source: src/Parser/PcpParser.cpp@ 4ac1aa

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 4ac1aa was 650ca8c, checked in by Frederik Heber <heber@…>, 15 years ago

FIX: PcpParser had wrong default values for testsuite cases, number orbitals are wrong, no defaults for NULL strings.

  • Variables in paths are all NULL as default, this has to be caught on output and default values given.
  • some default values were not consistent with testsuite cases (Simple_configuration/2).
  • PcpParser::save() - removed some commented-out sections.
  • new function PcpParser::CalculateOrbitals() - transfered from class molecule, acting now on vector<atom *>.
  • BUGFIX: PcpParser::OutputAtoms() - wrong index for ZtoCountMap used.
  • Property mode set to 100644
File size: 37.3 KB
Line 
1/*
2 * PcpParser.cpp
3 *
4 * Created on: 12.06.2010
5 * Author: heber
6 */
7
8#include <iostream>
9
10#include "atom.hpp"
11#include "config.hpp"
12#include "ConfigFileBuffer.hpp"
13#include "element.hpp"
14#include "Helpers/Assert.hpp"
15#include "log.hpp"
16#include "molecule.hpp"
17#include "PcpParser.hpp"
18#include "periodentafel.hpp"
19#include "ThermoStatContainer.hpp"
20#include "verbose.hpp"
21#include "World.hpp"
22
23/** Constructor of PcpParser.
24 *
25 */
26PcpParser::PcpParser()
27{
28 Parallelization.ProcPEGamma = 8;
29 Parallelization.ProcPEPsi = 1;
30
31 Paths.databasepath = NULL;
32 Paths.configpath = NULL;
33 Paths.configname = NULL;
34 Paths.mainname = NULL;
35 Paths.defaultpath = NULL;
36 Paths.pseudopotpath = NULL;
37
38 Switches.DoConstrainedMD = 0;
39 Switches.DoOutVis = 0;
40 Switches.DoOutMes = 1;
41 Switches.DoOutNICS = 0;
42 Switches.DoOutOrbitals = 0;
43 Switches.DoOutCurrent = 0;
44 Switches.DoFullCurrent = 0;
45 Switches.DoPerturbation = 0;
46 Switches.DoWannier = 0;
47
48 LocalizedOrbitals.CommonWannier = 0;
49 LocalizedOrbitals.SawtoothStart = 0.01;
50 LocalizedOrbitals.VectorPlane = 0;
51 LocalizedOrbitals.VectorCut = 0;
52 LocalizedOrbitals.UseAddGramSch = 1;
53 LocalizedOrbitals.Seed = 1;
54 LocalizedOrbitals.EpsWannier = 1e-7;
55
56 StepCounts.MaxMinStopStep = 1;
57 StepCounts.InitMaxMinStopStep = 1;
58 StepCounts.OutVisStep = 10;
59 StepCounts.OutSrcStep = 5;
60 StepCounts.MaxPsiStep = 0;
61 StepCounts.MaxOuterStep = 0;
62 StepCounts.MaxMinStep = 100;
63 StepCounts.RelEpsTotalEnergy = 1e-07;
64 StepCounts.RelEpsKineticEnergy = 1e-05;
65 StepCounts.MaxMinGapStopStep = 0;
66 StepCounts.MaxInitMinStep = 100;
67 StepCounts.InitRelEpsTotalEnergy = 1e-05;
68 StepCounts.InitRelEpsKineticEnergy = 0.0001;
69 StepCounts.InitMaxMinGapStopStep = 0;
70
71 PlaneWaveSpecifics.PsiType = 0;
72 PlaneWaveSpecifics.MaxPsiDouble = 0;
73 PlaneWaveSpecifics.PsiMaxNoUp = 0;
74 PlaneWaveSpecifics.PsiMaxNoDown = 0;
75 PlaneWaveSpecifics.ECut = 128;
76 PlaneWaveSpecifics.MaxLevel = 5;
77 PlaneWaveSpecifics.RiemannTensor = 0;
78 PlaneWaveSpecifics.LevRFactor = 0;
79 PlaneWaveSpecifics.RiemannLevel = 0;
80 PlaneWaveSpecifics.Lev0Factor = 2;
81 PlaneWaveSpecifics.RTActualUse = 0;
82 PlaneWaveSpecifics.AddPsis = 0;
83 PlaneWaveSpecifics.RCut = 20;
84 PlaneWaveSpecifics.PsiType = 0;
85
86 FastParsing = false;
87
88 Deltat = 0.01;
89 IsAngstroem = 1;
90 RelativeCoord = 0;
91 MaxTypes = 0;
92}
93
94/** Destructor of PcpParser.
95 *
96 */
97PcpParser::~PcpParser()
98{}
99
100void PcpParser::load(std::istream* file)
101{
102 if (file->fail()) {
103 DoeLog(1) && (eLog()<< Verbose(1) << "could not access given file" << endl);
104 return;
105 }
106
107 // ParseParameterFile
108 class ConfigFileBuffer *FileBuffer = new ConfigFileBuffer();
109 FileBuffer->InitFileBuffer(file);
110
111 /* Oeffne Hauptparameterdatei */
112 int di = 0;
113 double BoxLength[9];
114 string zeile;
115 string dummy;
116 int verbose = 0;
117
118 ParseThermostats(FileBuffer);
119
120 /* Namen einlesen */
121
122 // 1. parse in options
123 ParseForParameter(verbose,FileBuffer, "mainname", 0, 1, 1, string_type, (Paths.mainname), 1, critical);
124 ParseForParameter(verbose,FileBuffer, "defaultpath", 0, 1, 1, string_type, (Paths.defaultpath), 1, critical);
125 ParseForParameter(verbose,FileBuffer, "pseudopotpath", 0, 1, 1, string_type, (Paths.pseudopotpath), 1, critical);
126 ParseForParameter(verbose,FileBuffer,"ProcPEGamma", 0, 1, 1, int_type, &(Parallelization.ProcPEGamma), 1, critical);
127 ParseForParameter(verbose,FileBuffer,"ProcPEPsi", 0, 1, 1, int_type, &(Parallelization.ProcPEPsi), 1, critical);
128
129 if (!ParseForParameter(verbose,FileBuffer,"Seed", 0, 1, 1, int_type, &(LocalizedOrbitals.Seed), 1, optional))
130 LocalizedOrbitals.Seed = 1;
131
132 if(!ParseForParameter(verbose,FileBuffer,"DoOutOrbitals", 0, 1, 1, int_type, &(Switches.DoOutOrbitals), 1, optional)) {
133 Switches.DoOutOrbitals = 0;
134 } else {
135 if (Switches.DoOutOrbitals < 0) Switches.DoOutOrbitals = 0;
136 if (Switches.DoOutOrbitals > 1) Switches.DoOutOrbitals = 1;
137 }
138 ParseForParameter(verbose,FileBuffer,"DoOutVis", 0, 1, 1, int_type, &(Switches.DoOutVis), 1, critical);
139 if (Switches.DoOutVis < 0) Switches.DoOutVis = 0;
140 if (Switches.DoOutVis > 1) Switches.DoOutVis = 1;
