| 1 | /* | 
|---|
| 2 | * Project: MoleCuilder | 
|---|
| 3 | * Description: creates and alters molecular systems | 
|---|
| 4 | * Copyright (C)  2014 Frederik Heber. All rights reserved. | 
|---|
| 5 | * | 
|---|
| 6 | * | 
|---|
| 7 | *   This file is part of MoleCuilder. | 
|---|
| 8 | * | 
|---|
| 9 | *    MoleCuilder is free software: you can redistribute it and/or modify | 
|---|
| 10 | *    it under the terms of the GNU General Public License as published by | 
|---|
| 11 | *    the Free Software Foundation, either version 2 of the License, or | 
|---|
| 12 | *    (at your option) any later version. | 
|---|
| 13 | * | 
|---|
| 14 | *    MoleCuilder is distributed in the hope that it will be useful, | 
|---|
| 15 | *    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
| 16 | *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
| 17 | *    GNU General Public License for more details. | 
|---|
| 18 | * | 
|---|
| 19 | *    You should have received a copy of the GNU General Public License | 
|---|
| 20 | *    along with MoleCuilder.  If not, see <http://www.gnu.org/licenses/>. | 
|---|
| 21 | */ | 
|---|
| 22 |  | 
|---|
| 23 | /* | 
|---|
| 24 | * SphericalPointDistribution.cpp | 
|---|
| 25 | * | 
|---|
| 26 | *  Created on: May 30, 2014 | 
|---|
| 27 | *      Author: heber | 
|---|
| 28 | */ | 
|---|
| 29 |  | 
|---|
| 30 | // include config.h | 
|---|
| 31 | #ifdef HAVE_CONFIG_H | 
|---|
| 32 | #include <config.h> | 
|---|
| 33 | #endif | 
|---|
| 34 |  | 
|---|
| 35 | #include "CodePatterns/MemDebug.hpp" | 
|---|
| 36 |  | 
|---|
| 37 | #include "SphericalPointDistribution.hpp" | 
|---|
| 38 |  | 
|---|
| 39 | #include "CodePatterns/Assert.hpp" | 
|---|
| 40 | #include "CodePatterns/IteratorAdaptors.hpp" | 
|---|
| 41 | #include "CodePatterns/Log.hpp" | 
|---|
| 42 | #include "CodePatterns/toString.hpp" | 
|---|
| 43 |  | 
|---|
| 44 | #include <algorithm> | 
|---|
| 45 | #include <boost/assign.hpp> | 
|---|
| 46 | #include <cmath> | 
|---|
| 47 | #include <functional> | 
|---|
| 48 | #include <iterator> | 
|---|
| 49 | #include <limits> | 
|---|
| 50 | #include <list> | 
|---|
| 51 | #include <numeric> | 
|---|
| 52 | #include <vector> | 
|---|
| 53 | #include <map> | 
|---|
| 54 |  | 
|---|
| 55 | #include "LinearAlgebra/Line.hpp" | 
|---|
| 56 | #include "LinearAlgebra/Plane.hpp" | 
|---|
| 57 | #include "LinearAlgebra/RealSpaceMatrix.hpp" | 
|---|
| 58 | #include "LinearAlgebra/Vector.hpp" | 
|---|
| 59 |  | 
|---|
| 60 | using namespace boost::assign; | 
|---|
| 61 |  | 
|---|
| 62 | // static entities | 
|---|
| 63 | const double SphericalPointDistribution::warn_amplitude = 1e-2; | 
|---|
| 64 | const double SphericalPointDistribution::L1THRESHOLD = 1e-2; | 
|---|
| 65 | const double SphericalPointDistribution::L2THRESHOLD = 2e-1; | 
|---|
| 66 |  | 
|---|
| 67 | typedef std::vector<double> DistanceArray_t; | 
|---|
| 68 |  | 
|---|
| 69 | // class generator: taken from www.cplusplus.com example std::generate | 
|---|
| 70 | struct c_unique { | 
|---|
| 71 | unsigned int current; | 
|---|
| 72 | c_unique() {current=0;} | 
|---|
| 73 | unsigned int operator()() {return current++;} | 
|---|
| 74 | } UniqueNumber; | 
|---|
| 75 |  | 
|---|
| 76 | struct c_unique_list { | 
|---|
| 77 | unsigned int current; | 
|---|
| 78 | c_unique_list() {current=0;} | 
|---|
| 79 | std::list<unsigned int> operator()() {return std::list<unsigned int>(1, current++);} | 
|---|
| 80 | } UniqueNumberList; | 
|---|
| 81 |  | 
|---|
| 82 | /** Calculate the center of a given set of points in \a _positions but only | 
|---|
| 83 | * for those indicated by \a _indices. | 
|---|
| 84 | * | 
|---|
| 85 | */ | 
|---|
| 86 | inline | 
|---|
| 87 | Vector calculateGeographicMidpoint( | 
|---|
| 88 | const SphericalPointDistribution::VectorArray_t &_positions, | 
|---|
| 89 | const SphericalPointDistribution::IndexList_t &_indices) | 
|---|
| 90 | { | 
|---|
| 91 | Vector Center; | 
|---|
| 92 | Center.Zero(); | 
|---|
| 93 | for (SphericalPointDistribution::IndexList_t::const_iterator iter = _indices.begin(); | 
|---|
| 94 | iter != _indices.end(); ++iter) | 
|---|
| 95 | Center += _positions[*iter]; | 
|---|
| 96 | if (!_indices.empty()) | 
|---|
| 97 | Center *= 1./(double)_indices.size(); | 
|---|
| 98 |  | 
|---|
| 99 | return Center; | 
|---|
| 100 | } | 
|---|
| 101 |  | 
|---|
| 102 | inline | 
|---|
| 103 | double calculateMinimumDistance( | 
|---|
| 104 | const Vector &_center, | 
|---|
| 105 | const SphericalPointDistribution::VectorArray_t &_points, | 
|---|
| 106 | const SphericalPointDistribution::IndexList_t & _indices) | 
|---|
| 107 | { | 
|---|
| 108 | double MinimumDistance = 0.; | 
|---|
| 109 | for (SphericalPointDistribution::IndexList_t::const_iterator iter = _indices.begin(); | 
|---|
| 110 | iter != _indices.end(); ++iter) { | 
|---|
| 111 | const double angle = _center.Angle(_points[*iter]); | 
|---|
| 112 | MinimumDistance += angle*angle; | 
|---|
| 113 | } | 
|---|
| 114 | return sqrt(MinimumDistance); | 
|---|
| 115 | } | 
|---|
| 116 |  | 
|---|
| 117 | /** Calculates the center of minimum distance for a given set of points \a _points. | 
|---|
| 118 | * | 
|---|
| 119 | * According to http://www.geomidpoint.com/calculation.html this goes a follows: | 
|---|
| 120 | * -# Let CurrentPoint be the geographic midpoint found in Method A. this is used as the starting point for the search. | 
|---|
| 121 | * -# Let MinimumDistance be the sum total of all distances from the current point to all locations in 'Your Places'. | 
|---|
| 122 | * -# Find the total distance between each location in 'Your Places' and all other locations in 'Your Places'. If any one of these locations has a new smallest distance then that location becomes the new CurrentPoint and MinimumDistance. | 
|---|
| 123 | * -# Let TestDistance be PI/2 radians (6225 miles or 10018 km). | 
|---|
| 124 | * -# Find the total distance between each of 8 test points and all locations in 'Your Places'. The test points are arranged in a circular pattern around the CurrentPoint at a distance of TestDistance to the north, northeast, east, southeast, south, southwest, west and northwest. | 
|---|
| 125 | * -# If any of these 8 points has a new smallest distance then that point becomes the new CurrentPoint and MinimumDistance and go back to step 5 using that point. | 
|---|
| 126 | * -# If none of the 8 test points has a new smallest distance then divide TestDistance by 2 and go back to step 5 using the same point. | 
|---|
| 127 | * -# Repeat steps 5 to 7 until no new smallest distance can be found or until TestDistance is less than 0.00000002 radians. | 
|---|
| 128 | * | 
|---|
| 129 | * \param _points set of points | 
|---|
| 130 | * \return Center of minimum distance for all these points, is always of length 1 | 
|---|
| 131 | */ | 
|---|
| 132 | Vector SphericalPointDistribution::calculateCenterOfMinimumDistance( | 
|---|
| 133 | const SphericalPointDistribution::VectorArray_t &_positions, | 
|---|
| 134 | const SphericalPointDistribution::IndexList_t &_indices) | 
|---|
| 135 | { | 
|---|
| 136 | ASSERT( _positions.size() >= _indices.size(), | 
|---|
| 137 | "calculateCenterOfMinimumDistance() - less positions than indices given."); | 
|---|
| 138 | Vector center(1.,0.,0.); | 
|---|
| 139 |  | 
|---|
| 140 | /// first treat some special cases | 
|---|
| 141 | // no positions given: return x axis vector (NOT zero!) | 
