[6f646d] | 1 | /*
|
---|
| 2 | * Line.cpp
|
---|
| 3 | *
|
---|
| 4 | * Created on: Apr 30, 2010
|
---|
| 5 | * Author: crueger
|
---|
| 6 | */
|
---|
| 7 |
|
---|
[bf3817] | 8 | // include config.h
|
---|
| 9 | #ifdef HAVE_CONFIG_H
|
---|
| 10 | #include <config.h>
|
---|
| 11 | #endif
|
---|
| 12 |
|
---|
[112b09] | 13 | #include "Helpers/MemDebug.hpp"
|
---|
| 14 |
|
---|
[57f243] | 15 | #include "LinearAlgebra/Line.hpp"
|
---|
[6f646d] | 16 |
|
---|
| 17 | #include <cmath>
|
---|
[a439e5] | 18 | #include <iostream>
|
---|
[6f646d] | 19 |
|
---|
[57f243] | 20 | #include "LinearAlgebra/Vector.hpp"
|
---|
[952f38] | 21 | #include "Helpers/Log.hpp"
|
---|
| 22 | #include "Helpers/Verbose.hpp"
|
---|
[57f243] | 23 | #include "LinearAlgebra/gslmatrix.hpp"
|
---|
[952f38] | 24 | #include "Helpers/Info.hpp"
|
---|
[45ef76] | 25 | #include "Exceptions/LinearDependenceException.hpp"
|
---|
| 26 | #include "Exceptions/SkewException.hpp"
|
---|
[57f243] | 27 | #include "LinearAlgebra/Plane.hpp"
|
---|
[6f646d] | 28 |
|
---|
[45ef76] | 29 | using namespace std;
|
---|
| 30 |
|
---|
| 31 | Line::Line(const Vector &_origin, const Vector &_direction) :
|
---|
[6f646d] | 32 | direction(new Vector(_direction))
|
---|
| 33 | {
|
---|
| 34 | direction->Normalize();
|
---|
[45ef76] | 35 | origin.reset(new Vector(_origin.partition(*direction).second));
|
---|
[6f646d] | 36 | }
|
---|
| 37 |
|
---|
[45ef76] | 38 | Line::Line(const Line &src) :
|
---|
| 39 | origin(new Vector(*src.origin)),
|
---|
| 40 | direction(new Vector(*src.direction))
|
---|
| 41 | {}
|
---|
| 42 |
|
---|
[6f646d] | 43 | Line::~Line()
|
---|
| 44 | {}
|
---|
| 45 |
|
---|
| 46 |
|
---|
| 47 | double Line::distance(const Vector &point) const{
|
---|
[45ef76] | 48 | // get any vector from line to point
|
---|
| 49 | Vector helper = point - *origin;
|
---|
| 50 | // partition this vector along direction
|
---|
| 51 | // the residue points from the line to the point
|
---|
| 52 | return helper.partition(*direction).second.Norm();
|
---|
[6f646d] | 53 | }
|
---|
| 54 |
|
---|
| 55 | Vector Line::getClosestPoint(const Vector &point) const{
|
---|
[45ef76] | 56 | // get any vector from line to point
|
---|
| 57 | Vector helper = point - *origin;
|
---|
| 58 | // partition this vector along direction
|
---|
| 59 | // add only the part along the direction
|
---|
| 60 | return *origin + helper.partition(*direction).first;
|
---|
| 61 | }
|
---|
| 62 |
|
---|
| 63 | Vector Line::getDirection() const{
|
---|
| 64 | return *direction;
|
---|
| 65 | }
|
---|
| 66 |
|
---|
| 67 | Vector Line::getOrigin() const{
|
---|
| 68 | return *origin;
|
---|
| 69 | }
|
---|
| 70 |
|
---|
| 71 | vector<Vector> Line::getPointsOnLine() const{
|
---|
| 72 | vector<Vector> res;
|
---|
| 73 | res.reserve(2);
|
---|
| 74 | res.push_back(*origin);
|
---|
| 75 | res.push_back(*origin+*direction);
|
---|
| 76 | return res;
|
---|
| 77 | }
|
---|
| 78 |
|
---|
[643e76] | 79 | /** Calculates the intersection of the two lines that are both on the same plane.
