
844 | y.CopyVector(&runner->second->endpoints[0]->node->x);
|
---|
845 | y.SubtractVector(&runner->second->endpoints[2]->node->x);
|
---|
846 | a = sqrt(runner->second->endpoints[0]->node->x.DistanceSquared(
|
---|
847 | &runner->second->endpoints[1]->node->x));
|
---|
848 | b = sqrt(runner->second->endpoints[0]->node->x.DistanceSquared(
|
---|
849 | &runner->second->endpoints[2]->node->x));
|
---|
850 | c = sqrt(runner->second->endpoints[2]->node->x.DistanceSquared(
|
---|
851 | &runner->second->endpoints[1]->node->x));
|
---|
852 | G = sqrt(((a + b + c) * (a + b + c) - 2 * (a * a + b * b + c * c)) / 16.); // area of tesselated triangle
|
---|
853 | x.MakeNormalVector(&runner->second->endpoints[0]->node->x,
|
---|
854 | &runner->second->endpoints[1]->node->x,
|
---|
855 | &runner->second->endpoints[2]->node->x);
|
---|
856 | x.Scale(runner->second->endpoints[1]->node->x.Projection(&x));
|
---|
857 | h = x.Norm(); // distance of CoG to triangle
|
---|
858 | PyramidVolume = (1. / 3.) * G * h; // this formula holds for _all_ pyramids (independent of n-edge base or (not) centered peak)
|
---|
859 | *out << Verbose(2) << "Area of triangle is " << G << " "
|
---|
860 | << (IsAngstroem ? "angstrom" : "atomiclength") << "^2, height is "
|
---|
861 | << h << " and the volume is " << PyramidVolume << " "
|
---|
862 | << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
|
---|
863 | volume += PyramidVolume;
|
---|
864 | }
|
---|
865 | *out << Verbose(0) << "RESULT: The summed volume is " << setprecision(10)
|
---|
866 | << volume << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3."
|
---|
867 | << endl;
|
---|
868 |
|
---|
869 | // 7. translate all points back from CoG
|
---|
870 | *out << Verbose(1) << "Translating system back from Center of Gravity."
|
---|
871 | << endl;
|
---|
872 | CenterOfGravity->Scale(-1);
|
---|
873 | Walker = mol->start;
|
---|
874 | while (Walker->next != mol->end)
|
---|
875 | {
|
---|
876 | Walker = Walker->next;
|
---|
877 | Walker->x.Translate(CenterOfGravity);
|
---|
878 | }
|
---|
879 |
|
---|
880 | // 8. Store triangles in tecplot file
|
---|
881 | string OutputName(filename);
|
---|
882 | OutputName.append(TecplotSuffix);
|
---|
883 | ofstream *tecplot = new ofstream(OutputName.c_str());
|
---|
884 | write_tecplot_file(out, tecplot, TesselStruct, mol, 0);
|
---|
885 | tecplot->close();
|
---|
886 | delete(tecplot);
|
---|
887 |
|
---|
888 | // free reference lists
|
---|
889 | if (BoundaryFreeFlag)
|
---|
890 | delete[] (BoundaryPoints);
|
---|
891 |
|
---|
892 | return volume;
|
---|
893 | }
|
---|
894 | ;
|
---|
895 |
|
---|
896 | /** Creates multiples of the by \a *mol given cluster and suspends them in water with a given final density.
|
---|
897 | * We get cluster volume by VolumeOfConvexEnvelope() and its diameters by GetDiametersOfCluster()
|
---|
898 | * \param *out output stream for debugging
|
---|
899 | * \param *configuration needed for path to store convex envelope file
|
---|
900 | * \param *mol molecule structure representing the cluster
|
---|
901 | * \param ClusterVolume guesstimated cluster volume, if equal 0 we used VolumeOfConvexEnvelope() instead.
|
---|
902 | * \param celldensity desired average density in final cell
|
---|
903 | */
|
---|
904 | void
|
---|
905 | PrepareClustersinWater(ofstream *out, config *configuration, molecule *mol,
|
---|
906 | double ClusterVolume, double celldensity)
|
---|
907 | {
|
---|
908 | // transform to PAS
|
---|
909 | mol->PrincipalAxisSystem(out, true);
|
---|
910 |
|
---|
911 | // some preparations beforehand
|
---|
912 | bool IsAngstroem = configuration->GetIsAngstroem();
|
---|
913 | Boundaries *BoundaryPoints = GetBoundaryPoints(out, mol);
|
---|
914 | double clustervolume;
|
---|
915 | if (ClusterVolume == 0)
|
---|
916 | clustervolume = VolumeOfConvexEnvelope(out, NULL, configuration,
|
---|
917 | BoundaryPoints, mol);
|
---|
918 | else
|
---|
919 | clustervolume = ClusterVolume;
|
---|
920 | double *GreatestDiameter = GetDiametersOfCluster(out, BoundaryPoints, mol,
|
---|
921 | IsAngstroem);
|
---|
922 | Vector BoxLengths;
|
---|
923 | int repetition[NDIM] =
|
---|
924 | { 1, 1, 1 };
|
---|
925 | int TotalNoClusters = 1;
|
---|
926 | for (int i = 0; i < NDIM; i++)
|
---|
927 | TotalNoClusters *= repetition[i];
|
---|
928 |
|
---|
929 | // sum up the atomic masses
|
---|
930 | double totalmass = 0.;
|
---|
931 | atom *Walker = mol->start;
|
---|
932 | while (Walker->next != mol->end)
|
---|
933 | {
|
---|
934 | Walker = Walker->next;
|
---|
935 | totalmass += Walker->type->mass;
|
---|
936 | }
|
---|
937 | *out << Verbose(0) << "RESULT: The summed mass is " << setprecision(10)
|
---|
938 | << totalmass << " atomicmassunit." << endl;
|
---|
939 |
|
---|
940 | *out << Verbose(0) << "RESULT: The average density is " << setprecision(10)
|
---|
941 | << totalmass / clustervolume << " atomicmassunit/"
|
---|
942 | << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
|
---|
943 |
|
---|
944 | // solve cubic polynomial
|
---|
945 | *out << Verbose(1) << "Solving equidistant suspension in water problem ..."
|
---|
946 | << endl;
|
---|
947 | double cellvolume;
|
---|
948 | if (IsAngstroem)
|
---|
949 | cellvolume = (TotalNoClusters * totalmass / SOLVENTDENSITY_A - (totalmass
|
---|
950 | / clustervolume)) / (celldensity - 1);
|
---|
951 | else
|
---|
952 | cellvolume = (TotalNoClusters * totalmass / SOLVENTDENSITY_a0 - (totalmass
|
---|
953 | / clustervolume)) / (celldensity - 1);
|
---|
954 | *out << Verbose(1) << "Cellvolume needed for a density of " << celldensity
|
---|
955 | << " g/cm^3 is " << cellvolume << " " << (IsAngstroem ? "angstrom"
|
---|
956 | : "atomiclength") << "^3." << endl;
|
---|
957 |
|
---|
958 | double minimumvolume = TotalNoClusters * (GreatestDiameter[0]
|
---|
959 | * GreatestDiameter[1] * GreatestDiameter[2]);
|
---|
960 | *out << Verbose(1)
|
---|
961 | << "Minimum volume of the convex envelope contained in a rectangular box is "
|
---|
962 | << minimumvolume << " atomicmassunit/" << (IsAngstroem ? "angstrom"
|
---|
963 | : "atomiclength") << "^3." << endl;
|
---|
964 | if (minimumvolume > cellvolume)
|
---|
965 | {
|
---|
966 | cerr << Verbose(0)
|
---|
967 | << "ERROR: the containing box already has a greater volume than the envisaged cell volume!"
|
---|
968 | << endl;
|
---|
969 | cout << Verbose(0)
|
---|
970 | << "Setting Box dimensions to minimum possible, the greatest diameters."
|
---|
971 | << endl;
|
---|
972 | for (int i = 0; i < NDIM; i++)
|
---|
973 | BoxLengths.x[i] = GreatestDiameter[i];
|
---|
974 | mol->CenterEdge(out, &BoxLengths);
|
---|
975 | }
|
---|
976 | else
|
---|
977 | {
|
---|
978 | BoxLengths.x[0] = (repetition[0] * GreatestDiameter[0] + repetition[1]
|
---|
979 | * GreatestDiameter[1] + repetition[2] * GreatestDiameter[2]);
|
---|
980 | BoxLengths.x[1] = (repetition[0] * repetition[1] * GreatestDiameter[0]
|
---|
981 | * GreatestDiameter[1] + repetition[0] * repetition[2]
|
---|
982 | * GreatestDiameter[0] * GreatestDiameter[2] + repetition[1]
|
---|
983 | * repetition[2] * GreatestDiameter[1] * GreatestDiameter[2]);
|
---|
984 | BoxLengths.x[2] = minimumvolume - cellvolume;
|
---|
985 | double x0 = 0., x1 = 0., x2 = 0.;
|
---|
986 | if (gsl_poly_solve_cubic(BoxLengths.x[0], BoxLengths.x[1],
|
---|
987 | BoxLengths.x[2], &x0, &x1, &x2) == 1) // either 1 or 3 on return
|
---|
988 | *out << Verbose(0) << "RESULT: The resulting spacing is: " << x0
|
---|
989 | << " ." << endl;
|
---|
990 | else
|
---|
991 | {
|
---|
992 | *out << Verbose(0) << "RESULT: The resulting spacings are: " << x0
|
---|
993 | << " and " << x1 << " and " << x2 << " ." << endl;
|
---|
994 | x0 = x2; // sorted in ascending order
|
---|
995 | }
|
---|
996 |
|
---|
997 | cellvolume = 1;
|
---|
998 | for (int i = 0; i < NDIM; i++)
|
---|
999 | {
|
---|
1000 | BoxLengths.x[i] = repetition[i] * (x0 + GreatestDiameter[i]);
|
---|
1001 | cellvolume *= BoxLengths.x[i];
|
---|
1002 | }
|
---|
1003 |
|
---|
1004 | // set new box dimensions
|
---|
1005 | *out << Verbose(0) << "Translating to box with these boundaries." << endl;
|
---|
1006 | mol->CenterInBox((ofstream *) &cout, &BoxLengths);
|
---|
1007 | }
|
---|
1008 | // update Box of atoms by boundary
|
---|
1009 | mol->SetBoxDimension(&BoxLengths);
|
---|
1010 | *out << Verbose(0) << "RESULT: The resulting cell dimensions are: "
|
---|
1011 | << BoxLengths.x[0] << " and " << BoxLengths.x[1] << " and "
|
---|
1012 | << BoxLengths.x[2] << " with total volume of " << cellvolume << " "
|
---|
1013 | << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
|
---|
1014 | }
|
---|
1015 | ;
|
---|
1016 |
|
---|
1017 | // =========================================================== class TESSELATION ===========================================
|
---|
1018 |
|
---|
1019 | /** Constructor of class Tesselation.
|
---|
1020 | */
|
---|
1021 | Tesselation::Tesselation()
|
---|
1022 | {
|
---|
1023 | PointsOnBoundaryCount = 0;
|
---|
1024 | LinesOnBoundaryCount = 0;
|
---|
1025 | TrianglesOnBoundaryCount = 0;
|
---|
1026 | TriangleFilesWritten = 0;
|
---|
1027 | }
|
---|
1028 | ;
|
---|
1029 |
|
---|
1030 | /** Constructor of class Tesselation.
|
---|
1031 | * We have to free all points, lines and triangles.
|
---|
1032 | */
|
---|
1033 | Tesselation::~Tesselation()
|
---|
1034 | {
|
---|
1035 | cout << Verbose(1) << "Free'ing TesselStruct ... " << endl;
|
---|
1036 | for (TriangleMap::iterator runner = TrianglesOnBoundary.begin(); runner != TrianglesOnBoundary.end(); runner++) {
|
---|
1037 | if (runner->second != NULL) {
|
---|
1038 | delete (runner->second);
|
---|
1039 | runner->second = NULL;
|
---|
1040 | } else
|
---|
1041 | cerr << "ERROR: The triangle " << runner->first << " has already been free'd." << endl;
|
---|
1042 | }
|
---|
1043 | }
|
---|
1044 | ;
|
---|
1045 |
|
---|
1046 | /** Gueses first starting triangle of the convex envelope.
|
---|
1047 | * We guess the starting triangle by taking the smallest distance between two points and looking for a fitting third.
|
---|
1048 | * \param *out output stream for debugging
|
---|
1049 | * \param PointsOnBoundary set of boundary points defining the convex envelope of the cluster
|
---|
1050 | */
|
---|
1051 | void
|
---|
1052 | Tesselation::GuessStartingTriangle(ofstream *out)
|
---|
1053 | {
|
---|
1054 | // 4b. create a starting triangle
|
---|
1055 | // 4b1. create all distances
|
---|
1056 | DistanceMultiMap DistanceMMap;
|
---|
1057 | double distance, tmp;
|
---|
1058 | Vector PlaneVector, TrialVector;
|
---|
1059 | PointMap::iterator A, B, C; // three nodes of the first triangle
|
---|
1060 | A = PointsOnBoundary.begin(); // the first may be chosen arbitrarily
|
---|
1061 |
|
---|
1062 | // with A chosen, take each pair B,C and sort
|
---|
1063 | if (A != PointsOnBoundary.end())
|
---|
1064 | {
|
---|
1065 | B = A;
|
---|
1066 | B++;
|
---|
1067 | for (; B != PointsOnBoundary.end(); B++)
|
---|
1068 | {
|
---|
1069 | C = B;
|
---|
1070 | C++;
|
---|
1071 | for (; C != PointsOnBoundary.end(); C++)
|
---|
1072 | {
|
---|
1073 | tmp = A->second->node->x.DistanceSquared(&B->second->node->x);
|
---|
1074 | distance = tmp * tmp;
|
---|
1075 | tmp = A->second->node->x.DistanceSquared(&C->second->node->x);
|
---|
1076 | distance += tmp * tmp;
|
---|
1077 | tmp = B->second->node->x.DistanceSquared(&C->second->node->x);
|
---|
1078 | distance += tmp * tmp;
|
---|
1079 | DistanceMMap.insert(DistanceMultiMapPair(distance, pair<
|
---|
1080 | PointMap::iterator, PointMap::iterator> (B, C)));
|
---|
1081 | }
|
---|
1082 | }
|
---|
1083 | }
|
---|
1084 | // // listing distances
|
---|
1085 | // *out << Verbose(1) << "Listing DistanceMMap:";
|
---|
1086 | // for(DistanceMultiMap::iterator runner = DistanceMMap.begin(); runner != DistanceMMap.end(); runner++) {
|
---|
1087 | // *out << " " << runner->first << "(" << *runner->second.first->second << ", " << *runner->second.second->second << ")";
|
---|
1088 | // }
|
---|
1089 | // *out << endl;
|
---|
1090 | // 4b2. pick three baselines forming a triangle
|
---|
1091 | // 1. we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate
|
---|
1092 | DistanceMultiMap::iterator baseline = DistanceMMap.begin();
|
---|
1093 | for (; baseline != DistanceMMap.end(); baseline++)
|
---|
1094 | {
|
---|
1095 | // we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate
|
---|
1096 | // 2. next, we have to check whether all points reside on only one side of the triangle
|
---|
1097 | // 3. construct plane vector
|
---|
1098 | PlaneVector.MakeNormalVector(&A->second->node->x,
|
---|
1099 | &baseline->second.first->second->node->x,
|
---|
1100 | &baseline->second.second->second->node->x);
|
---|
1101 | *out << Verbose(2) << "Plane vector of candidate triangle is ";
|
---|
1102 | PlaneVector.Output(out);
|
---|
1103 | *out << endl;
|
---|
1104 | // 4. loop over all points
|
---|
1105 | double sign = 0.;
|
---|
1106 | PointMap::iterator checker = PointsOnBoundary.begin();
|
---|
1107 | for (; checker != PointsOnBoundary.end(); checker++)
|
---|
1108 | {
|
---|
1109 | // (neglecting A,B,C)
|
---|
1110 | if ((checker == A) || (checker == baseline->second.first) || (checker
|
---|
1111 | == baseline->second.second))
|
---|
1112 | continue;
|
---|
1113 | // 4a. project onto plane vector
|
---|
1114 | TrialVector.CopyVector(&checker->second->node->x);
|
---|
1115 | TrialVector.SubtractVector(&A->second->node->x);
|
---|
1116 | distance = TrialVector.Projection(&PlaneVector);
|
---|
1117 | if (fabs(distance) < 1e-4) // we need to have a small epsilon around 0 which is still ok
|
---|
1118 | continue;
|
---|
1119 | *out << Verbose(3) << "Projection of " << checker->second->node->Name
|
---|
1120 | << " yields distance of " << distance << "." << endl;
|
---|
1121 | tmp = distance / fabs(distance);
|
---|
1122 | // 4b. Any have different sign to than before? (i.e. would lie outside convex hull with this starting triangle)
|
---|
1123 | if ((sign != 0) && (tmp != sign))
|
---|
1124 | {
|
---|
1125 | // 4c. If so, break 4. loop and continue with next candidate in 1. loop
|
---|
1126 | *out << Verbose(2) << "Current candidates: "
|
---|
1127 | << A->second->node->Name << ","
|
---|
1128 | << baseline->second.first->second->node->Name << ","
|
---|
1129 | << baseline->second.second->second->node->Name << " leave "
|
---|
1130 | << checker->second->node->Name << " outside the convex hull."
|
---|
1131 | << endl;
|
---|
1132 | break;
|
---|
1133 | }
|
---|
1134 | else
|
---|
1135 | { // note the sign for later
|
---|
1136 | *out << Verbose(2) << "Current candidates: "
|
---|
1137 | << A->second->node->Name << ","
|
---|
1138 | << baseline->second.first->second->node->Name << ","
|
---|
1139 | << baseline->second.second->second->node->Name << " leave "
|
---|
1140 | << checker->second->node->Name << " inside the convex hull."
|
---|
1141 | << endl;
|
---|
1142 | sign = tmp;
|
---|
1143 | }
|
---|
1144 | // 4d. Check whether the point is inside the triangle (check distance to each node
|
---|
1145 | tmp = checker->second->node->x.DistanceSquared(&A->second->node->x);
|
---|
1146 | int innerpoint = 0;
|
---|
1147 | if ((tmp < A->second->node->x.DistanceSquared(
|
---|
1148 | &baseline->second.first->second->node->x)) && (tmp
|
---|
1149 | < A->second->node->x.DistanceSquared(
|
---|
1150 | &baseline->second.second->second->node->x)))
|
---|
1151 | innerpoint++;
|
---|
1152 | tmp = checker->second->node->x.DistanceSquared(
|
---|
1153 | &baseline->second.first->second->node->x);
|
---|
1154 | if ((tmp < baseline->second.first->second->node->x.DistanceSquared(
|
---|
1155 | &A->second->node->x)) && (tmp
|
---|
1156 | < baseline->second.first->second->node->x.DistanceSquared(
|
---|
1157 | &baseline->second.second->second->node->x)))
|
---|
1158 | innerpoint++;
|
---|
1159 | tmp = checker->second->node->x.DistanceSquared(
|
---|
1160 | &baseline->second.second->second->node->x);
|
---|
1161 | if ((tmp < baseline->second.second->second->node->x.DistanceSquared(
|
---|
1162 | &baseline->second.first->second->node->x)) && (tmp
|
---|
1163 | < baseline->second.second->second->node->x.DistanceSquared(
|
---|
1164 | &A->second->node->x)))
|
---|
1165 | innerpoint++;
|
---|
1166 | // 4e. If so, break 4. loop and continue with next candidate in 1. loop
|
---|
1167 | if (innerpoint == 3)
|
---|
1168 | break;
|
---|
1169 | }
|
---|
1170 | // 5. come this far, all on same side? Then break 1. loop and construct triangle
|
---|
1171 | if (checker == PointsOnBoundary.end())
|
---|
1172 | {
|
---|
1173 | *out << "Looks like we have a candidate!" << endl;
|
---|
1174 | break;
|
---|
1175 | }
|
---|
1176 | }
|
---|
1177 | if (baseline != DistanceMMap.end())
|
---|
1178 | {
|
---|
1179 | BPS[0] = baseline->second.first->second;
|
---|
1180 | BPS[1] = baseline->second.second->second;
|
---|
1181 | BLS[0] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
|
---|
1182 | BPS[0] = A->second;
|
---|
1183 | BPS[1] = baseline->second.second->second;
|
---|
1184 | BLS[1] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
|
---|
1185 | BPS[0] = baseline->second.first->second;
|
---|
1186 | BPS[1] = A->second;
|
---|
1187 | BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
|
---|
1188 |
|
---|
1189 | // 4b3. insert created triangle
|
---|
1190 | BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
|
---|
1191 | TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
|
---|
1192 | TrianglesOnBoundaryCount++;
|
---|
1193 | for (int i = 0; i < NDIM; i++)
|
---|
1194 | {
|
---|
1195 | LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BTS->lines[i]));
|
---|
1196 | LinesOnBoundaryCount++;
|
---|
1197 | }
|
---|
1198 |
|
---|
1199 | *out << Verbose(1) << "Starting triangle is " << *BTS << "." << endl;
|
---|
1200 | }
|
---|
1201 | else
|
---|
1202 | {
|
---|
1203 | *out << Verbose(1) << "No starting triangle found." << endl;
|
---|
1204 | exit(255);
|
---|
1205 | }
|
---|
1206 | }
|
---|
1207 | ;
|
---|
1208 |
|
---|
1209 | /** Tesselates the convex envelope of a cluster from a single starting triangle.