141 if (!ParseForParameter(verbose,FileBuffer,"VectorPlane", 0, 1, 1, int_type, &(LocalizedOrbitals.VectorPlane), 1, optional))
142 LocalizedOrbitals.VectorPlane = -1;
143 if (!ParseForParameter(verbose,FileBuffer,"VectorCut", 0, 1, 1, double_type, &(LocalizedOrbitals.VectorCut), 1, optional))
144 LocalizedOrbitals.VectorCut = 0.;
145 ParseForParameter(verbose,FileBuffer,"DoOutMes", 0, 1, 1, int_type, &(Switches.DoOutMes), 1, critical);
146 if (Switches.DoOutMes < 0) Switches.DoOutMes = 0;
147 if (Switches.DoOutMes > 1) Switches.DoOutMes = 1;
148 if (!ParseForParameter(verbose,FileBuffer,"DoOutCurr", 0, 1, 1, int_type, &(Switches.DoOutCurrent), 1, optional))
149 Switches.DoOutCurrent = 0;
150 if (Switches.DoOutCurrent < 0) Switches.DoOutCurrent = 0;
151 if (Switches.DoOutCurrent > 1) Switches.DoOutCurrent = 1;
152 ParseForParameter(verbose,FileBuffer,"AddGramSch", 0, 1, 1, int_type, &(LocalizedOrbitals.UseAddGramSch), 1, critical);
153 if (LocalizedOrbitals.UseAddGramSch < 0) LocalizedOrbitals.UseAddGramSch = 0;
154 if (LocalizedOrbitals.UseAddGramSch > 2) LocalizedOrbitals.UseAddGramSch = 2;
155 if(!ParseForParameter(verbose,FileBuffer,"DoWannier", 0, 1, 1, int_type, &(Switches.DoWannier), 1, optional)) {
156 Switches.DoWannier = 0;
157 } else {
158 if (Switches.DoWannier < 0) Switches.DoWannier = 0;
159 if (Switches.DoWannier > 1) Switches.DoWannier = 1;
160 }
161 if(!ParseForParameter(verbose,FileBuffer,"CommonWannier", 0, 1, 1, int_type, &(LocalizedOrbitals.CommonWannier), 1, optional)) {
162 LocalizedOrbitals.CommonWannier = 0;
163 } else {
164 if (LocalizedOrbitals.CommonWannier < 0) LocalizedOrbitals.CommonWannier = 0;
165 if (LocalizedOrbitals.CommonWannier > 4) LocalizedOrbitals.CommonWannier = 4;
166 }
167 if(!ParseForParameter(verbose,FileBuffer,"SawtoothStart", 0, 1, 1, double_type, &(LocalizedOrbitals.SawtoothStart), 1, optional)) {
168 LocalizedOrbitals.SawtoothStart = 0.01;
169 } else {
170 if (LocalizedOrbitals.SawtoothStart < 0.) LocalizedOrbitals.SawtoothStart = 0.;
171 if (LocalizedOrbitals.SawtoothStart > 1.) LocalizedOrbitals.SawtoothStart = 1.;
172 }
173
174 if (ParseForParameter(verbose,FileBuffer,"DoConstrainedMD", 0, 1, 1, int_type, &(Switches.DoConstrainedMD), 1, optional))
175 if (Switches.DoConstrainedMD < 0)
176 Switches.DoConstrainedMD = 0;
177 ParseForParameter(verbose,FileBuffer,"MaxOuterStep", 0, 1, 1, int_type, &(StepCounts.MaxOuterStep), 1, critical);
178 if (!ParseForParameter(verbose,FileBuffer,"Deltat", 0, 1, 1, double_type, &(Deltat), 1, optional))
179 Deltat = 1;
180 ParseForParameter(verbose,FileBuffer,"OutVisStep", 0, 1, 1, int_type, &(StepCounts.OutVisStep), 1, optional);
181 ParseForParameter(verbose,FileBuffer,"OutSrcStep", 0, 1, 1, int_type, &(StepCounts.OutSrcStep), 1, optional);
182 ParseForParameter(verbose,FileBuffer,"TargetTemp", 0, 1, 1, double_type, &(World::getInstance().getThermostats()->TargetTemp), 1, optional);
183 //ParseForParameter(verbose,FileBuffer,"Thermostat", 0, 1, 1, int_type, &(ScaleTempStep), 1, optional);
184 if (!ParseForParameter(verbose,FileBuffer,"EpsWannier", 0, 1, 1, double_type, &(LocalizedOrbitals.EpsWannier), 1, optional))
185 LocalizedOrbitals.EpsWannier = 1e-8;
186
187 // stop conditions
188 //if (MaxOuterStep <= 0) MaxOuterStep = 1;
189 ParseForParameter(verbose,FileBuffer,"MaxPsiStep", 0, 1, 1, int_type, &(StepCounts.MaxPsiStep), 1, critical);
190 if (StepCounts.MaxPsiStep <= 0) StepCounts.MaxPsiStep = 3;
191
192 ParseForParameter(verbose,FileBuffer,"MaxMinStep", 0, 1, 1, int_type, &(StepCounts.MaxMinStep), 1, critical);
193 ParseForParameter(verbose,FileBuffer,"RelEpsTotalE", 0, 1, 1, double_type, &(StepCounts.RelEpsTotalEnergy), 1, critical);
194 ParseForParameter(verbose,FileBuffer,"RelEpsKineticE", 0, 1, 1, double_type, &(StepCounts.RelEpsKineticEnergy), 1, critical);
195 ParseForParameter(verbose,FileBuffer,"MaxMinStopStep", 0, 1, 1, int_type, &(StepCounts.MaxMinStopStep), 1, critical);
196 ParseForParameter(verbose,FileBuffer,"MaxMinGapStopStep", 0, 1, 1, int_type, &(StepCounts.MaxMinGapStopStep), 1, critical);
197 if (StepCounts.MaxMinStep <= 0) StepCounts.MaxMinStep = StepCounts.MaxPsiStep;
198 if (StepCounts.MaxMinStopStep < 1) StepCounts.MaxMinStopStep = 1;
199 if (StepCounts.MaxMinGapStopStep < 1) StepCounts.MaxMinGapStopStep = 1;
200
201 ParseForParameter(verbose,FileBuffer,"MaxInitMinStep", 0, 1, 1, int_type, &(StepCounts.MaxInitMinStep), 1, critical);
202 ParseForParameter(verbose,FileBuffer,"InitRelEpsTotalE", 0, 1, 1, double_type, &(StepCounts.InitRelEpsTotalEnergy), 1, critical);
203 ParseForParameter(verbose,FileBuffer,"InitRelEpsKineticE", 0, 1, 1, double_type, &(StepCounts.InitRelEpsKineticEnergy), 1, critical);
204 ParseForParameter(verbose,FileBuffer,"InitMaxMinStopStep", 0, 1, 1, int_type, &(StepCounts.InitMaxMinStopStep), 1, critical);
205 ParseForParameter(verbose,FileBuffer,"InitMaxMinGapStopStep", 0, 1, 1, int_type, &(StepCounts.InitMaxMinGapStopStep), 1, critical);
206 if (StepCounts.MaxInitMinStep <= 0) StepCounts.MaxInitMinStep = StepCounts.MaxPsiStep;
207 if (StepCounts.InitMaxMinStopStep < 1) StepCounts.InitMaxMinStopStep = 1;