|---|
| 142 | { | 
|---|
| 143 | if (_indices.empty()) | 
|---|
| 144 | return center; | 
|---|
| 145 | // one position given: return it directly | 
|---|
| 146 | if (_indices.size() == (size_t)1) | 
|---|
| 147 | return _positions[*_indices.begin()]; | 
|---|
| 148 | // two positions on a line given: return closest point to (1.,0.,0.) | 
|---|
| 149 | //    IndexList_t::const_iterator indexiter = _indices.begin(); | 
|---|
| 150 | //    const unsigned int firstindex = *indexiter++; | 
|---|
| 151 | //    const unsigned int secondindex = *indexiter; | 
|---|
| 152 | //    if ( fabs(_positions[firstindex].ScalarProduct(_positions[secondindex]) + 1.) | 
|---|
| 153 | //        < std::numeric_limits<double>::epsilon()*1e4) { | 
|---|
| 154 | //      Vector candidate; | 
|---|
| 155 | //      if (_positions[firstindex].ScalarProduct(center) > _positions[secondindex].ScalarProduct(center)) | 
|---|
| 156 | //        candidate = _positions[firstindex]; | 
|---|
| 157 | //      else | 
|---|
| 158 | //        candidate = _positions[secondindex]; | 
|---|
| 159 | //      // non-uniqueness: all positions on great circle, normal to given line are valid | 
|---|
| 160 | //      // so, we just pick one because returning a unique point is topmost priority | 
|---|
| 161 | //      Vector normal; | 
|---|
| 162 | //      normal.GetOneNormalVector(candidate); | 
|---|
| 163 | //      Vector othernormal = candidate; | 
|---|
| 164 | //      othernormal.VectorProduct(normal); | 
|---|
| 165 | //      // now both normal and othernormal describe the plane containing the great circle | 
|---|
| 166 | //      Plane greatcircle(normal, zeroVec, othernormal); | 
|---|
| 167 | //      // check which axis is contained and pick the one not | 
|---|
| 168 | //      if (greatcircle.isContained(center)) { | 
|---|
| 169 | //        center = Vector(0.,1.,0.); | 
|---|
| 170 | //        if (greatcircle.isContained(center)) | 
|---|
| 171 | //          center = Vector(0.,0.,1.); | 
|---|
| 172 | //        // now we are done cause a plane cannot contain all three axis vectors | 
|---|
| 173 | //      } | 
|---|
| 174 | //      center = greatcircle.getClosestPoint(candidate); | 
|---|
| 175 | //      // assure length of 1 | 
|---|
| 176 | //      center.Normalize(); | 
|---|
| 177 | // | 
|---|
| 178 | //      return center; | 
|---|
| 179 | //    } | 
|---|
| 180 | // given points lie on a great circle and go completely round it | 
|---|
| 181 | // two or more positions on a great circle given: return closest point to (1.,0.,0.) | 
|---|
| 182 | { | 
|---|
| 183 | bool AllNormal = true; | 
|---|
| 184 | Vector Normal; | 
|---|
| 185 | { | 
|---|
| 186 | IndexList_t::const_iterator indexiter = _indices.begin(); | 
|---|
| 187 | Normal = _positions[*indexiter++]; | 
|---|
| 188 | Normal.VectorProduct(_positions[*indexiter++]); | 
|---|
| 189 | Normal.Normalize(); | 
|---|
| 190 | for (;(AllNormal) && (indexiter != _indices.end()); ++indexiter) | 
|---|
| 191 | AllNormal &= _positions[*indexiter].IsNormalTo(Normal, 1e-8); | 
|---|
| 192 | } | 
|---|
| 193 | double AngleSum = 0.; | 
|---|
| 194 | if (AllNormal) { | 
|---|
| 195 | // check by angle sum whether points go round are cover just one half | 
|---|
| 196 | IndexList_t::const_iterator indexiter = _indices.begin(); | 
|---|
| 197 | Vector CurrentVector = _positions[*indexiter++]; | 
|---|
| 198 | for(; indexiter != _indices.end(); ++indexiter) { | 
|---|
| 199 | AngleSum += CurrentVector.Angle(_positions[*indexiter]); | 
|---|
| 200 | CurrentVector = _positions[*indexiter]; | 
|---|
| 201 | } | 
|---|
| 202 | } | 
|---|
| 203 | if (AngleSum - M_PI > std::numeric_limits<double>::epsilon()*1e4) { | 
|---|
| 204 | //        Vector candidate; | 
|---|
| 205 | //        double oldSKP = -1.; | 
|---|
| 206 | //        for (IndexList_t::const_iterator iter = _indices.begin(); | 
|---|
| 207 | //            iter != _indices.end(); ++iter) { | 
|---|
| 208 | //          const double newSKP = _positions[*iter].ScalarProduct(center); | 
|---|
| 209 | //          if (newSKP > oldSKP) { | 
|---|
| 210 | //            candidate = _positions[*iter]; | 
|---|
| 211 | //            oldSKP = newSKP; | 
|---|
| 212 | //          } | 
|---|
| 213 | //        } | 
|---|
| 214 | // non-uniqueness: all positions on great circle, normal to given line are valid | 
|---|
| 215 | // so, we just pick one because returning a unique point is topmost priority | 
|---|
| 216 | //        Vector normal; | 
|---|
| 217 | //        normal.GetOneNormalVector(candidate); | 
|---|
| 218 | //        Vector othernormal = candidate; | 
|---|
| 219 | //        othernormal.VectorProduct(normal); | 
|---|
| 220 | //        // now both normal and othernormal describe the plane containing the great circle | 
|---|
| 221 | //        Plane greatcircle(normal, zeroVec, othernormal); | 
|---|
| 222 | // check which axis is contained and pick the one not | 
|---|
| 223 | //        if (greatcircle.isContained(center)) { | 
|---|
| 224 | //          center = Vector(0.,1.,0.); | 
|---|
| 225 | //          if (greatcircle.isContained(center)) | 
|---|
| 226 | //            center = Vector(0.,0.,1.); | 
|---|
| 227 | //          // now we are done cause a plane cannot contain all three axis vectors | 
|---|
| 228 | //        } | 
|---|
| 229 | //        center = greatcircle.getClosestPoint(candidate); | 
|---|
| 230 | //        center = greatcircle.getNormal(); | 
|---|
| 231 | center = Normal; | 
|---|
| 232 | // assure length of 1 | 
|---|
| 233 | center.Normalize(); | 
|---|
| 234 |  | 
|---|
| 235 | return center; | 
|---|
| 236 | } | 
|---|
| 237 | } | 
|---|
| 238 | } | 
|---|
| 239 |  | 
|---|
| 240 | // start with geographic midpoint | 
|---|
| 241 | center = calculateGeographicMidpoint(_positions, _indices); | 
|---|
| 242 | if (!center.IsZero()) { | 
|---|
| 243 | center.Normalize(); | 
|---|
| 244 | LOG(5, "DEBUG: Starting with geographical midpoint of " << _positions << " under indices " | 
|---|
| 245 | << _indices << " is " << center); | 
|---|
| 246 | } else { | 
|---|
| 247 | // any point is good actually | 
|---|
| 248 | center = _positions[0]; | 
|---|
| 249 | LOG(5, "DEBUG: Starting with first position " << center); | 
|---|
| 250 | } | 
|---|
| 251 |  | 
|---|
| 252 | // calculate initial MinimumDistance | 
|---|
| 253 | double MinimumDistance = calculateMinimumDistance(center, _positions, _indices); | 
|---|
| 254 | LOG(6, "DEBUG: MinimumDistance to this center is " << MinimumDistance); | 
|---|
| 255 |  | 
|---|
| 256 | // check all present points whether they may serve as a better center | 
|---|
| 257 | for (SphericalPointDistribution::IndexList_t::const_iterator iter = _indices.begin(); | 
|---|
| 258 | iter != _indices.end(); ++iter) { | 
|---|
| 259 | const Vector ¢erCandidate = _positions[*iter]; | 
|---|
| 260 | const double candidateDistance = calculateMinimumDistance(centerCandidate, _positions, _indices); | 
|---|
| 261 | if (candidateDistance < MinimumDistance) { | 
|---|
| 262 | MinimumDistance = candidateDistance; | 
|---|
| 263 | center = centerCandidate; | 
|---|
| 264 | LOG(6, "DEBUG: new MinimumDistance to current test point " << MinimumDistance | 
|---|
| 265 | << " is " << center); | 
|---|
| 266 | } | 
|---|
| 267 | } | 
|---|
| 268 | LOG(6, "DEBUG: new MinimumDistance to center " << center << " is " << MinimumDistance); | 
|---|
| 269 |  | 
|---|