|
---|
1210 | * The starting triangle is made out of three baselines. Each line in the final tesselated cluster may belong to at most
|
---|
1211 | * 2 triangles. Hence, we go through all current lines:
|
---|
1212 | * -# if the lines contains to only one triangle
|
---|
1213 | * -# We search all points in the boundary
|
---|
1214 | * -# if the triangle with the baseline and the current point has the smallest of angles (comparison between normal vectors
|
---|
1215 | * -# if the triangle is in forward direction of the baseline (at most 90 degrees angle between vector orthogonal to
|
---|
1216 | * baseline in triangle plane pointing out of the triangle and normal vector of new triangle)
|
---|
1217 | * -# then we have a new triangle, whose baselines we again add (or increase their TriangleCount)
|
---|
1218 | * \param *out output stream for debugging
|
---|
1219 | * \param *configuration for IsAngstroem
|
---|
1220 | * \param *mol the cluster as a molecule structure
|
---|
1221 | */
|
---|
1222 | void
|
---|
1223 | Tesselation::TesselateOnBoundary(ofstream *out, config *configuration,
|
---|
1224 | molecule *mol)
|
---|
1225 | {
|
---|
1226 | bool flag;
|
---|
1227 | PointMap::iterator winner;
|
---|
1228 | class BoundaryPointSet *peak = NULL;
|
---|
1229 | double SmallestAngle, TempAngle;
|
---|
1230 | Vector NormalVector, VirtualNormalVector, CenterVector, TempVector,
|
---|
1231 | PropagationVector;
|
---|
1232 | LineMap::iterator LineChecker[2];
|
---|
1233 | do
|
---|
1234 | {
|
---|
1235 | flag = false;
|
---|
1236 | for (LineMap::iterator baseline = LinesOnBoundary.begin(); baseline
|
---|
1237 | != LinesOnBoundary.end(); baseline++)
|
---|
1238 | if (baseline->second->TrianglesCount == 1)
|
---|
1239 | {
|
---|
1240 | *out << Verbose(2) << "Current baseline is between "
|
---|
1241 | << *(baseline->second) << "." << endl;
|
---|
1242 | // 5a. go through each boundary point if not _both_ edges between either endpoint of the current line and this point exist (and belong to 2 triangles)
|
---|
1243 | SmallestAngle = M_PI;
|
---|
1244 | BTS = baseline->second->triangles.begin()->second; // there is only one triangle so far
|
---|
1245 | // get peak point with respect to this base line's only triangle
|
---|
1246 | for (int i = 0; i < 3; i++)
|
---|
1247 | if ((BTS->endpoints[i] != baseline->second->endpoints[0])
|
---|
1248 | && (BTS->endpoints[i] != baseline->second->endpoints[1]))
|
---|
1249 | peak = BTS->endpoints[i];
|
---|
1250 | *out << Verbose(3) << " and has peak " << *peak << "." << endl;
|
---|
1251 | // normal vector of triangle
|
---|
1252 | BTS->GetNormalVector(NormalVector);
|
---|
1253 | *out << Verbose(4) << "NormalVector of base triangle is ";
|
---|
1254 | NormalVector.Output(out);
|
---|
1255 | *out << endl;
|
---|
1256 | // offset to center of triangle
|
---|
1257 | CenterVector.Zero();
|
---|
1258 | for (int i = 0; i < 3; i++)
|
---|
1259 | CenterVector.AddVector(&BTS->endpoints[i]->node->x);
|
---|
1260 | CenterVector.Scale(1. / 3.);
|
---|
1261 | *out << Verbose(4) << "CenterVector of base triangle is ";
|
---|
1262 | CenterVector.Output(out);
|
---|
1263 | *out << endl;
|
---|
1264 | // vector in propagation direction (out of triangle)
|
---|
1265 | // project center vector onto triangle plane (points from intersection plane-NormalVector to plane-CenterVector intersection)
|
---|
1266 | TempVector.CopyVector(&baseline->second->endpoints[0]->node->x);
|
---|
1267 | TempVector.SubtractVector(&baseline->second->endpoints[1]->node->x);
|
---|
1268 | PropagationVector.MakeNormalVector(&TempVector, &NormalVector);
|
---|
1269 | TempVector.CopyVector(&CenterVector);
|
---|
1270 | TempVector.SubtractVector(&baseline->second->endpoints[0]->node->x); // TempVector is vector on triangle plane pointing from one baseline egde towards center!
|
---|
1271 | //*out << Verbose(2) << "Projection of propagation onto temp: " << PropagationVector.Projection(&TempVector) << "." << endl;
|
---|
1272 | if (PropagationVector.Projection(&TempVector) > 0) // make sure normal propagation vector points outward from baseline
|
---|
1273 | PropagationVector.Scale(-1.);
|
---|
1274 | *out << Verbose(4) << "PropagationVector of base triangle is ";
|
---|
1275 | PropagationVector.Output(out);
|
---|
1276 | *out << endl;
|
---|
1277 | winner = PointsOnBoundary.end();
|
---|
1278 | for (PointMap::iterator target = PointsOnBoundary.begin(); target
|
---|
1279 | != PointsOnBoundary.end(); target++)
|
---|
1280 | if ((target->second != baseline->second->endpoints[0])
|
---|
1281 | && (target->second != baseline->second->endpoints[1]))
|
---|
1282 | { // don't take the same endpoints
|
---|
1283 | *out << Verbose(3) << "Target point is " << *(target->second)
|
---|
1284 | << ":";
|
---|
1285 | bool continueflag = true;
|
---|
1286 |
|
---|
1287 | VirtualNormalVector.CopyVector(
|
---|
1288 | &baseline->second->endpoints[0]->node->x);
|
---|
1289 | VirtualNormalVector.AddVector(
|
---|
1290 | &baseline->second->endpoints[0]->node->x);
|
---|
1291 | VirtualNormalVector.Scale(-1. / 2.); // points now to center of base line
|
---|
1292 | VirtualNormalVector.AddVector(&target->second->node->x); // points from center of base line to target
|
---|
1293 | TempAngle = VirtualNormalVector.Angle(&PropagationVector);
|
---|
1294 | continueflag = continueflag && (TempAngle < (M_PI/2.)); // no bends bigger than Pi/2 (90 degrees)
|
---|
1295 | if (!continueflag)
|
---|
1296 | {
|
---|
1297 | *out << Verbose(4)
|
---|
1298 | << "Angle between propagation direction and base line to "
|
---|
1299 | << *(target->second) << " is " << TempAngle
|
---|
1300 | << ", bad direction!" << endl;
|
---|
1301 | continue;
|
---|
1302 | }
|
---|
1303 | else
|
---|
1304 | *out << Verbose(4)
|
---|
1305 | << "Angle between propagation direction and base line to "
|
---|
1306 | << *(target->second) << " is " << TempAngle
|
---|
1307 | << ", good direction!" << endl;
|
---|
1308 | LineChecker[0] = baseline->second->endpoints[0]->lines.find(
|
---|
1309 | target->first);
|
---|
1310 | LineChecker[1] = baseline->second->endpoints[1]->lines.find(
|
---|
1311 | target->first);
|
---|
1312 | // if (LineChecker[0] != baseline->second->endpoints[0]->lines.end())
|
---|
1313 | // *out << Verbose(4) << *(baseline->second->endpoints[0]) << " has line " << *(LineChecker[0]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[0]->second->TrianglesCount << " triangles." << endl;
|
---|
1314 | // else
|
---|
1315 | // *out << Verbose(4) << *(baseline->second->endpoints[0]) << " has no line to " << *(target->second) << " as endpoint." << endl;
|
---|
1316 | // if (LineChecker[1] != baseline->second->endpoints[1]->lines.end())
|
---|
1317 | // *out << Verbose(4) << *(baseline->second->endpoints[1]) << " has line " << *(LineChecker[1]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[1]->second->TrianglesCount << " triangles." << endl;
|
---|
1318 | // else
|
---|
1319 | // *out << Verbose(4) << *(baseline->second->endpoints[1]) << " has no line to " << *(target->second) << " as endpoint." << endl;
|
---|
1320 | // check first endpoint (if any connecting line goes to target or at least not more than 1)
|
---|
1321 | continueflag = continueflag && (((LineChecker[0]
|
---|
1322 | == baseline->second->endpoints[0]->lines.end())
|
---|
1323 | || (LineChecker[0]->second->TrianglesCount == 1)));
|
---|
1324 | if (!continueflag)
|
---|
1325 | {
|
---|
1326 | *out << Verbose(4) << *(baseline->second->endpoints[0])
|
---|
1327 | << " has line " << *(LineChecker[0]->second)
|
---|
1328 | << " to " << *(target->second)
|
---|
1329 | << " as endpoint with "
|
---|
1330 | << LineChecker[0]->second->TrianglesCount
|
---|
1331 | << " triangles." << endl;
|
---|
1332 | continue;
|
---|
1333 | }
|
---|
1334 | // check second endpoint (if any connecting line goes to target or at least not more than 1)
|
---|
1335 | continueflag = continueflag && (((LineChecker[1]
|
---|
1336 | == baseline->second->endpoints[1]->lines.end())
|
---|
1337 | || (LineChecker[1]->second->TrianglesCount == 1)));
|
---|
1338 | if (!continueflag)
|
---|
1339 | {
|
---|
1340 | *out << Verbose(4) << *(baseline->second->endpoints[1])
|
---|
1341 | << " has line " << *(LineChecker[1]->second)
|
---|
1342 | << " to " << *(target->second)
|
---|
1343 | << " as endpoint with "
|
---|
1344 | << LineChecker[1]->second->TrianglesCount
|
---|
1345 | << " triangles." << endl;
|
---|
1346 | continue;
|
---|
1347 | }
|
---|
1348 | // check whether the envisaged triangle does not already exist (if both lines exist and have same endpoint)
|
---|
1349 | continueflag = continueflag && (!(((LineChecker[0]
|
---|
1350 | != baseline->second->endpoints[0]->lines.end())
|
---|
1351 | && (LineChecker[1]
|
---|
1352 | != baseline->second->endpoints[1]->lines.end())
|
---|
1353 | && (GetCommonEndpoint(LineChecker[0]->second,
|
---|
1354 | LineChecker[1]->second) == peak))));
|
---|
1355 | if (!continueflag)
|
---|
1356 | {
|
---|
1357 | *out << Verbose(4) << "Current target is peak!" << endl;
|
---|
1358 | continue;
|
---|
1359 | }
|
---|
1360 | // in case NOT both were found
|
---|
1361 | if (continueflag)
|
---|
1362 | { // create virtually this triangle, get its normal vector, calculate angle
|
---|
1363 | flag = true;
|
---|
1364 | VirtualNormalVector.MakeNormalVector(
|
---|
1365 | &baseline->second->endpoints[0]->node->x,
|
---|
1366 | &baseline->second->endpoints[1]->node->x,
|
---|
1367 | &target->second->node->x);
|
---|
1368 | // make it always point inward
|
---|
1369 | if (baseline->second->endpoints[0]->node->x.Projection(
|
---|
1370 | &VirtualNormalVector) > 0)
|
---|
1371 | VirtualNormalVector.Scale(-1.);
|
---|
1372 | // calculate angle
|
---|
1373 | TempAngle = NormalVector.Angle(&VirtualNormalVector);
|
---|
1374 | *out << Verbose(4) << "NormalVector is ";
|
---|
1375 | VirtualNormalVector.Output(out);
|
---|
1376 | *out << " and the angle is " << TempAngle << "." << endl;
|
---|
1377 | if (SmallestAngle > TempAngle)
|
---|
1378 | { // set to new possible winner
|
---|
1379 | SmallestAngle = TempAngle;
|
---|
1380 | winner = target;
|
---|
1381 | }
|
---|
1382 | }
|
---|
1383 | }
|
---|
1384 | // 5b. The point of the above whose triangle has the greatest angle with the triangle the current line belongs to (it only belongs to one, remember!): New triangle
|
---|
1385 | if (winner != PointsOnBoundary.end())
|
---|
1386 | {
|
---|
1387 | *out << Verbose(2) << "Winning target point is "
|
---|
1388 | << *(winner->second) << " with angle " << SmallestAngle
|
---|
1389 | << "." << endl;
|
---|
1390 | // create the lins of not yet present
|
---|
1391 | BLS[0] = baseline->second;
|
---|
1392 | // 5c. add lines to the line set if those were new (not yet part of a triangle), delete lines that belong to two triangles)
|
---|
1393 | LineChecker[0] = baseline->second->endpoints[0]->lines.find(
|
---|
1394 | winner->first);
|
---|
1395 | LineChecker[1] = baseline->second->endpoints[1]->lines.find(
|
---|
1396 | winner->first);
|
---|
1397 | if (LineChecker[0]
|
---|
1398 | == baseline->second->endpoints[0]->lines.end())
|
---|
1399 | { // create
|
---|
1400 | BPS[0] = baseline->second->endpoints[0];
|
---|
1401 | BPS[1] = winner->second;
|
---|
1402 | BLS[1] = new class BoundaryLineSet(BPS,
|
---|
1403 | LinesOnBoundaryCount);
|
---|
1404 | LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount,
|
---|
1405 | BLS[1]));
|
---|
1406 | LinesOnBoundaryCount++;
|
---|
1407 | }
|
---|
1408 | else
|
---|
1409 | BLS[1] = LineChecker[0]->second;
|
---|
1410 | if (LineChecker[1]
|
---|
1411 | == baseline->second->endpoints[1]->lines.end())
|
---|
1412 | { // create
|
---|
1413 | BPS[0] = baseline->second->endpoints[1];
|
---|
1414 | BPS[1] = winner->second;
|
---|
1415 | BLS[2] = new class BoundaryLineSet(BPS,
|
---|
1416 | LinesOnBoundaryCount);
|
---|
1417 | LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount,
|
---|
1418 | BLS[2]));
|
---|
1419 | LinesOnBoundaryCount++;
|
---|
1420 | }
|
---|
1421 | else
|
---|
1422 | BLS[2] = LineChecker[1]->second;
|
---|
1423 | BTS = new class BoundaryTriangleSet(BLS,
|
---|
1424 | TrianglesOnBoundaryCount);
|
---|
1425 | TrianglesOnBoundary.insert(TrianglePair(
|
---|
1426 | TrianglesOnBoundaryCount, BTS));
|
---|
1427 | TrianglesOnBoundaryCount++;
|
---|
1428 | }
|
---|
1429 | else
|
---|
1430 | {
|
---|
1431 | *out << Verbose(1)
|
---|
1432 | << "I could not determine a winner for this baseline "
|
---|
1433 | << *(baseline->second) << "." << endl;
|
---|
1434 | }
|
---|
1435 |
|
---|
1436 | // 5d. If the set of lines is not yet empty, go to 5. and continue
|
---|
1437 | }
|
---|
1438 | else
|
---|
1439 | *out << Verbose(2) << "Baseline candidate " << *(baseline->second)
|
---|
1440 | << " has a triangle count of "
|
---|
1441 | << baseline->second->TrianglesCount << "." << endl;
|
---|
1442 | }
|
---|
1443 | while (flag);
|
---|
1444 |
|
---|
1445 | }
|
---|
1446 | ;
|
---|
1447 |
|
---|
1448 | /** Adds an atom to the tesselation::PointsOnBoundary list.
|
---|
1449 | * \param *Walker atom to add
|
---|
1450 | */
|
---|
1451 | void
|
---|
1452 | Tesselation::AddPoint(atom *Walker)
|
---|
1453 | {
|
---|
1454 | PointTestPair InsertUnique;
|
---|
1455 | BPS[0] = new class BoundaryPointSet(Walker);
|
---|
1456 | InsertUnique = PointsOnBoundary.insert(PointPair(Walker->nr, BPS[0]));
|
---|
1457 | if (InsertUnique.second) // if new point was not present before, increase counter
|
---|
1458 | PointsOnBoundaryCount++;
|
---|
1459 | }
|
---|
1460 | ;
|
---|
1461 |
|
---|
1462 | /** Adds point to Tesselation::PointsOnBoundary if not yet present.
|
---|
1463 | * Tesselation::TPS is set to either this new BoundaryPointSet or to the existing one of not unique.
|
---|
1464 | * @param Candidate point to add
|
---|
1465 | * @param n index for this point in Tesselation::TPS array
|
---|
1466 | */
|
---|
1467 | void
|
---|
1468 | Tesselation::AddTrianglePoint(atom* Candidate, int n)
|
---|
1469 | {
|
---|
1470 | PointTestPair InsertUnique;
|
---|
1471 | TPS[n] = new class BoundaryPointSet(Candidate);
|
---|
1472 | InsertUnique = PointsOnBoundary.insert(PointPair(Candidate->nr, TPS[n]));
|
---|
1473 | if (InsertUnique.second) // if new point was not present before, increase counter
|
---|
1474 | {
|
---|
1475 | PointsOnBoundaryCount++;
|
---|
1476 | }
|
---|
1477 | else
|
---|
1478 | {
|
---|
1479 | delete TPS[n];
|
---|
1480 | cout << Verbose(2) << "Atom " << *((InsertUnique.first)->second->node)
|
---|
1481 | << " gibt's schon in der PointMap." << endl;
|
---|
1482 | TPS[n] = (InsertUnique.first)->second;
|
---|
1483 | }
|
---|
1484 | }
|
---|
1485 | ;
|
---|
1486 |
|
---|
1487 | /** Function tries to add line from current Points in BPS to BoundaryLineSet.
|
---|
1488 | * If successful it raises the line count and inserts the new line into the BLS,
|
---|
1489 | * if unsuccessful, it writes the line which had been present into the BLS, deleting the new constructed one.
|
---|
1490 | * @param *a first endpoint
|
---|
1491 | * @param *b second endpoint
|
---|
1492 | * @param n index of Tesselation::BLS giving the line with both endpoints
|
---|
1493 | */
|
---|
1494 | void Tesselation::AddTriangleLine(class BoundaryPointSet *a, class BoundaryPointSet *b, int n) {
|
---|
1495 | bool insertNewLine = true;
|
---|
1496 |
|
---|
1497 | if (a->lines.find(b->node->nr) != a->lines.end()) {
|
---|
1498 | LineMap::iterator FindLine;
|
---|
1499 | pair<LineMap::iterator,LineMap::iterator> FindPair;
|
---|
1500 | FindPair = a->lines.equal_range(b->node->nr);
|
---|
1501 |
|
---|
1502 | for (FindLine = FindPair.first; FindLine != FindPair.second; ++FindLine) {
|
---|
1503 | // If there is a line with less than two attached triangles, we don't need a new line.