208 if (StepCounts.InitMaxMinGapStopStep < 1) StepCounts.InitMaxMinGapStopStep = 1;
209
210 // Unit cell and magnetic field
211 ParseForParameter(verbose,FileBuffer, "BoxLength", 0, 3, 3, lower_trigrid, BoxLength, 1, critical); /* Lattice->RealBasis */
212 double * const cell_size = World::getInstance().getDomain();
213 cell_size[0] = BoxLength[0];
214 cell_size[1] = BoxLength[3];
215 cell_size[2] = BoxLength[4];
216 cell_size[3] = BoxLength[6];
217 cell_size[4] = BoxLength[7];
218 cell_size[5] = BoxLength[8];
219 //if (1) fprintf(stderr,"\n");
220
221 ParseForParameter(verbose,FileBuffer,"DoPerturbation", 0, 1, 1, int_type, &(Switches.DoPerturbation), 1, optional);
222 ParseForParameter(verbose,FileBuffer,"DoOutNICS", 0, 1, 1, int_type, &(Switches.DoOutNICS), 1, optional);
223 if (!ParseForParameter(verbose,FileBuffer,"DoFullCurrent", 0, 1, 1, int_type, &(Switches.DoFullCurrent), 1, optional))
224 Switches.DoFullCurrent = 0;
225 if (Switches.DoFullCurrent < 0) Switches.DoFullCurrent = 0;
226 if (Switches.DoFullCurrent > 2) Switches.DoFullCurrent = 2;
227 if (Switches.DoOutNICS < 0) Switches.DoOutNICS = 0;
228 if (Switches.DoOutNICS > 2) Switches.DoOutNICS = 2;
229 if (Switches.DoPerturbation == 0) {
230 Switches.DoFullCurrent = 0;
231 Switches.DoOutNICS = 0;
232 }
233
234 ParseForParameter(verbose,FileBuffer,"ECut", 0, 1, 1, double_type, &(PlaneWaveSpecifics.ECut), 1, critical);
235 ParseForParameter(verbose,FileBuffer,"MaxLevel", 0, 1, 1, int_type, &(PlaneWaveSpecifics.MaxLevel), 1, critical);
236 ParseForParameter(verbose,FileBuffer,"Level0Factor", 0, 1, 1, int_type, &(PlaneWaveSpecifics.Lev0Factor), 1, critical);
237 if (PlaneWaveSpecifics.Lev0Factor < 2) {
238 PlaneWaveSpecifics.Lev0Factor = 2;
239 }
240 ParseForParameter(verbose,FileBuffer,"RiemannTensor", 0, 1, 1, int_type, &di, 1, critical);
241 if (di >= 0 && di < 2) {
242 PlaneWaveSpecifics.RiemannTensor = di;
243 } else {
244 cerr << "0 <= RiemanTensor < 2: 0 UseNotRT, 1 UseRT" << endl;
245 exit(1);
246 }
247 switch (PlaneWaveSpecifics.RiemannTensor) {
248 case 0: //UseNoRT
249 if (PlaneWaveSpecifics.MaxLevel < 2) {
250 PlaneWaveSpecifics.MaxLevel = 2;
251 }
252 PlaneWaveSpecifics.LevRFactor = 2;
253 PlaneWaveSpecifics.RTActualUse = 0;
254 break;
255 case 1: // UseRT
256 if (PlaneWaveSpecifics.MaxLevel < 3) {
257 PlaneWaveSpecifics.MaxLevel = 3;
258 }
259 ParseForParameter(verbose,FileBuffer,"RiemannLevel", 0, 1, 1, int_type, &(PlaneWaveSpecifics.RiemannLevel), 1, critical);
260 if (PlaneWaveSpecifics.RiemannLevel < 2) {
261 PlaneWaveSpecifics.RiemannLevel = 2;
262 }
263 if (PlaneWaveSpecifics.RiemannLevel > PlaneWaveSpecifics.MaxLevel-1) {
264 PlaneWaveSpecifics.RiemannLevel = PlaneWaveSpecifics.MaxLevel-1;
265 }
266 ParseForParameter(verbose,FileBuffer,"LevRFactor", 0, 1, 1, int_type, &(PlaneWaveSpecifics.LevRFactor), 1, critical);
267 if (PlaneWaveSpecifics.LevRFactor < 2) {
268 PlaneWaveSpecifics.LevRFactor = 2;
269 }
270 PlaneWaveSpecifics.Lev0Factor = 2;
271 PlaneWaveSpecifics.RTActualUse = 2;
272 break;
273 }
274 ParseForParameter(verbose,FileBuffer,"PsiType", 0, 1, 1, int_type, &di, 1, critical);
275 if (di >= 0 && di < 2) {
276 PlaneWaveSpecifics.PsiType = di;
277 } else {
278 cerr << "0 <= PsiType < 2: 0 UseSpinDouble, 1 UseSpinUpDown" << endl;
279 exit(1);
280 }
281 switch (PlaneWaveSpecifics.PsiType) {
282 case 0: // SpinDouble
283 ParseForParameter(verbose,FileBuffer,"MaxPsiDouble", 0, 1, 1, int_type, &(PlaneWaveSpecifics.MaxPsiDouble), 1, critical);
284 ParseForParameter(verbose,FileBuffer,"AddPsis", 0, 1, 1, int_type, &(PlaneWaveSpecifics.AddPsis), 1, optional);
285 break;
286 case 1: // SpinUpDown
287 if (Parallelization.ProcPEGamma % 2) Parallelization.ProcPEGamma*=2;
288 ParseForParameter(verbose,FileBuffer,"PsiMaxNoUp", 0, 1, 1, int_type, &(PlaneWaveSpecifics.PsiMaxNoUp), 1, critical);
289 ParseForParameter(verbose,FileBuffer,"PsiMaxNoDown", 0, 1, 1, int_type, &(PlaneWaveSpecifics.PsiMaxNoDown), 1, critical);
290 ParseForParameter(verbose,FileBuffer,"AddPsis", 0, 1, 1, int_type, &(PlaneWaveSpecifics.AddPsis), 1, optional);
291 break;
292 }
293
294 // IonsInitRead
295
296 ParseForParameter(verbose,FileBuffer,"RCut", 0, 1, 1, double_type, &(PlaneWaveSpecifics.RCut), 1, critical);
297 ParseForParameter(verbose,FileBuffer,"IsAngstroem", 0, 1, 1, int_type, &(IsAngstroem), 1, critical);
298 ParseForParameter(verbose,FileBuffer,"MaxTypes", 0, 1, 1, int_type, &(MaxTypes), 1, critical);
299 if (!ParseForParameter(verbose,FileBuffer,"RelativeCoord", 0, 1, 1, int_type, &(RelativeCoord) , 1, optional))
300 RelativeCoord = 0;
301 if (!ParseForParameter(verbose,FileBuffer,"StructOpt", 0, 1, 1, int_type, &(StructOpt), 1, optional))
302 StructOpt = 0;
303
304 // 3. parse the molecule in
305 molecule *mol = World::getInstance().createMolecule();
306 LoadMolecule(mol, FileBuffer, World::getInstance().getPeriode(), FastParsing);
307 //mol->SetNameFromFilename(filename);
308 mol->ActiveFlag = true;
309 //MolList->insert(mol);
310
311 // 4. dissect the molecule into connected subgraphs
312 // don't do this here ...
