[0a4f7f] | 1 | /*
|
---|
| 2 | * Plane.cpp
|
---|
| 3 | *
|
---|
| 4 | * Created on: Apr 7, 2010
|
---|
| 5 | * Author: crueger
|
---|
| 6 | */
|
---|
| 7 |
|
---|
| 8 | #include "Plane.hpp"
|
---|
| 9 | #include "vector.hpp"
|
---|
[2247a9] | 10 | #include "defs.hpp"
|
---|
[0a4f7f] | 11 | #include "info.hpp"
|
---|
| 12 | #include "log.hpp"
|
---|
| 13 | #include "verbose.hpp"
|
---|
| 14 | #include "Helpers/Assert.hpp"
|
---|
[2247a9] | 15 | #include <cmath>
|
---|
[5589858] | 16 | #include "Line.hpp"
|
---|
[27ac00] | 17 | #include "Exceptions/MultipleSolutionsException.hpp"
|
---|
[0a4f7f] | 18 |
|
---|
| 19 | /**
|
---|
| 20 | * generates a plane from three given vectors defining three points in space
|
---|
| 21 | */
|
---|
[2cbe97] | 22 | Plane::Plane(const Vector &y1, const Vector &y2, const Vector &y3) throw(LinearDependenceException) :
|
---|
[0a4f7f] | 23 | normalVector(new Vector())
|
---|
| 24 | {
|
---|
[273382] | 25 | Vector x1 = y1 -y2;
|
---|
| 26 | Vector x2 = y3 -y2;
|
---|
| 27 | if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(x2)) < MYEPSILON)) {
|
---|
[0a4f7f] | 28 | throw LinearDependenceException(__FILE__,__LINE__);
|
---|
| 29 | }
|
---|
| 30 | // Log() << Verbose(4) << "relative, first plane coordinates:";
|
---|
| 31 | // x1.Output((ofstream *)&cout);
|
---|
| 32 | // Log() << Verbose(0) << endl;
|
---|
| 33 | // Log() << Verbose(4) << "second plane coordinates:";
|
---|
| 34 | // x2.Output((ofstream *)&cout);
|
---|
| 35 | // Log() << Verbose(0) << endl;
|
---|
| 36 |
|
---|
| 37 | normalVector->at(0) = (x1[1]*x2[2] - x1[2]*x2[1]);
|
---|
| 38 | normalVector->at(1) = (x1[2]*x2[0] - x1[0]*x2[2]);
|
---|
| 39 | normalVector->at(2) = (x1[0]*x2[1] - x1[1]*x2[0]);
|
---|
| 40 | normalVector->Normalize();
|
---|
| 41 |
|
---|
[273382] | 42 | offset=normalVector->ScalarProduct(y1);
|
---|
[0a4f7f] | 43 | }
|
---|
| 44 | /**
|
---|
[2cbe97] | 45 | * Constructs a plane from two direction vectors and a offset.
|
---|
[0a4f7f] | 46 | */
|
---|
[fa5a6a] | 47 | Plane::Plane(const Vector &y1, const Vector &y2, double _offset) throw(ZeroVectorException,LinearDependenceException) :
|
---|
[0a4f7f] | 48 | normalVector(new Vector()),
|
---|
| 49 | offset(_offset)
|
---|
| 50 | {
|
---|
[273382] | 51 | Vector x1 = y1;
|
---|
| 52 | Vector x2 = y2;
|
---|
[fa5a6a] | 53 | if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON)) {
|
---|
| 54 | throw ZeroVectorException(__FILE__,__LINE__);
|
---|
| 55 | }
|
---|
| 56 |
|
---|
| 57 | if((fabs(x1.Angle(x2)) < MYEPSILON)) {
|
---|
[0a4f7f] | 58 | throw LinearDependenceException(__FILE__,__LINE__);
|
---|
| 59 | }
|
---|
| 60 | // Log() << Verbose(4) << "relative, first plane coordinates:";
|
---|
| 61 | // x1.Output((ofstream *)&cout);
|
---|
| 62 | // Log() << Verbose(0) << endl;
|
---|
| 63 | // Log() << Verbose(4) << "second plane coordinates:";
|
---|
| 64 | // x2.Output((ofstream *)&cout);
|
---|
| 65 | // Log() << Verbose(0) << endl;
|
---|
| 66 |
|
---|
| 67 | normalVector->at(0) = (x1[1]*x2[2] - x1[2]*x2[1]);
|
---|
