source: src/analysis_correlation.cpp@ cd7a87

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since cd7a87 was caa30b, checked in by Frederik Heber <heber@…>, 14 years ago

BUGFIX: Correlation functions return NULL outputmap when something is wrong.

  • we return allocated empty map instead.
  • Property mode set to 100644
File size: 25.9 KB
Line 
1/*
2 * Project: MoleCuilder
3 * Description: creates and alters molecular systems
4 * Copyright (C) 2010 University of Bonn. All rights reserved.
5 * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
6 */
7
8/*
9 * analysis.cpp
10 *
11 * Created on: Oct 13, 2009
12 * Author: heber
13 */
14
15// include config.h
16#ifdef HAVE_CONFIG_H
17#include <config.h>
18#endif
19
20#include "CodePatterns/MemDebug.hpp"
21
22#include <iostream>
23#include <iomanip>
24
25#include "atom.hpp"
26#include "bond.hpp"
27#include "BoundaryTriangleSet.hpp"
28#include "Box.hpp"
29#include "element.hpp"
30#include "CodePatterns/Info.hpp"
31#include "CodePatterns/Log.hpp"
32#include "Formula.hpp"
33#include "molecule.hpp"
34#include "tesselation.hpp"
35#include "tesselationhelpers.hpp"
36#include "triangleintersectionlist.hpp"
37#include "World.hpp"
38#include "LinearAlgebra/Vector.hpp"
39#include "LinearAlgebra/RealSpaceMatrix.hpp"
40#include "CodePatterns/Verbose.hpp"
41#include "World.hpp"
42#include "Box.hpp"
43
44#include "analysis_correlation.hpp"
45
46/** Calculates the dipole vector of a given atomSet.
47 *
48 * Note that we use the following procedure as rule of thumb:
49 * -# go through every bond of the atom
50 * -# calculate the difference of electronegativities \f$\Delta\text{EN}\f$
51 * -# if \f$\Delta\text{EN} > 0.5\f$, we align the bond vector in direction of the more negative element
52 * -# sum up all vectors
53 * -# finally, divide by the number of summed vectors
54 *
55 * @param atomsbegin begin iterator of atomSet
56 * @param atomsend end iterator of atomset
57 * @return dipole vector
58 */
59Vector getDipole(molecule::const_iterator atomsbegin, molecule::const_iterator atomsend)
60{
61 Vector DipoleVector;
62 size_t SumOfVectors = 0;
63 // go through all atoms
64 for (molecule::const_iterator atomiter = atomsbegin;
65 atomiter != atomsend;
66 ++atomiter) {
67 // go through all bonds
68 for (BondList::const_iterator bonditer = (*atomiter)->ListOfBonds.begin();
69 bonditer != (*atomiter)->ListOfBonds.end();
70 ++bonditer) {
71 const atom * Otheratom = (*bonditer)->GetOtherAtom(*atomiter);
72 if (Otheratom->getId() > (*atomiter)->getId()) {
73 const double DeltaEN = (*atomiter)->getType()->getElectronegativity()
74 -Otheratom->getType()->getElectronegativity();
75 Vector BondDipoleVector = (*atomiter)->getPosition() - Otheratom->getPosition();
76 // DeltaEN is always positive, gives correct orientation of vector
77 BondDipoleVector.Normalize();
78 BondDipoleVector *= DeltaEN;
79 DipoleVector += BondDipoleVector;
80 SumOfVectors++;
81 }
82 }
83 }
84 DipoleVector *= 1./(double)SumOfVectors;
85 DoLog(1) && (Log() << Verbose(1) << "Resulting dipole vector is " << DipoleVector << std::endl);
86
87 return DipoleVector;
88};
89
90/** Calculates the dipole angular correlation for given molecule type.
91 * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si))
92 * Angles are given in degrees.
93 * \param *molecules vector of molecules
94 * \return Map of doubles with values the pair of the two atoms.
