| [6f646d] | 1 | /* | 
|---|
|  | 2 | * Line.cpp | 
|---|
|  | 3 | * | 
|---|
|  | 4 | *  Created on: Apr 30, 2010 | 
|---|
|  | 5 | *      Author: crueger | 
|---|
|  | 6 | */ | 
|---|
|  | 7 |  | 
|---|
| [112b09] | 8 | #include "Helpers/MemDebug.hpp" | 
|---|
|  | 9 |  | 
|---|
| [57f243] | 10 | #include "LinearAlgebra/Line.hpp" | 
|---|
| [6f646d] | 11 |  | 
|---|
|  | 12 | #include <cmath> | 
|---|
| [a439e5] | 13 | #include <iostream> | 
|---|
| [6f646d] | 14 |  | 
|---|
| [57f243] | 15 | #include "LinearAlgebra/Vector.hpp" | 
|---|
| [952f38] | 16 | #include "Helpers/Log.hpp" | 
|---|
|  | 17 | #include "Helpers/Verbose.hpp" | 
|---|
| [57f243] | 18 | #include "LinearAlgebra/gslmatrix.hpp" | 
|---|
| [952f38] | 19 | #include "Helpers/Info.hpp" | 
|---|
| [45ef76] | 20 | #include "Exceptions/LinearDependenceException.hpp" | 
|---|
|  | 21 | #include "Exceptions/SkewException.hpp" | 
|---|
| [57f243] | 22 | #include "LinearAlgebra/Plane.hpp" | 
|---|
| [6f646d] | 23 |  | 
|---|
| [45ef76] | 24 | using namespace std; | 
|---|
|  | 25 |  | 
|---|
|  | 26 | Line::Line(const Vector &_origin, const Vector &_direction) : | 
|---|
| [6f646d] | 27 | direction(new Vector(_direction)) | 
|---|
|  | 28 | { | 
|---|
|  | 29 | direction->Normalize(); | 
|---|
| [45ef76] | 30 | origin.reset(new Vector(_origin.partition(*direction).second)); | 
|---|
| [6f646d] | 31 | } | 
|---|
|  | 32 |  | 
|---|
| [45ef76] | 33 | Line::Line(const Line &src) : | 
|---|
|  | 34 | origin(new Vector(*src.origin)), | 
|---|
|  | 35 | direction(new Vector(*src.direction)) | 
|---|
|  | 36 | {} | 
|---|
|  | 37 |  | 
|---|
| [6f646d] | 38 | Line::~Line() | 
|---|
|  | 39 | {} | 
|---|
|  | 40 |  | 
|---|
|  | 41 |  | 
|---|
|  | 42 | double Line::distance(const Vector &point) const{ | 
|---|
| [45ef76] | 43 | // get any vector from line to point | 
|---|
|  | 44 | Vector helper = point - *origin; | 
|---|
|  | 45 | // partition this vector along direction | 
|---|
|  | 46 | // the residue points from the line to the point | 
|---|
|  | 47 | return helper.partition(*direction).second.Norm(); | 
|---|
| [6f646d] | 48 | } | 
|---|
|  | 49 |  | 
|---|
|  | 50 | Vector Line::getClosestPoint(const Vector &point) const{ | 
|---|
| [45ef76] | 51 | // get any vector from line to point | 
|---|
|  | 52 | Vector helper = point - *origin; | 
|---|
|  | 53 | // partition this vector along direction | 
|---|
|  | 54 | // add only the part along the direction | 
|---|
|  | 55 | return *origin + helper.partition(*direction).first; | 
|---|
|  | 56 | } | 
|---|
|  | 57 |  | 
|---|
|  | 58 | Vector Line::getDirection() const{ | 
|---|
|  | 59 | return *direction; | 
|---|
|  | 60 | } | 
|---|
|  | 61 |  | 
|---|
|  | 62 | Vector Line::getOrigin() const{ | 
|---|
|  | 63 | return *origin; | 
|---|
|  | 64 | } | 
|---|
|  | 65 |  | 
|---|
|  | 66 | vector<Vector> Line::getPointsOnLine() const{ | 
|---|
|  | 67 | vector<Vector> res; | 
|---|
|  | 68 | res.reserve(2); | 
|---|
|  | 69 | res.push_back(*origin); | 
|---|
|  | 70 | res.push_back(*origin+*direction); | 
|---|
|  | 71 | return res; | 