| 270 | // now iterate over TestDistance | 
|---|
| 271 | double TestDistance = Vector(1.,0.,0.).Angle(Vector(0.,1.,0.)); | 
|---|
| 272 | //  LOG(6, "DEBUG: initial TestDistance is " << TestDistance); | 
|---|
| 273 |  | 
|---|
| 274 | const double threshold = sqrt(std::numeric_limits<double>::epsilon()); | 
|---|
| 275 | // check each of eight test points at N, NE, E, SE, S, SW, W, NW | 
|---|
| 276 | typedef std::vector<double> angles_t; | 
|---|
| 277 | angles_t testangles; | 
|---|
| 278 | testangles += 0./180.*M_PI, 45./180.*M_PI, 90./180.*M_PI, 135./180.*M_PI, | 
|---|
| 279 | 180./180.*M_PI, 225./180.*M_PI, 270./180.*M_PI, 315./180.*M_PI; | 
|---|
| 280 | while (TestDistance > threshold) { | 
|---|
| 281 | Vector OneNormal; | 
|---|
| 282 | OneNormal.GetOneNormalVector(center); | 
|---|
| 283 | Line RotationAxis(zeroVec, OneNormal); | 
|---|
| 284 | Vector North = RotationAxis.rotateVector(center,TestDistance); | 
|---|
| 285 | Line CompassRose(zeroVec, center); | 
|---|
| 286 | bool updatedflag = false; | 
|---|
| 287 | for (angles_t::const_iterator angleiter = testangles.begin(); | 
|---|
| 288 | angleiter != testangles.end(); ++angleiter) { | 
|---|
| 289 | Vector centerCandidate = CompassRose.rotateVector(North, *angleiter); | 
|---|
| 290 | //      centerCandidate.Normalize(); | 
|---|
| 291 | const double candidateDistance = calculateMinimumDistance(centerCandidate, _positions, _indices); | 
|---|
| 292 | if (candidateDistance < MinimumDistance) { | 
|---|
| 293 | MinimumDistance = candidateDistance; | 
|---|
| 294 | center = centerCandidate; | 
|---|
| 295 | updatedflag = true; | 
|---|
| 296 | LOG(7, "DEBUG: new MinimumDistance to test point at " << *angleiter/M_PI*180. | 
|---|
| 297 | << "° is " << MinimumDistance); | 
|---|
| 298 | } | 
|---|
| 299 | } | 
|---|
| 300 |  | 
|---|
| 301 | // if no new point, decrease TestDistance | 
|---|
| 302 | if (!updatedflag) { | 
|---|
| 303 | TestDistance *= 0.5; | 
|---|
| 304 | //      LOG(6, "DEBUG: TestDistance is now " << TestDistance); | 
|---|
| 305 | } | 
|---|
| 306 | } | 
|---|
| 307 | LOG(4, "DEBUG: Final MinimumDistance to center " << center << " is " << MinimumDistance); | 
|---|
| 308 |  | 
|---|
| 309 | return center; | 
|---|
| 310 | } | 
|---|
| 311 |  | 
|---|
| 312 | Vector calculateCenterOfMinimumDistance( | 
|---|
| 313 | const SphericalPointDistribution::PolygonWithIndices &_points) | 
|---|
| 314 | { | 
|---|
| 315 | return SphericalPointDistribution::calculateCenterOfMinimumDistance(_points.polygon, _points.indices); | 
|---|
| 316 | } | 
|---|
| 317 |  | 
|---|
| 318 | /** Calculate the center of a given set of points in \a _positions but only | 
|---|
| 319 | * for those indicated by \a _indices. | 
|---|
| 320 | * | 
|---|
| 321 | */ | 
|---|
| 322 | inline | 
|---|
| 323 | Vector calculateCenter( | 
|---|
| 324 | const SphericalPointDistribution::VectorArray_t &_positions, | 
|---|
| 325 | const SphericalPointDistribution::IndexList_t &_indices) | 
|---|
| 326 | { | 
|---|
| 327 | //  Vector Center; | 
|---|
| 328 | //  Center.Zero(); | 
|---|
| 329 | //  for (SphericalPointDistribution::IndexList_t::const_iterator iter = _indices.begin(); | 
|---|
| 330 | //      iter != _indices.end(); ++iter) | 
|---|
| 331 | //    Center += _positions[*iter]; | 
|---|
| 332 | //  if (!_indices.empty()) | 
|---|
| 333 | //    Center *= 1./(double)_indices.size(); | 
|---|
| 334 | // | 
|---|
| 335 | //  return Center; | 
|---|
| 336 | return SphericalPointDistribution::calculateCenterOfMinimumDistance(_positions, _indices); | 
|---|
| 337 | } | 
|---|
| 338 |  | 
|---|
| 339 | /** Calculate the center of a given set of points in \a _positions but only | 
|---|
| 340 | * for those indicated by \a _indices. | 
|---|
| 341 | * | 
|---|
| 342 | */ | 
|---|
| 343 | inline | 
|---|
| 344 | Vector calculateCenter( | 
|---|
| 345 | const SphericalPointDistribution::PolygonWithIndices &_polygon) | 
|---|
| 346 | { | 
|---|
| 347 | return calculateCenter(_polygon.polygon, _polygon.indices); | 
|---|
| 348 | } | 
|---|
| 349 |  | 
|---|
| 350 | inline | 
|---|
| 351 | DistanceArray_t calculatePairwiseDistances( | 
|---|
| 352 | const SphericalPointDistribution::VectorArray_t &_points, | 
|---|
| 353 | const SphericalPointDistribution::IndexTupleList_t &_indices | 
|---|
| 354 | ) | 
|---|
| 355 | { | 
|---|
| 356 | DistanceArray_t result; | 
|---|
| 357 | for (SphericalPointDistribution::IndexTupleList_t::const_iterator firstiter = _indices.begin(); | 
|---|
| 358 | firstiter != _indices.end(); ++firstiter) { | 
|---|
| 359 |  | 
|---|
| 360 | // calculate first center from possible tuple of indices | 
|---|
| 361 | Vector FirstCenter; | 
|---|
| 362 | ASSERT(!firstiter->empty(), "calculatePairwiseDistances() - there is an empty tuple."); | 
|---|
| 363 | if (firstiter->size() == 1) { | 
|---|
| 364 | FirstCenter = _points[*firstiter->begin()]; | 
|---|
| 365 | } else { | 
|---|
| 366 | FirstCenter = calculateCenter( _points, *firstiter); | 
|---|
| 367 | if (!FirstCenter.IsZero()) | 
|---|
| 368 | FirstCenter.Normalize(); | 
|---|
| 369 | } | 
|---|
| 370 |  | 
|---|
| 371 | for (SphericalPointDistribution::IndexTupleList_t::const_iterator seconditer = firstiter; | 
|---|
| 372 | seconditer != _indices.end(); ++seconditer) { | 
|---|
| 373 | if (firstiter == seconditer) | 
|---|
| 374 | continue; | 
|---|
| 375 |  | 
|---|
| 376 | // calculate second center from possible tuple of indices | 
|---|
| 377 | Vector SecondCenter; | 
|---|
| 378 | ASSERT(!seconditer->empty(), "calculatePairwiseDistances() - there is an empty tuple."); | 
|---|
| 379 | if (seconditer->size() == 1) { | 
|---|
| 380 | SecondCenter = _points[*seconditer->begin()]; | 
|---|
| 381 | } else { | 
|---|
| 382 | SecondCenter = calculateCenter( _points, *seconditer); | 
|---|
| 383 | if (!SecondCenter.IsZero()) | 
|---|
| 384 | SecondCenter.Normalize(); | 
|---|
| 385 | } | 
|---|
| 386 |  | 
|---|
| 387 | // calculate distance between both centers | 
|---|
| 388 | double distance = 2.; // greatest distance on surface of sphere with radius 1. | 
|---|
| 389 | if ((!FirstCenter.IsZero()) && (!SecondCenter.IsZero())) | 
|---|
| 390 | distance = (FirstCenter - SecondCenter).NormSquared(); | 
|---|
| 391 | result.push_back(distance); | 
|---|
| 392 | } | 
|---|
| 393 | } | 
|---|
| 394 | return result; | 
|---|
| 395 | } | 
|---|
| 396 |  | 
|---|
| 397 | /** Decides by an orthonormal third vector whether the sign of the rotation | 
|---|
| 398 | * angle should be negative or positive. | 
|---|
| 399 | * | 
|---|
| 400 | * \return -1 or 1 | 
|---|
| 401 | */ | 
|---|
| 402 | inline | 
|---|
| 403 | double determineSignOfRotation( | 
|---|
| 404 | const Vector &_oldPosition, | 
|---|
| 405 | const Vector &_newPosition, | 
|---|
| 406 | const Vector &_RotationAxis | 
|---|
| 407 | ) | 
|---|
| 408 | { | 
|---|
| 409 | Vector dreiBein(_oldPosition); | 
|---|
| 410 | dreiBein.VectorProduct(_RotationAxis); | 
|---|
| 411 | ASSERT( !dreiBein.IsZero(), "determineSignOfRotation() - dreiBein is zero."); | 
|---|
| 412 | dreiBein.Normalize(); | 
|---|
| 413 | const double sign = | 
|---|
| 414 | (dreiBein.ScalarProduct(_newPosition) < 0.) ? -1. : +1.; | 
|---|
| 415 | LOG(6, "DEBUG: oldCenter on plane is " << _oldPosition | 
|---|
| 416 | << ", newCenter on plane is " << _newPosition | 
|---|
| 417 | << ", and dreiBein is " << dreiBein); | 
|---|
| 418 | return sign; | 
|---|