95 */
96DipoleAngularCorrelationMap *DipoleAngularCorrelation(std::vector<molecule *> &molecules)
97{
98 Info FunctionInfo(__func__);
99 DipoleAngularCorrelationMap *outmap = new DipoleAngularCorrelationMap;
100// double distance = 0.;
101// Box &domain = World::getInstance().getDomain();
102//
103 if (molecules.empty()) {
104 DoeLog(1) && (eLog()<< Verbose(1) <<"No molecule given." << endl);
105 return outmap;
106 }
107
108 outmap = new DipoleAngularCorrelationMap;
109 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin();
110 MolWalker != molecules.end();) {
111 DoLog(2) && (Log()<< Verbose(2) << "Current molecule is "
112 << (*MolWalker)->getId() << "." << endl);
113 const Vector Dipole = getDipole((*MolWalker)->begin(), (*MolWalker)->end());
114 for (std::vector<molecule *>::const_iterator MolOtherWalker = ++MolWalker;
115 MolOtherWalker != molecules.end();
116 MolOtherWalker++) {
117 DoLog(2) && (Log() << Verbose(2) << "Current other molecule is "
118 << (*MolOtherWalker)->getId() << "." << endl);
119 const Vector OtherDipole = getDipole((*MolOtherWalker)->begin(), (*MolOtherWalker)->end());
120 const double angle = Dipole.Angle(OtherDipole) * (180./M_PI);
121 DoLog(1) && (Log() << Verbose(1) << "Angle is " << angle << "." << endl);
122 outmap->insert ( make_pair (angle, make_pair ((*MolWalker), (*MolOtherWalker)) ) );
123 }
124 }
125 return outmap;
126};
127
128
129/** Calculates the pair correlation between given elements.
130 * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si))
131 * \param *molecules vector of molecules
132 * \param &elements vector of elements to correlate
133 * \return Map of doubles with values the pair of the two atoms.
134 */
135PairCorrelationMap *PairCorrelation(std::vector<molecule *> &molecules, const std::vector<const element *> &elements)
136{
137 Info FunctionInfo(__func__);
138 PairCorrelationMap *outmap = new PairCorrelationMap;
139 double distance = 0.;
140 Box &domain = World::getInstance().getDomain();
141
142 if (molecules.empty()) {
143 DoeLog(1) && (eLog()<< Verbose(1) <<"No molecule given." << endl);
144 return outmap;
145 }
146 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
147 (*MolWalker)->doCountAtoms();
148
149 // create all possible pairs of elements
150 set <pair<const element *,const element *> > PairsOfElements;
151 if (elements.size() >= 2) {
152 for (vector<const element *>::const_iterator type1 = elements.begin(); type1 != elements.end(); ++type1)
153 for (vector<const element *>::const_iterator type2 = elements.begin(); type2 != elements.end(); ++type2)
154 if (type1 != type2) {
155 PairsOfElements.insert( make_pair(*type1,*type2) );
156 DoLog(1) && (Log() << Verbose(1) << "Creating element pair " << *(*type1) << " and " << *(*type2) << "." << endl);
157 }
158 } else if (elements.size() == 1) { // one to all are valid
159 const element *elemental = *elements.begin();
160 PairsOfElements.insert( pair<const element *,const element*>(elemental,0) );
161 PairsOfElements.insert( pair<const element *,const element*>(0,elemental) );
162 } else { // all elements valid
163 PairsOfElements.insert( pair<element *, element*>((element *)NULL, (element *)NULL) );
164 }
165
166 outmap = new PairCorrelationMap;
167 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++){
168 DoLog(2) && (Log()<< Verbose(2) << "Current molecule is " << *MolWalker << "." << endl);
169 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
170 DoLog(3) && (Log() << Verbose(3) << "Current atom is " << **iter << "." << endl);
171 for (std::vector<molecule *>::const_iterator MolOtherWalker = MolWalker; MolOtherWalker != molecules.end(); MolOtherWalker++){
172 DoLog(2) && (Log() << Verbose(2) << "Current other molecule is " << *MolOtherWalker << "." << endl);
173 for (molecule::const_iterator runner = (*MolOtherWalker)->begin(); runner != (*MolOtherWalker)->end(); ++runner) {
174 DoLog(3) && (Log() << Verbose(3) << "Current otheratom is " << **runner << "." << endl);
175 if ((*iter)->getId() < (*runner)->getId()){
176 for (set <pair<const element *, const element *> >::iterator PairRunner = PairsOfElements.begin(); PairRunner != PairsOfElements.end(); ++PairRunner)
177 if ((PairRunner->first == (**iter).getType()) && (PairRunner->second == (**runner).getType())) {
178 distance = domain.periodicDistance((*iter)->getPosition(),(*runner)->getPosition());
179 //Log() << Verbose(1) <<"Inserting " << *(*iter) << " and " << *(*runner) << endl;
180 outmap->insert ( pair<double, pair <atom *, atom*> > (distance, pair<atom *, atom*> ((*iter), (*runner)) ) );
181 }
182 }
183 }
184 }
185 }
186 }
187 return outmap;
188};
189
190/** Calculates the pair correlation between given elements.