|---|
|  | 72 | } | 
|---|
|  | 73 |  | 
|---|
| [643e76] | 74 | /** Calculates the intersection of the two lines that are both on the same plane. | 
|---|
|  | 75 | * This is taken from Weisstein, Eric W. "Line-Line Intersection." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Line-LineIntersection.html | 
|---|
|  | 76 | * \param *out output stream for debugging | 
|---|
|  | 77 | * \param *Line1a first vector of first line | 
|---|
|  | 78 | * \param *Line1b second vector of first line | 
|---|
|  | 79 | * \param *Line2a first vector of second line | 
|---|
|  | 80 | * \param *Line2b second vector of second line | 
|---|
|  | 81 | * \return true - \a this will contain the intersection on return, false - lines are parallel | 
|---|
|  | 82 | */ | 
|---|
| [45ef76] | 83 | Vector Line::getIntersection(const Line& otherLine) const{ | 
|---|
|  | 84 | Info FunctionInfo(__func__); | 
|---|
|  | 85 |  | 
|---|
|  | 86 | pointset line1Points = getPointsOnLine(); | 
|---|
|  | 87 |  | 
|---|
|  | 88 | Vector Line1a = line1Points[0]; | 
|---|
|  | 89 | Vector Line1b = line1Points[1]; | 
|---|
|  | 90 |  | 
|---|
|  | 91 | pointset line2Points = otherLine.getPointsOnLine(); | 
|---|
|  | 92 |  | 
|---|
|  | 93 | Vector Line2a = line2Points[0]; | 
|---|
|  | 94 | Vector Line2b = line2Points[1]; | 
|---|
|  | 95 |  | 
|---|
|  | 96 | Vector res; | 
|---|
|  | 97 |  | 
|---|
|  | 98 | auto_ptr<GSLMatrix> M = auto_ptr<GSLMatrix>(new GSLMatrix(4,4)); | 
|---|
|  | 99 |  | 
|---|
|  | 100 | M->SetAll(1.); | 
|---|
|  | 101 | for (int i=0;i<3;i++) { | 
|---|
|  | 102 | M->Set(0, i, Line1a[i]); | 
|---|
|  | 103 | M->Set(1, i, Line1b[i]); | 
|---|
|  | 104 | M->Set(2, i, Line2a[i]); | 
|---|
|  | 105 | M->Set(3, i, Line2b[i]); | 
|---|
|  | 106 | } | 
|---|
|  | 107 |  | 
|---|
|  | 108 | //Log() << Verbose(1) << "Coefficent matrix is:" << endl; | 
|---|
|  | 109 | //for (int i=0;i<4;i++) { | 
|---|
|  | 110 | //  for (int j=0;j<4;j++) | 
|---|
|  | 111 | //    cout << "\t" << M->Get(i,j); | 
|---|
|  | 112 | //  cout << endl; | 
|---|
|  | 113 | //} | 
|---|
|  | 114 | if (fabs(M->Determinant()) > MYEPSILON) { | 
|---|
|  | 115 | Log() << Verbose(1) << "Determinant of coefficient matrix is NOT zero." << endl; | 
|---|
|  | 116 | throw SkewException(__FILE__,__LINE__); | 
|---|
|  | 117 | } | 
|---|
|  | 118 |  | 
|---|
|  | 119 | Log() << Verbose(1) << "INFO: Line1a = " << Line1a << ", Line1b = " << Line1b << ", Line2a = " << Line2a << ", Line2b = " << Line2b << "." << endl; | 
|---|
|  | 120 |  | 
|---|
|  | 121 |  | 
|---|
|  | 122 | // constuct a,b,c | 
|---|
|  | 123 | Vector a = Line1b - Line1a; | 
|---|
|  | 124 | Vector b = Line2b - Line2a; | 
|---|
|  | 125 | Vector c = Line2a - Line1a; | 
|---|
|  | 126 | Vector d = Line2b - Line1b; | 
|---|
|  | 127 | Log() << Verbose(1) << "INFO: a = " << a << ", b = " << b << ", c = " << c << "." << endl; | 
|---|
|  | 128 | if ((a.NormSquared() < MYEPSILON) || (b.NormSquared() < MYEPSILON)) { | 
|---|
|  | 129 | res.Zero(); | 
|---|