| 419 | } | 
|---|
| 420 |  | 
|---|
| 421 | /** Convenience function to recalculate old and new center for determining plane | 
|---|
| 422 | * rotation. | 
|---|
| 423 | */ | 
|---|
| 424 | inline | 
|---|
| 425 | void calculateOldAndNewCenters( | 
|---|
| 426 | Vector &_oldCenter, | 
|---|
| 427 | Vector &_newCenter, | 
|---|
| 428 | const SphericalPointDistribution::PolygonWithIndices &_referencepositions, | 
|---|
| 429 | const SphericalPointDistribution::PolygonWithIndices &_currentpositions) | 
|---|
| 430 | { | 
|---|
| 431 | _oldCenter = calculateCenter(_referencepositions.polygon, _referencepositions.indices); | 
|---|
| 432 | // C++11 defines a copy_n function ... | 
|---|
| 433 | _newCenter = calculateCenter( _currentpositions.polygon, _currentpositions.indices); | 
|---|
| 434 | } | 
|---|
| 435 | /** Returns squared L2 error of the given \a _Matching. | 
|---|
| 436 | * | 
|---|
| 437 | * We compare the pair-wise distances of each associated matching | 
|---|
| 438 | * and check whether these distances each match between \a _old and | 
|---|
| 439 | * \a _new. | 
|---|
| 440 | * | 
|---|
| 441 | * \param _old first set of points (fewer or equal to \a _new) | 
|---|
| 442 | * \param _new second set of points | 
|---|
| 443 | * \param _Matching matching between the two sets | 
|---|
| 444 | * \return pair with L1 and squared L2 error | 
|---|
| 445 | */ | 
|---|
| 446 | std::pair<double, double> SphericalPointDistribution::calculateErrorOfMatching( | 
|---|
| 447 | const VectorArray_t &_old, | 
|---|
| 448 | const VectorArray_t &_new, | 
|---|
| 449 | const IndexTupleList_t &_Matching) | 
|---|
| 450 | { | 
|---|
| 451 | std::pair<double, double> errors( std::make_pair( 0., 0. ) ); | 
|---|
| 452 |  | 
|---|
| 453 | if (_Matching.size() > 1) { | 
|---|
| 454 | LOG(5, "INFO: Matching is " << _Matching); | 
|---|
| 455 |  | 
|---|
| 456 | // calculate all pair-wise distances | 
|---|
| 457 | IndexTupleList_t keys(_old.size(), IndexList_t() ); | 
|---|
| 458 | std::generate (keys.begin(), keys.end(), UniqueNumberList); | 
|---|
| 459 |  | 
|---|
| 460 | const DistanceArray_t firstdistances = calculatePairwiseDistances(_old, keys); | 
|---|
| 461 | const DistanceArray_t seconddistances = calculatePairwiseDistances(_new, _Matching); | 
|---|
| 462 |  | 
|---|
| 463 | ASSERT( firstdistances.size() == seconddistances.size(), | 
|---|
| 464 | "calculateL2ErrorOfMatching() - mismatch in pair-wise distance array sizes."); | 
|---|
| 465 | DistanceArray_t::const_iterator firstiter = firstdistances.begin(); | 
|---|
| 466 | DistanceArray_t::const_iterator seconditer = seconddistances.begin(); | 
|---|
| 467 | for (;(firstiter != firstdistances.end()) && (seconditer != seconddistances.end()); | 
|---|
| 468 | ++firstiter, ++seconditer) { | 
|---|
| 469 | const double gap = fabs(*firstiter - *seconditer); | 
|---|
| 470 | // L1 error | 
|---|
| 471 | if (errors.first < gap) | 
|---|
| 472 | errors.first = gap; | 
|---|
| 473 | // L2 error | 
|---|
| 474 | errors.second += gap*gap; | 
|---|
| 475 | } | 
|---|
| 476 | // there is at least one distance, we've checked that before | 
|---|
| 477 | errors.second *= 1./(double)firstdistances.size(); | 
|---|
| 478 | } else { | 
|---|
| 479 | // check whether we have any zero centers: Combining points on new sphere may result | 
|---|
| 480 | // in zero centers | 
|---|
| 481 | for (SphericalPointDistribution::IndexTupleList_t::const_iterator iter = _Matching.begin(); | 
|---|
| 482 | iter != _Matching.end(); ++iter) { | 
|---|
| 483 | if ((iter->size() != 1) && (calculateCenter( _new, *iter).IsZero())) { | 
|---|
| 484 | errors.first = 2.; | 
|---|
| 485 | errors.second = 2.; | 
|---|
| 486 | } | 
|---|
| 487 | } | 
|---|
| 488 | } | 
|---|
| 489 | LOG(4, "INFO: Resulting errors for matching (L1, L2): " | 
|---|
| 490 | << errors.first << "," << errors.second << "."); | 
|---|
| 491 |  | 
|---|
| 492 | return errors; | 
|---|
| 493 | } | 
|---|
| 494 |  | 
|---|
| 495 | SphericalPointDistribution::Polygon_t SphericalPointDistribution::removeMatchingPoints( | 
|---|
| 496 | const PolygonWithIndices &_points | 
|---|
| 497 | ) | 
|---|
| 498 | { | 
|---|
| 499 | SphericalPointDistribution::Polygon_t remainingpoints; | 
|---|
| 500 | IndexArray_t indices(_points.indices.begin(), _points.indices.end()); | 
|---|
| 501 | std::sort(indices.begin(), indices.end()); | 
|---|
| 502 | LOG(4, "DEBUG: sorted matching is " << indices); | 
|---|
| 503 | IndexArray_t remainingindices(_points.polygon.size(), -1); | 
|---|
| 504 | std::generate(remainingindices.begin(), remainingindices.end(), UniqueNumber); | 
|---|
| 505 | IndexArray_t::iterator remainiter = std::set_difference( | 
|---|
| 506 | remainingindices.begin(), remainingindices.end(), | 
|---|
| 507 | indices.begin(), indices.end(), | 
|---|
| 508 | remainingindices.begin()); | 
|---|
| 509 | remainingindices.erase(remainiter, remainingindices.end()); | 
|---|
| 510 | LOG(4, "DEBUG: remaining indices are " << remainingindices); | 
|---|
| 511 | for (IndexArray_t::const_iterator iter = remainingindices.begin(); | 
|---|
| 512 | iter != remainingindices.end(); ++iter) { | 
|---|
| 513 | remainingpoints.push_back(_points.polygon[*iter]); | 
|---|
| 514 | } | 
|---|
| 515 |  | 
|---|
| 516 | return remainingpoints; | 
|---|
| 517 | } | 
|---|
| 518 |  | 
|---|
| 519 | /** Recursive function to go through all possible matchings. | 
|---|
| 520 | * | 
|---|
| 521 | * \param _MCS structure holding global information to the recursion | 
|---|
| 522 | * \param _matching current matching being build up | 
|---|
| 523 | * \param _indices contains still available indices | 
|---|
| 524 | * \param _remainingweights current weights to fill (each weight a place) | 
|---|
| 525 | * \param _remainiter iterator over the weights, indicating the current position we match | 
|---|
| 526 | * \param _matchingsize | 
|---|
| 527 | */ | 
|---|
| 528 | void SphericalPointDistribution::recurseMatchings( | 
|---|
| 529 | MatchingControlStructure &_MCS, | 
|---|
| 530 | IndexTupleList_t &_matching, | 
|---|
| 531 | IndexList_t _indices, | 
|---|
| 532 | WeightsArray_t &_remainingweights, | 
|---|
| 533 | WeightsArray_t::iterator _remainiter, | 
|---|
| 534 | const unsigned int _matchingsize | 
|---|
| 535 | ) | 
|---|
| 536 | { | 
|---|
| 537 | LOG(5, "DEBUG: Recursing with current matching " << _matching | 
|---|
| 538 | << ", remaining indices " << _indices | 
|---|
| 539 | << ", and remaining weights " << _matchingsize); | 
|---|
| 540 | if (!_MCS.foundflag) { | 
|---|
| 541 | LOG(5, "DEBUG: Current matching has size " << _matching.size() << ", places left " << _matchingsize); | 
|---|
| 542 | if (_matchingsize > 0) { | 
|---|
| 543 | // go through all indices | 
|---|
| 544 | for (IndexList_t::iterator iter = _indices.begin(); | 
|---|
| 545 | (iter != _indices.end()) && (!_MCS.foundflag);) { | 
|---|
| 546 |  | 
|---|
| 547 | // check whether we can stay in the current bin or have to move on to next one | 
|---|
| 548 | if (*_remainiter == 0) { | 
|---|
| 549 | // we need to move on | 
|---|
| 550 | if (_remainiter != _remainingweights.end()) { | 
|---|
| 551 | ++_remainiter; | 
|---|
| 552 | } else { | 
|---|
| 553 | // as we check _matchingsize > 0 this should be impossible | 
|---|
| 554 | ASSERT( 0, "recurseMatchings() - we must not come to this position."); | 
|---|
| 555 | } | 
|---|
| 556 | } | 
|---|
| 557 |  | 