|
---|
1504 | if (FindLine->second->TrianglesCount < 2) {
|
---|
1505 | insertNewLine = false;
|
---|
1506 | cout << Verbose(2)
|
---|
1507 | << "Using existing line " << *FindLine->second << endl;
|
---|
1508 |
|
---|
1509 | BPS[0] = FindLine->second->endpoints[0];
|
---|
1510 | BPS[1] = FindLine->second->endpoints[1];
|
---|
1511 | BLS[n] = FindLine->second;
|
---|
1512 |
|
---|
1513 | break;
|
---|
1514 | }
|
---|
1515 | }
|
---|
1516 | }
|
---|
1517 |
|
---|
1518 | if (insertNewLine) {
|
---|
1519 | AlwaysAddTriangleLine(a, b, n);
|
---|
1520 | }
|
---|
1521 | }
|
---|
1522 | ;
|
---|
1523 |
|
---|
1524 | /**
|
---|
1525 | * Adds lines from each of the current points in the BPS to BoundaryLineSet.
|
---|
1526 | * Raises the line count and inserts the new line into the BLS.
|
---|
1527 | *
|
---|
1528 | * @param *a first endpoint
|
---|
1529 | * @param *b second endpoint
|
---|
1530 | * @param n index of Tesselation::BLS giving the line with both endpoints
|
---|
1531 | */
|
---|
1532 | void Tesselation::AlwaysAddTriangleLine(class BoundaryPointSet *a, class BoundaryPointSet *b, int n)
|
---|
1533 | {
|
---|
1534 | cout << Verbose(2)
|
---|
1535 | << "Adding line which has not been used before between "
|
---|
1536 | << *(a->node) << " and " << *(b->node) << "." << endl;
|
---|
1537 | BPS[0] = a;
|
---|
1538 | BPS[1] = b;
|
---|
1539 | BLS[n] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
|
---|
1540 |
|
---|
1541 | LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[n]));
|
---|
1542 | LinesOnBoundaryCount++;
|
---|
1543 | };
|
---|
1544 |
|
---|
1545 | /** Function tries to add Triangle just created to Triangle and remarks if already existent (Failure of algorithm).
|
---|
1546 | * Furthermore it adds the triangle to all of its lines, in order to recognize those which are saturated later.
|
---|
1547 | */
|
---|
1548 | void
|
---|
1549 | Tesselation::AddTriangleToLines()
|
---|
1550 | {
|
---|
1551 |
|
---|
1552 | cout << Verbose(1) << "Adding triangle to its lines" << endl;
|
---|
1553 | int i = 0;
|
---|
1554 | TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
|
---|
1555 | TrianglesOnBoundaryCount++;
|
---|
1556 |
|
---|
1557 | /*
|
---|
1558 | * this is apparently done when constructing triangle
|
---|
1559 |
|
---|
1560 | for (i=0; i<3; i++)
|
---|
1561 | {
|
---|
1562 | BLS[i]->AddTriangle(BTS);
|
---|
1563 | }
|
---|
1564 | */
|
---|
1565 | }
|
---|
1566 | ;
|
---|
1567 |
|
---|
1568 |
|
---|
1569 | double det_get(gsl_matrix *A, int inPlace) {
|
---|
1570 | /*
|
---|
1571 | inPlace = 1 => A is replaced with the LU decomposed copy.
|
---|
1572 | inPlace = 0 => A is retained, and a copy is used for LU.
|
---|
1573 | */
|
---|
1574 |
|
---|
1575 | double det;
|
---|
1576 | int signum;
|
---|
1577 | gsl_permutation *p = gsl_permutation_alloc(A->size1);
|
---|
1578 | gsl_matrix *tmpA;
|
---|
1579 |
|
---|
1580 | if (inPlace)
|
---|
1581 | tmpA = A;
|
---|
1582 | else {
|
---|
1583 | gsl_matrix *tmpA = gsl_matrix_alloc(A->size1, A->size2);
|
---|
1584 | gsl_matrix_memcpy(tmpA , A);
|
---|
1585 | }
|
---|
1586 |
|
---|
1587 |
|
---|
1588 | gsl_linalg_LU_decomp(tmpA , p , &signum);
|
---|
1589 | det = gsl_linalg_LU_det(tmpA , signum);
|
---|
1590 | gsl_permutation_free(p);
|
---|
1591 | if (! inPlace)
|
---|
1592 | gsl_matrix_free(tmpA);
|
---|
1593 |
|
---|
1594 | return det;
|
---|
1595 | };
|
---|
1596 |
|
---|
1597 | void get_sphere(Vector *center, Vector &a, Vector &b, Vector &c, double RADIUS)
|
---|
1598 | {
|
---|
1599 | gsl_matrix *A = gsl_matrix_calloc(3,3);
|
---|
1600 | double m11, m12, m13, m14;
|
---|
1601 |
|
---|
1602 | for(int i=0;i<3;i++) {
|
---|
1603 | gsl_matrix_set(A, i, 0, a.x[i]);
|
---|
1604 | gsl_matrix_set(A, i, 1, b.x[i]);
|
---|
1605 | gsl_matrix_set(A, i, 2, c.x[i]);
|
---|
1606 | }
|
---|
1607 | m11 = det_get(A, 1);
|
---|
1608 |
|
---|
1609 | for(int i=0;i<3;i++) {
|
---|
1610 | gsl_matrix_set(A, i, 0, a.x[i]*a.x[i] + b.x[i]*b.x[i] + c.x[i]*c.x[i]);
|
---|
1611 | gsl_matrix_set(A, i, 1, b.x[i]);
|
---|
1612 | gsl_matrix_set(A, i, 2, c.x[i]);
|
---|
1613 | }
|
---|
1614 | m12 = det_get(A, 1);
|
---|
1615 |
|
---|
1616 | for(int i=0;i<3;i++) {
|
---|
1617 | gsl_matrix_set(A, i, 0, a.x[i]*a.x[i] + b.x[i]*b.x[i] + c.x[i]*c.x[i]);
|
---|
1618 | gsl_matrix_set(A, i, 1, a.x[i]);
|
---|
1619 | gsl_matrix_set(A, i, 2, c.x[i]);
|
---|
1620 | }
|
---|
1621 | m13 = det_get(A, 1);
|
---|
1622 |
|
---|
1623 | for(int i=0;i<3;i++) {
|
---|
1624 | gsl_matrix_set(A, i, 0, a.x[i]*a.x[i] + b.x[i]*b.x[i] + c.x[i]*c.x[i]);
|
---|
1625 | gsl_matrix_set(A, i, 1, a.x[i]);
|
---|
1626 | gsl_matrix_set(A, i, 2, b.x[i]);
|
---|
1627 | }
|
---|
1628 | m14 = det_get(A, 1);
|
---|
1629 |
|
---|
1630 | if (fabs(m11) < MYEPSILON)
|
---|
1631 | cerr << "ERROR: three points are colinear." << endl;
|
---|
1632 |
|
---|
1633 | center->x[0] = 0.5 * m12/ m11;
|
---|
1634 | center->x[1] = -0.5 * m13/ m11;
|
---|
1635 | center->x[2] = 0.5 * m14/ m11;
|
---|
1636 |
|
---|
1637 | if (fabs(a.Distance(center) - RADIUS) > MYEPSILON)
|
---|
1638 | cerr << "ERROR: The given center is further way by " << fabs(a.Distance(center) - RADIUS) << " from a than RADIUS." << endl;
|
---|
1639 |
|
---|
1640 | gsl_matrix_free(A);
|
---|
1641 | };
|
---|
1642 |
|
---|
1643 |
|
---|
1644 |
|
---|
1645 | /**
|
---|
1646 | * Function returns center of sphere with RADIUS, which rests on points a, b, c
|
---|
1647 | * @param Center this vector will be used for return
|
---|
1648 | * @param a vector first point of triangle
|
---|
1649 | * @param b vector second point of triangle
|
---|
1650 | * @param c vector third point of triangle
|
---|
1651 | * @param *Umkreismittelpunkt new cneter point of circumference
|
---|
1652 | * @param Direction vector indicates up/down
|
---|
1653 | * @param AlternativeDirection vecotr, needed in case the triangles have 90 deg angle
|
---|
1654 | * @param Halfplaneindicator double indicates whether Direction is up or down
|
---|
1655 | * @param AlternativeIndicator doube indicates in case of orthogonal triangles which direction of AlternativeDirection is suitable
|
---|
1656 | * @param alpha double angle at a
|
---|
1657 | * @param beta double, angle at b
|
---|
1658 | * @param gamma, double, angle at c
|
---|
1659 | * @param Radius, double
|
---|
1660 | * @param Umkreisradius double radius of circumscribing circle
|
---|
1661 | */
|
---|
1662 | void Get_center_of_sphere(Vector* Center, Vector a, Vector b, Vector c, Vector *NewUmkreismittelpunkt, Vector* Direction, Vector* AlternativeDirection,
|
---|
1663 | double HalfplaneIndicator, double AlternativeIndicator, double alpha, double beta, double gamma, double RADIUS, double Umkreisradius)
|
---|
1664 | {
|
---|
1665 | Vector TempNormal, helper;
|
---|
1666 | double Restradius;
|
---|
1667 | Vector OtherCenter;
|
---|
1668 | cout << Verbose(3) << "Begin of Get_center_of_sphere.\n";
|
---|
1669 | Center->Zero();
|
---|
1670 | helper.CopyVector(&a);
|
---|
1671 | helper.Scale(sin(2.*alpha));
|
---|
1672 | Center->AddVector(&helper);
|
---|
1673 | helper.CopyVector(&b);
|
---|
1674 | helper.Scale(sin(2.*beta));
|
---|
1675 | Center->AddVector(&helper);
|
---|
1676 | helper.CopyVector(&c);
|
---|
1677 | helper.Scale(sin(2.*gamma));
|
---|
1678 | Center->AddVector(&helper);
|
---|
1679 | //*Center = a * sin(2.*alpha) + b * sin(2.*beta) + c * sin(2.*gamma) ;
|
---|
1680 | Center->Scale(1./(sin(2.*alpha) + sin(2.*beta) + sin(2.*gamma)));
|
---|
1681 | NewUmkreismittelpunkt->CopyVector(Center);
|
---|
1682 | cout << Verbose(4) << "Center of new circumference is " << *NewUmkreismittelpunkt << ".\n";
|
---|
1683 | // Here we calculated center of circumscribing circle, using barycentric coordinates
|
---|
1684 | cout << Verbose(4) << "Center of circumference is " << *Center << " in direction " << *Direction << ".\n";
|
---|
1685 |
|
---|
1686 | TempNormal.CopyVector(&a);
|
---|
1687 | TempNormal.SubtractVector(&b);
|
---|
1688 | helper.CopyVector(&a);
|
---|
1689 | helper.SubtractVector(&c);
|
---|
1690 | TempNormal.VectorProduct(&helper);
|
---|
1691 | if (fabs(HalfplaneIndicator) < MYEPSILON)
|
---|
1692 | {
|
---|
1693 | if ((TempNormal.ScalarProduct(AlternativeDirection) <0 and AlternativeIndicator >0) or (TempNormal.ScalarProduct(AlternativeDirection) >0 and AlternativeIndicator <0))
|
---|
1694 | {
|
---|
1695 | TempNormal.Scale(-1);
|
---|
1696 | }
|
---|
1697 | }
|
---|
1698 | else
|
---|
1699 | {
|
---|
1700 | if (TempNormal.ScalarProduct(Direction)<0 && HalfplaneIndicator >0 || TempNormal.ScalarProduct(Direction)>0 && HalfplaneIndicator<0)
|
---|
1701 | {
|
---|
1702 | TempNormal.Scale(-1);
|
---|
1703 | }
|
---|
1704 | }
|
---|
1705 |
|
---|
1706 | TempNormal.Normalize();
|
---|
1707 | Restradius = sqrt(RADIUS*RADIUS - Umkreisradius*Umkreisradius);
|
---|
1708 | cout << Verbose(4) << "Height of center of circumference to center of sphere is " << Restradius << ".\n";
|
---|
1709 | TempNormal.Scale(Restradius);
|
---|
1710 | cout << Verbose(4) << "Shift vector to sphere of circumference is " << TempNormal << ".\n";
|
---|
1711 |
|
---|
1712 | Center->AddVector(&TempNormal);
|
---|
1713 | cout << Verbose(0) << "Center of sphere of circumference is " << *Center << ".\n";
|
---|
1714 | get_sphere(&OtherCenter, a, b, c, RADIUS);
|
---|
1715 | cout << Verbose(0) << "OtherCenter of sphere of circumference is " << OtherCenter << ".\n";
|
---|
1716 | cout << Verbose(3) << "End of Get_center_of_sphere.\n";
|
---|
1717 | };
|
---|
1718 |
|
---|
1719 |
|
---|
1720 |
|
---|
1721 | /** This recursive function finds a third point, to form a triangle with two given ones.
|
---|
1722 | * Two atoms are fixed, a candidate is supplied, additionally two vectors for direction distinction, a Storage area to \
|
---|
1723 | * supply results to the calling function, the radius of the sphere which the triangle shall support and the molecule \
|
---|
1724 | * upon which we operate.
|
---|
1725 | * If the candidate is more fitting to support the sphere than the already stored atom is, then we write its general \
|
---|
1726 | * direction and angle into Storage.
|
---|
1727 | * We the determine the recursive level we have reached and if this is not on the threshold yet, call this function again, \
|
---|
1728 | * with all neighbours of the candidate.
|
---|
1729 | * @param a first point
|
---|
1730 | * @param b second point
|
---|
1731 | * *param c atom old third point of old triangle
|
---|
1732 | * @param Candidate base point along whose bonds to start looking from
|
---|
1733 | * @param Parent point to avoid during search as its wrong direction
|
---|
1734 | * @param RecursionLevel contains current recursion depth
|
---|
1735 | * @param Chord baseline vector of first and second point
|
---|
1736 | * @param direction1 second in plane vector (along with \a Chord) of the triangle the baseline belongs to
|
---|
1737 | * @param OldNormal normal of the triangle which the baseline belongs to
|
---|
1738 | * @param ReferencePoint Vector of center of circumscribing circle from which we look towards center of sphere
|
---|
1739 | * @param Opt_Candidate candidate reference to return
|
---|
1740 | * @param Storage array containing two angles of current Opt_Candidate
|
---|
1741 | * @param RADIUS radius of ball
|
---|
1742 | * @param mol molecule structure with atoms and bonds
|
---|
1743 | */
|
---|
1744 | void Tesselation::Find_next_suitable_point_via_Angle_of_Sphere(atom* a, atom* b, atom* c, atom* Candidate, atom* Parent,
|
---|
1745 | int RecursionLevel, Vector *Chord, Vector *direction1, Vector *OldNormal, Vector ReferencePoint,
|
---|
1746 | atom*& Opt_Candidate, double *Storage, const double RADIUS, molecule* mol)
|
---|
1747 | {
|
---|
1748 | cout << Verbose(2) << "Begin of Find_next_suitable_point_via_Angle_of_Sphere, recursion level " << RecursionLevel << ".\n";
|
---|
1749 | cout << Verbose(3) << "Candidate is "<< *Candidate << endl;
|
---|
1750 | cout << Verbose(4) << "Baseline vector is " << *Chord << "." << endl;
|
---|
1751 | cout << Verbose(4) << "ReferencePoint is " << ReferencePoint << "." << endl;
|
---|
1752 | cout << Verbose(4) << "Normal of base triangle is " << *OldNormal << "." << endl;
|
---|
1753 | cout << Verbose(4) << "Search direction is " << *direction1 << "." << endl;
|
---|
1754 | /* OldNormal is normal vector on the old triangle
|
---|
1755 | * direction1 is normal on the triangle line, from which we come, as well as on OldNormal.
|
---|
1756 | * Chord points from b to a!!!
|
---|
1757 | */
|
---|
1758 | Vector dif_a; //Vector from a to candidate
|
---|
1759 | Vector dif_b; //Vector from b to candidate
|
---|
1760 | Vector AngleCheck;
|
---|
1761 | Vector TempNormal, Umkreismittelpunkt;
|
---|
1762 | Vector Mittelpunkt;
|
---|
1763 |
|
---|
1764 | double CurrentEpsilon = 0.1;
|
---|
1765 | double alpha, beta, gamma, SideA, SideB, SideC, sign, Umkreisradius, Restradius, Distance;
|
---|
1766 | double BallAngle, AlternativeSign;
|
---|
1767 | atom *Walker; // variable atom point
|
---|
1768 |
|
---|
1769 | Vector NewUmkreismittelpunkt;
|
---|
1770 |
|
---|
1771 | if (a != Candidate and b != Candidate and c != Candidate) {
|
---|
1772 | cout << Verbose(3) << "We have a unique candidate!" << endl;
|
---|
1773 | dif_a.CopyVector(&(a->x));
|
---|
1774 | dif_a.SubtractVector(&(Candidate->x));
|
---|
1775 | dif_b.CopyVector(&(b->x));
|
---|
1776 | dif_b.SubtractVector(&(Candidate->x));
|
---|
1777 | AngleCheck.CopyVector(&(Candidate->x));
|
---|
1778 | AngleCheck.SubtractVector(&(a->x));
|
---|
1779 | AngleCheck.ProjectOntoPlane(Chord);
|
---|
1780 |
|
---|
1781 | SideA = dif_b.Norm();
|
---|
1782 | SideB = dif_a.Norm();
|
---|
1783 | SideC = Chord->Norm();
|
---|
1784 | //Chord->Scale(-1);
|
---|
1785 |
|
---|
1786 | alpha = Chord->Angle(&dif_a);
|
---|
1787 | beta = M_PI - Chord->Angle(&dif_b);
|
---|
1788 | gamma = dif_a.Angle(&dif_b);
|
---|
1789 |
|
---|
1790 | cout << Verbose(2) << "Base triangle has sides " << dif_a << ", " << dif_b << ", " << *Chord << " with angles " << alpha/M_PI*180. << ", " << beta/M_PI*180. << ", " << gamma/M_PI*180. << "." << endl;
|
---|
1791 |
|
---|
1792 | if (fabs(M_PI - alpha - beta - gamma) > MYEPSILON) {
|
---|
1793 | cerr << Verbose(0) << "WARNING: sum of angles for base triangle " << (alpha + beta + gamma)/M_PI*180. << " != 180.\n";
|
---|
1794 | cout << Verbose(1) << "Base triangle has sides " << dif_a << ", " << dif_b << ", " << *Chord << " with angles " << alpha/M_PI*180. << ", " << beta/M_PI*180. << ", " << gamma/M_PI*180. << "." << endl;
|
---|
1795 | }
|
---|
1796 |
|
---|
1797 | if ((M_PI*179./180. > alpha) && (M_PI*179./180. > beta) && (M_PI*179./180. > gamma)) {
|
---|
1798 | Umkreisradius = SideA / 2.0 / sin(alpha);
|
---|
1799 | //cout << Umkreisradius << endl;
|
---|
1800 | //cout << SideB / 2.0 / sin(beta) << endl;
|
---|
1801 | //cout << SideC / 2.0 / sin(gamma) << endl;
|
---|
1802 |
|
---|
1803 | if (Umkreisradius < RADIUS) { //Checking whether ball will at least rest on points.