313 //MolList->DissectMoleculeIntoConnectedSubgraphs(mol,this);
314 //delete(mol);
315
316 delete(FileBuffer);
317}
318
319/** Saves the World into a PCP config file.
320 * \param *file output stream to save to
321 */
322void PcpParser::save(std::ostream* file)
323{
324 const double * const cell_size = World::getInstance().getDomain();
325 class ThermoStatContainer *Thermostats = World::getInstance().getThermostats();
326 if (!file->fail()) {
327 // calculate number of Psis
328 vector<atom *> allatoms = World::getInstance().getAllAtoms();
329 CalculateOrbitals(allatoms);
330 *file << "# ParallelCarParinello - main configuration file - created with molecuilder" << endl;
331 *file << endl;
332 if (Paths.mainname != NULL)
333 *file << "mainname\t" << Paths.mainname << "\t# programm name (for runtime files)" << endl;
334 else
335 *file << "mainname\tpcp\t# programm name (for runtime files)" << endl;
336 if (Paths.defaultpath != NULL)
337 *file << "defaultpath\t" << Paths.defaultpath << "\t# where to put files during runtime" << endl;
338 else
339 *file << "defaultpath\tnot specified\t# where to put files during runtime" << endl;
340 if (Paths.pseudopotpath != NULL)
341 *file << "pseudopotpath\t" << Paths.pseudopotpath << "\t# where to find pseudopotentials" << endl;
342 else
343 *file << "pseudopotpath\tnot specified\t# where to find pseudopotentials" << endl;
344 *file << endl;
345 *file << "ProcPEGamma\t" << Parallelization.ProcPEGamma << "\t# for parallel computing: share constants" << endl;
346 *file << "ProcPEPsi\t" << Parallelization.ProcPEPsi << "\t# for parallel computing: share wave functions" << endl;
347 *file << "DoOutVis\t" << Switches.DoOutVis << "\t# Output data for OpenDX" << endl;
348 *file << "DoOutMes\t" << Switches.DoOutMes << "\t# Output data for measurements" << endl;
349 *file << "DoOutOrbitals\t" << Switches.DoOutOrbitals << "\t# Output all Orbitals" << endl;
350 *file << "DoOutCurr\t" << Switches.DoOutCurrent << "\t# Ouput current density for OpenDx" << endl;
351 *file << "DoOutNICS\t" << Switches.DoOutNICS << "\t# Output Nucleus independent current shieldings" << endl;
352 *file << "DoPerturbation\t" << Switches.DoPerturbation << "\t# Do perturbation calculate and determine susceptibility and shielding" << endl;
353 *file << "DoFullCurrent\t" << Switches.DoFullCurrent << "\t# Do full perturbation" << endl;
354 *file << "DoConstrainedMD\t" << Switches.DoConstrainedMD << "\t# Do perform a constrained (>0, relating to current MD step) instead of unconstrained (0) MD" << endl;
355 ASSERT(Thermostats != NULL, "PcpParser::save() - Thermostats not initialized!");
356 ASSERT(Thermostats->ThermostatNames != NULL, "PcpParser::save() - Thermostats not initialized!");
357 *file << "Thermostat\t" << Thermostats->ThermostatNames[Thermostats->Thermostat] << "\t";
358 switch(Thermostats->Thermostat) {
359 default:
360 case None:
361 break;
362 case Woodcock:
363 *file << Thermostats->ScaleTempStep;
364 break;
365 case Gaussian:
366 *file << Thermostats->ScaleTempStep;
367 break;
368 case Langevin:
369 *file << Thermostats->TempFrequency << "\t" << Thermostats->alpha;
370 break;
371 case Berendsen:
372 *file << Thermostats->TempFrequency;
373 break;
374 case NoseHoover:
375 *file << Thermostats->HooverMass;
376 break;
377 };
378 *file << "\t# Which Thermostat and its parameters to use in MD case." << endl;
379 *file << "CommonWannier\t" << LocalizedOrbitals.CommonWannier << "\t# Put virtual centers at indivual orbits, all common, merged by variance, to grid point, to cell center" << endl;
380 *file << "SawtoothStart\t" << LocalizedOrbitals.SawtoothStart << "\t# Absolute value for smooth transition at cell border " << endl;
381 *file << "VectorPlane\t" << LocalizedOrbitals.VectorPlane << "\t# Cut plane axis (x, y or z: 0,1,2) for two-dim current vector plot" << endl;
382 *file << "VectorCut\t" << LocalizedOrbitals.VectorCut << "\t# Cut plane axis value" << endl;
383 *file << "AddGramSch\t" << LocalizedOrbitals.UseAddGramSch << "\t# Additional GramSchmidtOrtogonalization to be safe" << endl;
384 *file << "Seed\t\t" << LocalizedOrbitals.Seed << "\t# initial value for random seed for Psi coefficients" << endl;
385 *file << endl;
386 *file << "MaxOuterStep\t" << StepCounts.MaxOuterStep << "\t# number of MolecularDynamics/Structure optimization steps" << endl;
387 *file << "Deltat\t" << Deltat << "\t# time per MD step" << endl;