|---|
| 558 | // advance in matching to current bin to fill in | 
|---|
| 559 | const size_t OldIndex = std::distance(_remainingweights.begin(), _remainiter); | 
|---|
| 560 | while (_matching.size() <= OldIndex) { // add empty lists of new bin is opened | 
|---|
| 561 | LOG(6, "DEBUG: Extending _matching."); | 
|---|
| 562 | _matching.push_back( IndexList_t() ); | 
|---|
| 563 | } | 
|---|
| 564 | IndexTupleList_t::iterator filliniter = _matching.begin(); | 
|---|
| 565 | std::advance(filliniter, OldIndex); | 
|---|
| 566 |  | 
|---|
| 567 | // check whether connection between bins' indices and candidate is satisfied | 
|---|
| 568 | { | 
|---|
| 569 | adjacency_t::const_iterator finder = _MCS.adjacency.find(*iter); | 
|---|
| 570 | ASSERT( finder != _MCS.adjacency.end(), | 
|---|
| 571 | "recurseMatchings() - "+toString(*iter)+" is not in adjacency list."); | 
|---|
| 572 | if ((!filliniter->empty()) | 
|---|
| 573 | && (finder->second.find(*filliniter->begin()) == finder->second.end())) { | 
|---|
| 574 | LOG(5, "DEBUG; Skipping index " << *iter | 
|---|
| 575 | << " as is not connected to current set." << *filliniter << "."); | 
|---|
| 576 | ++iter; // note that for loop does not contain incrementor | 
|---|
| 577 | continue; | 
|---|
| 578 | } | 
|---|
| 579 | } | 
|---|
| 580 |  | 
|---|
| 581 | // add index to matching | 
|---|
| 582 | filliniter->push_back(*iter); | 
|---|
| 583 | --(*_remainiter); | 
|---|
| 584 | LOG(6, "DEBUG: Adding " << *iter << " to matching at " << OldIndex << "."); | 
|---|
| 585 | // remove index but keep iterator to position (is the next to erase element) | 
|---|
| 586 | IndexList_t::iterator backupiter = _indices.erase(iter); | 
|---|
| 587 | // recurse with decreased _matchingsize | 
|---|
| 588 | recurseMatchings(_MCS, _matching, _indices, _remainingweights, _remainiter, _matchingsize-1); | 
|---|
| 589 | // re-add chosen index and reset index to new position | 
|---|
| 590 | _indices.insert(backupiter, filliniter->back()); | 
|---|
| 591 | iter = backupiter; | 
|---|
| 592 | // remove index from _matching to make space for the next one | 
|---|
| 593 | filliniter->pop_back(); | 
|---|
| 594 | ++(*_remainiter); | 
|---|
| 595 | } | 
|---|
| 596 | // gone through all indices then exit recursion | 
|---|
| 597 | if (_matching.empty()) | 
|---|
| 598 | _MCS.foundflag = true; | 
|---|
| 599 | } else { | 
|---|
| 600 | LOG(4, "INFO: Found matching " << _matching); | 
|---|
| 601 | // calculate errors | 
|---|
| 602 | std::pair<double, double> errors = calculateErrorOfMatching( | 
|---|
| 603 | _MCS.oldpoints, _MCS.newpoints, _matching); | 
|---|
| 604 | if (errors.first < L1THRESHOLD) { | 
|---|
| 605 | _MCS.bestmatching = _matching; | 
|---|
| 606 | _MCS.foundflag = true; | 
|---|
| 607 | } else if (_MCS.bestL2 > errors.second) { | 
|---|
| 608 | _MCS.bestmatching = _matching; | 
|---|
| 609 | _MCS.bestL2 = errors.second; | 
|---|
| 610 | } | 
|---|
| 611 | } | 
|---|
| 612 | } | 
|---|
| 613 | } | 
|---|
| 614 |  | 
|---|
| 615 | SphericalPointDistribution::MatchingControlStructure::MatchingControlStructure( | 
|---|
| 616 | const adjacency_t &_adjacency, | 
|---|
| 617 | const VectorArray_t &_oldpoints, | 
|---|
| 618 | const VectorArray_t &_newpoints, | 
|---|
| 619 | const WeightsArray_t &_weights | 
|---|
| 620 | ) : | 
|---|
| 621 | foundflag(false), | 
|---|
| 622 | bestL2(std::numeric_limits<double>::max()), | 
|---|
| 623 | adjacency(_adjacency), | 
|---|
| 624 | oldpoints(_oldpoints), | 
|---|
| 625 | newpoints(_newpoints), | 
|---|
| 626 | weights(_weights) | 
|---|
| 627 | {} | 
|---|
| 628 |  | 
|---|
| 629 | /** Finds combinatorially the best matching between points in \a _polygon | 
|---|
| 630 | * and \a _newpolygon. | 
|---|
| 631 | * | 
|---|
| 632 | * We find the matching with the smallest L2 error, where we break when we stumble | 
|---|
| 633 | * upon a matching with zero error. | 
|---|
| 634 | * | 
|---|
| 635 | * As points in \a _polygon may be have a weight greater 1 we have to match it to | 
|---|
| 636 | * multiple points in \a _newpolygon. Eventually, these multiple points are combined | 
|---|
| 637 | * for their center of weight, which is the only thing follow-up function see of | 
|---|
| 638 | * these multiple points. Hence, we actually modify \a _newpolygon in the process | 
|---|
| 639 | * such that the returned IndexList_t indicates a bijective mapping in the end. | 
|---|
| 640 | * | 
|---|
| 641 | * \sa recurseMatchings() for going through all matchings | 
|---|
| 642 | * | 
|---|
| 643 | * \param _polygon here, we have indices 0,1,2,... | 
|---|
| 644 | * \param _newpolygon and here we need to find the correct indices | 
|---|
| 645 | * \return control structure containing the matching and more | 
|---|
| 646 | */ | 
|---|
| 647 | SphericalPointDistribution::MatchingControlStructure | 
|---|
| 648 | SphericalPointDistribution::findBestMatching( | 
|---|
| 649 | const WeightedPolygon_t &_polygon | 
|---|
| 650 | ) | 
|---|
| 651 | { | 
|---|
| 652 | // transform lists into arrays | 
|---|
| 653 | VectorArray_t oldpoints; | 
|---|
| 654 | VectorArray_t newpoints; | 
|---|
| 655 | WeightsArray_t weights; | 
|---|
| 656 | for (WeightedPolygon_t::const_iterator iter = _polygon.begin(); | 
|---|
| 657 | iter != _polygon.end(); ++iter) { | 
|---|
| 658 | oldpoints.push_back(iter->first); | 
|---|
| 659 | weights.push_back(iter->second); | 
|---|
| 660 | } | 
|---|
| 661 | newpoints.insert(newpoints.begin(), points.begin(), points.end() ); | 
|---|
| 662 | MatchingControlStructure MCS(adjacency, oldpoints, newpoints, weights); | 
|---|
| 663 |  | 
|---|
| 664 | // search for bestmatching combinatorially | 
|---|
| 665 | { | 
|---|
| 666 | // translate polygon into vector to enable index addressing | 
|---|
| 667 | IndexList_t indices(points.size()); | 
|---|
| 668 | std::generate(indices.begin(), indices.end(), UniqueNumber); | 
|---|
| 669 | IndexTupleList_t matching; | 
|---|
| 670 |  | 
|---|
| 671 | // walk through all matchings | 
|---|
| 672 | WeightsArray_t remainingweights = MCS.weights; | 
|---|
| 673 | unsigned int placesleft = std::accumulate(remainingweights.begin(), remainingweights.end(), 0); | 
|---|
| 674 | recurseMatchings(MCS, matching, indices, remainingweights, remainingweights.begin(), placesleft); | 
|---|
| 675 | } | 
|---|
| 676 | if (MCS.foundflag) | 
|---|
| 677 | LOG(3, "Found a best matching beneath L1 threshold of " << L1THRESHOLD); | 
|---|
| 678 | else { | 
|---|
| 679 | if (MCS.bestL2 < warn_amplitude) | 
|---|
| 680 | LOG(3, "Picking matching is " << MCS.bestmatching << " with best L2 error of " | 
|---|
| 681 | << MCS.bestL2); | 
|---|
| 682 | else if (MCS.bestL2 < L2THRESHOLD) | 
|---|
| 683 | ELOG(2, "Picking matching is " << MCS.bestmatching | 
|---|
| 684 | << " with rather large L2 error of " << MCS.bestL2); | 
|---|
| 685 | else | 
|---|
| 686 | ASSERT(0, "findBestMatching() - matching "+toString(MCS.bestmatching) | 
|---|
| 687 | +" has L2 error of "+toString(MCS.bestL2)+" that is too large."); | 
|---|
| 688 | } | 
|---|
| 689 |  | 
|---|
| 690 | return MCS; | 
|---|
| 691 | } | 
|---|
| 692 |  | 
|---|
| 693 | SphericalPointDistribution::IndexList_t SphericalPointDistribution::joinPoints( | 
|---|
| 694 | Polygon_t &_newpolygon, | 
|---|
| 695 | const VectorArray_t &_newpoints, | 
|---|
| 696 | const IndexTupleList_t &_bestmatching | 
|---|
| 697 | ) | 
|---|
| 698 | { | 