191 * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si))
192 * \param *molecules list of molecules structure
193 * \param &elements vector of elements to correlate
194 * \param ranges[NDIM] interval boundaries for the periodic images to scan also
195 * \return Map of doubles with values the pair of the two atoms.
196 */
197PairCorrelationMap *PeriodicPairCorrelation(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const int ranges[NDIM] )
198{
199 Info FunctionInfo(__func__);
200 PairCorrelationMap *outmap = new PairCorrelationMap;
201 double distance = 0.;
202 int n[NDIM];
203 Vector checkX;
204 Vector periodicX;
205 int Othern[NDIM];
206 Vector checkOtherX;
207 Vector periodicOtherX;
208
209 if (molecules.empty()) {
210 DoeLog(1) && (eLog()<< Verbose(1) <<"No molecule given." << endl);
211 return outmap;
212 }
213 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
214 (*MolWalker)->doCountAtoms();
215
216 // create all possible pairs of elements
217 set <pair<const element *,const element *> > PairsOfElements;
218 if (elements.size() >= 2) {
219 for (vector<const element *>::const_iterator type1 = elements.begin(); type1 != elements.end(); ++type1)
220 for (vector<const element *>::const_iterator type2 = elements.begin(); type2 != elements.end(); ++type2)
221 if (type1 != type2) {
222 PairsOfElements.insert( make_pair(*type1,*type2) );
223 DoLog(1) && (Log() << Verbose(1) << "Creating element pair " << *(*type1) << " and " << *(*type2) << "." << endl);
224 }
225 } else if (elements.size() == 1) { // one to all are valid
226 const element *elemental = *elements.begin();
227 PairsOfElements.insert( pair<const element *,const element*>(elemental,0) );
228 PairsOfElements.insert( pair<const element *,const element*>(0,elemental) );
229 } else { // all elements valid
230 PairsOfElements.insert( pair<element *, element*>((element *)NULL, (element *)NULL) );
231 }
232
233 outmap = new PairCorrelationMap;
234 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++){
235 RealSpaceMatrix FullMatrix = World::getInstance().getDomain().getM();
236 RealSpaceMatrix FullInverseMatrix = World::getInstance().getDomain().getMinv();
237 DoLog(2) && (Log()<< Verbose(2) << "Current molecule is " << *MolWalker << "." << endl);
238 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
239 DoLog(3) && (Log() << Verbose(3) << "Current atom is " << **iter << "." << endl);
240 periodicX = FullInverseMatrix * ((*iter)->getPosition()); // x now in [0,1)^3
241 // go through every range in xyz and get distance
242 for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++)
243 for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++)
244 for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) {
245 checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX);
246 for (std::vector<molecule *>::const_iterator MolOtherWalker = MolWalker; MolOtherWalker != molecules.end(); MolOtherWalker++){
247 DoLog(2) && (Log() << Verbose(2) << "Current other molecule is " << *MolOtherWalker << "." << endl);
248 for (molecule::const_iterator runner = (*MolOtherWalker)->begin(); runner != (*MolOtherWalker)->end(); ++runner) {
249 DoLog(3) && (Log() << Verbose(3) << "Current otheratom is " << **runner << "." << endl);
250 if ((*iter)->getId() < (*runner)->getId()){
251 for (set <pair<const element *,const element *> >::iterator PairRunner = PairsOfElements.begin(); PairRunner != PairsOfElements.end(); ++PairRunner)
252 if ((PairRunner->first == (**iter).getType()) && (PairRunner->second == (**runner).getType())) {
253 periodicOtherX = FullInverseMatrix * ((*runner)->getPosition()); // x now in [0,1)^3
254 // go through every range in xyz and get distance
255 for (Othern[0]=-ranges[0]; Othern[0] <= ranges[0]; Othern[0]++)
256 for (Othern[1]=-ranges[1]; Othern[1] <= ranges[1]; Othern[1]++)
257 for (Othern[2]=-ranges[2]; Othern[2] <= ranges[2]; Othern[2]++) {
258 checkOtherX = FullMatrix * (Vector(Othern[0], Othern[1], Othern[2]) + periodicOtherX);
259 distance = checkX.distance(checkOtherX);
260 //Log() << Verbose(1) <<"Inserting " << *(*iter) << " and " << *(*runner) << endl;
261 outmap->insert ( pair<double, pair <atom *, atom*> > (distance, pair<atom *, atom*> ((*iter), (*runner)) ) );
262 }
263 }
264 }
265 }
266 }
267 }
268 }
269 }
270
271 return outmap;
272};
273
274/** Calculates the distance (pair) correlation between a given element and a point.