|  | 130 | Log() << Verbose(1) << "At least one of the lines is ill-defined, i.e. offset equals second vector." << endl; | 
|---|
|  | 131 | throw LinearDependenceException(__FILE__,__LINE__); | 
|---|
|  | 132 | } | 
|---|
|  | 133 |  | 
|---|
|  | 134 | // check for parallelity | 
|---|
|  | 135 | Vector parallel; | 
|---|
|  | 136 | double factor = 0.; | 
|---|
|  | 137 | if (fabs(a.ScalarProduct(b)*a.ScalarProduct(b)/a.NormSquared()/b.NormSquared() - 1.) < MYEPSILON) { | 
|---|
|  | 138 | parallel = Line1a - Line2a; | 
|---|
|  | 139 | factor = parallel.ScalarProduct(a)/a.Norm(); | 
|---|
|  | 140 | if ((factor >= -MYEPSILON) && (factor - 1. < MYEPSILON)) { | 
|---|
|  | 141 | res = Line2a; | 
|---|
|  | 142 | Log() << Verbose(1) << "Lines conincide." << endl; | 
|---|
|  | 143 | return res; | 
|---|
|  | 144 | } else { | 
|---|
|  | 145 | parallel = Line1a - Line2b; | 
|---|
|  | 146 | factor = parallel.ScalarProduct(a)/a.Norm(); | 
|---|
|  | 147 | if ((factor >= -MYEPSILON) && (factor - 1. < MYEPSILON)) { | 
|---|
|  | 148 | res = Line2b; | 
|---|
|  | 149 | Log() << Verbose(1) << "Lines conincide." << endl; | 
|---|
|  | 150 | return res; | 
|---|
|  | 151 | } | 
|---|
|  | 152 | } | 
|---|
|  | 153 | Log() << Verbose(1) << "Lines are parallel." << endl; | 
|---|
|  | 154 | res.Zero(); | 
|---|
|  | 155 | throw LinearDependenceException(__FILE__,__LINE__); | 
|---|
|  | 156 | } | 
|---|
|  | 157 |  | 
|---|
|  | 158 | // obtain s | 
|---|
|  | 159 | double s; | 
|---|
|  | 160 | Vector temp1, temp2; | 
|---|
|  | 161 | temp1 = c; | 
|---|
|  | 162 | temp1.VectorProduct(b); | 
|---|
|  | 163 | temp2 = a; | 
|---|
|  | 164 | temp2.VectorProduct(b); | 
|---|
|  | 165 | Log() << Verbose(1) << "INFO: temp1 = " << temp1 << ", temp2 = " << temp2 << "." << endl; | 
|---|
|  | 166 | if (fabs(temp2.NormSquared()) > MYEPSILON) | 
|---|
|  | 167 | s = temp1.ScalarProduct(temp2)/temp2.NormSquared(); | 
|---|
|  | 168 | else | 
|---|
|  | 169 | s = 0.; | 
|---|
|  | 170 | Log() << Verbose(1) << "Factor s is " << temp1.ScalarProduct(temp2) << "/" << temp2.NormSquared() << " = " << s << "." << endl; | 
|---|
|  | 171 |  | 
|---|
|  | 172 | // construct intersection | 
|---|
|  | 173 | res = a; | 
|---|
|  | 174 | res.Scale(s); | 
|---|
|  | 175 | res += Line1a; | 
|---|
|  | 176 | Log() << Verbose(1) << "Intersection is at " << res << "." << endl; | 
|---|
|  | 177 |  | 
|---|
|  | 178 | return res; | 
|---|
|  | 179 | } | 
|---|
|  | 180 |  | 
|---|
| [42a101] | 181 | /** Rotates the vector by an angle of \a alpha around this line. | 
|---|
|  | 182 | * \param rhs Vector to rotate | 
|---|
|  | 183 | * \param alpha rotation angle in radian | 
|---|
|  | 184 | */ | 
|---|
|  | 185 | Vector Line::rotateVector(const Vector &rhs, double alpha) const{ | 
|---|
|  | 186 | Vector helper = rhs; | 
|---|
|  | 187 |  | 
|---|
|  | 188 | // translate the coordinate system so that the line goes through (0,0,0) | 
|---|
|  | 189 | helper -= *origin; | 
|---|
|  | 190 |  | 
|---|
|  | 191 | // partition the vector into a part that gets rotated and a part that lies along the line | 
|---|