|---|
| 699 | // combine all multiple points | 
|---|
| 700 | IndexList_t IndexList; | 
|---|
| 701 | IndexArray_t removalpoints; | 
|---|
| 702 | unsigned int UniqueIndex = _newpolygon.size(); // all indices up to size are used right now | 
|---|
| 703 | VectorArray_t newCenters; | 
|---|
| 704 | newCenters.reserve(_bestmatching.size()); | 
|---|
| 705 | for (IndexTupleList_t::const_iterator tupleiter = _bestmatching.begin(); | 
|---|
| 706 | tupleiter != _bestmatching.end(); ++tupleiter) { | 
|---|
| 707 | ASSERT (tupleiter->size() > 0, | 
|---|
| 708 | "findBestMatching() - encountered tuple in bestmatching with size 0."); | 
|---|
| 709 | if (tupleiter->size() == 1) { | 
|---|
| 710 | // add point and index | 
|---|
| 711 | IndexList.push_back(*tupleiter->begin()); | 
|---|
| 712 | } else { | 
|---|
| 713 | // combine into weighted and normalized center | 
|---|
| 714 | Vector Center = calculateCenter(_newpoints, *tupleiter); | 
|---|
| 715 | Center.Normalize(); | 
|---|
| 716 | _newpolygon.push_back(Center); | 
|---|
| 717 | LOG(5, "DEBUG: Combining " << tupleiter->size() << " points to weighted center " | 
|---|
| 718 | << Center << " with new index " << UniqueIndex); | 
|---|
| 719 | // mark for removal | 
|---|
| 720 | removalpoints.insert(removalpoints.end(), tupleiter->begin(), tupleiter->end()); | 
|---|
| 721 | // add new index | 
|---|
| 722 | IndexList.push_back(UniqueIndex++); | 
|---|
| 723 | } | 
|---|
| 724 | } | 
|---|
| 725 | // IndexList is now our new bestmatching (that is bijective) | 
|---|
| 726 | LOG(4, "DEBUG: Our new bijective IndexList reads as " << IndexList); | 
|---|
| 727 |  | 
|---|
| 728 | // modifying _newpolygon: remove all points in removalpoints, add those in newCenters | 
|---|
| 729 | Polygon_t allnewpoints = _newpolygon; | 
|---|
| 730 | { | 
|---|
| 731 | _newpolygon.clear(); | 
|---|
| 732 | std::sort(removalpoints.begin(), removalpoints.end()); | 
|---|
| 733 | size_t i = 0; | 
|---|
| 734 | IndexArray_t::const_iterator removeiter = removalpoints.begin(); | 
|---|
| 735 | for (Polygon_t::iterator iter = allnewpoints.begin(); | 
|---|
| 736 | iter != allnewpoints.end(); ++iter, ++i) { | 
|---|
| 737 | if ((removeiter != removalpoints.end()) && (i == *removeiter)) { | 
|---|
| 738 | // don't add, go to next remove index | 
|---|
| 739 | ++removeiter; | 
|---|
| 740 | } else { | 
|---|
| 741 | // otherwise add points | 
|---|
| 742 | _newpolygon.push_back(*iter); | 
|---|
| 743 | } | 
|---|
| 744 | } | 
|---|
| 745 | } | 
|---|
| 746 | LOG(4, "DEBUG: The polygon with recentered points removed is " << _newpolygon); | 
|---|
| 747 |  | 
|---|
| 748 | // map IndexList to new shrinked _newpolygon | 
|---|
| 749 | typedef std::set<unsigned int> IndexSet_t; | 
|---|
| 750 | IndexSet_t SortedIndexList(IndexList.begin(), IndexList.end()); | 
|---|
| 751 | IndexList.clear(); | 
|---|
| 752 | { | 
|---|
| 753 | size_t offset = 0; | 
|---|
| 754 | IndexSet_t::const_iterator listiter = SortedIndexList.begin(); | 
|---|
| 755 | IndexArray_t::const_iterator removeiter = removalpoints.begin(); | 
|---|
| 756 | for (size_t i = 0; i < allnewpoints.size(); ++i) { | 
|---|
| 757 | if ((removeiter != removalpoints.end()) && (i == *removeiter)) { | 
|---|
| 758 | ++offset; | 
|---|
| 759 | ++removeiter; | 
|---|
| 760 | } else if ((listiter != SortedIndexList.end()) && (i == *listiter)) { | 
|---|
| 761 | IndexList.push_back(*listiter - offset); | 
|---|
| 762 | ++listiter; | 
|---|
| 763 | } | 
|---|
| 764 | } | 
|---|
| 765 | } | 
|---|
| 766 | LOG(4, "DEBUG: Our new bijective IndexList corrected for removed points reads as " | 
|---|
| 767 | << IndexList); | 
|---|
| 768 |  | 
|---|
| 769 | return IndexList; | 
|---|
| 770 | } | 
|---|
| 771 |  | 
|---|
| 772 | SphericalPointDistribution::Rotation_t SphericalPointDistribution::findPlaneAligningRotation( | 
|---|
| 773 | const PolygonWithIndices &_referencepositions, | 
|---|
| 774 | const PolygonWithIndices &_currentpositions | 
|---|
| 775 | ) | 
|---|
| 776 | { | 
|---|
| 777 | bool dontcheck = false; | 
|---|
| 778 | // initialize to no rotation | 
|---|
| 779 | Rotation_t Rotation; | 
|---|
| 780 | Rotation.first.Zero(); | 
|---|
| 781 | Rotation.first[0] = 1.; | 
|---|
| 782 | Rotation.second = 0.; | 
|---|
| 783 |  | 
|---|
| 784 | // calculate center of triangle/line/point consisting of first points of matching | 
|---|
| 785 | Vector oldCenter; | 
|---|
| 786 | Vector newCenter; | 
|---|
| 787 | calculateOldAndNewCenters( | 
|---|
| 788 | oldCenter, newCenter, | 
|---|
| 789 | _referencepositions, _currentpositions); | 
|---|
| 790 |  | 
|---|
| 791 | ASSERT( !oldCenter.IsZero() && !newCenter.IsZero(), | 
|---|
| 792 | "findPlaneAligningRotation() - either old "+toString(oldCenter) | 
|---|
| 793 | +" or new center "+toString(newCenter)+" are zero."); | 
|---|
| 794 | LOG(4, "DEBUG: oldCenter is " << oldCenter << ", newCenter is " << newCenter); | 
|---|
| 795 | if (!oldCenter.IsEqualTo(newCenter)) { | 
|---|
| 796 | // calculate rotation axis and angle | 
|---|
| 797 | Rotation.first = oldCenter; | 
|---|
| 798 | Rotation.first.VectorProduct(newCenter); | 
|---|
| 799 | Rotation.first.Normalize(); | 
|---|
| 800 | // construct reference vector to determine direction of rotation | 
|---|
| 801 | const double sign = determineSignOfRotation(newCenter, oldCenter, Rotation.first); | 
|---|
| 802 | Rotation.second = sign * oldCenter.Angle(newCenter); | 
|---|
| 803 | } else { | 
|---|
| 804 | // no rotation required anymore | 
|---|
| 805 | } | 
|---|
| 806 |  | 
|---|
| 807 | #ifndef NDEBUG | 
|---|
| 808 | // check: rotation brings newCenter onto oldCenter position | 
|---|
| 809 | if (!dontcheck) { | 
|---|
| 810 | Line Axis(zeroVec, Rotation.first); | 
|---|
| 811 | Vector test = Axis.rotateVector(newCenter, Rotation.second); | 
|---|
| 812 | LOG(4, "CHECK: rotated newCenter is " << test | 
|---|
| 813 | << ", oldCenter is " << oldCenter); | 
|---|
| 814 | ASSERT( (test - oldCenter).NormSquared() < std::numeric_limits<double>::epsilon()*1e4, | 
|---|
| 815 | "matchSphericalPointDistributions() - rotation does not work as expected by " | 
|---|
| 816 | +toString((test - oldCenter).NormSquared())+"."); | 
|---|
| 817 | } | 
|---|
| 818 | #endif | 
|---|
| 819 |  | 
|---|
| 820 | return Rotation; | 
|---|
| 821 | } | 
|---|
| 822 |  | 
|---|
| 823 | SphericalPointDistribution::Rotation_t SphericalPointDistribution::findPointAligningRotation( | 
|---|
| 824 | const PolygonWithIndices &remainingold, | 
|---|
| 825 | const PolygonWithIndices &remainingnew) | 
|---|
| 826 | { | 
|---|
| 827 | // initialize rotation to zero | 
|---|
| 828 | Rotation_t Rotation; | 
|---|
| 829 | Rotation.first.Zero(); | 
|---|
| 830 | Rotation.first[0] = 1.; | 
|---|
| 831 | Rotation.second = 0.; | 
|---|
| 832 |  | 
|---|
| 833 | // recalculate center | 
|---|
| 834 | Vector oldCenter; | 
|---|
| 835 | Vector newCenter; | 
|---|
| 836 | calculateOldAndNewCenters( | 
|---|
| 837 | oldCenter, newCenter, | 
|---|
| 838 | remainingold, remainingnew); | 
|---|
| 839 |  | 
|---|
| 840 | Vector oldPosition = remainingnew.polygon[*remainingnew.indices.begin()]; | 
|---|
| 841 | Vector newPosition = remainingold.polygon[0]; | 
|---|
| 842 | LOG(6, "DEBUG: oldPosition is " << oldPosition << " (length: " | 
|---|
| 843 | << oldPosition.Norm() << ") and newPosition is " << newPosition << " length(: " | 
|---|
| 844 | << newPosition.Norm() << ")"); | 