|
---|
1804 | cout << Verbose(3) << "Circle of circumference would fit: " << Umkreisradius << " < " << RADIUS << "." << endl;
|
---|
1805 | cout << Verbose(2) << "Candidate is "<< *Candidate << endl;
|
---|
1806 | sign = AngleCheck.ScalarProduct(direction1);
|
---|
1807 | if (fabs(sign)<MYEPSILON) {
|
---|
1808 | if (AngleCheck.ScalarProduct(OldNormal)<0) {
|
---|
1809 | sign =0;
|
---|
1810 | AlternativeSign=1;
|
---|
1811 | } else {
|
---|
1812 | sign =0;
|
---|
1813 | AlternativeSign=-1;
|
---|
1814 | }
|
---|
1815 | } else {
|
---|
1816 | sign /= fabs(sign);
|
---|
1817 | }
|
---|
1818 | if (sign >= 0) {
|
---|
1819 | cout << Verbose(3) << "Candidate is in search direction: " << sign << "." << endl;
|
---|
1820 |
|
---|
1821 | Get_center_of_sphere(&Mittelpunkt, (a->x), (b->x), (Candidate->x), &NewUmkreismittelpunkt, OldNormal, direction1, sign, AlternativeSign, alpha, beta, gamma, RADIUS, Umkreisradius);
|
---|
1822 |
|
---|
1823 | Mittelpunkt.SubtractVector(&ReferencePoint);
|
---|
1824 | cout << Verbose(3) << "Reference vector to sphere's center is " << Mittelpunkt << "." << endl;
|
---|
1825 |
|
---|
1826 | BallAngle = Mittelpunkt.Angle(OldNormal);
|
---|
1827 | cout << Verbose(3) << "Angle between normal of base triangle and center of ball sphere is :" << BallAngle << "." << endl;
|
---|
1828 |
|
---|
1829 | //cout << "direction1 is " << *direction1 << "." << endl;
|
---|
1830 | //cout << "Mittelpunkt is " << Mittelpunkt << "."<< endl;
|
---|
1831 |
|
---|
1832 | //cout << Verbose(3) << "BallAngle is " << BallAngle << " Sign is " << sign << endl;
|
---|
1833 |
|
---|
1834 | NewUmkreismittelpunkt.SubtractVector(&ReferencePoint);
|
---|
1835 |
|
---|
1836 | if ((Mittelpunkt.ScalarProduct(direction1) >=0) || (fabs(NewUmkreismittelpunkt.Norm()) < MYEPSILON)) {
|
---|
1837 | if (Storage[0]< -1.5) { // first Candidate at all
|
---|
1838 | if (1) {//if (CheckPresenceOfTriangle((ofstream *)&cout,a,b,Candidate)) {
|
---|
1839 | cout << Verbose(2) << "First good candidate is " << *Candidate << " with ";
|
---|
1840 | Opt_Candidate = Candidate;
|
---|
1841 | Storage[0] = sign;
|
---|
1842 | Storage[1] = AlternativeSign;
|
---|
1843 | Storage[2] = BallAngle;
|
---|
1844 | cout << " angle " << Storage[2] << " and Up/Down "
|
---|
1845 | << Storage[0] << endl;
|
---|
1846 | } else
|
---|
1847 | cout << "Candidate " << *Candidate << " does not belong to a valid triangle." << endl;
|
---|
1848 | } else {
|
---|
1849 | if ( Storage[2] > BallAngle) {
|
---|
1850 | if (1) { //if (CheckPresenceOfTriangle((ofstream *)&cout,a,b,Candidate)) {
|
---|
1851 | cout << Verbose(2) << "Next better candidate is " << *Candidate << " with ";
|
---|
1852 | Opt_Candidate = Candidate;
|
---|
1853 | Storage[0] = sign;
|
---|
1854 | Storage[1] = AlternativeSign;
|
---|
1855 | Storage[2] = BallAngle;
|
---|
1856 | cout << " angle " << Storage[2] << " and Up/Down "
|
---|
1857 | << Storage[0] << endl;
|
---|
1858 | } else
|
---|
1859 | cout << "Candidate " << *Candidate << " does not belong to a valid triangle." << endl;
|
---|
1860 | } else {
|
---|
1861 | if (DEBUG) {
|
---|
1862 | cout << Verbose(3) << *Candidate << " looses against better candidate " << *Opt_Candidate << "." << endl;
|
---|
1863 | }
|
---|
1864 | }
|
---|
1865 | }
|
---|
1866 | } else {
|
---|
1867 | if (DEBUG) {
|
---|
1868 | cout << Verbose(3) << *Candidate << " refused due to Up/Down sign which is " << sign << endl;
|
---|
1869 | }
|
---|
1870 | }
|
---|
1871 | } else {
|
---|
1872 | if (DEBUG) {
|
---|
1873 | cout << Verbose(3) << *Candidate << " is not in search direction." << endl;
|
---|
1874 | }
|
---|
1875 | }
|
---|
1876 | } else {
|
---|
1877 | if (DEBUG) {
|
---|
1878 | cout << Verbose(3) << *Candidate << " would have circumference of " << Umkreisradius << " bigger than ball's radius " << RADIUS << "." << endl;
|
---|
1879 | }
|
---|
1880 | }
|
---|
1881 | } else {
|
---|
1882 | if (DEBUG) {
|
---|
1883 | cout << Verbose(0) << "Triangle consisting of " << *Candidate << ", " << *a << " and " << *b << " has an angle >150!" << endl;
|
---|
1884 | }
|
---|
1885 | }
|
---|
1886 | } else {
|
---|
1887 | if (DEBUG) {
|
---|
1888 | cout << Verbose(3) << *Candidate << " is either " << *a << " or " << *b << "." << endl;
|
---|
1889 | }
|
---|
1890 | }
|
---|
1891 |
|
---|
1892 | if (RecursionLevel < 5) { // Seven is the recursion level threshold.
|
---|
1893 | for (int i = 0; i < mol->NumberOfBondsPerAtom[Candidate->nr]; i++) { // go through all bond
|
---|
1894 | Walker = mol->ListOfBondsPerAtom[Candidate->nr][i]->GetOtherAtom(Candidate);
|
---|
1895 | if (Walker == Parent) { // don't go back the same bond
|
---|
1896 | continue;
|
---|
1897 | } else {
|
---|
1898 | Find_next_suitable_point_via_Angle_of_Sphere(a, b, c, Walker, Candidate, RecursionLevel+1, Chord, direction1, OldNormal, ReferencePoint, Opt_Candidate, Storage, RADIUS, mol); //call function again
|
---|
1899 | }
|
---|
1900 | }
|
---|
1901 | }
|
---|
1902 | cout << Verbose(2) << "End of Find_next_suitable_point_via_Angle_of_Sphere, recursion level " << RecursionLevel << ".\n";
|
---|
1903 | }
|
---|
1904 | ;
|
---|
1905 |
|
---|
1906 |
|
---|
1907 | /** Constructs the center of the circumcircle defined by three points \a *a, \a *b and \a *c.
|
---|
1908 | * \param *Center new center on return
|
---|
1909 | * \param *a first point
|
---|
1910 | * \param *b second point
|
---|
1911 | * \param *c third point
|
---|
1912 | */
|
---|
1913 | void GetCenterofCircumcircle(Vector *Center, Vector *a, Vector *b, Vector *c)
|
---|
1914 | {
|
---|
1915 | Vector helper;
|
---|
1916 | double alpha, beta, gamma;
|
---|
1917 | Vector SideA, SideB, SideC;
|
---|
1918 | SideA.CopyVector(b);
|
---|
1919 | SideA.SubtractVector(c);
|
---|
1920 | SideB.CopyVector(c);
|
---|
1921 | SideB.SubtractVector(a);
|
---|
1922 | SideC.CopyVector(a);
|
---|
1923 | SideC.SubtractVector(b);
|
---|
1924 | alpha = M_PI - SideB.Angle(&SideC);
|
---|
1925 | beta = M_PI - SideC.Angle(&SideA);
|
---|
1926 | gamma = M_PI - SideA.Angle(&SideB);
|
---|
1927 | cout << Verbose(3) << "INFO: alpha = " << alpha/M_PI*180. << ", beta = " << beta/M_PI*180. << ", gamma = " << gamma/M_PI*180. << "." << endl;
|
---|
1928 | if (fabs(M_PI - alpha - beta - gamma) > HULLEPSILON)
|
---|
1929 | cerr << "Sum of angles " << (alpha+beta+gamma)/M_PI*180. << " > 180 degrees by " << fabs(M_PI - alpha - beta - gamma)/M_PI*180. << "!" << endl;
|
---|
1930 |
|
---|
1931 | Center->Zero();
|
---|
1932 | helper.CopyVector(a);
|
---|
1933 | helper.Scale(sin(2.*alpha));
|
---|
1934 | Center->AddVector(&helper);
|
---|
1935 | helper.CopyVector(b);
|
---|
1936 | helper.Scale(sin(2.*beta));
|
---|
1937 | Center->AddVector(&helper);
|
---|
1938 | helper.CopyVector(c);
|
---|
1939 | helper.Scale(sin(2.*gamma));
|
---|
1940 | Center->AddVector(&helper);
|
---|
1941 | Center->Scale(1./(sin(2.*alpha) + sin(2.*beta) + sin(2.*gamma)));
|
---|
1942 | };
|
---|
1943 |
|
---|
1944 | /** Returns the parameter "path length" for a given \a NewSphereCenter relative to \a OldSphereCenter on a circle on the plane \a CirclePlaneNormal with center \a CircleCenter and radius \a CircleRadius.
|
---|
1945 | * Test whether the \a NewSphereCenter is really on the given plane and in distance \a CircleRadius from \a CircleCenter.
|
---|
1946 | * It calculates the angle, making it unique on [0,2.*M_PI) by comparing to SearchDirection.
|
---|
1947 | * Also the new center is invalid if it the same as the old one and does not lie right above (\a NormalVector) the base line (\a CircleCenter).
|
---|
1948 | * \param CircleCenter Center of the parameter circle
|
---|
1949 | * \param CirclePlaneNormal normal vector to plane of the parameter circle
|
---|
1950 | * \param CircleRadius radius of the parameter circle
|
---|
1951 | * \param NewSphereCenter new center of a circumcircle
|
---|
1952 | * \param OldSphereCenter old center of a circumcircle, defining the zero "path length" on the parameter circle
|
---|
1953 | * \param NormalVector normal vector
|
---|
1954 | * \param SearchDirection search direction to make angle unique on return.
|
---|
1955 | * \return Angle between \a NewSphereCenter and \a OldSphereCenter relative to \a CircleCenter, 2.*M_PI if one test fails
|
---|
1956 | */
|
---|
1957 | double GetPathLengthonCircumCircle(Vector &CircleCenter, Vector &CirclePlaneNormal, double CircleRadius, Vector &NewSphereCenter, Vector &OldSphereCenter, Vector &NormalVector, Vector &SearchDirection)
|
---|
1958 | {
|
---|
1959 | Vector helper;
|
---|
1960 | double radius, alpha;
|
---|
1961 |
|
---|
1962 | helper.CopyVector(&NewSphereCenter);
|
---|
1963 | // test whether new center is on the parameter circle's plane
|
---|
1964 | if (fabs(helper.ScalarProduct(&CirclePlaneNormal)) > HULLEPSILON) {
|
---|
1965 | cerr << "ERROR: Something's very wrong here: NewSphereCenter is not on the band's plane as desired by " <<fabs(helper.ScalarProduct(&CirclePlaneNormal)) << "!" << endl;
|
---|
1966 | helper.ProjectOntoPlane(&CirclePlaneNormal);
|
---|
1967 | }
|
---|
1968 | radius = helper.ScalarProduct(&helper);
|
---|
1969 | // test whether the new center vector has length of CircleRadius
|
---|
1970 | if (fabs(radius - CircleRadius) > HULLEPSILON)
|
---|
1971 | cerr << Verbose(1) << "ERROR: The projected center of the new sphere has radius " << radius << " instead of " << CircleRadius << "." << endl;
|
---|
1972 | alpha = helper.Angle(&OldSphereCenter);
|
---|
1973 | // make the angle unique by checking the halfplanes/search direction
|
---|
1974 | if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON) // acos is not unique on [0, 2.*M_PI), hence extra check to decide between two half intervals
|
---|
1975 | alpha = 2.*M_PI - alpha;
|
---|
1976 | cout << Verbose(2) << "INFO: RelativeNewSphereCenter is " << helper << ", RelativeOldSphereCenter is " << OldSphereCenter << " and resulting angle is " << alpha << "." << endl;
|
---|
1977 | radius = helper.Distance(&OldSphereCenter);
|
---|
1978 | helper.ProjectOntoPlane(&NormalVector);
|
---|
1979 | // check whether new center is somewhat away or at least right over the current baseline to prevent intersecting triangles
|
---|
1980 | if ((radius > HULLEPSILON) || (helper.Norm() < HULLEPSILON)) {
|
---|
1981 | cout << Verbose(2) << "INFO: Distance between old and new center is " << radius << " and between new center and baseline center is " << helper.Norm() << "." << endl;
|
---|
1982 | return alpha;
|
---|
1983 | } else {
|
---|
1984 | cout << Verbose(1) << "INFO: NewSphereCenter " << helper << " is too close to OldSphereCenter" << OldSphereCenter << "." << endl;
|
---|
1985 | return 2.*M_PI;
|
---|
1986 | }
|
---|
1987 | };
|
---|
1988 |
|
---|
1989 |
|
---|
1990 | /** This recursive function finds a third point, to form a triangle with two given ones.
|
---|
1991 | * The idea is as follows: A sphere with fixed radius is (almost) uniquely defined in space by three points
|
---|
1992 | * that sit on its boundary. Hence, when two points are given and we look for the (next) third point, then
|
---|
1993 | * the center of the sphere is still fixed up to a single parameter. The band of possible values
|
---|
1994 | * describes a circle in 3D-space. The old center of the sphere for the current base triangle gives
|
---|
1995 | * us the "null" on this circle, the new center of the candidate point will be some way along this
|
---|
1996 | * circle. The shorter the way the better is the candidate. Note that the direction is clearly given
|
---|
1997 | * by the normal vector of the base triangle that always points outwards by construction.
|
---|
1998 | * Hence, we construct a Center of this circle which sits right in the middle of the current base line.
|
---|
1999 | * We construct the normal vector that defines the plane this circle lies in, it is just in the
|
---|
2000 | * direction of the baseline. And finally, we need the radius of the circle, which is given by the rest
|
---|
2001 | * with respect to the length of the baseline and the sphere's fixed \a RADIUS.
|
---|
2002 | * Note that there is one difficulty: The circumcircle is uniquely defined, but for the circumsphere's center
|
---|
2003 | * there are two possibilities which becomes clear from the construction as seen below. Hence, we must check
|
---|
2004 | * both.
|
---|
2005 | * Note also that the acos() function is not unique on [0, 2.*M_PI). Hence, we need an additional check
|
---|
2006 | * to decide for one of the two possible angles. Therefore we need a SearchDirection and to make this check
|
---|
2007 | * sensible we need OldSphereCenter to be orthogonal to it. Either we construct SearchDirection orthogonal
|
---|
2008 | * right away, or -- what we do here -- we rotate the relative sphere centers such that this orthogonality
|
---|
2009 | * holds. Then, the normalized projection onto the SearchDirection is either +1 or -1 and thus states whether
|
---|
2010 | * the angle is uniquely in either (0,M_PI] or [M_PI, 2.*M_PI).
|
---|
2011 | * @param BaseTriangle BoundaryTriangleSet of the current base triangle with all three points
|
---|
2012 | * @param BaseLine BoundaryLineSet of BaseTriangle with the current base line
|
---|
2013 | * @param OptCandidate candidate reference on return
|
---|
2014 | * @param OptCandidateCenter candidate's sphere center on return
|
---|
2015 | * @param ShortestAngle the current path length on this circle band for the current Opt_Candidate
|
---|
2016 | * @param RADIUS radius of sphere
|
---|
2017 | * @param *LC LinkedCell structure with neighbouring atoms
|
---|
2018 | */
|
---|
2019 | // void Find_next_suitable_point(class BoundaryTriangleSet *BaseTriangle, class BoundaryLineSet *BaseLine, atom*& OptCandidate, Vector *OptCandidateCenter, double *ShortestAngle, const double RADIUS, LinkedCell *LC)
|
---|
2020 | // {
|
---|
2021 | // atom *Walker = NULL;
|
---|
2022 | // Vector CircleCenter; // center of the circle, i.e. of the band of sphere's centers
|
---|
2023 | // Vector CirclePlaneNormal; // normal vector defining the plane this circle lives in
|
---|
2024 | // Vector OldSphereCenter; // center of the sphere defined by the three points of BaseTriangle
|
---|
2025 | // Vector NewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, first possibility
|
---|
2026 | // Vector OtherNewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, second possibility
|
---|
2027 | // Vector NewNormalVector; // normal vector of the Candidate's triangle
|
---|
2028 | // Vector SearchDirection; // vector that points out of BaseTriangle and is orthonormal to its NormalVector (i.e. the desired direction for the best Candidate)
|
---|
2029 | // Vector helper;
|
---|
2030 | // LinkedAtoms *List = NULL;
|
---|
2031 | // double CircleRadius; // radius of this circle
|
---|
2032 | // double radius;
|
---|
2033 | // double alpha, Otheralpha; // angles (i.e. parameter for the circle).
|
---|
2034 | // double Nullalpha; // angle between OldSphereCenter and NormalVector of base triangle
|
---|
2035 | // int N[NDIM], Nlower[NDIM], Nupper[NDIM];
|
---|
2036 | // atom *Candidate = NULL;
|
---|
2037 | //
|
---|
2038 | // cout << Verbose(1) << "Begin of Find_next_suitable_point" << endl;
|
---|
2039 | //
|
---|
2040 | // cout << Verbose(2) << "INFO: NormalVector of BaseTriangle is " << BaseTriangle->NormalVector << "." << endl;
|
---|
2041 | //
|
---|
2042 | // // construct center of circle
|
---|
2043 | // CircleCenter.CopyVector(&(BaseLine->endpoints[0]->node->x));
|
---|
2044 | // CircleCenter.AddVector(&BaseLine->endpoints[1]->node->x);
|
---|
2045 | // CircleCenter.Scale(0.5);
|
---|
2046 | //
|
---|
2047 | // // construct normal vector of circle
|
---|
2048 | // CirclePlaneNormal.CopyVector(&BaseLine->endpoints[0]->node->x);
|
---|
2049 | // CirclePlaneNormal.SubtractVector(&BaseLine->endpoints[1]->node->x);
|
---|
2050 | //
|
---|
2051 | // // calculate squared radius of circle
|
---|
2052 | // radius = CirclePlaneNormal.ScalarProduct(&CirclePlaneNormal);
|
---|
2053 | // if (radius/4. < RADIUS*RADIUS) {
|
---|
2054 | // CircleRadius = RADIUS*RADIUS - radius/4.;
|
---|
2055 | // CirclePlaneNormal.Normalize();
|
---|
2056 | // cout << Verbose(2) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl;
|
---|
2057 | //
|
---|
2058 | // // construct old center
|
---|
2059 | // GetCenterofCircumcircle(&OldSphereCenter, &(BaseTriangle->endpoints[0]->node->x), &(BaseTriangle->endpoints[1]->node->x), &(BaseTriangle->endpoints[2]->node->x));
|
---|
2060 | // helper.CopyVector(&BaseTriangle->NormalVector); // normal vector ensures that this is correct center of the two possible ones
|
---|
2061 | // radius = BaseLine->endpoints[0]->node->x.DistanceSquared(&OldSphereCenter);
|
---|
2062 | // helper.Scale(sqrt(RADIUS*RADIUS - radius));
|
---|
2063 | // OldSphereCenter.AddVector(&helper);
|
---|
2064 | // OldSphereCenter.SubtractVector(&CircleCenter);
|
---|
2065 | // cout << Verbose(2) << "INFO: OldSphereCenter is at " << OldSphereCenter << "." << endl;
|
---|
2066 | //
|
---|
2067 | // // test whether old center is on the band's plane
|
---|
2068 | // if (fabs(OldSphereCenter.ScalarProduct(&CirclePlaneNormal)) > HULLEPSILON) {
|
---|
2069 | // cerr << "ERROR: Something's very wrong here: OldSphereCenter is not on the band's plane as desired by " << fabs(OldSphereCenter.ScalarProduct(&CirclePlaneNormal)) << "!" << endl;
|
---|
2070 | // OldSphereCenter.ProjectOntoPlane(&CirclePlaneNormal);
|
---|
2071 | // }
|
---|
2072 | // radius = OldSphereCenter.ScalarProduct(&OldSphereCenter);
|
---|
2073 | // if (fabs(radius - CircleRadius) < HULLEPSILON) {
|
---|
2074 | //
|
---|
2075 | // // construct SearchDirection
|
---|
2076 | // SearchDirection.MakeNormalVector(&BaseTriangle->NormalVector, &CirclePlaneNormal);
|
---|
2077 | // helper.CopyVector(&BaseLine->endpoints[0]->node->x);
|
---|
2078 | // for(int i=0;i<3;i++) // just take next different endpoint
|
---|
2079 | // if ((BaseTriangle->endpoints[i]->node != BaseLine->endpoints[0]->node) && (BaseTriangle->endpoints[i]->node != BaseLine->endpoints[1]->node)) {
|
---|
2080 | // helper.SubtractVector(&BaseTriangle->endpoints[i]->node->x);
|
---|
2081 | // }
|
---|
2082 | // if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON) // ohoh, SearchDirection points inwards!