| 68 | normalVector->at(1) = (x1[2]*x2[0] - x1[0]*x2[2]);
|
---|
| 69 | normalVector->at(2) = (x1[0]*x2[1] - x1[1]*x2[0]);
|
---|
| 70 | normalVector->Normalize();
|
---|
| 71 | }
|
---|
| 72 |
|
---|
[2cbe97] | 73 | Plane::Plane(const Vector &_normalVector, double _offset) throw(ZeroVectorException):
|
---|
[0a4f7f] | 74 | normalVector(new Vector(_normalVector)),
|
---|
| 75 | offset(_offset)
|
---|
[72e7fa] | 76 | {
|
---|
[2cbe97] | 77 | if(normalVector->IsZero())
|
---|
| 78 | throw ZeroVectorException(__FILE__,__LINE__);
|
---|
[72e7fa] | 79 | double factor = 1/normalVector->Norm();
|
---|
| 80 | // normalize the plane parameters
|
---|
| 81 | (*normalVector)*=factor;
|
---|
| 82 | offset*=factor;
|
---|
| 83 | }
|
---|
[0a4f7f] | 84 |
|
---|
[2cbe97] | 85 | Plane::Plane(const Vector &_normalVector, const Vector &_offsetVector) throw(ZeroVectorException):
|
---|
[0a4f7f] | 86 | normalVector(new Vector(_normalVector))
|
---|
| 87 | {
|
---|
[2cbe97] | 88 | if(normalVector->IsZero()){
|
---|
| 89 | throw ZeroVectorException(__FILE__,__LINE__);
|
---|
| 90 | }
|
---|
[3cdd16] | 91 | normalVector->Normalize();
|
---|
[273382] | 92 | offset = normalVector->ScalarProduct(_offsetVector);
|
---|
[0a4f7f] | 93 | }
|
---|
| 94 |
|
---|
[d4c9ae] | 95 | /**
|
---|
| 96 | * copy constructor
|
---|
| 97 | */
|
---|
| 98 | Plane::Plane(const Plane& plane) :
|
---|
| 99 | normalVector(new Vector(*plane.normalVector)),
|
---|
| 100 | offset(plane.offset)
|
---|
| 101 | {}
|
---|
| 102 |
|
---|
| 103 |
|
---|
[0a4f7f] | 104 | Plane::~Plane()
|
---|
| 105 | {}
|
---|
| 106 |
|
---|
| 107 |
|
---|
[fa5a6a] | 108 | Vector Plane::getNormal() const{
|
---|
[0a4f7f] | 109 | return *normalVector;
|
---|
| 110 | }
|
---|
| 111 |
|
---|
[fa5a6a] | 112 | double Plane::getOffset() const{
|
---|
[0a4f7f] | 113 | return offset;
|
---|
| 114 | }
|
---|
| 115 |
|
---|
[45ef76] | 116 | Vector Plane::getOffsetVector() const {
|
---|
[72e7fa] | 117 | return getOffset()*getNormal();
|
---|
| 118 | }
|
---|
[c61c87] | 119 |
|
---|
[45ef76] | 120 | vector<Vector> Plane::getPointsOnPlane() const{
|
---|
[1829c4] | 121 | std::vector<Vector> res;
|
---|
[fa5a6a] | 122 | res.reserve(3);
|
---|
[1829c4] | 123 | // first point on the plane
|
---|
[fa5a6a] | 124 | res.push_back(getOffsetVector());
|
---|
| 125 | // get a vector that has direction of plane
|
---|
[c61c87] | 126 | Vector direction;
|
---|
[fa5a6a] | 127 | direction.GetOneNormalVector(getNormal());
|
---|
| 128 | res.push_back(res[0]+direction);
|
---|
| 129 | // get an orthogonal vector to direction and normal (has direction of plane)
|
---|
| 130 | direction.VectorProduct(getNormal());
|
---|
[c61c87] | 131 | direction.Normalize();
|
---|
[fa5a6a] | 132 | res.push_back(res[0] +direction);
|
---|
[c61c87] | 133 | return res;
|
---|
[1829c4] | 134 | }
|
---|
[c61c87] | 135 |
|
---|
[72e7fa] | 136 |
|
---|
[0a4f7f] | 137 | /** Calculates the intersection point between a line defined by \a *LineVector and \a *LineVector2 and a plane defined by \a *Normal and \a *PlaneOffset.