|---|
| 845 |  | 
|---|
| 846 | if (!oldPosition.IsEqualTo(newPosition)) { | 
|---|
| 847 | // we rotate at oldCenter and around the radial direction, which is again given | 
|---|
| 848 | // by oldCenter. | 
|---|
| 849 | Rotation.first = oldCenter; | 
|---|
| 850 | Rotation.first.Normalize();  // note weighted sum of normalized weight is not normalized | 
|---|
| 851 | LOG(6, "DEBUG: Using oldCenter " << oldCenter << " as rotation center and " | 
|---|
| 852 | << Rotation.first << " as axis."); | 
|---|
| 853 | oldPosition -= oldCenter; | 
|---|
| 854 | newPosition -= oldCenter; | 
|---|
| 855 | oldPosition = (oldPosition - oldPosition.Projection(Rotation.first)); | 
|---|
| 856 | newPosition = (newPosition - newPosition.Projection(Rotation.first)); | 
|---|
| 857 | LOG(6, "DEBUG: Positions after projection are " << oldPosition << " and " << newPosition); | 
|---|
| 858 |  | 
|---|
| 859 | // construct reference vector to determine direction of rotation | 
|---|
| 860 | const double sign = determineSignOfRotation(oldPosition, newPosition, Rotation.first); | 
|---|
| 861 | Rotation.second = sign * oldPosition.Angle(newPosition); | 
|---|
| 862 | } else { | 
|---|
| 863 | LOG(6, "DEBUG: oldPosition and newPosition are equivalent, hence no orientating rotation."); | 
|---|
| 864 | } | 
|---|
| 865 |  | 
|---|
| 866 | return Rotation; | 
|---|
| 867 | } | 
|---|
| 868 |  | 
|---|
| 869 | void SphericalPointDistribution::initSelf(const int _NumberOfPoints) | 
|---|
| 870 | { | 
|---|
| 871 | switch (_NumberOfPoints) | 
|---|
| 872 | { | 
|---|
| 873 | case 0: | 
|---|
| 874 | points = get<0>(); | 
|---|
| 875 | adjacency = getConnections<0>(); | 
|---|
| 876 | break; | 
|---|
| 877 | case 1: | 
|---|
| 878 | points = get<1>(); | 
|---|
| 879 | adjacency = getConnections<1>(); | 
|---|
| 880 | break; | 
|---|
| 881 | case 2: | 
|---|
| 882 | points = get<2>(); | 
|---|
| 883 | adjacency = getConnections<2>(); | 
|---|
| 884 | break; | 
|---|
| 885 | case 3: | 
|---|
| 886 | points = get<3>(); | 
|---|
| 887 | adjacency = getConnections<3>(); | 
|---|
| 888 | break; | 
|---|
| 889 | case 4: | 
|---|
| 890 | points = get<4>(); | 
|---|
| 891 | adjacency = getConnections<4>(); | 
|---|
| 892 | break; | 
|---|
| 893 | case 5: | 
|---|
| 894 | points = get<5>(); | 
|---|
| 895 | adjacency = getConnections<5>(); | 
|---|
| 896 | break; | 
|---|
| 897 | case 6: | 
|---|
| 898 | points = get<6>(); | 
|---|
| 899 | adjacency = getConnections<6>(); | 
|---|
| 900 | break; | 
|---|
| 901 | case 7: | 
|---|
| 902 | points = get<7>(); | 
|---|
| 903 | adjacency = getConnections<7>(); | 
|---|
| 904 | break; | 
|---|
| 905 | case 8: | 
|---|
| 906 | points = get<8>(); | 
|---|
| 907 | adjacency = getConnections<8>(); | 
|---|
| 908 | break; | 
|---|
| 909 | case 9: | 
|---|
| 910 | points = get<9>(); | 
|---|
| 911 | adjacency = getConnections<9>(); | 
|---|
| 912 | break; | 
|---|
| 913 | case 10: | 
|---|
| 914 | points = get<10>(); | 
|---|
| 915 | adjacency = getConnections<10>(); | 
|---|
| 916 | break; | 
|---|
| 917 | case 11: | 
|---|
| 918 | points = get<11>(); | 
|---|
| 919 | adjacency = getConnections<11>(); | 
|---|
| 920 | break; | 
|---|
| 921 | case 12: | 
|---|
| 922 | points = get<12>(); | 
|---|
| 923 | adjacency = getConnections<12>(); | 
|---|
| 924 | break; | 
|---|
| 925 | case 14: | 
|---|
| 926 | points = get<14>(); | 
|---|
| 927 | adjacency = getConnections<14>(); | 
|---|
| 928 | break; | 
|---|
| 929 | default: | 
|---|
| 930 | ASSERT(0, "SphericalPointDistribution::initSelf() - cannot deal with the case " | 
|---|
| 931 | +toString(_NumberOfPoints)+"."); | 
|---|
| 932 | } | 
|---|
| 933 | LOG(3, "DEBUG: Ideal polygon is " << points); | 
|---|
| 934 | } | 
|---|
| 935 |  | 
|---|
| 936 | SphericalPointDistribution::Polygon_t | 
|---|
| 937 | SphericalPointDistribution::getRemainingPoints( | 
|---|
| 938 | const WeightedPolygon_t &_polygon, | 
|---|
| 939 | const int _N) | 
|---|
| 940 | { | 
|---|
| 941 | SphericalPointDistribution::Polygon_t remainingpoints; | 
|---|
| 942 |  | 
|---|
| 943 | // initialze to given number of points | 
|---|
| 944 | initSelf(_N); | 
|---|
| 945 | LOG(2, "INFO: Matching old polygon " << _polygon | 
|---|
| 946 | << " with new polygon " << points); | 
|---|
| 947 |  | 
|---|
| 948 | // check whether any points will remain vacant | 
|---|
| 949 | int RemainingPoints = _N; | 
|---|
| 950 | for (WeightedPolygon_t::const_iterator iter = _polygon.begin(); | 
|---|
| 951 | iter != _polygon.end(); ++iter) | 
|---|
| 952 | RemainingPoints -= iter->second; | 
|---|
| 953 | if (RemainingPoints == 0) | 
|---|
| 954 | return remainingpoints; | 
|---|
| 955 |  | 
|---|
| 956 | if (_N > 0) { | 
|---|
| 957 | // combine multiple points and create simple IndexList from IndexTupleList | 
|---|
| 958 | MatchingControlStructure MCS = findBestMatching(_polygon); | 
|---|
| 959 | IndexList_t bestmatching = joinPoints(points, MCS.newpoints, MCS.bestmatching); | 
|---|
| 960 | LOG(2, "INFO: Best matching is " << bestmatching); | 
|---|
| 961 |  | 
|---|
| 962 | const size_t NumberIds = std::min(bestmatching.size(), (size_t)3); | 
|---|
| 963 | // create old set | 
|---|
| 964 | PolygonWithIndices oldSet; | 
|---|
| 965 | oldSet.indices.resize(NumberIds, -1); | 
|---|
| 966 | std::generate(oldSet.indices.begin(), oldSet.indices.end(), UniqueNumber); | 
|---|
| 967 | for (WeightedPolygon_t::const_iterator iter = _polygon.begin(); | 
|---|
| 968 | iter != _polygon.end(); ++iter) | 
|---|
| 969 | oldSet.polygon.push_back(iter->first); | 
|---|
| 970 |  | 
|---|
| 971 | // _newpolygon has changed, so now convert to array with matched indices | 
|---|
| 972 | PolygonWithIndices newSet; | 
|---|
| 973 | SphericalPointDistribution::IndexList_t::const_iterator beginiter = bestmatching.begin(); | 
|---|
| 974 | SphericalPointDistribution::IndexList_t::const_iterator enditer = bestmatching.begin(); | 
|---|
| 975 | std::advance(enditer, NumberIds); | 
|---|
| 976 | newSet.indices.resize(NumberIds, -1); | 
|---|
| 977 | std::copy(beginiter, enditer, newSet.indices.begin()); | 
|---|
| 978 | std::copy(points.begin(),points.end(), std::back_inserter(newSet.polygon)); | 
|---|
| 979 |  | 
|---|
| 980 | // determine rotation angles to align the two point distributions with | 
|---|
| 981 | // respect to bestmatching: | 
|---|
| 982 | // we use the center between the three first matching points | 
|---|
| 983 | /// the first rotation brings these two centers to coincide | 
|---|
| 984 | PolygonWithIndices rotatednewSet = newSet; | 
|---|
| 985 | { | 
|---|
| 986 | Rotation_t Rotation = findPlaneAligningRotation(oldSet, newSet); | 
|---|
| 987 | LOG(5, "DEBUG: Rotating coordinate system by " << Rotation.second | 
|---|
| 988 | << " around axis " << Rotation.first); | 
|---|
| 989 | Line Axis(zeroVec, Rotation.first); | 
|---|
| 990 |  | 
|---|
| 991 | // apply rotation angle to bring newCenter to oldCenter | 
|---|
| 992 | for (VectorArray_t::iterator iter = rotatednewSet.polygon.begin(); | 
|---|
| 993 | iter != rotatednewSet.polygon.end(); ++iter) { | 
|---|
| 994 | Vector ¤t = *iter; | 
|---|
| 995 | LOG(6, "DEBUG: Original point is " << current); | 
|---|
| 996 | current =  Axis.rotateVector(current, Rotation.second); | 
|---|
| 997 | LOG(6, "DEBUG: Rotated point is " << current); | 
|---|
| 998 | } | 
|---|
| 999 |  | 
|---|
| 1000 | #ifndef NDEBUG | 
|---|