|
---|
| 80 | * This is taken from Weisstein, Eric W. "Line-Line Intersection." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Line-LineIntersection.html
|
---|
| 81 | * \param *out output stream for debugging
|
---|
| 82 | * \param *Line1a first vector of first line
|
---|
| 83 | * \param *Line1b second vector of first line
|
---|
| 84 | * \param *Line2a first vector of second line
|
---|
| 85 | * \param *Line2b second vector of second line
|
---|
| 86 | * \return true - \a this will contain the intersection on return, false - lines are parallel
|
---|
| 87 | */
|
---|
[45ef76] | 88 | Vector Line::getIntersection(const Line& otherLine) const{
|
---|
| 89 | Info FunctionInfo(__func__);
|
---|
| 90 |
|
---|
| 91 | pointset line1Points = getPointsOnLine();
|
---|
| 92 |
|
---|
| 93 | Vector Line1a = line1Points[0];
|
---|
| 94 | Vector Line1b = line1Points[1];
|
---|
| 95 |
|
---|
| 96 | pointset line2Points = otherLine.getPointsOnLine();
|
---|
| 97 |
|
---|
| 98 | Vector Line2a = line2Points[0];
|
---|
| 99 | Vector Line2b = line2Points[1];
|
---|
| 100 |
|
---|
| 101 | Vector res;
|
---|
| 102 |
|
---|
| 103 | auto_ptr<GSLMatrix> M = auto_ptr<GSLMatrix>(new GSLMatrix(4,4));
|
---|
| 104 |
|
---|
| 105 | M->SetAll(1.);
|
---|
| 106 | for (int i=0;i<3;i++) {
|
---|
| 107 | M->Set(0, i, Line1a[i]);
|
---|
| 108 | M->Set(1, i, Line1b[i]);
|
---|
| 109 | M->Set(2, i, Line2a[i]);
|
---|
| 110 | M->Set(3, i, Line2b[i]);
|
---|
| 111 | }
|
---|
| 112 |
|
---|
| 113 | //Log() << Verbose(1) << "Coefficent matrix is:" << endl;
|
---|
| 114 | //for (int i=0;i<4;i++) {
|
---|
| 115 | // for (int j=0;j<4;j++)
|
---|
| 116 | // cout << "\t" << M->Get(i,j);
|
---|
| 117 | // cout << endl;
|
---|
| 118 | //}
|
---|
| 119 | if (fabs(M->Determinant()) > MYEPSILON) {
|
---|
| 120 | Log() << Verbose(1) << "Determinant of coefficient matrix is NOT zero." << endl;
|
---|
| 121 | throw SkewException(__FILE__,__LINE__);
|
---|
| 122 | }
|
---|
| 123 |
|
---|
| 124 | Log() << Verbose(1) << "INFO: Line1a = " << Line1a << ", Line1b = " << Line1b << ", Line2a = " << Line2a << ", Line2b = " << Line2b << "." << endl;
|
---|
| 125 |
|
---|
| 126 |
|
---|
| 127 | // constuct a,b,c
|
---|
| 128 | Vector a = Line1b - Line1a;
|
---|
| 129 | Vector b = Line2b - Line2a;
|
---|
| 130 | Vector c = Line2a - Line1a;
|
---|
| 131 | Vector d = Line2b - Line1b;
|
---|
| 132 | Log() << Verbose(1) << "INFO: a = " << a << ", b = " << b << ", c = " << c << "." << endl;