388 *file << "OutVisStep\t" << StepCounts.OutVisStep << "\t# Output visual data every ...th step" << endl;
389 *file << "OutSrcStep\t" << StepCounts.OutSrcStep << "\t# Output \"restart\" data every ..th step" << endl;
390 *file << "TargetTemp\t" << Thermostats->TargetTemp << "\t# Target temperature" << endl;
391 *file << "MaxPsiStep\t" << StepCounts.MaxPsiStep << "\t# number of Minimisation steps per state (0 - default)" << endl;
392 *file << "EpsWannier\t" << LocalizedOrbitals.EpsWannier << "\t# tolerance value for spread minimisation of orbitals" << endl;
393 *file << endl;
394 *file << "# Values specifying when to stop" << endl;
395 *file << "MaxMinStep\t" << StepCounts.MaxMinStep << "\t# Maximum number of steps" << endl;
396 *file << "RelEpsTotalE\t" << StepCounts.RelEpsTotalEnergy << "\t# relative change in total energy" << endl;
397 *file << "RelEpsKineticE\t" << StepCounts.RelEpsKineticEnergy << "\t# relative change in kinetic energy" << endl;
398 *file << "MaxMinStopStep\t" << StepCounts.MaxMinStopStep << "\t# check every ..th steps" << endl;
399 *file << "MaxMinGapStopStep\t" << StepCounts.MaxMinGapStopStep << "\t# check every ..th steps" << endl;
400 *file << endl;
401 *file << "# Values specifying when to stop for INIT, otherwise same as above" << endl;
402 *file << "MaxInitMinStep\t" << StepCounts.MaxInitMinStep << "\t# Maximum number of steps" << endl;
403 *file << "InitRelEpsTotalE\t" << StepCounts.InitRelEpsTotalEnergy << "\t# relative change in total energy" << endl;
404 *file << "InitRelEpsKineticE\t" << StepCounts.InitRelEpsKineticEnergy << "\t# relative change in kinetic energy" << endl;
405 *file << "InitMaxMinStopStep\t" << StepCounts.InitMaxMinStopStep << "\t# check every ..th steps" << endl;
406 *file << "InitMaxMinGapStopStep\t" << StepCounts.InitMaxMinGapStopStep << "\t# check every ..th steps" << endl;
407 *file << endl;
408 *file << "BoxLength\t\t\t# (Length of a unit cell)" << endl;
409 *file << cell_size[0] << "\t" << endl;
410 *file << cell_size[1] << "\t" << cell_size[2] << "\t" << endl;
411 *file << cell_size[3] << "\t" << cell_size[4] << "\t" << cell_size[5] << "\t" << endl;
412 // FIXME
413 *file << endl;
414 *file << "ECut\t\t" << PlaneWaveSpecifics.ECut << "\t# energy cutoff for discretization in Hartrees" << endl;
415 *file << "MaxLevel\t" << PlaneWaveSpecifics.MaxLevel << "\t# number of different levels in the code, >=2" << endl;
416 *file << "Level0Factor\t" << PlaneWaveSpecifics.Lev0Factor << "\t# factor by which node number increases from S to 0 level" << endl;
417 *file << "RiemannTensor\t" << PlaneWaveSpecifics.RiemannTensor << "\t# (Use metric)" << endl;
418 switch (PlaneWaveSpecifics.RiemannTensor) {
419 case 0: //UseNoRT
420 break;
421 case 1: // UseRT
422 *file << "RiemannLevel\t" << PlaneWaveSpecifics.RiemannLevel << "\t# Number of Riemann Levels" << endl;
423 *file << "LevRFactor\t" << PlaneWaveSpecifics.LevRFactor << "\t# factor by which node number increases from 0 to R level from" << endl;
424 break;
425 }
426 *file << "PsiType\t\t" << PlaneWaveSpecifics.PsiType << "\t# 0 - doubly occupied, 1 - SpinUp,SpinDown" << endl;
427 *file << "MaxPsiDouble\t" << PlaneWaveSpecifics.MaxPsiDouble << "\t# here: specifying both maximum number of SpinUp- and -Down-states" << endl;
428 *file << "PsiMaxNoUp\t" << PlaneWaveSpecifics.PsiMaxNoUp << "\t# here: specifying maximum number of SpinUp-states" << endl;
429 *file << "PsiMaxNoDown\t" << PlaneWaveSpecifics.PsiMaxNoDown << "\t# here: specifying maximum number of SpinDown-states" << endl;
430 *file << "AddPsis\t\t" << PlaneWaveSpecifics.AddPsis << "\t# Additional unoccupied Psis for bandgap determination" << endl;
431 *file << endl;
432 *file << "RCut\t\t" << PlaneWaveSpecifics.RCut << "\t# R-cut for the ewald summation" << endl;
433 *file << "StructOpt\t" << StructOpt << "\t# Do structure optimization beforehand" << endl;
434 *file << "IsAngstroem\t" << IsAngstroem << "\t# 0 - Bohr, 1 - Angstroem" << endl;
435 *file << "RelativeCoord\t" << RelativeCoord << "\t# whether ion coordinates are relative (1) or absolute (0)" << endl;
436 map<int, int> ZtoIndexMap;
437 OutputElements(file, allatoms, ZtoIndexMap);
438 OutputAtoms(file, allatoms, ZtoIndexMap);
439 } else {
440 DoeLog(1) && (eLog()<< Verbose(1) << "Cannot open output file." << endl);
441 }
442}
443
444
445/** Counts necessary number of valence electrons and returns number and SpinType.