|
---|
2083 | // SearchDirection.Scale(-1.);
|
---|
2084 | // SearchDirection.ProjectOntoPlane(&OldSphereCenter);
|
---|
2085 | // SearchDirection.Normalize();
|
---|
2086 | // cout << Verbose(2) << "INFO: SearchDirection is " << SearchDirection << "." << endl;
|
---|
2087 | // if (fabs(OldSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) { // rotated the wrong way!
|
---|
2088 | // cerr << "ERROR: SearchDirection and RelativeOldSphereCenter are still not orthogonal!" << endl;
|
---|
2089 | // }
|
---|
2090 | //
|
---|
2091 | // if (LC->SetIndexToVector(&CircleCenter)) { // get cell for the starting atom
|
---|
2092 | // for(int i=0;i<NDIM;i++) // store indices of this cell
|
---|
2093 | // N[i] = LC->n[i];
|
---|
2094 | // cout << Verbose(2) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
|
---|
2095 | // } else {
|
---|
2096 | // cerr << "ERROR: Vector " << CircleCenter << " is outside of LinkedCell's bounding box." << endl;
|
---|
2097 | // return;
|
---|
2098 | // }
|
---|
2099 | // // then go through the current and all neighbouring cells and check the contained atoms for possible candidates
|
---|
2100 | // cout << Verbose(2) << "LC Intervals:";
|
---|
2101 | // for (int i=0;i<NDIM;i++) {
|
---|
2102 | // Nlower[i] = ((N[i]-1) >= 0) ? N[i]-1 : 0;
|
---|
2103 | // Nupper[i] = ((N[i]+1) < LC->N[i]) ? N[i]+1 : LC->N[i]-1;
|
---|
2104 | // cout << " [" << Nlower[i] << "," << Nupper[i] << "] ";
|
---|
2105 | // }
|
---|
2106 | // cout << endl;
|
---|
2107 | // for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
|
---|
2108 | // for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
|
---|
2109 | // for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
|
---|
2110 | // List = LC->GetCurrentCell();
|
---|
2111 | // cout << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
|
---|
2112 | // if (List != NULL) {
|
---|
2113 | // for (LinkedAtoms::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
|
---|
2114 | // Candidate = (*Runner);
|
---|
2115 | //
|
---|
2116 | // // check for three unique points
|
---|
2117 | // if ((Candidate != BaseTriangle->endpoints[0]->node) && (Candidate != BaseTriangle->endpoints[1]->node) && (Candidate != BaseTriangle->endpoints[2]->node)) {
|
---|
2118 | // cout << Verbose(1) << "INFO: Current Candidate is " << *Candidate << " at " << Candidate->x << "." << endl;
|
---|
2119 | //
|
---|
2120 | // // construct both new centers
|
---|
2121 | // GetCenterofCircumcircle(&NewSphereCenter, &(BaseLine->endpoints[0]->node->x), &(BaseLine->endpoints[1]->node->x), &(Candidate->x));
|
---|
2122 | // OtherNewSphereCenter.CopyVector(&NewSphereCenter);
|
---|
2123 | //
|
---|
2124 | // if ((NewNormalVector.MakeNormalVector(&(BaseLine->endpoints[0]->node->x), &(BaseLine->endpoints[1]->node->x), &(Candidate->x))) && (fabs(NewNormalVector.ScalarProduct(&NewNormalVector)) > HULLEPSILON)) {
|
---|
2125 | // helper.CopyVector(&NewNormalVector);
|
---|
2126 | // cout << Verbose(2) << "INFO: NewNormalVector is " << NewNormalVector << "." << endl;
|
---|
2127 | // radius = BaseLine->endpoints[0]->node->x.DistanceSquared(&NewSphereCenter);
|
---|
2128 | // if (radius < RADIUS*RADIUS) {
|
---|
2129 | // helper.Scale(sqrt(RADIUS*RADIUS - radius));
|
---|
2130 | // cout << Verbose(3) << "INFO: Distance of NewCircleCenter to NewSphereCenter is " << helper.Norm() << "." << endl;
|
---|
2131 | // NewSphereCenter.AddVector(&helper);
|
---|
2132 | // NewSphereCenter.SubtractVector(&CircleCenter);
|
---|
2133 | // cout << Verbose(2) << "INFO: NewSphereCenter is at " << NewSphereCenter << "." << endl;
|
---|
2134 | //
|
---|
2135 | // helper.Scale(-1.); // OtherNewSphereCenter is created by the same vector just in the other direction
|
---|
2136 | // OtherNewSphereCenter.AddVector(&helper);
|
---|
2137 | // OtherNewSphereCenter.SubtractVector(&CircleCenter);
|
---|
2138 | // cout << Verbose(2) << "INFO: OtherNewSphereCenter is at " << OtherNewSphereCenter << "." << endl;
|
---|
2139 | //
|
---|
2140 | // // check both possible centers
|
---|
2141 | // alpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, NewSphereCenter, OldSphereCenter, BaseTriangle->NormalVector, SearchDirection);
|
---|
2142 | // Otheralpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, OtherNewSphereCenter, OldSphereCenter, BaseTriangle->NormalVector, SearchDirection);
|
---|
2143 | // alpha = min(alpha, Otheralpha);
|
---|
2144 | // if (*ShortestAngle > alpha) {
|
---|
2145 | // OptCandidate = Candidate;
|
---|
2146 | // *ShortestAngle = alpha;
|
---|
2147 | // if (alpha != Otheralpha)
|
---|
2148 | // OptCandidateCenter->CopyVector(&NewSphereCenter);
|
---|
2149 | // else
|
---|
2150 | // OptCandidateCenter->CopyVector(&OtherNewSphereCenter);
|
---|
2151 | // cout << Verbose(1) << "We have found a better candidate: " << *OptCandidate << " with " << alpha << " and circumsphere's center at " << *OptCandidateCenter << "." << endl;
|
---|
2152 | // } else {
|
---|
2153 | // if (OptCandidate != NULL)
|
---|
2154 | // cout << Verbose(1) << "REJECT: Old candidate: " << *OptCandidate << " is better than " << alpha << " with " << *ShortestAngle << "." << endl;
|
---|
2155 | // else
|
---|
2156 | // cout << Verbose(2) << "REJECT: Candidate " << *Candidate << " with " << alpha << " was rejected." << endl;
|
---|
2157 | // }
|
---|
2158 | //
|
---|
2159 | // } else {
|
---|
2160 | // cout << Verbose(1) << "REJECT: NewSphereCenter " << NewSphereCenter << " is too far away: " << radius << "." << endl;
|
---|
2161 | // }
|
---|
2162 | // } else {
|
---|
2163 | // cout << Verbose(1) << "REJECT: Three points from " << *BaseLine << " and Candidate " << *Candidate << " are linear-dependent." << endl;
|
---|
2164 | // }
|
---|
2165 | // } else {
|
---|
2166 | // cout << Verbose(1) << "REJECT: Base triangle " << *BaseTriangle << " contains Candidate " << *Candidate << "." << endl;
|
---|
2167 | // }
|
---|
2168 | // }
|
---|
2169 | // }
|
---|
2170 | // }
|
---|
2171 | // } else {
|
---|
2172 | // cerr << Verbose(1) << "ERROR: The projected center of the old sphere has radius " << radius << " instead of " << CircleRadius << "." << endl;
|
---|
2173 | // }
|
---|
2174 | // } else {
|
---|
2175 | // cout << Verbose(1) << "Circumcircle for base line " << *BaseLine << " and base triangle " << *BaseTriangle << " is too big!" << endl;
|
---|
2176 | // }
|
---|
2177 | //
|
---|
2178 | // cout << Verbose(1) << "End of Find_next_suitable_point" << endl;
|
---|
2179 | // };
|
---|
2180 |
|
---|
2181 |
|
---|
2182 | /** Checks whether the triangle consisting of the three atoms is already present.
|
---|
2183 | * Searches for the points in Tesselation::PointsOnBoundary and checks their
|
---|
2184 | * lines. If any of the three edges already has two triangles attached, false is
|
---|
2185 | * returned.
|
---|
2186 | * \param *out output stream for debugging
|
---|
2187 | * \param *Candidates endpoints of the triangle candidate
|
---|
2188 | * \return integer 0 if no triangle exists, 1 if one triangle exists, 2 if two
|
---|
2189 | * triangles exist which is the maximum for three points
|
---|
2190 | */
|
---|
2191 | int Tesselation::CheckPresenceOfTriangle(ofstream *out, atom *Candidates[3]) {
|
---|
2192 | LineMap::iterator FindLine;
|
---|
2193 | PointMap::iterator FindPoint;
|
---|
2194 | TriangleMap::iterator FindTriangle;
|
---|
2195 | int adjacentTriangleCount = 0;
|
---|
2196 | class BoundaryPointSet *Points[3];
|
---|
2197 |
|
---|
2198 | *out << Verbose(2) << "Begin of CheckPresenceOfTriangle" << endl;
|
---|
2199 | // builds a triangle point set (Points) of the end points
|
---|
2200 | for (int i = 0; i < 3; i++) {
|
---|
2201 | FindPoint = PointsOnBoundary.find(Candidates[i]->nr);
|
---|
2202 | if (FindPoint != PointsOnBoundary.end()) {
|
---|
2203 | Points[i] = FindPoint->second;
|
---|
2204 | } else {
|
---|
2205 | Points[i] = NULL;
|
---|
2206 | }
|
---|
2207 | }
|
---|
2208 |
|
---|
2209 | // checks lines between the points in the Points for their adjacent triangles
|
---|
2210 | for (int i = 0; i < 3; i++) {
|
---|
2211 | if (Points[i] != NULL) {
|
---|
2212 | for (int j = i; j < 3; j++) {
|
---|
2213 | if (Points[j] != NULL) {
|
---|
2214 | FindLine = Points[i]->lines.find(Points[j]->node->nr);
|
---|
2215 | if (FindLine != Points[i]->lines.end()) {
|
---|
2216 | for (; FindLine->first == Points[j]->node->nr; FindLine++) {
|
---|
2217 | FindTriangle = FindLine->second->triangles.begin();
|
---|
2218 | for (; FindTriangle != FindLine->second->triangles.end(); FindTriangle++) {
|
---|
2219 | if ((
|
---|
2220 | (FindTriangle->second->endpoints[0] == Points[0])
|
---|
2221 | || (FindTriangle->second->endpoints[0] == Points[1])
|
---|
2222 | || (FindTriangle->second->endpoints[0] == Points[2])
|
---|
2223 | ) && (
|
---|
2224 | (FindTriangle->second->endpoints[1] == Points[0])
|
---|
2225 | || (FindTriangle->second->endpoints[1] == Points[1])
|
---|
2226 | || (FindTriangle->second->endpoints[1] == Points[2])
|
---|
2227 | ) && (
|
---|
2228 | (FindTriangle->second->endpoints[2] == Points[0])
|
---|
2229 | || (FindTriangle->second->endpoints[2] == Points[1])
|
---|
2230 | || (FindTriangle->second->endpoints[2] == Points[2])
|
---|
2231 | )
|
---|
2232 | ) {
|
---|
2233 | adjacentTriangleCount++;
|
---|
2234 | }
|
---|
2235 | }
|
---|
2236 | }
|
---|
2237 | // Only one of the triangle lines must be considered for the triangle count.
|
---|
2238 | *out << Verbose(2) << "Found " << adjacentTriangleCount << " adjacent triangles for the point set." << endl;
|
---|
2239 | return adjacentTriangleCount;
|
---|
2240 |
|
---|
2241 | }
|
---|
2242 | }
|
---|
2243 | }
|
---|
2244 | }
|
---|
2245 | }
|
---|
2246 |
|
---|
2247 | *out << Verbose(2) << "Found " << adjacentTriangleCount << " adjacent triangles for the point set." << endl;
|
---|
2248 | return adjacentTriangleCount;
|
---|
2249 | };
|
---|
2250 |
|
---|
2251 | /** This recursive function finds a third point, to form a triangle with two given ones.
|
---|
2252 | * Note that this function is for the starting triangle.
|
---|
2253 | * The idea is as follows: A sphere with fixed radius is (almost) uniquely defined in space by three points
|
---|
2254 | * that sit on its boundary. Hence, when two points are given and we look for the (next) third point, then
|
---|
2255 | * the center of the sphere is still fixed up to a single parameter. The band of possible values
|
---|
2256 | * describes a circle in 3D-space. The old center of the sphere for the current base triangle gives
|
---|
2257 | * us the "null" on this circle, the new center of the candidate point will be some way along this
|
---|
2258 | * circle. The shorter the way the better is the candidate. Note that the direction is clearly given
|
---|
2259 | * by the normal vector of the base triangle that always points outwards by construction.
|
---|
2260 | * Hence, we construct a Center of this circle which sits right in the middle of the current base line.
|
---|
2261 | * We construct the normal vector that defines the plane this circle lies in, it is just in the
|
---|
2262 | * direction of the baseline. And finally, we need the radius of the circle, which is given by the rest
|
---|
2263 | * with respect to the length of the baseline and the sphere's fixed \a RADIUS.
|
---|
2264 | * Note that there is one difficulty: The circumcircle is uniquely defined, but for the circumsphere's center
|
---|
2265 | * there are two possibilities which becomes clear from the construction as seen below. Hence, we must check
|
---|
2266 | * both.
|
---|
2267 | * Note also that the acos() function is not unique on [0, 2.*M_PI). Hence, we need an additional check
|
---|
2268 | * to decide for one of the two possible angles. Therefore we need a SearchDirection and to make this check
|
---|
2269 | * sensible we need OldSphereCenter to be orthogonal to it. Either we construct SearchDirection orthogonal
|
---|
2270 | * right away, or -- what we do here -- we rotate the relative sphere centers such that this orthogonality
|
---|
2271 | * holds. Then, the normalized projection onto the SearchDirection is either +1 or -1 and thus states whether
|
---|
2272 | * the angle is uniquely in either (0,M_PI] or [M_PI, 2.*M_PI).
|
---|
2273 | * @param NormalVector normal direction of the base triangle (here the unit axis vector, \sa Find_starting_triangle())
|
---|
2274 | * @param SearchDirection general direction where to search for the next point, relative to center of BaseLine
|
---|
2275 | * @param OldSphereCenter center of sphere for base triangle, relative to center of BaseLine, giving null angle for the parameter circle
|
---|
2276 | * @param BaseLine BoundaryLineSet with the current base line
|
---|
2277 | * @param ThirdNode third atom to avoid in search
|
---|
2278 | * @param candidates list of equally good candidates to return
|
---|
2279 | * @param ShortestAngle the current path length on this circle band for the current Opt_Candidate
|
---|
2280 | * @param RADIUS radius of sphere
|
---|
2281 | * @param *LC LinkedCell structure with neighbouring atoms
|
---|
2282 | */
|
---|
2283 | void Find_third_point_for_Tesselation(
|
---|
2284 | Vector NormalVector, Vector SearchDirection, Vector OldSphereCenter,
|
---|
2285 | class BoundaryLineSet *BaseLine, atom *ThirdNode, CandidateList* &candidates,
|
---|
2286 | double *ShortestAngle, const double RADIUS, LinkedCell *LC
|
---|
2287 | ) {
|
---|
2288 | atom *Walker = NULL;
|
---|
2289 | Vector CircleCenter; // center of the circle, i.e. of the band of sphere's centers
|
---|
2290 | Vector CirclePlaneNormal; // normal vector defining the plane this circle lives in
|
---|
2291 | Vector SphereCenter;
|
---|
2292 | Vector NewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, first possibility
|
---|
2293 | Vector OtherNewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, second possibility
|
---|
2294 | Vector NewNormalVector; // normal vector of the Candidate's triangle
|
---|
2295 | Vector helper, OptCandidateCenter, OtherOptCandidateCenter;
|
---|
2296 | LinkedAtoms *List = NULL;
|
---|
2297 | double CircleRadius; // radius of this circle
|
---|
2298 | double radius;
|
---|
2299 | double alpha, Otheralpha; // angles (i.e. parameter for the circle).
|
---|
2300 | double Nullalpha; // angle between OldSphereCenter and NormalVector of base triangle
|
---|
2301 | int N[NDIM], Nlower[NDIM], Nupper[NDIM];
|
---|
2302 | atom *Candidate = NULL;
|
---|
2303 | CandidateForTesselation *optCandidate;
|
---|
2304 |
|
---|
2305 | cout << Verbose(1) << "Begin of Find_third_point_for_Tesselation" << endl;
|
---|
2306 |
|
---|
2307 | cout << Verbose(2) << "INFO: NormalVector of BaseTriangle is " << NormalVector << "." << endl;
|
---|
2308 |
|
---|
2309 | // construct center of circle
|
---|
2310 | CircleCenter.CopyVector(&(BaseLine->endpoints[0]->node->x));
|
---|
2311 | CircleCenter.AddVector(&BaseLine->endpoints[1]->node->x);
|
---|
2312 | CircleCenter.Scale(0.5);
|
---|
2313 |
|
---|
2314 | // construct normal vector of circle
|
---|
2315 | CirclePlaneNormal.CopyVector(&BaseLine->endpoints[0]->node->x);
|
---|
2316 | CirclePlaneNormal.SubtractVector(&BaseLine->endpoints[1]->node->x);
|
---|
2317 |
|
---|
2318 | // calculate squared radius atom *ThirdNode,f circle
|
---|
2319 | radius = CirclePlaneNormal.ScalarProduct(&CirclePlaneNormal);
|
---|
2320 | if (radius/4. < RADIUS*RADIUS) {
|
---|
2321 | CircleRadius = RADIUS*RADIUS - radius/4.;
|
---|
2322 | CirclePlaneNormal.Normalize();
|
---|
2323 | cout << Verbose(2) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl;
|
---|
2324 |
|
---|
2325 | // test whether old center is on the band's plane
|
---|
2326 | if (fabs(OldSphereCenter.ScalarProduct(&CirclePlaneNormal)) > HULLEPSILON) {
|
---|
2327 | cerr << "ERROR: Something's very wrong here: OldSphereCenter is not on the band's plane as desired by " << fabs(OldSphereCenter.ScalarProduct(&CirclePlaneNormal)) << "!" << endl;
|
---|
2328 | OldSphereCenter.ProjectOntoPlane(&CirclePlaneNormal);
|
---|
2329 | }
|
---|
2330 | radius = OldSphereCenter.ScalarProduct(&OldSphereCenter);
|
---|
2331 | if (fabs(radius - CircleRadius) < HULLEPSILON) {
|
---|
2332 |
|
---|
2333 | // check SearchDirection
|
---|
2334 | cout << Verbose(2) << "INFO: SearchDirection is " << SearchDirection << "." << endl;
|
---|
2335 | if (fabs(OldSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) { // rotated the wrong way!