275 * \param *molecules list of molecules structure
276 * \param &elements vector of elements to correlate with point
277 * \param *point vector to the correlation point
278 * \return Map of dobules with values as pairs of atom and the vector
279 */
280CorrelationToPointMap *CorrelationToPoint(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const Vector *point )
281{
282 Info FunctionInfo(__func__);
283 CorrelationToPointMap *outmap = new CorrelationToPointMap;
284 double distance = 0.;
285 Box &domain = World::getInstance().getDomain();
286
287 if (molecules.empty()) {
288 DoLog(1) && (Log() << Verbose(1) <<"No molecule given." << endl);
289 return outmap;
290 }
291 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
292 (*MolWalker)->doCountAtoms();
293 outmap = new CorrelationToPointMap;
294 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
295 DoLog(2) && (Log() << Verbose(2) << "Current molecule is " << *MolWalker << "." << endl);
296 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
297 DoLog(3) && (Log() << Verbose(3) << "Current atom is " << **iter << "." << endl);
298 for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
299 if ((*type == NULL) || ((*iter)->getType() == *type)) {
300 distance = domain.periodicDistance((*iter)->getPosition(),*point);
301 DoLog(4) && (Log() << Verbose(4) << "Current distance is " << distance << "." << endl);
302 outmap->insert ( pair<double, pair<atom *, const Vector*> >(distance, pair<atom *, const Vector*> ((*iter), point) ) );
303 }
304 }
305 }
306
307 return outmap;
308};
309
310/** Calculates the distance (pair) correlation between a given element, all its periodic images and a point.
311 * \param *molecules list of molecules structure
312 * \param &elements vector of elements to correlate to point
313 * \param *point vector to the correlation point
314 * \param ranges[NDIM] interval boundaries for the periodic images to scan also
315 * \return Map of dobules with values as pairs of atom and the vector
316 */
317CorrelationToPointMap *PeriodicCorrelationToPoint(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const Vector *point, const int ranges[NDIM] )
318{
319 Info FunctionInfo(__func__);
320 CorrelationToPointMap *outmap = new CorrelationToPointMap;
321 double distance = 0.;
322 int n[NDIM];
323 Vector periodicX;
324 Vector checkX;
325
326 if (molecules.empty()) {
327 DoLog(1) && (Log() << Verbose(1) <<"No molecule given." << endl);
328 return outmap;
329 }
330 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
331 (*MolWalker)->doCountAtoms();
332 outmap = new CorrelationToPointMap;
333 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
334 RealSpaceMatrix FullMatrix = World::getInstance().getDomain().getM();
335 RealSpaceMatrix FullInverseMatrix = World::getInstance().getDomain().getMinv();
336 DoLog(2) && (Log() << Verbose(2) << "Current molecule is " << *MolWalker << "." << endl);
337 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
338 DoLog(3) && (Log() << Verbose(3) << "Current atom is " << **iter << "." << endl);
339 for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
340 if ((*type == NULL) || ((*iter)->getType() == *type)) {
341 periodicX = FullInverseMatrix * ((*iter)->getPosition()); // x now in [0,1)^3
342 // go through every range in xyz and get distance
343 for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++)
344 for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++)
345 for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) {
346 checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX);
347 distance = checkX.distance(*point);
348 DoLog(4) && (Log() << Verbose(4) << "Current distance is " << distance << "." << endl);
349 outmap->insert ( pair<double, pair<atom *, const Vector*> >(distance, pair<atom *, const Vector*> (*iter, point) ) );
350 }
351 }
352 }
353 }
354
355 return outmap;
356};
357
358/** Calculates the distance (pair) correlation between a given element and a surface.