446 * \param &allatoms all atoms to store away
447 */
448void PcpParser::CalculateOrbitals(vector<atom *> &allatoms)
449{
450 PlaneWaveSpecifics.MaxPsiDouble = PlaneWaveSpecifics.PsiMaxNoDown = PlaneWaveSpecifics.PsiMaxNoUp = PlaneWaveSpecifics.PsiType = 0;
451 for (vector<atom *>::iterator runner = allatoms.begin(); runner != allatoms.end(); ++runner) {
452 PlaneWaveSpecifics.MaxPsiDouble += (*runner)->type->Valence;
453 }
454 cout << PlaneWaveSpecifics.MaxPsiDouble << endl;
455 PlaneWaveSpecifics.PsiMaxNoDown = PlaneWaveSpecifics.MaxPsiDouble/2 + (PlaneWaveSpecifics.MaxPsiDouble % 2);
456 PlaneWaveSpecifics.PsiMaxNoUp = PlaneWaveSpecifics.MaxPsiDouble/2;
457 PlaneWaveSpecifics.MaxPsiDouble /= 2;
458 PlaneWaveSpecifics.PsiType = (PlaneWaveSpecifics.PsiMaxNoDown == PlaneWaveSpecifics.PsiMaxNoUp) ? 0 : 1;
459 if ((PlaneWaveSpecifics.PsiType == 1) && (Parallelization.ProcPEPsi < 2) && ((PlaneWaveSpecifics.PsiMaxNoDown != 1) || (PlaneWaveSpecifics.PsiMaxNoUp != 0))) {
460 Parallelization.ProcPEGamma /= 2;
461 Parallelization.ProcPEPsi *= 2;
462 } else {
463 Parallelization.ProcPEGamma *= Parallelization.ProcPEPsi;
464 Parallelization.ProcPEPsi = 1;
465 }
466 cout << PlaneWaveSpecifics.PsiMaxNoDown << ">" << PlaneWaveSpecifics.PsiMaxNoUp << endl;
467 if (PlaneWaveSpecifics.PsiMaxNoDown > PlaneWaveSpecifics.PsiMaxNoUp) {
468 StepCounts.InitMaxMinStopStep = StepCounts.MaxMinStopStep = PlaneWaveSpecifics.PsiMaxNoDown;
469 cout << PlaneWaveSpecifics.PsiMaxNoDown << " " << StepCounts.InitMaxMinStopStep << endl;
470 } else {
471 StepCounts.InitMaxMinStopStep = StepCounts.MaxMinStopStep = PlaneWaveSpecifics.PsiMaxNoUp;
472 cout << PlaneWaveSpecifics.PsiMaxNoUp << " " << StepCounts.InitMaxMinStopStep << endl;
473 }
474};
475
476/** Prints MaxTypes and list of elements to strea,
477 * \param *file output stream
478 * \param &allatoms vector of all atoms in the system, such as by World::getAllAtoms()
479 * \param &ZtoIndexMap map of which atoms belong to which ion number
480 */
481void PcpParser::OutputElements(ostream *file, vector<atom *> &allatoms, map<int, int> &ZtoIndexMap)
482{
483 map<int, int> PresentElements;
484 pair < map<int, int>::iterator, bool > Inserter;
485 // insert all found elements into the map
486 for (vector<atom *>::iterator AtomRunner = allatoms.begin();AtomRunner != allatoms.end();++AtomRunner) {
487 Inserter = PresentElements.insert(pair<int, int>((*AtomRunner)->type->Z, 1));
488 if (!Inserter.second) // increase if present
489 Inserter.first->second += 1;
490 }
491 // print total element count
492 *file << "MaxTypes\t" << PresentElements.size() << "\t# maximum number of different ion types" << endl;
493 *file << endl;
494 // print element list
495 *file << "# Ion type data (PP = PseudoPotential, Z = atomic number)" << endl;
496 *file << "#Ion_TypeNr.\tAmount\tZ\tRGauss\tL_Max(PP)L_Loc(PP)IonMass\t# chemical name, symbol" << endl;
497 // elements are due to map sorted by Z value automatically, hence just count through them
498 int counter = 1;
499 for(map<int, int>::const_iterator iter=PresentElements.begin(); iter!=PresentElements.end();++iter) {
500 const element * const elemental = World::getInstance().getPeriode()->FindElement(iter->first);
501 ZtoIndexMap.insert( pair<int,int> (iter->first, counter) );
502 *file << "Ion_Type" << counter++ << "\t" << iter->second << "\t" << elemental->Z << "\t1.0\t3\t3\t" << fixed << setprecision(11) << showpoint << elemental->mass << "\t" << elemental->name << "\t" << elemental->symbol <<endl;
503 }
504}
505
506/** Output all atoms one per line.
507 * \param *file output stream
508 * \param &allatoms vector of all atoms in the system, such as by World::getAllAtoms()
509 * \param &ZtoIndexMap map of which atoms belong to which ion number
510 */
511void PcpParser::OutputAtoms(ostream *file, vector<atom *> &allatoms, map<int, int> &ZtoIndexMap)
512{
513 *file << "#Ion_TypeNr._Nr.R[0] R[1] R[2] MoveType (0 MoveIon, 1 FixedIon)" << endl;
514 map<int, int> ZtoCountMap;
515 pair < map<int, int>::iterator, bool > Inserter;
516 int nr = 0;
517 for (vector<atom *>::iterator AtomRunner = allatoms.begin();AtomRunner != allatoms.end();++AtomRunner) {
518 Inserter = ZtoCountMap.insert( pair<int, int>((*AtomRunner)->type->Z, 1) );
519 if (!Inserter.second)
520 Inserter.first->second += 1;
521 const int Z = (*AtomRunner)->type->Z;
522 *file << "Ion_Type" << ZtoIndexMap[Z] << "_" << ZtoCountMap[Z] << "\t" << fixed << setprecision(9) << showpoint;
523 *file << (*AtomRunner)->x[0] << "\t" << (*AtomRunner)->x[1] << "\t" << (*AtomRunner)->x[2];
524 *file << "\t" << (*AtomRunner)->FixedIon;
525 if ((*AtomRunner)->v.Norm() > MYEPSILON)
526 *file << "\t" << scientific << setprecision(6) << (*AtomRunner)->v[0] << "\t" << (*AtomRunner)->v[1] << "\t" << (*AtomRunner)->v[2] << "\t";
527 *file << " # molecule nr " << nr++ << endl;
528 }
529}
530
531/** Reading of Thermostat related values from parameter file.