|
---|
| 138 | * According to [Bronstein] the vectorial plane equation is:
|
---|
| 139 | * -# \f$\stackrel{r}{\rightarrow} \cdot \stackrel{N}{\rightarrow} + D = 0\f$,
|
---|
| 140 | * where \f$\stackrel{r}{\rightarrow}\f$ is the vector to be testet, \f$\stackrel{N}{\rightarrow}\f$ is the plane's normal vector and
|
---|
| 141 | * \f$D = - \stackrel{a}{\rightarrow} \stackrel{N}{\rightarrow}\f$, the offset with respect to origin, if \f$\stackrel{a}{\rightarrow}\f$,
|
---|
| 142 | * is an offset vector onto the plane. The line is parametrized by \f$\stackrel{x}{\rightarrow} + k \stackrel{t}{\rightarrow}\f$, where
|
---|
| 143 | * \f$\stackrel{x}{\rightarrow}\f$ is the offset and \f$\stackrel{t}{\rightarrow}\f$ the directional vector (NOTE: No need to normalize
|
---|
| 144 | * the latter). Inserting the parametrized form into the plane equation and solving for \f$k\f$, which we insert then into the parametrization
|
---|
| 145 | * of the line yields the intersection point on the plane.
|
---|
| 146 | * \param *Origin first vector of line
|
---|
| 147 | * \param *LineVector second vector of line
|
---|
| 148 | * \return true - \a this contains intersection point on return, false - line is parallel to plane (even if in-plane)
|
---|
| 149 | */
|
---|
[27ac00] | 150 | Vector Plane::GetIntersection(const Line& line) const
|
---|
[0a4f7f] | 151 | {
|
---|
| 152 | Info FunctionInfo(__func__);
|
---|
| 153 | Vector res;
|
---|
| 154 |
|
---|
[27ac00] | 155 | double factor1 = getNormal().ScalarProduct(line.getDirection());
|
---|
| 156 | if(fabs(factor1)<MYEPSILON){
|
---|
| 157 | // the plane is parallel... under all circumstances this is bad luck
|
---|
| 158 | // we no have either no or infinite solutions
|
---|
| 159 | if(isContained(line.getOrigin())){
|
---|
| 160 | throw MultipleSolutionsException<Vector>(__FILE__,__LINE__,line.getOrigin());
|
---|
| 161 | }
|
---|
| 162 | else{
|
---|
| 163 | throw LinearDependenceException(__FILE__,__LINE__);
|
---|
| 164 | }
|
---|
[0a4f7f] | 165 | }
|
---|
| 166 |
|
---|
[27ac00] | 167 | double factor2 = getNormal().ScalarProduct(line.getOrigin());
|
---|
[0a4f7f] | 168 | double scaleFactor = (offset-factor2)/factor1;
|
---|
| 169 |
|
---|
[27ac00] | 170 | res = line.getOrigin() + scaleFactor * line.getDirection();
|
---|
[0a4f7f] | 171 |
|
---|
[27ac00] | 172 | // tests to make sure the resulting vector really is on plane and line
|
---|
| 173 | ASSERT(isContained(res),"Calculated line-Plane intersection does not lie on plane.");
|
---|
| 174 | ASSERT(line.isContained(res),"Calculated line-Plane intersection does not lie on line.");
|
---|
[0a4f7f] | 175 | return res;
|
---|
| 176 | };
|
---|
[2247a9] | 177 |
|
---|
[ccf826] | 178 | Vector Plane::mirrorVector(const Vector &rhs) const {
|
---|
| 179 | Vector helper = getVectorToPoint(rhs);
|
---|
| 180 | // substract twice the Vector to the plane
|
---|
| 181 | return rhs+2*helper;
|
---|
| 182 | }
|
---|
| 183 |
|
---|
[5589858] | 184 | Line Plane::getOrthogonalLine(const Vector &origin) const{
|
---|
| 185 | return Line(origin,getNormal());
|
---|
| 186 | }
|
---|
| 187 |
|
---|
[2247a9] | 188 | /************ Methods inherited from Space ****************/
|
---|
| 189 |
|
---|
[005e18] | 190 | double Plane::distance(const Vector &point) const{
|
---|
[2247a9] | 191 | double res = point.ScalarProduct(*normalVector)-offset;
|
---|
| 192 | return fabs(res);
|
---|
| 193 | }
|
---|
| 194 |
|
---|
[005e18] | 195 | Vector Plane::getClosestPoint(const Vector &point) const{
|
---|
[fa5a6a] | 196 | double factor = point.ScalarProduct(*normalVector)-offset;
|
---|
| 197 | if(fabs(factor) < MYEPSILON){
|
---|
[2247a9] | 198 | // the point itself lies on the plane
|
---|
| 199 | return point;
|
---|
| 200 | }
|
---|
[fa5a6a] | 201 | Vector difference = factor * (*normalVector);
|
---|
| 202 | return (point - difference);
|
---|
| 203 | }
|
---|
| 204 |
|
---|
| 205 | // Operators
|
---|
| 206 |
|
---|
| 207 | ostream &operator << (ostream &ost,const Plane &p){
|
---|
| 208 | ost << "<" << p.getNormal() << ";x> - " << p.getOffset() << "=0";
|
---|
| 209 | return ost;
|
---|
[2247a9] | 210 | }
|
---|