|
---|
2336 | cerr << "ERROR: SearchDirection and RelativeOldSphereCenter are not orthogonal!" << endl;
|
---|
2337 | }
|
---|
2338 |
|
---|
2339 | // get cell for the starting atom
|
---|
2340 | if (LC->SetIndexToVector(&CircleCenter)) {
|
---|
2341 | for(int i=0;i<NDIM;i++) // store indices of this cell
|
---|
2342 | N[i] = LC->n[i];
|
---|
2343 | cout << Verbose(2) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
|
---|
2344 | } else {
|
---|
2345 | cerr << "ERROR: Vector " << CircleCenter << " is outside of LinkedCell's bounding box." << endl;
|
---|
2346 | return;
|
---|
2347 | }
|
---|
2348 | // then go through the current and all neighbouring cells and check the contained atoms for possible candidates
|
---|
2349 | cout << Verbose(2) << "LC Intervals:";
|
---|
2350 | for (int i=0;i<NDIM;i++) {
|
---|
2351 | Nlower[i] = ((N[i]-1) >= 0) ? N[i]-1 : 0;
|
---|
2352 | Nupper[i] = ((N[i]+1) < LC->N[i]) ? N[i]+1 : LC->N[i]-1;
|
---|
2353 | cout << " [" << Nlower[i] << "," << Nupper[i] << "] ";
|
---|
2354 | }
|
---|
2355 | cout << endl;
|
---|
2356 | for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
|
---|
2357 | for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
|
---|
2358 | for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
|
---|
2359 | List = LC->GetCurrentCell();
|
---|
2360 | //cout << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
|
---|
2361 | if (List != NULL) {
|
---|
2362 | for (LinkedAtoms::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
|
---|
2363 | Candidate = (*Runner);
|
---|
2364 |
|
---|
2365 | // check for three unique points
|
---|
2366 | cout << Verbose(1) << "INFO: Current Candidate is " << *Candidate << " at " << Candidate->x << "." << endl;
|
---|
2367 | if ((Candidate != BaseLine->endpoints[0]->node) && (Candidate != BaseLine->endpoints[1]->node) ){
|
---|
2368 |
|
---|
2369 | // construct both new centers
|
---|
2370 | GetCenterofCircumcircle(&NewSphereCenter, &(BaseLine->endpoints[0]->node->x), &(BaseLine->endpoints[1]->node->x), &(Candidate->x));
|
---|
2371 | OtherNewSphereCenter.CopyVector(&NewSphereCenter);
|
---|
2372 |
|
---|
2373 | if ((NewNormalVector.MakeNormalVector(&(BaseLine->endpoints[0]->node->x), &(BaseLine->endpoints[1]->node->x), &(Candidate->x)))
|
---|
2374 | && (fabs(NewNormalVector.ScalarProduct(&NewNormalVector)) > HULLEPSILON)
|
---|
2375 | ) {
|
---|
2376 | helper.CopyVector(&NewNormalVector);
|
---|
2377 | cout << Verbose(2) << "INFO: NewNormalVector is " << NewNormalVector << "." << endl;
|
---|
2378 | radius = BaseLine->endpoints[0]->node->x.DistanceSquared(&NewSphereCenter);
|
---|
2379 | if (radius < RADIUS*RADIUS) {
|
---|
2380 | helper.Scale(sqrt(RADIUS*RADIUS - radius));
|
---|
2381 | cout << Verbose(2) << "INFO: Distance of NewCircleCenter to NewSphereCenter is " << helper.Norm() << " with sphere radius " << RADIUS << "." << endl;
|
---|
2382 | NewSphereCenter.AddVector(&helper);
|
---|
2383 | NewSphereCenter.SubtractVector(&CircleCenter);
|
---|
2384 | cout << Verbose(2) << "INFO: NewSphereCenter is at " << NewSphereCenter << "." << endl;
|
---|
2385 |
|
---|
2386 | // OtherNewSphereCenter is created by the same vector just in the other direction
|
---|
2387 | helper.Scale(-1.);
|
---|
2388 | OtherNewSphereCenter.AddVector(&helper);
|
---|
2389 | OtherNewSphereCenter.SubtractVector(&CircleCenter);
|
---|
2390 | cout << Verbose(2) << "INFO: OtherNewSphereCenter is at " << OtherNewSphereCenter << "." << endl;
|
---|
2391 |
|
---|
2392 | alpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, NewSphereCenter, OldSphereCenter, NormalVector, SearchDirection);
|
---|
2393 | Otheralpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, OtherNewSphereCenter, OldSphereCenter, NormalVector, SearchDirection);
|
---|
2394 | alpha = min(alpha, Otheralpha);
|
---|
2395 | // if there is a better candidate, drop the current list and add the new candidate
|
---|
2396 | // otherwise ignore the new candidate and keep the list
|
---|
2397 | if (*ShortestAngle > (alpha - HULLEPSILON)) {
|
---|
2398 | optCandidate = new CandidateForTesselation(Candidate, BaseLine, OptCandidateCenter, OtherOptCandidateCenter);
|
---|
2399 | if (fabs(alpha - Otheralpha) > MYEPSILON) {
|
---|
2400 | optCandidate->OptCenter.CopyVector(&NewSphereCenter);
|
---|
2401 | optCandidate->OtherOptCenter.CopyVector(&OtherNewSphereCenter);
|
---|
2402 | } else {
|
---|
2403 | optCandidate->OptCenter.CopyVector(&OtherNewSphereCenter);
|
---|
2404 | optCandidate->OtherOptCenter.CopyVector(&NewSphereCenter);
|
---|
2405 | }
|
---|
2406 | // if there is an equal candidate, add it to the list without clearing the list
|
---|
2407 | if ((*ShortestAngle - HULLEPSILON) < alpha) {
|
---|
2408 | candidates->push_back(optCandidate);
|
---|
2409 | cout << Verbose(1) << "ACCEPT: We have found an equally good candidate: " << *(optCandidate->point) << " with "
|
---|
2410 | << alpha << " and circumsphere's center at " << optCandidate->OptCenter << "." << endl;
|
---|
2411 | } else {
|
---|
2412 | candidates->clear();
|
---|
2413 | candidates->push_back(optCandidate);
|
---|
2414 | cout << Verbose(1) << "ACCEPT: We have found a better candidate: " << *(optCandidate->point) << " with "
|
---|
2415 | << alpha << " and circumsphere's center at " << optCandidate->OptCenter << "." << endl;
|
---|
2416 | }
|
---|
2417 | *ShortestAngle = alpha;
|
---|
2418 | cout << Verbose(2) << "INFO: There are " << candidates->size() << " candidates in the list now." << endl;
|
---|
2419 | } else {
|
---|
2420 | if ((optCandidate != NULL) && (optCandidate->point != NULL))
|
---|
2421 | cout << Verbose(1) << "REJECT: Old candidate: " << *(optCandidate->point) << " is better than " << alpha << " with " << *ShortestAngle << "." << endl;
|
---|
2422 | else
|
---|
2423 | cout << Verbose(2) << "REJECT: Candidate " << *Candidate << " with " << alpha << " was rejected." << endl;
|
---|
2424 | }
|
---|
2425 |
|
---|
2426 | } else {
|
---|
2427 | cout << Verbose(1) << "REJECT: NewSphereCenter " << NewSphereCenter << " is too far away: " << radius << "." << endl;
|
---|
2428 | }
|
---|
2429 | } else {
|
---|
2430 | cout << Verbose(1) << "REJECT: Three points from " << *BaseLine << " and Candidate " << *Candidate << " are linear-dependent." << endl;
|
---|
2431 | }
|
---|
2432 | } else {
|
---|
2433 | if (ThirdNode != NULL)
|
---|
2434 | cout << Verbose(1) << "REJECT: Base triangle " << *BaseLine << " and " << *ThirdNode << " contains Candidate " << *Candidate << "." << endl;
|
---|
2435 | else
|
---|
2436 | cout << Verbose(1) << "REJECT: Base triangle " << *BaseLine << " contains Candidate " << *Candidate << "." << endl;
|
---|
2437 | }
|
---|
2438 | }
|
---|
2439 | }
|
---|
2440 | }
|
---|
2441 | } else {
|
---|
2442 | cerr << Verbose(1) << "ERROR: The projected center of the old sphere has radius " << radius << " instead of " << CircleRadius << "." << endl;
|
---|
2443 | }
|
---|
2444 | } else {
|
---|
2445 | if (ThirdNode != NULL)
|
---|
2446 | cout << Verbose(1) << "Circumcircle for base line " << *BaseLine << " and third node " << *ThirdNode << " is too big!" << endl;
|
---|
2447 | else
|
---|
2448 | cout << Verbose(1) << "Circumcircle for base line " << *BaseLine << " is too big!" << endl;
|
---|
2449 | }
|
---|
2450 |
|
---|
2451 | cout << Verbose(1) << "INFO: Sorting candidate list ..." << endl;
|
---|
2452 | if (candidates->size() > 1) {
|
---|
2453 | candidates->unique();
|
---|
2454 | candidates->sort(sortCandidates);
|
---|
2455 | }
|
---|
2456 |
|
---|
2457 | cout << Verbose(1) << "End of Find_third_point_for_Tesselation" << endl;
|
---|
2458 | };
|
---|
2459 |
|
---|
2460 | /**
|
---|
2461 | * Finds the preferable out of two third-point candidates with equal angles.
|
---|
2462 | *
|
---|
2463 | * @param Candidate - this and the second parameter are evaluated
|
---|
2464 | * @param OptCandidate - this and the second parameter are evaluated
|
---|
2465 | * @param current base line
|
---|
2466 | * @param third node of the base triangle
|
---|
2467 | * @param tesselation object
|
---|
2468 | *
|
---|
2469 | * @return true if Candidate should be taken, false if OptCandidate should be kept
|
---|
2470 | */
|
---|
2471 | bool Choose_preferable_third_point(
|
---|
2472 | atom *Candidate, atom *OptCandidate, class BoundaryLineSet *BaseLine,
|
---|
2473 | atom *ThirdNode, Tesselation *Tess
|
---|
2474 | ) {
|
---|
2475 | bool takeNewCandidate;
|
---|
2476 |
|
---|
2477 | ofstream *out = new ofstream();
|
---|
2478 | atom *Atoms[3];
|
---|
2479 | bool optCandidateAndBaseLineFormTriangle = (ThirdNode != NULL) && (OptCandidate == ThirdNode);
|
---|
2480 | bool candidateAndBaseLineFormTriangle = (ThirdNode != NULL) && (Candidate == ThirdNode);
|
---|
2481 | Atoms[0] = Candidate;
|
---|
2482 | Atoms[1] = OptCandidate;
|
---|
2483 | Atoms[2] = BaseLine->endpoints[0]->node;
|
---|
2484 | bool candidatesAndBaseLineNode0FormTriangle = (Tess->CheckPresenceOfTriangle(out, Atoms) > 0);
|
---|
2485 | Atoms[0] = Candidate;
|
---|
2486 | Atoms[1] = OptCandidate;
|
---|
2487 | Atoms[2] = BaseLine->endpoints[1]->node;
|
---|
2488 | bool candidatesAndBaseLineNode1FormTriangle = (Tess->CheckPresenceOfTriangle(out, Atoms) > 0);
|
---|
2489 | Vector halfBaseLine;
|
---|
2490 | halfBaseLine.CopyVector(&BaseLine->endpoints[0]->node->x);
|
---|
2491 | halfBaseLine.AddVector(&BaseLine->endpoints[1]->node->x);
|
---|
2492 | halfBaseLine.Scale(0.5);
|
---|
2493 |
|
---|
2494 | if (optCandidateAndBaseLineFormTriangle) {
|
---|
2495 | takeNewCandidate = (!existsIntersection(Candidate->x, halfBaseLine, OptCandidate->x, BaseLine->endpoints[0]->node->x)
|
---|
2496 | && !existsIntersection(Candidate->x, halfBaseLine, OptCandidate->x, BaseLine->endpoints[1]->node->x));
|
---|
2497 | } else if (candidateAndBaseLineFormTriangle) {
|
---|
2498 | takeNewCandidate = (existsIntersection(OptCandidate->x, halfBaseLine, Candidate->x, BaseLine->endpoints[0]->node->x)
|
---|
2499 | || existsIntersection(OptCandidate->x, halfBaseLine, Candidate->x, BaseLine->endpoints[1]->node->x));
|
---|
2500 | } else if (candidatesAndBaseLineNode0FormTriangle) {
|
---|
2501 | takeNewCandidate = !existsIntersection(OptCandidate->x, BaseLine->endpoints[0]->node->x, Candidate->x, halfBaseLine);
|
---|
2502 | } else if (candidatesAndBaseLineNode1FormTriangle) {
|
---|
2503 | takeNewCandidate = !existsIntersection(OptCandidate->x, BaseLine->endpoints[1]->node->x, Candidate->x, halfBaseLine);
|
---|
2504 | } else {
|
---|
2505 | takeNewCandidate = (ThirdNode == NULL)
|
---|
2506 | || ((!existsIntersection(Candidate->x, halfBaseLine, ThirdNode->x, BaseLine->endpoints[0]->node->x)
|
---|
2507 | && !existsIntersection(Candidate->x, halfBaseLine, ThirdNode->x, BaseLine->endpoints[1]->node->x)));
|
---|
2508 | }
|
---|
2509 |
|
---|
2510 | return takeNewCandidate;
|
---|
2511 | };
|
---|
2512 |
|
---|
2513 |
|
---|
2514 | struct Intersection {
|
---|
2515 | Vector x1;
|
---|
2516 | Vector x2;
|
---|
2517 | Vector x3;
|
---|
2518 | Vector x4;
|
---|
2519 | };
|
---|
2520 |
|
---|
2521 | /**
|
---|
2522 | * Intersection calculation function.
|
---|
2523 | *
|
---|
2524 | * @param x to find the result for
|
---|
2525 | * @param function parameter
|
---|
2526 | */
|
---|
2527 | double MinIntersectDistance(const gsl_vector * x, void *params) {
|
---|
2528 | double retval = 0;
|
---|
2529 | struct Intersection *I = (struct Intersection *)params;
|
---|
2530 | Vector intersection;
|
---|
2531 | Vector SideA,SideB,HeightA, HeightB;
|
---|
2532 | for (int i=0;i<NDIM;i++)
|
---|
2533 | intersection.x[i] = gsl_vector_get(x, i);
|
---|
2534 |
|
---|
2535 | SideA.CopyVector(&(I->x1));
|
---|
2536 | SideA.SubtractVector(&I->x2);
|
---|
2537 | HeightA.CopyVector(&intersection);
|
---|
2538 | HeightA.SubtractVector(&I->x1);
|
---|
2539 | HeightA.ProjectOntoPlane(&SideA);
|
---|
2540 |
|
---|
2541 | SideB.CopyVector(&I->x3);
|
---|
2542 | SideB.SubtractVector(&I->x4);
|
---|
2543 | HeightB.CopyVector(&intersection);
|
---|
2544 | HeightB.SubtractVector(&I->x3);
|
---|
2545 | HeightB.ProjectOntoPlane(&SideB);
|
---|
2546 |
|
---|
2547 | retval = HeightA.ScalarProduct(&HeightA) + HeightB.ScalarProduct(&HeightB);
|
---|
2548 | //cout << Verbose(2) << "MinIntersectDistance called, result: " << retval << endl;
|
---|
2549 |
|
---|
2550 | return retval;
|
---|
2551 | };
|
---|
2552 |
|
---|
2553 |
|
---|
2554 | /**
|
---|
2555 | * Calculates whether there is an intersection between two lines. The first line
|
---|
2556 | * always goes through point 1 and point 2 and the second line is given by the
|
---|
2557 | * connection between point 4 and point 5.
|
---|
2558 | *
|
---|
2559 | * @param point 1 of line 1
|
---|
2560 | * @param point 2 of line 1
|
---|
2561 | * @param point 1 of line 2
|
---|
2562 | * @param point 2 of line 2
|
---|
2563 | *
|
---|
2564 | * @return true if there is an intersection between the given lines, false otherwise
|
---|
2565 | */
|
---|
2566 | bool existsIntersection(Vector point1, Vector point2, Vector point3, Vector point4) {
|
---|
2567 | bool result;
|
---|
2568 |
|
---|
2569 | struct Intersection par;
|
---|
2570 | par.x1.CopyVector(&point1);
|
---|
2571 | par.x2.CopyVector(&point2);
|
---|
2572 | par.x3.CopyVector(&point3);
|
---|
2573 | par.x4.CopyVector(&point4);
|
---|
2574 |
|
---|
2575 | const gsl_multimin_fminimizer_type *T = gsl_multimin_fminimizer_nmsimplex;
|
---|
2576 | gsl_multimin_fminimizer *s = NULL;
|
---|
2577 | gsl_vector *ss, *x;
|
---|
2578 | gsl_multimin_function minex_func;
|
---|
2579 |
|
---|
2580 | size_t iter = 0;
|
---|
2581 | int status;
|
---|
2582 | double size;
|
---|
2583 |
|
---|
2584 | /* Starting point */
|
---|
2585 | x = gsl_vector_alloc(NDIM);
|
---|
2586 | gsl_vector_set(x, 0, point1.x[0]);
|
---|
2587 | gsl_vector_set(x, 1, point1.x[1]);
|
---|
2588 | gsl_vector_set(x, 2, point1.x[2]);
|
---|
2589 |
|
---|
2590 | /* Set initial step sizes to 1 */
|
---|
2591 | ss = gsl_vector_alloc(NDIM);
|
---|
2592 | gsl_vector_set_all(ss, 1.0);
|
---|
2593 |
|
---|
2594 | /* Initialize method and iterate */
|
---|
2595 | minex_func.n = NDIM;
|
---|
2596 | minex_func.f = &MinIntersectDistance;
|
---|
2597 | minex_func.params = (void *)∥
|
---|
2598 |
|
---|
2599 | s = gsl_multimin_fminimizer_alloc(T, NDIM);
|
---|
2600 | gsl_multimin_fminimizer_set(s, &minex_func, x, ss);
|
---|
2601 |
|
---|
2602 | do {
|
---|
2603 | iter++;
|
---|
2604 | status = gsl_multimin_fminimizer_iterate(s);
|
---|
2605 |
|
---|
2606 | if (status) {
|
---|
2607 | break;
|
---|
2608 | }
|
---|
2609 |
|
---|
2610 | size = gsl_multimin_fminimizer_size(s);
|
---|
2611 | status = gsl_multimin_test_size(size, 1e-2);
|
---|
2612 |
|
---|
2613 | if (status == GSL_SUCCESS) {
|
---|
2614 | cout << Verbose(2) << "converged to minimum" << endl;
|
---|
2615 | }
|
---|
2616 | } while (status == GSL_CONTINUE && iter < 100);
|
---|
2617 |
|
---|
2618 | // check whether intersection is in between or not
|
---|
2619 | Vector intersection, SideA, SideB, HeightA, HeightB;
|
---|
2620 | double t1, t2;
|
---|
2621 | for (int i = 0; i < NDIM; i++) {
|
---|
2622 | intersection.x[i] = gsl_vector_get(s->x, i);
|
---|
2623 | }
|
---|
2624 |
|
---|
2625 | SideA.CopyVector(&par.x2);
|
---|
2626 | SideA.SubtractVector(&par.x1);
|
---|
2627 | HeightA.CopyVector(&intersection);
|
---|
2628 | HeightA.SubtractVector(&par.x1);
|
---|
2629 |
|
---|
2630 | t1 = HeightA.Projection(&SideA)/SideA.ScalarProduct(&SideA);
|
---|
2631 |
|
---|
2632 | SideB.CopyVector(&par.x4);
|
---|
2633 | SideB.SubtractVector(&par.x3);
|
---|
2634 | HeightB.CopyVector(&intersection);
|
---|
2635 | HeightB.SubtractVector(&par.x3);
|
---|
2636 |
|
---|
2637 | t2 = HeightB.Projection(&SideB)/SideB.ScalarProduct(&SideB);
|
---|
2638 |
|
---|
2639 | cout << Verbose(2) << "Intersection " << intersection << " is at "
|
---|
2640 | << t1 << " for (" << point1 << "," << point2 << ") and at "
|
---|
2641 | << t2 << " for (" << point3 << "," << point4 << "): ";
|
---|
2642 |
|
---|
2643 | if (((t1 >= 0) && (t1 <= 1)) && ((t2 >= 0) && (t2 <= 1))) {
|
---|
2644 | cout << "true intersection." << endl;
|
---|
2645 | result = true;
|
---|
2646 | } else {
|
---|
2647 | cout << "intersection out of region of interest." << endl;
|
---|
2648 | result = false;
|
---|
2649 | }
|
---|
2650 |
|
---|
2651 | // free minimizer stuff
|
---|
2652 | gsl_vector_free(x);
|
---|
2653 | gsl_vector_free(ss);
|
---|
2654 | gsl_multimin_fminimizer_free(s);
|
---|
2655 |
|
---|
2656 | return result;
|
---|
2657 | }
|
---|
2658 |
|
---|
2659 | /** Finds the second point of starting triangle.