532 * \param *fb file buffer containing the config file
533 */
534void PcpParser::ParseThermostats(class ConfigFileBuffer * const fb)
535{
536 char * const thermo = new char[12];
537 const int verbose = 0;
538 class ThermoStatContainer *Thermostats = World::getInstance().getThermostats();
539
540 // read desired Thermostat from file along with needed additional parameters
541 if (ParseForParameter(verbose,fb,"Thermostat", 0, 1, 1, string_type, thermo, 1, optional)) {
542 if (strcmp(thermo, Thermostats->ThermostatNames[0]) == 0) { // None
543 if (Thermostats->ThermostatImplemented[0] == 1) {
544 Thermostats->Thermostat = None;
545 } else {
546 DoLog(1) && (Log() << Verbose(1) << "Warning: " << Thermostats->ThermostatNames[0] << " thermostat not implemented, falling back to None." << endl);
547 Thermostats->Thermostat = None;
548 }
549 } else if (strcmp(thermo, Thermostats->ThermostatNames[1]) == 0) { // Woodcock
550 if (Thermostats->ThermostatImplemented[1] == 1) {
551 Thermostats->Thermostat = Woodcock;
552 ParseForParameter(verbose,fb,"Thermostat", 0, 2, 1, int_type, &Thermostats->ScaleTempStep, 1, critical); // read scaling frequency
553 } else {
554 DoLog(1) && (Log() << Verbose(1) << "Warning: " << Thermostats->ThermostatNames[0] << " thermostat not implemented, falling back to None." << endl);
555 Thermostats->Thermostat = None;
556 }
557 } else if (strcmp(thermo, Thermostats->ThermostatNames[2]) == 0) { // Gaussian
558 if (Thermostats->ThermostatImplemented[2] == 1) {
559 Thermostats->Thermostat = Gaussian;
560 ParseForParameter(verbose,fb,"Thermostat", 0, 2, 1, int_type, &Thermostats->ScaleTempStep, 1, critical); // read collision rate
561 } else {
562 DoLog(1) && (Log() << Verbose(1) << "Warning: " << Thermostats->ThermostatNames[0] << " thermostat not implemented, falling back to None." << endl);
563 Thermostats->Thermostat = None;
564 }
565 } else if (strcmp(thermo, Thermostats->ThermostatNames[3]) == 0) { // Langevin
566 if (Thermostats->ThermostatImplemented[3] == 1) {
567 Thermostats->Thermostat = Langevin;
568 ParseForParameter(verbose,fb,"Thermostat", 0, 2, 1, double_type, &Thermostats->TempFrequency, 1, critical); // read gamma
569 if (ParseForParameter(verbose,fb,"Thermostat", 0, 3, 1, double_type, &Thermostats->alpha, 1, optional)) {
570 DoLog(2) && (Log() << Verbose(2) << "Extended Stochastic Thermostat detected with interpolation coefficient " << Thermostats->alpha << "." << endl);
571 } else {
572 Thermostats->alpha = 1.;
573 }
574 } else {
575 DoLog(1) && (Log() << Verbose(1) << "Warning: " << Thermostats->ThermostatNames[0] << " thermostat not implemented, falling back to None." << endl);
576 Thermostats->Thermostat = None;
577 }
578 } else if (strcmp(thermo, Thermostats->ThermostatNames[4]) == 0) { // Berendsen
579 if (Thermostats->ThermostatImplemented[4] == 1) {
580 Thermostats->Thermostat = Berendsen;
581 ParseForParameter(verbose,fb,"Thermostat", 0, 2, 1, double_type, &Thermostats->TempFrequency, 1, critical); // read \tau_T
582 } else {
583 DoLog(1) && (Log() << Verbose(1) << "Warning: " << Thermostats->ThermostatNames[0] << " thermostat not implemented, falling back to None." << endl);
584 Thermostats->Thermostat = None;
585 }
586 } else if (strcmp(thermo, Thermostats->ThermostatNames[5]) == 0) { // Nose-Hoover
587 if (Thermostats->ThermostatImplemented[5] == 1) {
588 Thermostats->Thermostat = NoseHoover;
589 ParseForParameter(verbose,fb,"Thermostat", 0, 2, 1, double_type, &Thermostats->HooverMass, 1, critical); // read Hoovermass
590 Thermostats->alpha = 0.;
591 } else {
592 DoLog(1) && (Log() << Verbose(1) << "Warning: " << Thermostats->ThermostatNames[0] << " thermostat not implemented, falling back to None." << endl);
593 Thermostats->Thermostat = None;
594 }
595 } else {
596 DoLog(1) && (Log() << Verbose(1) << " Warning: thermostat name was not understood!" << endl);
597 Thermostats->Thermostat = None;
598 }
599 } else {
600 if ((Thermostats->TargetTemp != 0))
601 DoLog(2) && (Log() << Verbose(2) << "No thermostat chosen despite finite temperature MD, falling back to None." << endl);
602 Thermostats->Thermostat = None;
603 }
604 delete[](thermo);
605};
606
607bool PcpParser::operator==(const PcpParser& b) const
608{
609 ASSERT(Parallelization.ProcPEGamma == b.Parallelization.ProcPEGamma, "PcpParser ==: ProcPEGamma not");
610 ASSERT(Parallelization.ProcPEPsi == b.Parallelization.ProcPEPsi, "PcpParser ==: ProcPEPsi not");
611
612 if ((Paths.databasepath != NULL) && (b.Paths.databasepath != NULL))
613 ASSERT(strcmp(Paths.databasepath, b.Paths.databasepath), "PcpParser ==: databasepath not");
614 if ((Paths.configpath != NULL) && (b.Paths.configpath != NULL))
615 ASSERT(strcmp(Paths.configpath, b.Paths.configpath), "PcpParser ==: configpath not");
616 if ((Paths.configname != NULL) && (b.Paths.configname != NULL))
617 ASSERT(strcmp(Paths.configname, b.Paths.configname), "PcpParser ==: configname not");
618 if ((Paths.mainname != NULL) && (b.Paths.mainname != NULL))
619 ASSERT(strcmp(Paths.mainname, b.Paths.mainname), "PcpParser ==: mainname not");
620 if ((Paths.defaultpath != NULL) && (b.Paths.defaultpath != NULL))
621 ASSERT(strcmp(Paths.defaultpath, b.Paths.defaultpath), "PcpParser ==: defaultpath not");