|
---|
| 133 | if ((a.NormSquared() < MYEPSILON) || (b.NormSquared() < MYEPSILON)) {
|
---|
| 134 | res.Zero();
|
---|
| 135 | Log() << Verbose(1) << "At least one of the lines is ill-defined, i.e. offset equals second vector." << endl;
|
---|
| 136 | throw LinearDependenceException(__FILE__,__LINE__);
|
---|
| 137 | }
|
---|
| 138 |
|
---|
| 139 | // check for parallelity
|
---|
| 140 | Vector parallel;
|
---|
| 141 | double factor = 0.;
|
---|
| 142 | if (fabs(a.ScalarProduct(b)*a.ScalarProduct(b)/a.NormSquared()/b.NormSquared() - 1.) < MYEPSILON) {
|
---|
| 143 | parallel = Line1a - Line2a;
|
---|
| 144 | factor = parallel.ScalarProduct(a)/a.Norm();
|
---|
| 145 | if ((factor >= -MYEPSILON) && (factor - 1. < MYEPSILON)) {
|
---|
| 146 | res = Line2a;
|
---|
| 147 | Log() << Verbose(1) << "Lines conincide." << endl;
|
---|
| 148 | return res;
|
---|
| 149 | } else {
|
---|
| 150 | parallel = Line1a - Line2b;
|
---|
| 151 | factor = parallel.ScalarProduct(a)/a.Norm();
|
---|
| 152 | if ((factor >= -MYEPSILON) && (factor - 1. < MYEPSILON)) {
|
---|
| 153 | res = Line2b;
|
---|
| 154 | Log() << Verbose(1) << "Lines conincide." << endl;
|
---|
| 155 | return res;
|
---|
| 156 | }
|
---|
| 157 | }
|
---|
| 158 | Log() << Verbose(1) << "Lines are parallel." << endl;
|
---|
| 159 | res.Zero();
|
---|
| 160 | throw LinearDependenceException(__FILE__,__LINE__);
|
---|
| 161 | }
|
---|
| 162 |
|
---|
| 163 | // obtain s
|
---|
| 164 | double s;
|
---|
| 165 | Vector temp1, temp2;
|
---|
| 166 | temp1 = c;
|
---|
| 167 | temp1.VectorProduct(b);
|
---|
| 168 | temp2 = a;
|
---|
| 169 | temp2.VectorProduct(b);
|
---|
| 170 | Log() << Verbose(1) << "INFO: temp1 = " << temp1 << ", temp2 = " << temp2 << "." << endl;
|
---|
| 171 | if (fabs(temp2.NormSquared()) > MYEPSILON)
|
---|
| 172 | s = temp1.ScalarProduct(temp2)/temp2.NormSquared();
|
---|
| 173 | else
|
---|
| 174 | s = 0.;
|
---|
| 175 | Log() << Verbose(1) << "Factor s is " << temp1.ScalarProduct(temp2) << "/" << temp2.NormSquared() << " = " << s << "." << endl;
|
---|
| 176 |
|
---|
| 177 | // construct intersection
|
---|
| 178 | res = a;
|
---|
| 179 | res.Scale(s);
|
---|
| 180 | res += Line1a;
|
---|
| 181 | Log() << Verbose(1) << "Intersection is at " << res << "." << endl;
|
---|
| 182 |
|
---|
| 183 | return res;
|
---|
| 184 | }
|
---|
| 185 |
|
---|
[42a101] | 186 | /** Rotates the vector by an angle of \a alpha around this line.