359 * \param *molecules list of molecules structure
360 * \param &elements vector of elements to correlate to surface
361 * \param *Surface pointer to Tesselation class surface
362 * \param *LC LinkedCell structure to quickly find neighbouring atoms
363 * \return Map of doubles with values as pairs of atom and the BoundaryTriangleSet that's closest
364 */
365CorrelationToSurfaceMap *CorrelationToSurface(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const Tesselation * const Surface, const LinkedCell *LC )
366{
367 Info FunctionInfo(__func__);
368 CorrelationToSurfaceMap *outmap = new CorrelationToSurfaceMap;
369 double distance = 0;
370 class BoundaryTriangleSet *triangle = NULL;
371 Vector centroid;
372
373 if ((Surface == NULL) || (LC == NULL) || (molecules.empty())) {
374 DoeLog(1) && (eLog()<< Verbose(1) <<"No Tesselation, no LinkedCell or no molecule given." << endl);
375 return outmap;
376 }
377 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
378 (*MolWalker)->doCountAtoms();
379 outmap = new CorrelationToSurfaceMap;
380 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
381 DoLog(2) && (Log() << Verbose(2) << "Current molecule is " << (*MolWalker)->name << "." << endl);
382 if ((*MolWalker)->empty())
383 DoLog(2) && (2) && (Log() << Verbose(2) << "\t is empty." << endl);
384 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
385 DoLog(3) && (Log() << Verbose(3) << "\tCurrent atom is " << *(*iter) << "." << endl);
386 for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
387 if ((*type == NULL) || ((*iter)->getType() == *type)) {
388 TriangleIntersectionList Intersections((*iter)->getPosition(),Surface,LC);
389 distance = Intersections.GetSmallestDistance();
390 triangle = Intersections.GetClosestTriangle();
391 outmap->insert ( pair<double, pair<atom *, BoundaryTriangleSet*> >(distance, pair<atom *, BoundaryTriangleSet*> ((*iter), triangle) ) );
392 }
393 }
394 }
395
396 return outmap;
397};
398
399/** Calculates the distance (pair) correlation between a given element, all its periodic images and and a surface.
400 * Note that we also put all periodic images found in the cells given by [ -ranges[i], ranges[i] ] and i=0,...,NDIM-1.
401 * I.e. We multiply the atom::node with the inverse of the domain matrix, i.e. transform it to \f$[0,0^3\f$, then add per
402 * axis an integer from [ -ranges[i], ranges[i] ] onto it and multiply with the domain matrix to bring it back into
403 * the real space. Then, we Tesselation::FindClosestTriangleToPoint() and DistanceToTrianglePlane().
404 * \param *molecules list of molecules structure
405 * \param &elements vector of elements to correlate to surface
406 * \param *Surface pointer to Tesselation class surface
407 * \param *LC LinkedCell structure to quickly find neighbouring atoms
408 * \param ranges[NDIM] interval boundaries for the periodic images to scan also
409 * \return Map of doubles with values as pairs of atom and the BoundaryTriangleSet that's closest
410 */
411CorrelationToSurfaceMap *PeriodicCorrelationToSurface(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const Tesselation * const Surface, const LinkedCell *LC, const int ranges[NDIM] )
412{
413 Info FunctionInfo(__func__);
414 CorrelationToSurfaceMap *outmap = new CorrelationToSurfaceMap;
415 double distance = 0;
416 class BoundaryTriangleSet *triangle = NULL;
417 Vector centroid;
418 int n[NDIM];
419 Vector periodicX;
420 Vector checkX;
421
422 if ((Surface == NULL) || (LC == NULL) || (molecules.empty())) {
423 DoLog(1) && (Log() << Verbose(1) <<"No Tesselation, no LinkedCell or no molecule given." << endl);
424 return outmap;
425 }
426 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
427 (*MolWalker)->doCountAtoms();
428 outmap = new CorrelationToSurfaceMap;
429 double ShortestDistance = 0.;
430 BoundaryTriangleSet *ShortestTriangle = NULL;
431 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
432 RealSpaceMatrix FullMatrix = World::getInstance().getDomain().getM();
433 RealSpaceMatrix FullInverseMatrix = World::getInstance().getDomain().getMinv();
434 DoLog(2) && (Log() << Verbose(2) << "Current molecule is " << *MolWalker << "." << endl);
435 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
436 DoLog(3) && (Log() << Verbose(3) << "Current atom is " << **iter << "." << endl);
437 for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
438 if ((*type == NULL) || ((*iter)->getType() == *type)) {
439 periodicX = FullInverseMatrix * ((*iter)->getPosition()); // x now in [0,1)^3
440 // go through every range in xyz and get distance
441 ShortestDistance = -1.;
442 for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++)
443 for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++)
444 for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) {
445 checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX);
446 TriangleIntersectionList Intersections(checkX,Surface,LC);
447 distance = Intersections.GetSmallestDistance();
448 triangle = Intersections.GetClosestTriangle();
449 if ((ShortestDistance == -1.) || (distance < ShortestDistance)) {
450 ShortestDistance = distance;
451 ShortestTriangle = triangle;
452 }
453 }
454 // insert
455 outmap->insert ( pair<double, pair<atom *, BoundaryTriangleSet*> >(ShortestDistance, pair<atom *, BoundaryTriangleSet*> (*iter, ShortestTriangle) ) );
456 //Log() << Verbose(1) << "INFO: Inserting " << Walker << " with distance " << ShortestDistance << " to " << *ShortestTriangle << "." << endl;
457 }
458 }
459 }
460
461 return outmap;
462};
463
464/** Returns the index of the bin for a given value.