622 if ((Paths.pseudopotpath != NULL) && (b.Paths.pseudopotpath != NULL))
623 ASSERT(strcmp(Paths.pseudopotpath, b.Paths.pseudopotpath), "PcpParser ==: pseudopotpath not");
624
625 ASSERT(Switches.DoConstrainedMD == b.Switches.DoConstrainedMD, "PcpParser ==: DoConstrainedMD not");
626 ASSERT(Switches.DoOutVis == b.Switches.DoOutVis, "PcpParser ==: DoOutVis not");
627 ASSERT(Switches.DoOutMes == b.Switches.DoOutMes, "PcpParser ==: DoOutMes not");
628 ASSERT(Switches.DoOutNICS == b.Switches.DoOutNICS, "PcpParser ==: DoOutNICS not");
629 ASSERT(Switches.DoOutOrbitals == b.Switches.DoOutOrbitals, "PcpParser ==: DoOutOrbitals not");
630 ASSERT(Switches.DoOutCurrent == b.Switches.DoOutCurrent, "PcpParser ==: DoOutCurrent not");
631 ASSERT(Switches.DoFullCurrent == b.Switches.DoFullCurrent, "PcpParser ==: DoFullCurrent not");
632 ASSERT(Switches.DoPerturbation == b.Switches.DoPerturbation, "PcpParser ==: DoPerturbation not");
633 ASSERT(Switches.DoWannier == b.Switches.DoWannier, "PcpParser ==: DoWannier not");
634
635 ASSERT(LocalizedOrbitals.CommonWannier == b.LocalizedOrbitals.CommonWannier, "PcpParser ==: CommonWannier not");
636 ASSERT(LocalizedOrbitals.SawtoothStart == b.LocalizedOrbitals.SawtoothStart, "PcpParser ==: SawtoothStart not");
637 ASSERT(LocalizedOrbitals.VectorPlane == b.LocalizedOrbitals.VectorPlane, "PcpParser ==: VectorPlane not");
638 ASSERT(LocalizedOrbitals.VectorCut == b.LocalizedOrbitals.VectorCut, "PcpParser ==: VectorCut not");
639 ASSERT(LocalizedOrbitals.UseAddGramSch == b.LocalizedOrbitals.UseAddGramSch, "PcpParser ==: UseAddGramSch not");
640 ASSERT(LocalizedOrbitals.Seed == b.LocalizedOrbitals.Seed, "PcpParser ==: Seed not");
641 ASSERT(LocalizedOrbitals.EpsWannier == b.LocalizedOrbitals.EpsWannier, "PcpParser ==: EpsWannier not");
642
643 ASSERT(StepCounts.MaxMinStopStep == b.StepCounts.MaxMinStopStep, "PcpParser ==: MaxMinStopStep not");
644 ASSERT(StepCounts.InitMaxMinStopStep == b.StepCounts.InitMaxMinStopStep, "PcpParser ==: InitMaxMinStopStep not");
645 ASSERT(StepCounts.OutVisStep == b.StepCounts.OutVisStep, "PcpParser ==: OutVisStep not");
646 ASSERT(StepCounts.OutSrcStep == b.StepCounts.OutSrcStep, "PcpParser ==: OutSrcStep not");
647 ASSERT(StepCounts.MaxPsiStep == b.StepCounts.MaxPsiStep, "PcpParser ==: MaxPsiStep not");
648 ASSERT(StepCounts.MaxOuterStep == b.StepCounts.MaxOuterStep, "PcpParser ==: MaxOuterStep not");
649 ASSERT(StepCounts.MaxMinStep == b.StepCounts.MaxMinStep, "PcpParser ==: MaxMinStep not");
650 ASSERT(StepCounts.RelEpsTotalEnergy == b.StepCounts.RelEpsTotalEnergy, "PcpParser ==: RelEpsTotalEnergy not");
651 ASSERT(StepCounts.MaxMinGapStopStep == b.StepCounts.MaxMinGapStopStep, "PcpParser ==: MaxMinGapStopStep not");
652 ASSERT(StepCounts.MaxInitMinStep == b.StepCounts.MaxInitMinStep, "PcpParser ==: MaxInitMinStep not");
653 ASSERT(StepCounts.InitRelEpsTotalEnergy == b.StepCounts.InitRelEpsTotalEnergy, "PcpParser ==: InitRelEpsTotalEnergy not");
654 ASSERT(StepCounts.InitRelEpsKineticEnergy == b.StepCounts.InitRelEpsKineticEnergy, "PcpParser ==: InitRelEpsKineticEnergy not");
655 ASSERT(StepCounts.InitMaxMinGapStopStep == b.StepCounts.InitMaxMinGapStopStep, "PcpParser ==: InitMaxMinGapStopStep not");
656
657 ASSERT(PlaneWaveSpecifics.PsiType == b.PlaneWaveSpecifics.PsiType, "PcpParser ==: PsiType not");
658 ASSERT(PlaneWaveSpecifics.MaxPsiDouble == b.PlaneWaveSpecifics.MaxPsiDouble, "PcpParser ==: MaxPsiDouble not");
659 ASSERT(PlaneWaveSpecifics.PsiMaxNoUp == b.PlaneWaveSpecifics.PsiMaxNoUp, "PcpParser ==: PsiMaxNoUp not");
660 ASSERT(PlaneWaveSpecifics.PsiMaxNoDown == b.PlaneWaveSpecifics.PsiMaxNoDown, "PcpParser ==: PsiMaxNoDown not");
661 ASSERT(PlaneWaveSpecifics.ECut == b.PlaneWaveSpecifics.ECut, "PcpParser ==: ECut not");
662 ASSERT(PlaneWaveSpecifics.MaxLevel == b.PlaneWaveSpecifics.MaxLevel, "PcpParser ==: MaxLevel not");
663 ASSERT(PlaneWaveSpecifics.RiemannTensor == b.PlaneWaveSpecifics.RiemannTensor, "PcpParser ==: RiemannTensor not");
664 ASSERT(PlaneWaveSpecifics.LevRFactor == b.PlaneWaveSpecifics.LevRFactor, "PcpParser ==: LevRFactor not");
665 ASSERT(PlaneWaveSpecifics.RiemannLevel == b.PlaneWaveSpecifics.RiemannLevel, "PcpParser ==: RiemannLevel not");
666 ASSERT(PlaneWaveSpecifics.Lev0Factor == b.PlaneWaveSpecifics.Lev0Factor, "PcpParser ==: Lev0Factor not");
667 ASSERT(PlaneWaveSpecifics.RTActualUse == b.PlaneWaveSpecifics.RTActualUse, "PcpParser ==: RTActualUse not");
668 ASSERT(PlaneWaveSpecifics.AddPsis == b.PlaneWaveSpecifics.AddPsis, "PcpParser ==: AddPsis not");
669 ASSERT(PlaneWaveSpecifics.AddPsis == b.PlaneWaveSpecifics.AddPsis, "PcpParser ==: AddPsis not");
670 ASSERT(PlaneWaveSpecifics.RCut == b.PlaneWaveSpecifics.RCut, "PcpParser ==: RCut not");
671
672 ASSERT(FastParsing == b.FastParsing, "PcpParser ==: FastParsing not");
673
674 ASSERT(Deltat == b.Deltat, "PcpParser ==: Deltat not");
675 ASSERT(IsAngstroem == b.IsAngstroem, "PcpParser ==: IsAngstroem not");
676 ASSERT(RelativeCoord == b.RelativeCoord, "PcpParser ==: RelativeCoord not");
677 ASSERT(StructOpt == b.StructOpt, "PcpParser ==: StructOpt not");
678 ASSERT(MaxTypes == b.MaxTypes, "PcpParser ==: MaxTypes not");
679 ASSERT(basis == b.basis, "PcpParser ==: basis not");
680
681 return true;
682}
Note: See TracBrowser for help on using the repository browser.