1 | /*
|
---|
2 | * Plane.cpp
|
---|
3 | *
|
---|
4 | * Created on: Apr 7, 2010
|
---|
5 | * Author: crueger
|
---|
6 | */
|
---|
7 |
|
---|
8 | #include "Plane.hpp"
|
---|
9 | #include "vector.hpp"
|
---|
10 | #include "defs.hpp"
|
---|
11 | #include "info.hpp"
|
---|
12 | #include "log.hpp"
|
---|
13 | #include "verbose.hpp"
|
---|
14 | #include "Helpers/Assert.hpp"
|
---|
15 | #include <cmath>
|
---|
16 | #include "Line.hpp"
|
---|
17 | #include "Exceptions/MultipleSolutionsException.hpp"
|
---|
18 |
|
---|
19 | /**
|
---|
20 | * generates a plane from three given vectors defining three points in space
|
---|
21 | */
|
---|
22 | Plane::Plane(const Vector &y1, const Vector &y2, const Vector &y3) throw(LinearDependenceException) :
|
---|
23 | normalVector(new Vector())
|
---|
24 | {
|
---|
25 | Vector x1 = y1 -y2;
|
---|
26 | Vector x2 = y3 -y2;
|
---|
27 | if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(x2)) < MYEPSILON)) {
|
---|
28 | throw LinearDependenceException(__FILE__,__LINE__);
|
---|
29 | }
|
---|
30 | // Log() << Verbose(4) << "relative, first plane coordinates:";
|
---|
31 | // x1.Output((ofstream *)&cout);
|
---|
32 | // Log() << Verbose(0) << endl;
|
---|
33 | // Log() << Verbose(4) << "second plane coordinates:";
|
---|
34 | // x2.Output((ofstream *)&cout);
|
---|
35 | // Log() << Verbose(0) << endl;
|
---|
36 |
|
---|
37 | normalVector->at(0) = (x1[1]*x2[2] - x1[2]*x2[1]);
|
---|
38 | normalVector->at(1) = (x1[2]*x2[0] - x1[0]*x2[2]);
|
---|
39 | normalVector->at(2) = (x1[0]*x2[1] - x1[1]*x2[0]);
|
---|
40 | normalVector->Normalize();
|
---|
41 |
|
---|
42 | offset=normalVector->ScalarProduct(y1);
|
---|
43 | }
|
---|
44 | /**
|
---|
45 | * Constructs a plane from two direction vectors and a offset.
|
---|
46 | */
|
---|
47 | Plane::Plane(const Vector &y1, const Vector &y2, double _offset) throw(ZeroVectorException,LinearDependenceException) :
|
---|
48 | normalVector(new Vector()),
|
---|
49 | offset(_offset)
|
---|
50 | {
|
---|
51 | Vector x1 = y1;
|
---|
52 | Vector x2 = y2;
|
---|
53 | if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON)) {
|
---|
54 | throw ZeroVectorException(__FILE__,__LINE__);
|
---|
55 | }
|
---|
56 |
|
---|
57 | if((fabs(x1.Angle(x2)) < MYEPSILON)) {
|
---|
58 | throw LinearDependenceException(__FILE__,__LINE__);
|
---|
59 | }
|
---|
60 | // Log() << Verbose(4) << "relative, first plane coordinates:";
|
---|
61 | // x1.Output((ofstream *)&cout);
|
---|
62 | // Log() << Verbose(0) << endl;
|
---|
63 | // Log() << Verbose(4) << "second plane coordinates:";
|
---|
64 | // x2.Output((ofstream *)&cout);
|
---|
65 | // Log() << Verbose(0) << endl;
|
---|
66 |
|
---|
67 | normalVector->at(0) = (x1[1]*x2[2] - x1[2]*x2[1]);
|
---|
68 | normalVector->at(1) = (x1[2]*x2[0] - x1[0]*x2[2]);
|
---|
69 | normalVector->at(2) = (x1[0]*x2[1] - x1[1]*x2[0]);
|
---|
70 | normalVector->Normalize();
|
---|
71 | }
|
---|
72 |
|
---|
73 | Plane::Plane(const Vector &_normalVector, double _offset) throw(ZeroVectorException):
|
---|
74 | normalVector(new Vector(_normalVector)),
|
---|
75 | offset(_offset)
|
---|
76 | {
|
---|
77 | if(normalVector->IsZero())
|
---|