|  | 192 | pair<Vector,Vector> parts = helper.partition(*direction); | 
|---|
|  | 193 |  | 
|---|
|  | 194 | // we just keep anything that is along the axis | 
|---|
|  | 195 | Vector res = parts.first; | 
|---|
|  | 196 |  | 
|---|
|  | 197 | // the rest has to be rotated | 
|---|
|  | 198 | Vector a = parts.second; | 
|---|
|  | 199 | // we only have to do the rest, if we actually could partition the vector | 
|---|
|  | 200 | if(!a.IsZero()){ | 
|---|
|  | 201 | // construct a vector that is orthogonal to a and direction and has length |a| | 
|---|
|  | 202 | Vector y = a; | 
|---|
|  | 203 | // direction is normalized, so the result has length |a| | 
|---|
|  | 204 | y.VectorProduct(*direction); | 
|---|
|  | 205 |  | 
|---|
|  | 206 | res += cos(alpha) * a + sin(alpha) * y; | 
|---|
|  | 207 | } | 
|---|
|  | 208 |  | 
|---|
|  | 209 | // translate the coordinate system back | 
|---|
|  | 210 | res += *origin; | 
|---|
|  | 211 | return res; | 
|---|
|  | 212 | } | 
|---|
|  | 213 |  | 
|---|
| [5589858] | 214 | Plane Line::getOrthogonalPlane(const Vector &origin) const{ | 
|---|
|  | 215 | return Plane(getDirection(),origin); | 
|---|
|  | 216 | } | 
|---|
|  | 217 |  | 
|---|
| [f932b7] | 218 | std::vector<Vector> Line::getSphereIntersections() const{ | 
|---|
|  | 219 | std::vector<Vector> res; | 
|---|
|  | 220 |  | 
|---|
|  | 221 | // line is kept in normalized form, so we can skip a lot of calculations | 
|---|
|  | 222 | double discriminant = 1-origin->NormSquared(); | 
|---|
|  | 223 | // we might have 2, 1 or 0 solutions, depending on discriminant | 
|---|
|  | 224 | if(discriminant>=0){ | 
|---|
|  | 225 | if(discriminant==0){ | 
|---|
|  | 226 | res.push_back(*origin); | 
|---|
|  | 227 | } | 
|---|
|  | 228 | else{ | 
|---|
|  | 229 | Vector helper = sqrt(discriminant)*(*direction); | 
|---|
|  | 230 | res.push_back(*origin+helper); | 
|---|
|  | 231 | res.push_back(*origin-helper); | 
|---|
|  | 232 | } | 
|---|
|  | 233 | } | 
|---|
|  | 234 | return res; | 
|---|
|  | 235 | } | 
|---|
|  | 236 |  | 
|---|
| [45ef76] | 237 | Line makeLineThrough(const Vector &x1, const Vector &x2){ | 
|---|
|  | 238 | if(x1==x2){ | 
|---|
|  | 239 | throw LinearDependenceException(__FILE__,__LINE__); | 
|---|
|  | 240 | } | 
|---|
|  | 241 | return Line(x1,x1-x2); | 
|---|
| [6f646d] | 242 | } | 
|---|
| [e0ba10] | 243 |  | 
|---|
|  | 244 | ostream& operator<<(ostream& ost, const Line& m) | 
|---|
|  | 245 | { | 
|---|
|  | 246 | const Vector origin = m.getOrigin(); | 
|---|
|  | 247 | const Vector direction = m.getDirection(); | 
|---|
|  | 248 | ost << "("; | 
|---|
|  | 249 | for (int i=0;i<NDIM;i++) { | 
|---|
|  | 250 | ost << origin[i]; | 
|---|
|  | 251 | if (i != 2) | 
|---|
|  | 252 | ost << ","; | 
|---|
|  | 253 | } | 
|---|
|  | 254 | ost << ") -> ("; | 
|---|
|  | 255 | for (int i=0;i<NDIM;i++) { | 
|---|
|  | 256 | ost << direction[i]; | 
|---|
|  | 257 | if (i != 2) | 
|---|
|  | 258 | ost << ","; | 
|---|
|  | 259 | } | 
|---|
|  | 260 | ost << ")"; | 
|---|
|  | 261 | return ost; | 
|---|
|  | 262 | }; | 
|---|
|  | 263 |  | 
|---|