|
---|
2660 | * \param *a first atom
|
---|
2661 | * \param *Candidate pointer to candidate atom on return
|
---|
2662 | * \param Oben vector indicating the outside
|
---|
2663 | * \param Opt_Candidate reference to recommended candidate on return
|
---|
2664 | * \param Storage[3] array storing angles and other candidate information
|
---|
2665 | * \param RADIUS radius of virtual sphere
|
---|
2666 | * \param *LC LinkedCell structure with neighbouring atoms
|
---|
2667 | */
|
---|
2668 | void Find_second_point_for_Tesselation(atom* a, atom* Candidate, Vector Oben, atom*& Opt_Candidate, double Storage[3], double RADIUS, LinkedCell *LC)
|
---|
2669 | {
|
---|
2670 | cout << Verbose(2) << "Begin of Find_second_point_for_Tesselation" << endl;
|
---|
2671 | int i;
|
---|
2672 | Vector AngleCheck;
|
---|
2673 | atom* Walker;
|
---|
2674 | double norm = -1., angle;
|
---|
2675 | LinkedAtoms *List = NULL;
|
---|
2676 | int N[NDIM], Nlower[NDIM], Nupper[NDIM];
|
---|
2677 |
|
---|
2678 | if (LC->SetIndexToAtom(a)) { // get cell for the starting atom
|
---|
2679 | for(int i=0;i<NDIM;i++) // store indices of this cell
|
---|
2680 | N[i] = LC->n[i];
|
---|
2681 | } else {
|
---|
2682 | cerr << "ERROR: Atom " << *a << " is not found in cell " << LC->index << "." << endl;
|
---|
2683 | return;
|
---|
2684 | }
|
---|
2685 | // then go through the current and all neighbouring cells and check the contained atoms for possible candidates
|
---|
2686 | cout << Verbose(2) << "LC Intervals from [";
|
---|
2687 | for (int i=0;i<NDIM;i++) {
|
---|
2688 | cout << " " << N[i] << "<->" << LC->N[i];
|
---|
2689 | }
|
---|
2690 | cout << "] :";
|
---|
2691 | for (int i=0;i<NDIM;i++) {
|
---|
2692 | Nlower[i] = ((N[i]-1) >= 0) ? N[i]-1 : 0;
|
---|
2693 | Nupper[i] = ((N[i]+1) < LC->N[i]) ? N[i]+1 : LC->N[i]-1;
|
---|
2694 | cout << " [" << Nlower[i] << "," << Nupper[i] << "] ";
|
---|
2695 | }
|
---|
2696 | cout << endl;
|
---|
2697 |
|
---|
2698 |
|
---|
2699 | for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
|
---|
2700 | for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
|
---|
2701 | for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
|
---|
2702 | List = LC->GetCurrentCell();
|
---|
2703 | cout << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
|
---|
2704 | if (List != NULL) {
|
---|
2705 | for (LinkedAtoms::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
|
---|
2706 | Candidate = (*Runner);
|
---|
2707 | cout << Verbose(2) << "Current candidate is " << *Candidate << ": ";
|
---|
2708 | // check if we only have one unique point yet ...
|
---|
2709 | if (a != Candidate) {
|
---|
2710 | // Calculate center of the circle with radius RADIUS through points a and Candidate
|
---|
2711 | Vector OrthogonalizedOben, a_Candidate, Center;
|
---|
2712 | double distance, scaleFactor;
|
---|
2713 |
|
---|
2714 | OrthogonalizedOben.CopyVector(&Oben);
|
---|
2715 | a_Candidate.CopyVector(&(a->x));
|
---|
2716 | a_Candidate.SubtractVector(&(Candidate->x));
|
---|
2717 | OrthogonalizedOben.ProjectOntoPlane(&a_Candidate);
|
---|
2718 | OrthogonalizedOben.Normalize();
|
---|
2719 | distance = 0.5 * a_Candidate.Norm();
|
---|
2720 | scaleFactor = sqrt(((RADIUS * RADIUS) - (distance * distance)));
|
---|
2721 | OrthogonalizedOben.Scale(scaleFactor);
|
---|
2722 |
|
---|
2723 | Center.CopyVector(&(Candidate->x));
|
---|
2724 | Center.AddVector(&(a->x));
|
---|
2725 | Center.Scale(0.5);
|
---|
2726 | Center.AddVector(&OrthogonalizedOben);
|
---|
2727 |
|
---|
2728 | AngleCheck.CopyVector(&Center);
|
---|
2729 | AngleCheck.SubtractVector(&(a->x));
|
---|
2730 | norm = a_Candidate.Norm();
|
---|
2731 | // second point shall have smallest angle with respect to Oben vector
|
---|
2732 | if (norm < RADIUS) {
|
---|
2733 | angle = AngleCheck.Angle(&Oben);
|
---|
2734 | if (angle < Storage[0]) {
|
---|
2735 | //cout << Verbose(1) << "Old values of Storage: %lf %lf \n", Storage[0], Storage[1]);
|
---|
2736 | cout << "Is a better candidate with distance " << norm << " and angle " << angle << " to oben " << Oben << ".\n";
|
---|
2737 | Opt_Candidate = Candidate;
|
---|
2738 | Storage[0] = angle;
|
---|
2739 | //cout << Verbose(1) << "Changing something in Storage: %lf %lf. \n", Storage[0], Storage[2]);
|
---|
2740 | } else {
|
---|
2741 | cout << "Looses with angle " << angle << " to a better candidate " << *Opt_Candidate << endl;
|
---|
2742 | }
|
---|
2743 | } else {
|
---|
2744 | cout << "Refused due to Radius " << norm << endl;
|
---|
2745 | }
|
---|
2746 | } else {
|
---|
2747 | cout << " Candidate is equal to first endpoint " << *a << "." << endl;
|
---|
2748 | }
|
---|
2749 | }
|
---|
2750 | } else {
|
---|
2751 | cout << "Linked cell list is empty." << endl;
|
---|
2752 | }
|
---|
2753 | }
|
---|
2754 | cout << Verbose(2) << "End of Find_second_point_for_Tesselation" << endl;
|
---|
2755 | };
|
---|
2756 |
|
---|
2757 | /** Finds the starting triangle for find_non_convex_border().
|
---|
2758 | * Looks at the outermost atom per axis, then Find_second_point_for_Tesselation()
|
---|
2759 | * for the second and Find_next_suitable_point_via_Angle_of_Sphere() for the third
|
---|
2760 | * point are called.
|
---|
2761 | * \param RADIUS radius of virtual rolling sphere
|
---|
2762 | * \param *LC LinkedCell structure with neighbouring atoms
|
---|
2763 | */
|
---|
2764 | void Tesselation::Find_starting_triangle(ofstream *out, molecule *mol, const double RADIUS, LinkedCell *LC)
|
---|
2765 | {
|
---|
2766 | cout << Verbose(1) << "Begin of Find_starting_triangle\n";
|
---|
2767 | int i = 0;
|
---|
2768 | LinkedAtoms *List = NULL;
|
---|
2769 | atom* Walker;
|
---|
2770 | atom* FirstPoint;
|
---|
2771 | atom* SecondPoint;
|
---|
2772 | atom* MaxAtom[NDIM];
|
---|
2773 | double max_coordinate[NDIM];
|
---|
2774 | Vector Oben;
|
---|
2775 | Vector helper;
|
---|
2776 | Vector Chord;
|
---|
2777 | Vector SearchDirection;
|
---|
2778 |
|
---|
2779 | Oben.Zero();
|
---|
2780 |
|
---|
2781 | for (i = 0; i < 3; i++) {
|
---|
2782 | MaxAtom[i] = NULL;
|
---|
2783 | max_coordinate[i] = -1;
|
---|
2784 | }
|
---|
2785 |
|
---|
2786 | // 1. searching topmost atom with respect to each axis
|
---|
2787 | for (int i=0;i<NDIM;i++) { // each axis
|
---|
2788 | LC->n[i] = LC->N[i]-1; // current axis is topmost cell
|
---|
2789 | for (LC->n[(i+1)%NDIM]=0;LC->n[(i+1)%NDIM]<LC->N[(i+1)%NDIM];LC->n[(i+1)%NDIM]++)
|
---|
2790 | for (LC->n[(i+2)%NDIM]=0;LC->n[(i+2)%NDIM]<LC->N[(i+2)%NDIM];LC->n[(i+2)%NDIM]++) {
|
---|
2791 | List = LC->GetCurrentCell();
|
---|
2792 | //cout << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
|
---|
2793 | if (List != NULL) {
|
---|
2794 | for (LinkedAtoms::iterator Runner = List->begin();Runner != List->end();Runner++) {
|
---|
2795 | cout << Verbose(2) << "Current atom is " << *(*Runner) << "." << endl;
|
---|
2796 | if ((*Runner)->x.x[i] > max_coordinate[i]) {
|
---|
2797 | max_coordinate[i] = (*Runner)->x.x[i];
|
---|
2798 | MaxAtom[i] = (*Runner);
|
---|
2799 | }
|
---|
2800 | }
|
---|
2801 | } else {
|
---|
2802 | cerr << "ERROR: The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!" << endl;
|
---|
2803 | }
|
---|
2804 | }
|
---|
2805 | }
|
---|
2806 |
|
---|
2807 | cout << Verbose(2) << "Found maximum coordinates: ";
|
---|
2808 | for (int i=0;i<NDIM;i++)
|
---|
2809 | cout << i << ": " << *MaxAtom[i] << "\t";
|
---|
2810 | cout << endl;
|
---|
2811 | const int k = 1; // arbitrary choice
|
---|
2812 | Oben.x[k] = 1.;
|
---|
2813 | FirstPoint = MaxAtom[k];
|
---|
2814 | cout << Verbose(1) << "Coordinates of start atom " << *FirstPoint << " at " << FirstPoint->x << "." << endl;
|
---|
2815 |
|
---|
2816 | double ShortestAngle;
|
---|
2817 | atom* Opt_Candidate = NULL;
|
---|
2818 | ShortestAngle = 999999.; // This will contain the angle, which will be always positive (when looking for second point), when looking for third point this will be the quadrant.
|
---|
2819 |
|
---|
2820 | Find_second_point_for_Tesselation(FirstPoint, NULL, Oben, Opt_Candidate, &ShortestAngle, RADIUS, LC); // we give same point as next candidate as its bonds are looked into in find_second_...
|
---|
2821 | SecondPoint = Opt_Candidate;
|
---|
2822 | cout << Verbose(1) << "Found second point is " << *SecondPoint << " at " << SecondPoint->x << ".\n";
|
---|
2823 |
|
---|
2824 | helper.CopyVector(&(FirstPoint->x));
|
---|
2825 | helper.SubtractVector(&(SecondPoint->x));
|
---|
2826 | helper.Normalize();
|
---|
2827 | Oben.ProjectOntoPlane(&helper);
|
---|
2828 | Oben.Normalize();
|
---|
2829 | helper.VectorProduct(&Oben);
|
---|
2830 | ShortestAngle = 2.*M_PI; // This will indicate the quadrant.
|
---|
2831 |
|
---|
2832 | Chord.CopyVector(&(FirstPoint->x)); // bring into calling function
|
---|
2833 | Chord.SubtractVector(&(SecondPoint->x));
|
---|
2834 | double radius = Chord.ScalarProduct(&Chord);
|
---|
2835 | double CircleRadius = sqrt(RADIUS*RADIUS - radius/4.);
|
---|
2836 | helper.CopyVector(&Oben);
|
---|
2837 | helper.Scale(CircleRadius);
|
---|
2838 | // Now, oben and helper are two orthonormalized vectors in the plane defined by Chord (not normalized)
|
---|
2839 |
|
---|
2840 | cout << Verbose(2) << "Looking for third point candidates \n";
|
---|
2841 | // look in one direction of baseline for initial candidate
|
---|
2842 | CandidateList *Opt_Candidates = new CandidateList();
|
---|
2843 | SearchDirection.MakeNormalVector(&Chord, &Oben); // whether we look "left" first or "right" first is not important ...
|
---|
2844 |
|
---|
2845 | // adding point 1 and point 2 and the line between them
|
---|
2846 | AddTrianglePoint(FirstPoint, 0);
|
---|
2847 | AddTrianglePoint(SecondPoint, 1);
|
---|
2848 | AddTriangleLine(TPS[0], TPS[1], 0);
|
---|
2849 |
|
---|
2850 | cout << Verbose(1) << "Looking for third point candidates ...\n";
|
---|
2851 | cout << Verbose(2) << "INFO: OldSphereCenter is at " << helper << ".\n";
|
---|
2852 | Find_third_point_for_Tesselation(
|
---|
2853 | Oben, SearchDirection, helper, BLS[0], NULL, *&Opt_Candidates, &ShortestAngle, RADIUS, LC
|
---|
2854 | );
|
---|
2855 | cout << Verbose(1) << "Third Points are ";
|
---|
2856 | CandidateList::iterator it;
|
---|
2857 | for (it = Opt_Candidates->begin(); it != Opt_Candidates->end(); ++it) {
|
---|
2858 | cout << " " << *(*it)->point;
|
---|
2859 | }
|
---|
2860 | cout << endl;
|
---|
2861 |
|
---|
2862 | for (it = Opt_Candidates->begin(); it != Opt_Candidates->end(); ++it) {
|
---|
2863 | // add third triangle point
|
---|
2864 | AddTrianglePoint((*it)->point, 2);
|
---|
2865 | // add the second and third line
|
---|
2866 | AddTriangleLine(TPS[1], TPS[2], 1);
|
---|
2867 | AddTriangleLine(TPS[0], TPS[2], 2);
|
---|
2868 | // ... and triangles to the Maps of the Tesselation class
|
---|
2869 | BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
|
---|
2870 | AddTriangleToLines();
|
---|
2871 | // ... and calculate its normal vector (with correct orientation)
|
---|
2872 | (*it)->OptCenter.Scale(-1.);
|
---|
2873 | cout << Verbose(2) << "Anti-Oben is currently " << (*it)->OptCenter << "." << endl;
|
---|
2874 | BTS->GetNormalVector((*it)->OptCenter); // vector to compare with should point inwards
|
---|
2875 | cout << Verbose(0) << "==> Found starting triangle consists of " << *FirstPoint << ", " << *SecondPoint << " and "
|
---|
2876 | << *(*it)->point << " with normal vector " << BTS->NormalVector << ".\n";
|
---|
2877 |
|
---|
2878 | // if we do not reach the end with the next step of iteration, we need to setup a new first line
|
---|
2879 | if (it != Opt_Candidates->end()--) {
|
---|
2880 | FirstPoint = (*it)->BaseLine->endpoints[0]->node;
|
---|
2881 | SecondPoint = (*it)->point;
|
---|
2882 | // adding point 1 and point 2 and the line between them
|
---|
2883 | AddTrianglePoint(FirstPoint, 0);
|
---|
2884 | AddTrianglePoint(SecondPoint, 1);
|
---|
2885 | AddTriangleLine(TPS[0], TPS[1], 0);
|
---|
2886 | }
|
---|
2887 | }
|
---|
2888 | cout << Verbose(2) << "Projection is " << BTS->NormalVector.Projection(&Oben) << "." << endl;
|
---|
2889 | cout << Verbose(1) << "End of Find_starting_triangle\n";
|
---|
2890 | };
|
---|
2891 |
|
---|
2892 | /** This function finds a triangle to a line, adjacent to an existing one.
|
---|
2893 | * @param out output stream for debugging
|
---|
2894 | * @param *mol molecule with Atom's and Bond's
|
---|
2895 | * @param Line current baseline to search from
|
---|
2896 | * @param T current triangle which \a Line is edge of
|
---|
2897 | * @param RADIUS radius of the rolling ball
|
---|
2898 | * @param N number of found triangles
|
---|
2899 | * @param *filename filename base for intermediate envelopes
|
---|
2900 | * @param *LC LinkedCell structure with neighbouring atoms
|
---|
2901 | */
|
---|
2902 | bool Tesselation::Find_next_suitable_triangle(ofstream *out,
|
---|
2903 | molecule *mol, BoundaryLineSet &Line, BoundaryTriangleSet &T,
|
---|
2904 | const double& RADIUS, int N, const char *tempbasename, LinkedCell *LC)
|
---|
2905 | {
|
---|
2906 | cout << Verbose(1) << "Begin of Find_next_suitable_triangle\n";
|
---|
2907 | ofstream *tempstream = NULL;
|
---|
2908 | char NumberName[255];
|
---|
2909 | double tmp;
|
---|
2910 | bool result = true;
|
---|
2911 | CandidateList *Opt_Candidates = new CandidateList();
|
---|
2912 |
|
---|
2913 | Vector CircleCenter;
|
---|
2914 | Vector CirclePlaneNormal;
|
---|
2915 | Vector OldSphereCenter;
|
---|
2916 | Vector SearchDirection;
|
---|
2917 | Vector helper;
|
---|
2918 | atom *ThirdNode = NULL;
|
---|
2919 | LineMap::iterator testline;
|
---|
2920 | double ShortestAngle = 2.*M_PI; // This will indicate the quadrant.
|
---|
2921 | double radius, CircleRadius;
|
---|
2922 |
|
---|
2923 | cout << Verbose(1) << "Current baseline is " << Line << " of triangle " << T << "." << endl;
|
---|
2924 | for (int i=0;i<3;i++)
|
---|
2925 | if ((T.endpoints[i]->node != Line.endpoints[0]->node) && (T.endpoints[i]->node != Line.endpoints[1]->node))
|
---|
2926 | ThirdNode = T.endpoints[i]->node;
|
---|
2927 |
|
---|
2928 | // construct center of circle
|
---|
2929 | CircleCenter.CopyVector(&Line.endpoints[0]->node->x);
|
---|
2930 | CircleCenter.AddVector(&Line.endpoints[1]->node->x);
|
---|
2931 | CircleCenter.Scale(0.5);
|
---|
2932 |
|
---|
2933 | // construct normal vector of circle
|
---|
2934 | CirclePlaneNormal.CopyVector(&Line.endpoints[0]->node->x);
|
---|
2935 | CirclePlaneNormal.SubtractVector(&Line.endpoints[1]->node->x);
|
---|
2936 |
|
---|
2937 | // calculate squared radius of circle
|
---|
2938 | radius = CirclePlaneNormal.ScalarProduct(&CirclePlaneNormal);
|
---|
2939 | if (radius/4. < RADIUS*RADIUS) {
|
---|
2940 | CircleRadius = RADIUS*RADIUS - radius/4.;
|
---|
2941 | CirclePlaneNormal.Normalize();
|
---|
2942 | cout << Verbose(2) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl;
|
---|
2943 |
|
---|
2944 | // construct old center
|
---|
2945 | GetCenterofCircumcircle(&OldSphereCenter, &(T.endpoints[0]->node->x), &(T.endpoints[1]->node->x), &(T.endpoints[2]->node->x));
|
---|
2946 | helper.CopyVector(&T.NormalVector); // normal vector ensures that this is correct center of the two possible ones
|
---|
2947 | radius = Line.endpoints[0]->node->x.DistanceSquared(&OldSphereCenter);
|
---|
2948 | helper.Scale(sqrt(RADIUS*RADIUS - radius));
|
---|
2949 | OldSphereCenter.AddVector(&helper);
|
---|
2950 | OldSphereCenter.SubtractVector(&CircleCenter);
|
---|
2951 | cout << Verbose(2) << "INFO: OldSphereCenter is at " << OldSphereCenter << "." << endl;
|
---|
2952 |
|
---|
2953 | // construct SearchDirection
|
---|
2954 | SearchDirection.MakeNormalVector(&T.NormalVector, &CirclePlaneNormal);
|
---|
2955 | helper.CopyVector(&Line.endpoints[0]->node->x);
|
---|
2956 | helper.SubtractVector(&ThirdNode->x);
|
---|
2957 | if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON)// ohoh, SearchDirection points inwards!