78 | throw ZeroVectorException(__FILE__,__LINE__);
|
---|
79 | double factor = 1/normalVector->Norm();
|
---|
80 | // normalize the plane parameters
|
---|
81 | (*normalVector)*=factor;
|
---|
82 | offset*=factor;
|
---|
83 | }
|
---|
84 |
|
---|
85 | Plane::Plane(const Vector &_normalVector, const Vector &_offsetVector) throw(ZeroVectorException):
|
---|
86 | normalVector(new Vector(_normalVector))
|
---|
87 | {
|
---|
88 | if(normalVector->IsZero()){
|
---|
89 | throw ZeroVectorException(__FILE__,__LINE__);
|
---|
90 | }
|
---|
91 | normalVector->Normalize();
|
---|
92 | offset = normalVector->ScalarProduct(_offsetVector);
|
---|
93 | }
|
---|
94 |
|
---|
95 | /**
|
---|
96 | * copy constructor
|
---|
97 | */
|
---|
98 | Plane::Plane(const Plane& plane) :
|
---|
99 | normalVector(new Vector(*plane.normalVector)),
|
---|
100 | offset(plane.offset)
|
---|
101 | {}
|
---|
102 |
|
---|
103 |
|
---|
104 | Plane::~Plane()
|
---|
105 | {}
|
---|
106 |
|
---|
107 |
|
---|
108 | Vector Plane::getNormal() const{
|
---|
109 | return *normalVector;
|
---|
110 | }
|
---|
111 |
|
---|
112 | double Plane::getOffset() const{
|
---|
113 | return offset;
|
---|
114 | }
|
---|
115 |
|
---|
116 | Vector Plane::getOffsetVector() const {
|
---|
117 | return getOffset()*getNormal();
|
---|
118 | }
|
---|
119 |
|
---|
120 | vector<Vector> Plane::getPointsOnPlane() const{
|
---|
121 | std::vector<Vector> res;
|
---|
122 | res.reserve(3);
|
---|
123 | // first point on the plane
|
---|
124 | res.push_back(getOffsetVector());
|
---|
125 | // get a vector that has direction of plane
|
---|
126 | Vector direction;
|
---|
127 | direction.GetOneNormalVector(getNormal());
|
---|
128 | res.push_back(res[0]+direction);
|
---|
129 | // get an orthogonal vector to direction and normal (has direction of plane)
|
---|
130 | direction.VectorProduct(getNormal());
|
---|
131 | direction.Normalize();
|
---|
132 | res.push_back(res[0] +direction);
|
---|
133 | return res;
|
---|
134 | }
|
---|
135 |
|
---|
136 |
|
---|
137 | /** Calculates the intersection point between a line defined by \a *LineVector and \a *LineVector2 and a plane defined by \a *Normal and \a *PlaneOffset.
|
---|
138 | * According to [Bronstein] the vectorial plane equation is:
|
---|
139 | * -# \f$\stackrel{r}{\rightarrow} \cdot \stackrel{N}{\rightarrow} + D = 0\f$,
|
---|
140 | * where \f$\stackrel{r}{\rightarrow}\f$ is the vector to be testet, \f$\stackrel{N}{\rightarrow}\f$ is the plane's normal vector and
|
---|
141 | * \f$D = - \stackrel{a}{\rightarrow} \stackrel{N}{\rightarrow}\f$, the offset with respect to origin, if \f$\stackrel{a}{\rightarrow}\f$,
|
---|
142 | * is an offset vector onto the plane. The line is parametrized by \f$\stackrel{x}{\rightarrow} + k \stackrel{t}{\rightarrow}\f$, where
|
---|
143 | * \f$\stackrel{x}{\rightarrow}\f$ is the offset and \f$\stackrel{t}{\rightarrow}\f$ the directional vector (NOTE: No need to normalize
|
---|
144 | * the latter). Inserting the parametrized form into the plane equation and solving for \f$k\f$, which we insert then into the parametrization
|
---|
145 | * of the line yields the intersection point on the plane.