465 * \param value value whose bin to look for
466 * \param BinWidth width of bin
467 * \param BinStart first bin
468 */
469int GetBin ( const double value, const double BinWidth, const double BinStart )
470{
471 Info FunctionInfo(__func__);
472 int bin =(int) (floor((value - BinStart)/BinWidth));
473 return (bin);
474};
475
476
477/** Prints correlation (double, int) pairs to file.
478 * \param *file file to write to
479 * \param *map map to write
480 */
481void OutputCorrelation( ofstream * const file, const BinPairMap * const map )
482{
483 Info FunctionInfo(__func__);
484 *file << "BinStart\tCount" << endl;
485 for (BinPairMap::const_iterator runner = map->begin(); runner != map->end(); ++runner) {
486 *file << setprecision(8) << runner->first << "\t" << runner->second << endl;
487 }
488};
489
490/** Prints correlation (double, (atom*,atom*) ) pairs to file.
491 * \param *file file to write to
492 * \param *map map to write
493 */
494void OutputDipoleAngularCorrelation( ofstream * const file, const DipoleAngularCorrelationMap * const map )
495{
496 Info FunctionInfo(__func__);
497 *file << "BinStart\tMolecule1\tMolecule2" << endl;
498 for (DipoleAngularCorrelationMap::const_iterator runner = map->begin(); runner != map->end(); ++runner) {
499 *file << setprecision(8) << runner->first << "\t" << runner->second.first->getId() << "\t" << runner->second.second->getId() << endl;
500 }
501};
502
503/** Prints correlation (double, (atom*,atom*) ) pairs to file.
504 * \param *file file to write to
505 * \param *map map to write
506 */
507void OutputPairCorrelation( ofstream * const file, const PairCorrelationMap * const map )
508{
509 Info FunctionInfo(__func__);
510 *file << "BinStart\tAtom1\tAtom2" << endl;
511 for (PairCorrelationMap::const_iterator runner = map->begin(); runner != map->end(); ++runner) {
512 *file << setprecision(8) << runner->first << "\t" << *(runner->second.first) << "\t" << *(runner->second.second) << endl;
513 }
514};
515
516/** Prints correlation (double, int) pairs to file.
517 * \param *file file to write to
518 * \param *map map to write
519 */
520void OutputCorrelationToPoint( ofstream * const file, const CorrelationToPointMap * const map )
521{
522 Info FunctionInfo(__func__);
523 *file << "BinStart\tAtom::x[i]-point.x[i]" << endl;
524 for (CorrelationToPointMap::const_iterator runner = map->begin(); runner != map->end(); ++runner) {
525 *file << runner->first;
526 for (int i=0;i<NDIM;i++)
527 *file << "\t" << setprecision(8) << (runner->second.first->at(i) - runner->second.second->at(i));
528 *file << endl;
529 }
530};
531
532/** Prints correlation (double, int) pairs to file.
533 * \param *file file to write to
534 * \param *map map to write
535 */
536void OutputCorrelationToSurface( ofstream * const file, const CorrelationToSurfaceMap * const map )
537{
538 Info FunctionInfo(__func__);
539 *file << "BinStart\tTriangle" << endl;
540 if (!map->empty())
541 for (CorrelationToSurfaceMap::const_iterator runner = map->begin(); runner != map->end(); ++runner) {
542 *file << setprecision(8) << runner->first << "\t";
543 *file << *(runner->second.first) << "\t";
544 *file << *(runner->second.second) << endl;
545 }
546};
547
Note: See TracBrowser for help on using the repository browser.