|
---|
2958 | SearchDirection.Scale(-1.);
|
---|
2959 | SearchDirection.ProjectOntoPlane(&OldSphereCenter);
|
---|
2960 | SearchDirection.Normalize();
|
---|
2961 | cout << Verbose(2) << "INFO: SearchDirection is " << SearchDirection << "." << endl;
|
---|
2962 | if (fabs(OldSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) {
|
---|
2963 | // rotated the wrong way!
|
---|
2964 | cerr << "ERROR: SearchDirection and RelativeOldSphereCenter are still not orthogonal!" << endl;
|
---|
2965 | }
|
---|
2966 |
|
---|
2967 | // add third point
|
---|
2968 | cout << Verbose(1) << "Looking for third point candidates for triangle ... " << endl;
|
---|
2969 | Find_third_point_for_Tesselation(
|
---|
2970 | T.NormalVector, SearchDirection, OldSphereCenter, &Line, ThirdNode, Opt_Candidates,
|
---|
2971 | &ShortestAngle, RADIUS, LC
|
---|
2972 | );
|
---|
2973 |
|
---|
2974 | } else {
|
---|
2975 | cout << Verbose(1) << "Circumcircle for base line " << Line << " and base triangle " << T << " is too big!" << endl;
|
---|
2976 | }
|
---|
2977 |
|
---|
2978 | if (Opt_Candidates->begin() == Opt_Candidates->end()) {
|
---|
2979 | cerr << "WARNING: Could not find a suitable candidate." << endl;
|
---|
2980 | return false;
|
---|
2981 | }
|
---|
2982 | cout << Verbose(1) << "Third Points are ";
|
---|
2983 | CandidateList::iterator it;
|
---|
2984 | for (it = Opt_Candidates->begin(); it != Opt_Candidates->end(); ++it) {
|
---|
2985 | cout << " " << *(*it)->point;
|
---|
2986 | }
|
---|
2987 | cout << endl;
|
---|
2988 |
|
---|
2989 | BoundaryLineSet *BaseRay = &Line;
|
---|
2990 | for (it = Opt_Candidates->begin(); it != Opt_Candidates->end(); ++it) {
|
---|
2991 | cout << Verbose(1) << " Third point candidate is " << *(*it)->point
|
---|
2992 | << " with circumsphere's center at " << (*it)->OptCenter << "." << endl;
|
---|
2993 | cout << Verbose(1) << " Baseline is " << BaseRay << endl;
|
---|
2994 |
|
---|
2995 | // check whether all edges of the new triangle still have space for one more triangle (i.e. TriangleCount <2)
|
---|
2996 | atom *AtomCandidates[3];
|
---|
2997 | AtomCandidates[0] = (*it)->point;
|
---|
2998 | AtomCandidates[1] = BaseRay->endpoints[0]->node;
|
---|
2999 | AtomCandidates[2] = BaseRay->endpoints[1]->node;
|
---|
3000 | int existentTrianglesCount = CheckPresenceOfTriangle(out, AtomCandidates);
|
---|
3001 |
|
---|
3002 | BTS = NULL;
|
---|
3003 | // If there is no triangle, add it regularly.
|
---|
3004 | if (existentTrianglesCount == 0) {
|
---|
3005 | AddTrianglePoint((*it)->point, 0);
|
---|
3006 | AddTrianglePoint(BaseRay->endpoints[0]->node, 1);
|
---|
3007 | AddTrianglePoint(BaseRay->endpoints[1]->node, 2);
|
---|
3008 |
|
---|
3009 | AddTriangleLine(TPS[0], TPS[1], 0);
|
---|
3010 | AddTriangleLine(TPS[0], TPS[2], 1);
|
---|
3011 | AddTriangleLine(TPS[1], TPS[2], 2);
|
---|
3012 |
|
---|
3013 | BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
|
---|
3014 | AddTriangleToLines();
|
---|
3015 | (*it)->OptCenter.Scale(-1.);
|
---|
3016 | BTS->GetNormalVector((*it)->OptCenter);
|
---|
3017 | (*it)->OptCenter.Scale(-1.);
|
---|
3018 |
|
---|
3019 | cout << "--> New triangle with " << *BTS << " and normal vector " << BTS->NormalVector
|
---|
3020 | << " for this triangle ... " << endl;
|
---|
3021 | cout << Verbose(1) << "We have "<< TrianglesOnBoundaryCount << " for line " << BaseRay << "." << endl;
|
---|
3022 | } else if (existentTrianglesCount == 1) { // If there is a planar region within the structure, we need this triangle a second time.
|
---|
3023 | AddTrianglePoint((*it)->point, 0);
|
---|
3024 | AddTrianglePoint(BaseRay->endpoints[0]->node, 1);
|
---|
3025 | AddTrianglePoint(BaseRay->endpoints[1]->node, 2);
|
---|
3026 |
|
---|
3027 | AddTriangleLine(TPS[0], TPS[1], 0);
|
---|
3028 | AddTriangleLine(TPS[0], TPS[2], 1);
|
---|
3029 | AddTriangleLine(TPS[1], TPS[2], 2);
|
---|
3030 |
|
---|
3031 | BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
|
---|
3032 | //TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
|
---|
3033 | AddTriangleToLines();
|
---|
3034 |
|
---|
3035 | (*it)->OtherOptCenter.Scale(-1.);
|
---|
3036 | BTS->GetNormalVector((*it)->OtherOptCenter);
|
---|
3037 | (*it)->OtherOptCenter.Scale(-1.);
|
---|
3038 |
|
---|
3039 | cout << "--> WARNING: Special new triangle with " << *BTS << " and normal vector " << BTS->NormalVector
|
---|
3040 | << " for this triangle ... " << endl;
|
---|
3041 | cout << Verbose(1) << "We have "<< BaseRay->TrianglesCount << " for line " << BaseRay << "." << endl;
|
---|
3042 | } else {
|
---|
3043 | cout << Verbose(1) << "This triangle consisting of ";
|
---|
3044 | cout << *(*it)->point << ", ";
|
---|
3045 | cout << *BaseRay->endpoints[0]->node << " and ";
|
---|
3046 | cout << *BaseRay->endpoints[1]->node << " ";
|
---|
3047 | cout << "is invalid!" << endl;
|
---|
3048 | result = false;
|
---|
3049 | }
|
---|
3050 |
|
---|
3051 | if ((existentTrianglesCount < 2) && (DoSingleStepOutput && (TrianglesOnBoundaryCount % 1 == 0))) { // if we have a new triangle and want to output each new triangle configuration
|
---|
3052 | sprintf(NumberName, "-%04d-%s_%s_%s", TriangleFilesWritten, BTS->endpoints[0]->node->Name, BTS->endpoints[1]->node->Name, BTS->endpoints[2]->node->Name);
|
---|
3053 | if (DoTecplotOutput) {
|
---|
3054 | string NameofTempFile(tempbasename);
|
---|
3055 | NameofTempFile.append(NumberName);
|
---|
3056 | for(size_t npos = NameofTempFile.find_first_of(' '); npos != -1; npos = NameofTempFile.find(' ', npos))
|
---|
3057 | NameofTempFile.erase(npos, 1);
|
---|
3058 | NameofTempFile.append(TecplotSuffix);
|
---|
3059 | cout << Verbose(1) << "Writing temporary non convex hull to file " << NameofTempFile << ".\n";
|
---|
3060 | tempstream = new ofstream(NameofTempFile.c_str(), ios::trunc);
|
---|
3061 | write_tecplot_file(out, tempstream, this, mol, TriangleFilesWritten);
|
---|
3062 | tempstream->close();
|
---|
3063 | tempstream->flush();
|
---|
3064 | delete(tempstream);
|
---|
3065 | }
|
---|
3066 |
|
---|
3067 | if (DoRaster3DOutput) {
|
---|
3068 | string NameofTempFile(tempbasename);
|
---|
3069 | NameofTempFile.append(NumberName);
|
---|
3070 | for(size_t npos = NameofTempFile.find_first_of(' '); npos != -1; npos = NameofTempFile.find(' ', npos))
|
---|
3071 | NameofTempFile.erase(npos, 1);
|
---|
3072 | NameofTempFile.append(Raster3DSuffix);
|
---|
3073 | cout << Verbose(1) << "Writing temporary non convex hull to file " << NameofTempFile << ".\n";
|
---|
3074 | tempstream = new ofstream(NameofTempFile.c_str(), ios::trunc);
|
---|
3075 | write_raster3d_file(out, tempstream, this, mol);
|
---|
3076 | // include the current position of the virtual sphere in the temporary raster3d file
|
---|
3077 | // make the circumsphere's center absolute again
|
---|
3078 | helper.CopyVector(&BaseRay->endpoints[0]->node->x);
|
---|
3079 | helper.AddVector(&BaseRay->endpoints[1]->node->x);
|
---|
3080 | helper.Scale(0.5);
|
---|
3081 | (*it)->OptCenter.AddVector(&helper);
|
---|
3082 | Vector *center = mol->DetermineCenterOfAll(out);
|
---|
3083 | (*it)->OptCenter.AddVector(center);
|
---|
3084 | delete(center);
|
---|
3085 | // and add to file plus translucency object
|
---|
3086 | *tempstream << "# current virtual sphere\n";
|
---|
3087 | *tempstream << "8\n 25.0 0.6 -1.0 -1.0 -1.0 0.2 0 0 0 0\n";
|
---|
3088 | *tempstream << "2\n " << (*it)->OptCenter.x[0] << " "
|
---|
3089 | << (*it)->OptCenter.x[1] << " " << (*it)->OptCenter.x[2]
|
---|
3090 | << "\t" << RADIUS << "\t1 0 0\n";
|
---|
3091 | *tempstream << "9\n terminating special property\n";
|
---|
3092 | tempstream->close();
|
---|
3093 | tempstream->flush();
|
---|
3094 | delete(tempstream);
|
---|
3095 | }
|
---|
3096 | if (DoTecplotOutput || DoRaster3DOutput)
|
---|
3097 | TriangleFilesWritten++;
|
---|
3098 | }
|
---|
3099 |
|
---|
3100 | // set baseline to new ray from ref point (here endpoints[0]->node) to current candidate (here (*it)->point))
|
---|
3101 | BaseRay = BLS[0];
|
---|
3102 | // LineMap::iterator LineIterator = Line.endpoints[0]->lines.find((*it)->point->nr);
|
---|
3103 | // for (; LineIterator != Line.endpoints[0]->lines.end(); LineIterator++) {
|
---|
3104 | // if ((*LineIterator->second).TrianglesCount != 2)
|
---|
3105 | // break;
|
---|
3106 | // }
|
---|
3107 | // if (LineIterator == Line.endpoints[0]->lines.end())
|
---|
3108 | // cout << Verbose(1) << "ERROR: I could not find a suitable line with less than two triangles connected!" << endl;
|
---|
3109 | }
|
---|
3110 |
|
---|
3111 | cout << Verbose(1) << "End of Find_next_suitable_triangle\n";
|
---|
3112 | return result;
|
---|
3113 | };
|
---|
3114 |
|
---|
3115 | /**
|
---|
3116 | * Sort function for the candidate list.
|
---|
3117 | */
|
---|
3118 | bool sortCandidates(CandidateForTesselation* candidate1, CandidateForTesselation* candidate2) {
|
---|
3119 | Vector BaseLineVector, OrthogonalVector, helper;
|
---|
3120 | if (candidate1->BaseLine != candidate2->BaseLine) { // sanity check
|
---|
3121 | cout << Verbose(0) << "ERROR: sortCandidates was called for two different baselines: " << candidate1->BaseLine << " and " << candidate2->BaseLine << "." << endl;
|
---|
3122 | //return false;
|
---|
3123 | exit(1);
|
---|
3124 | }
|
---|
3125 | // create baseline vector
|
---|
3126 | BaseLineVector.CopyVector(&(candidate1->BaseLine->endpoints[1]->node->x));
|
---|
3127 | BaseLineVector.SubtractVector(&(candidate1->BaseLine->endpoints[0]->node->x));
|
---|
3128 | BaseLineVector.Normalize();
|
---|
3129 |
|
---|
3130 | // create normal in-plane vector to cope with acos() non-uniqueness on [0,2pi] (note that is pointing in the "right" direction already, hence ">0" test!)
|
---|
3131 | helper.CopyVector(&(candidate1->BaseLine->endpoints[0]->node->x));
|
---|
3132 | helper.SubtractVector(&(candidate1->point->x));
|
---|
3133 | OrthogonalVector.CopyVector(&helper);
|
---|
3134 | helper.VectorProduct(&BaseLineVector);
|
---|
3135 | OrthogonalVector.SubtractVector(&helper);
|
---|
3136 | OrthogonalVector.Normalize();
|
---|
3137 |
|
---|
3138 | // calculate both angles and correct with in-plane vector
|
---|
3139 | helper.CopyVector(&(candidate1->point->x));
|
---|
3140 | helper.SubtractVector(&(candidate1->BaseLine->endpoints[0]->node->x));
|
---|
3141 | double phi = BaseLineVector.Angle(&helper);
|
---|
3142 | if (OrthogonalVector.ScalarProduct(&helper) > 0) {
|
---|
3143 | phi = 2.*M_PI - phi;
|
---|
3144 | }
|
---|
3145 | helper.CopyVector(&(candidate2->point->x));
|
---|
3146 | helper.SubtractVector(&(candidate1->BaseLine->endpoints[0]->node->x));
|
---|
3147 | double psi = BaseLineVector.Angle(&helper);
|
---|
3148 | if (OrthogonalVector.ScalarProduct(&helper) > 0) {
|
---|
3149 | psi = 2.*M_PI - psi;
|
---|
3150 | }
|
---|
3151 |
|
---|
3152 | cout << Verbose(2) << *candidate1->point << " has angle " << phi << endl;
|
---|
3153 | cout << Verbose(2) << *candidate2->point << " has angle " << psi << endl;
|
---|
3154 |
|
---|
3155 | // return comparison
|
---|
3156 | return phi < psi;
|
---|
3157 | }
|
---|
3158 |
|
---|
3159 | /** Tesselates the non convex boundary by rolling a virtual sphere along the surface of the molecule.
|
---|
3160 | * \param *out output stream for debugging
|
---|
3161 | * \param *mol molecule structure with Atom's and Bond's
|
---|
3162 | * \param *Tess Tesselation filled with points, lines and triangles on boundary on return
|
---|
3163 | * \param *filename filename prefix for output of vertex data
|
---|
3164 | * \para RADIUS radius of the virtual sphere
|
---|
3165 | */
|
---|
3166 | void Find_non_convex_border(ofstream *out, molecule* mol, class Tesselation *Tess, class LinkedCell *LCList, const char *filename, const double RADIUS)
|
---|
3167 | {
|
---|
3168 | int N = 0;
|
---|
3169 | bool freeTess = false;
|
---|
3170 | bool freeLC = false;
|
---|
3171 | *out << Verbose(1) << "Entering search for non convex hull. " << endl;
|
---|
3172 | if (Tess == NULL) {
|
---|
3173 | *out << Verbose(1) << "Allocating Tesselation struct ..." << endl;
|
---|
3174 | Tess = new Tesselation;
|
---|
3175 | freeTess = true;
|
---|
3176 | }
|
---|
3177 | LineMap::iterator baseline;
|
---|
3178 | LineMap::iterator testline;
|
---|
3179 | *out << Verbose(0) << "Begin of Find_non_convex_border\n";
|
---|
3180 | bool flag = false; // marks whether we went once through all baselines without finding any without two triangles
|
---|
3181 | bool failflag = false;
|
---|
3182 |
|
---|
3183 | if (LCList == NULL) {
|
---|
3184 | LCList = new LinkedCell(mol, 2.*RADIUS);
|
---|
3185 | freeLC = true;
|
---|
3186 | }
|
---|
3187 |
|
---|
3188 | Tess->Find_starting_triangle(out, mol, RADIUS, LCList);
|
---|
3189 |
|
---|
3190 | baseline = Tess->LinesOnBoundary.begin();
|
---|
3191 | while ((baseline != Tess->LinesOnBoundary.end()) || (flag)) {
|
---|
3192 | if (baseline->second->TrianglesCount == 1) {
|
---|
3193 | failflag = Tess->Find_next_suitable_triangle(out, mol, *(baseline->second), *(((baseline->second->triangles.begin()))->second), RADIUS, N, filename, LCList); //the line is there, so there is a triangle, but only one.
|
---|
3194 | flag = flag || failflag;
|
---|
3195 | if (!failflag)
|
---|
3196 | cerr << "WARNING: Find_next_suitable_triangle failed." << endl;
|
---|
3197 |
|
---|
3198 | // we inserted new lines, hence show list with connected triangles
|
---|
3199 | cout << Verbose(1) << "List of Baselines with connected triangles so far:" << endl;
|
---|
3200 | for (testline = Tess->LinesOnBoundary.begin(); testline != Tess->LinesOnBoundary.end(); testline++) {
|
---|
3201 | cout << Verbose(1) << *testline->second << "\t" << testline->second->TrianglesCount << endl;
|
---|
3202 | }
|
---|
3203 | } else {
|
---|
3204 | cout << Verbose(1) << "Line " << *baseline->second << " has " << baseline->second->TrianglesCount << " triangles adjacent" << endl;
|
---|
3205 | if (baseline->second->TrianglesCount != 2)
|
---|
3206 | cout << Verbose(1) << "ERROR: TESSELATION FINISHED WITH INVALID TRIANGLE COUNT!" << endl;
|
---|
3207 | }
|
---|
3208 |
|
---|
3209 | N++;
|
---|
3210 | baseline++;
|
---|
3211 | if ((baseline == Tess->LinesOnBoundary.end()) && (flag)) {
|
---|
3212 | baseline = Tess->LinesOnBoundary.begin(); // restart if we reach end due to newly inserted lines
|
---|
3213 | flag = false;
|
---|
3214 | }
|
---|
3215 | }
|
---|
3216 | if (1) { //failflag) {
|
---|
3217 | *out << Verbose(1) << "Writing final tecplot file\n";
|
---|
3218 | if (DoTecplotOutput) {
|
---|
3219 | string OutputName(filename);
|
---|
3220 | OutputName.append(TecplotSuffix);
|
---|
3221 | ofstream *tecplot = new ofstream(OutputName.c_str());
|
---|
3222 | write_tecplot_file(out, tecplot, Tess, mol, -1);
|
---|
3223 | tecplot->close();
|
---|
3224 | delete(tecplot);
|
---|
3225 | }
|
---|
3226 | if (DoRaster3DOutput) {
|
---|
3227 | string OutputName(filename);
|
---|
3228 | OutputName.append(Raster3DSuffix);
|
---|
3229 | ofstream *raster = new ofstream(OutputName.c_str());
|
---|
3230 | write_raster3d_file(out, raster, Tess, mol);
|
---|
3231 | raster->close();
|
---|
3232 | delete(raster);
|
---|
3233 | }
|
---|
3234 | } else {
|
---|
3235 | cerr << "ERROR: Could definitively not find all necessary triangles!" << endl;
|
---|
3236 | }
|
---|
3237 | if (freeTess)
|
---|
3238 | delete(Tess);
|
---|
3239 | if (freeLC)
|
---|
3240 | delete(LCList);
|
---|
3241 | *out << Verbose(0) << "End of Find_non_convex_border\n";
|
---|
3242 | };
|
---|
3243 |
|
---|
3244 | /** Finds a hole of sufficient size in \a this molecule to embed \a *srcmol into it.
|
---|
3245 | * \param *out output stream for debugging
|
---|
3246 | * \param *srcmol molecule to embed into
|
---|
3247 | * \return *Vector new center of \a *srcmol for embedding relative to \a this
|
---|
3248 | */
|
---|
3249 | Vector* molecule::FindEmbeddingHole(ofstream *out, molecule *srcmol)
|
---|
3250 | {
|
---|
3251 | Vector *Center = new Vector;
|
---|
3252 | Center->Zero();
|
---|
3253 | // calculate volume/shape of \a *srcmol
|
---|
3254 |
|
---|
3255 | // find embedding holes
|
---|
3256 |
|
---|
3257 | // if more than one, let user choose
|
---|
3258 |
|
---|
3259 | // return embedding center
|
---|
3260 | return Center;
|
---|
3261 | };
|
---|
3262 |
|
---|