|
---|
146 | * \param *Origin first vector of line
|
---|
147 | * \param *LineVector second vector of line
|
---|
148 | * \return true - \a this contains intersection point on return, false - line is parallel to plane (even if in-plane)
|
---|
149 | */
|
---|
150 | Vector Plane::GetIntersection(const Line& line) const
|
---|
151 | {
|
---|
152 | Info FunctionInfo(__func__);
|
---|
153 | Vector res;
|
---|
154 |
|
---|
155 | double factor1 = getNormal().ScalarProduct(line.getDirection());
|
---|
156 | if(fabs(factor1)<MYEPSILON){
|
---|
157 | // the plane is parallel... under all circumstances this is bad luck
|
---|
158 | // we no have either no or infinite solutions
|
---|
159 | if(isContained(line.getOrigin())){
|
---|
160 | throw MultipleSolutionsException<Vector>(__FILE__,__LINE__,line.getOrigin());
|
---|
161 | }
|
---|
162 | else{
|
---|
163 | throw LinearDependenceException(__FILE__,__LINE__);
|
---|
164 | }
|
---|
165 | }
|
---|
166 |
|
---|
167 | double factor2 = getNormal().ScalarProduct(line.getOrigin());
|
---|
168 | double scaleFactor = (offset-factor2)/factor1;
|
---|
169 |
|
---|
170 | res = line.getOrigin() + scaleFactor * line.getDirection();
|
---|
171 |
|
---|
172 | // tests to make sure the resulting vector really is on plane and line
|
---|
173 | ASSERT(isContained(res),"Calculated line-Plane intersection does not lie on plane.");
|
---|
174 | ASSERT(line.isContained(res),"Calculated line-Plane intersection does not lie on line.");
|
---|
175 | return res;
|
---|
176 | };
|
---|
177 |
|
---|
178 | Vector Plane::mirrorVector(const Vector &rhs) const {
|
---|
179 | Vector helper = getVectorToPoint(rhs);
|
---|
180 | // substract twice the Vector to the plane
|
---|
181 | return rhs+2*helper;
|
---|
182 | }
|
---|
183 |
|
---|
184 | Line Plane::getOrthogonalLine(const Vector &origin) const{
|
---|
185 | return Line(origin,getNormal());
|
---|
186 | }
|
---|
187 |
|
---|
188 | /************ Methods inherited from Space ****************/
|
---|
189 |
|
---|
190 | double Plane::distance(const Vector &point) const{
|
---|
191 | double res = point.ScalarProduct(*normalVector)-offset;
|
---|
192 | return fabs(res);
|
---|
193 | }
|
---|
194 |
|
---|
195 | Vector Plane::getClosestPoint(const Vector &point) const{
|
---|
196 | double factor = point.ScalarProduct(*normalVector)-offset;
|
---|
197 | if(fabs(factor) < MYEPSILON){
|
---|
198 | // the point itself lies on the plane
|
---|
199 | return point;
|
---|
200 | }
|
---|
201 | Vector difference = factor * (*normalVector);
|
---|
202 | return (point - difference);
|
---|
203 | }
|
---|
204 |
|
---|
205 | // Operators
|
---|
206 |
|
---|
207 | ostream &operator << (ostream &ost,const Plane &p){
|
---|
208 | ost << "<" << p.getNormal() << ";x> - " << p.getOffset() << "=0";
|
---|
209 | return ost;
|
---|
210 | }
|
---|