|
---|
| 187 | * \param rhs Vector to rotate
|
---|
| 188 | * \param alpha rotation angle in radian
|
---|
| 189 | */
|
---|
| 190 | Vector Line::rotateVector(const Vector &rhs, double alpha) const{
|
---|
| 191 | Vector helper = rhs;
|
---|
| 192 |
|
---|
| 193 | // translate the coordinate system so that the line goes through (0,0,0)
|
---|
| 194 | helper -= *origin;
|
---|
| 195 |
|
---|
| 196 | // partition the vector into a part that gets rotated and a part that lies along the line
|
---|
| 197 | pair<Vector,Vector> parts = helper.partition(*direction);
|
---|
| 198 |
|
---|
| 199 | // we just keep anything that is along the axis
|
---|
| 200 | Vector res = parts.first;
|
---|
| 201 |
|
---|
| 202 | // the rest has to be rotated
|
---|
| 203 | Vector a = parts.second;
|
---|
| 204 | // we only have to do the rest, if we actually could partition the vector
|
---|
| 205 | if(!a.IsZero()){
|
---|
| 206 | // construct a vector that is orthogonal to a and direction and has length |a|
|
---|
| 207 | Vector y = a;
|
---|
| 208 | // direction is normalized, so the result has length |a|
|
---|
| 209 | y.VectorProduct(*direction);
|
---|
| 210 |
|
---|
| 211 | res += cos(alpha) * a + sin(alpha) * y;
|
---|
| 212 | }
|
---|
| 213 |
|
---|
| 214 | // translate the coordinate system back
|
---|
| 215 | res += *origin;
|
---|
| 216 | return res;
|
---|
| 217 | }
|
---|
| 218 |
|
---|
[5589858] | 219 | Plane Line::getOrthogonalPlane(const Vector &origin) const{
|
---|
| 220 | return Plane(getDirection(),origin);
|
---|
| 221 | }
|
---|
| 222 |
|
---|
[f932b7] | 223 | std::vector<Vector> Line::getSphereIntersections() const{
|
---|
| 224 | std::vector<Vector> res;
|
---|
| 225 |
|
---|
| 226 | // line is kept in normalized form, so we can skip a lot of calculations
|
---|
| 227 | double discriminant = 1-origin->NormSquared();
|
---|
| 228 | // we might have 2, 1 or 0 solutions, depending on discriminant
|
---|
| 229 | if(discriminant>=0){
|
---|
| 230 | if(discriminant==0){
|
---|
| 231 | res.push_back(*origin);
|
---|
| 232 | }
|
---|
| 233 | else{
|
---|
| 234 | Vector helper = sqrt(discriminant)*(*direction);
|
---|
| 235 | res.push_back(*origin+helper);
|
---|
| 236 | res.push_back(*origin-helper);
|
---|
| 237 | }
|
---|
| 238 | }
|
---|
| 239 | return res;
|
---|
| 240 | }
|
---|
| 241 |
|
---|
[45ef76] | 242 | Line makeLineThrough(const Vector &x1, const Vector &x2){
|
---|
| 243 | if(x1==x2){
|
---|
| 244 | throw LinearDependenceException(__FILE__,__LINE__);
|
---|
| 245 | }
|
---|
| 246 | return Line(x1,x1-x2);
|
---|
[6f646d] | 247 | }
|
---|
[e0ba10] | 248 |
|
---|
| 249 | ostream& operator<<(ostream& ost, const Line& m)
|
---|
| 250 | {
|
---|
| 251 | const Vector origin = m.getOrigin();
|
---|
| 252 | const Vector direction = m.getDirection();
|
---|
| 253 | ost << "(";
|
---|
| 254 | for (int i=0;i<NDIM;i++) {
|
---|
| 255 | ost << origin[i];
|
---|
| 256 | if (i != 2)
|
---|
| 257 | ost << ",";
|
---|
| 258 | }
|
---|
| 259 | ost << ") -> (";
|
---|
| 260 | for (int i=0;i<NDIM;i++) {
|
---|
| 261 | ost << direction[i];
|
---|
| 262 | if (i != 2)
|
---|
| 263 | ost << ",";
|
---|
| 264 | }
|
---|
| 265 | ost << ")";
|
---|
| 266 | return ost;
|
---|
| 267 | };
|
---|
| 268 |
|
---|