| 1001 | // check: rotated "newCenter" should now equal oldCenter | 
|---|
| 1002 | // we don't check in case of two points as these lie on a great circle | 
|---|
| 1003 | // and the center cannot stably be recalculated. We may reactivate this | 
|---|
| 1004 | // when we calculate centers only once | 
|---|
| 1005 | if (oldSet.indices.size() > 2) { | 
|---|
| 1006 | Vector oldCenter; | 
|---|
| 1007 | Vector rotatednewCenter; | 
|---|
| 1008 | calculateOldAndNewCenters( | 
|---|
| 1009 | oldCenter, rotatednewCenter, | 
|---|
| 1010 | oldSet, rotatednewSet); | 
|---|
| 1011 | oldCenter.Normalize(); | 
|---|
| 1012 | rotatednewCenter.Normalize(); | 
|---|
| 1013 | // check whether centers are anti-parallel (factor -1) | 
|---|
| 1014 | // then we have the "non-unique poles" situation: points lie on great circle | 
|---|
| 1015 | // and both poles are valid solution | 
|---|
| 1016 | if (fabs(oldCenter.ScalarProduct(rotatednewCenter) + 1.) | 
|---|
| 1017 | < std::numeric_limits<double>::epsilon()*1e4) | 
|---|
| 1018 | rotatednewCenter *= -1.; | 
|---|
| 1019 | LOG(4, "CHECK: rotatednewCenter is " << rotatednewCenter | 
|---|
| 1020 | << ", oldCenter is " << oldCenter); | 
|---|
| 1021 | const double difference = (rotatednewCenter - oldCenter).NormSquared(); | 
|---|
| 1022 | ASSERT( difference < std::numeric_limits<double>::epsilon()*1e4, | 
|---|
| 1023 | "matchSphericalPointDistributions() - rotation does not work as expected by " | 
|---|
| 1024 | +toString(difference)+"."); | 
|---|
| 1025 | } | 
|---|
| 1026 | #endif | 
|---|
| 1027 | } | 
|---|
| 1028 | /// the second (orientation) rotation aligns the planes such that the | 
|---|
| 1029 | /// points themselves coincide | 
|---|
| 1030 | if (bestmatching.size() > 1) { | 
|---|
| 1031 | Rotation_t Rotation = findPointAligningRotation(oldSet, rotatednewSet); | 
|---|
| 1032 |  | 
|---|
| 1033 | // construct RotationAxis and two points on its plane, defining the angle | 
|---|
| 1034 | Rotation.first.Normalize(); | 
|---|
| 1035 | const Line RotationAxis(zeroVec, Rotation.first); | 
|---|
| 1036 |  | 
|---|
| 1037 | LOG(5, "DEBUG: Rotating around self is " << Rotation.second | 
|---|
| 1038 | << " around axis " << RotationAxis); | 
|---|
| 1039 |  | 
|---|
| 1040 | #ifndef NDEBUG | 
|---|
| 1041 | // check: first bestmatching in rotated_newpolygon and remainingnew | 
|---|
| 1042 | // should now equal | 
|---|
| 1043 | { | 
|---|
| 1044 | const IndexList_t::const_iterator iter = bestmatching.begin(); | 
|---|
| 1045 |  | 
|---|
| 1046 | // check whether both old and newPosition are at same distance to oldCenter | 
|---|
| 1047 | Vector oldCenter = calculateCenter(oldSet); | 
|---|
| 1048 | const double distance = fabs( | 
|---|
| 1049 | (oldSet.polygon[0] - oldCenter).NormSquared() | 
|---|
| 1050 | - (rotatednewSet.polygon[*iter] - oldCenter).NormSquared() | 
|---|
| 1051 | ); | 
|---|
| 1052 | LOG(4, "CHECK: Squared distance between oldPosition and newPosition " | 
|---|
| 1053 | << " with respect to oldCenter " << oldCenter << " is " << distance); | 
|---|
| 1054 | //        ASSERT( distance < warn_amplitude, | 
|---|
| 1055 | //            "matchSphericalPointDistributions() - old and newPosition's squared distance to oldCenter differs by " | 
|---|
| 1056 | //            +toString(distance)); | 
|---|
| 1057 |  | 
|---|
| 1058 | Vector rotatednew = RotationAxis.rotateVector( | 
|---|
| 1059 | rotatednewSet.polygon[*iter], | 
|---|
| 1060 | Rotation.second); | 
|---|
| 1061 | LOG(4, "CHECK: rotated first new bestmatching is " << rotatednew | 
|---|
| 1062 | << " while old was " << oldSet.polygon[0]); | 
|---|
| 1063 | const double difference = (rotatednew - oldSet.polygon[0]).NormSquared(); | 
|---|
| 1064 | ASSERT( difference < distance+1e-8, | 
|---|
| 1065 | "matchSphericalPointDistributions() - orientation rotation ends up off by " | 
|---|
| 1066 | +toString(difference)+", more than " | 
|---|
| 1067 | +toString(distance+1e-8)+"."); | 
|---|
| 1068 | } | 
|---|
| 1069 | #endif | 
|---|
| 1070 |  | 
|---|
| 1071 | for (VectorArray_t::iterator iter = rotatednewSet.polygon.begin(); | 
|---|
| 1072 | iter != rotatednewSet.polygon.end(); ++iter) { | 
|---|
| 1073 | Vector ¤t = *iter; | 
|---|
| 1074 | LOG(6, "DEBUG: Original point is " << current); | 
|---|
| 1075 | current = RotationAxis.rotateVector(current, Rotation.second); | 
|---|
| 1076 | LOG(6, "DEBUG: Rotated point is " << current); | 
|---|
| 1077 | } | 
|---|
| 1078 | } | 
|---|
| 1079 |  | 
|---|
| 1080 | // remove all points in matching and return remaining ones | 
|---|
| 1081 | SphericalPointDistribution::Polygon_t remainingpoints = | 
|---|
| 1082 | removeMatchingPoints(rotatednewSet); | 
|---|
| 1083 | LOG(2, "INFO: Remaining points are " << remainingpoints); | 
|---|
| 1084 | return remainingpoints; | 
|---|
| 1085 | } else | 
|---|
| 1086 | return points; | 
|---|
| 1087 | } | 
|---|
| 1088 |  | 
|---|
| 1089 | SphericalPointDistribution::PolygonWithIndexTuples | 
|---|
| 1090 | SphericalPointDistribution::getAssociatedPoints( | 
|---|
| 1091 | const WeightedPolygon_t &_polygon, | 
|---|
| 1092 | const int _N) | 
|---|
| 1093 | { | 
|---|
| 1094 | SphericalPointDistribution::PolygonWithIndexTuples associatedpoints; | 
|---|
| 1095 |  | 
|---|
| 1096 | // initialze to given number of points | 
|---|
| 1097 | initSelf(_N); | 
|---|
| 1098 | LOG(2, "INFO: Matching old polygon " << _polygon | 
|---|
| 1099 | << " with new polygon " << points); | 
|---|
| 1100 |  | 
|---|
| 1101 | // check whether there are any points to associate | 
|---|
| 1102 | if (_polygon.empty()) { | 
|---|
| 1103 | associatedpoints.polygon.insert( | 
|---|
| 1104 | associatedpoints.polygon.end(), | 
|---|
| 1105 | points.begin(), points.end()); | 
|---|
| 1106 | return associatedpoints; | 
|---|
| 1107 | } | 
|---|
| 1108 |  | 
|---|
| 1109 | if (_N > 0) { | 
|---|
| 1110 | // combine multiple points and create simple IndexList from IndexTupleList | 
|---|
| 1111 | MatchingControlStructure MCS = findBestMatching(_polygon); | 
|---|
| 1112 | IndexList_t bestmatching = joinPoints(points, MCS.newpoints, MCS.bestmatching); | 
|---|
| 1113 | LOG(2, "INFO: Best matching is " << bestmatching); | 
|---|
| 1114 |  | 
|---|
| 1115 | // gather the associated points (not the joined ones) | 
|---|
| 1116 | associatedpoints.polygon = MCS.newpoints; | 
|---|
| 1117 | // gather indices | 
|---|
| 1118 | associatedpoints.indices = MCS.bestmatching; | 
|---|
| 1119 |  | 
|---|
| 1120 | /// now we only need to rotate the associated points to match the given ones | 
|---|
| 1121 | /// with respect to the joined points in points | 
|---|
| 1122 |  | 
|---|
| 1123 | const size_t NumberIds = std::min(bestmatching.size(), (size_t)3); | 
|---|
| 1124 | // create old set | 
|---|
| 1125 | PolygonWithIndices oldSet; | 
|---|
| 1126 | oldSet.indices.resize(NumberIds, -1); | 
|---|
| 1127 | std::generate(oldSet.indices.begin(), oldSet.indices.end(), UniqueNumber); | 
|---|
| 1128 | for (WeightedPolygon_t::const_iterator iter = _polygon.begin(); | 
|---|
| 1129 | iter != _polygon.end(); ++iter) | 
|---|
| 1130 | oldSet.polygon.push_back(iter->first); | 
|---|
| 1131 |  | 
|---|
| 1132 | // _newpolygon has changed, so now convert to array with matched indices | 
|---|
| 1133 | PolygonWithIndices newSet; | 
|---|
| 1134 | SphericalPointDistribution::IndexList_t::const_iterator beginiter = bestmatching.begin(); | 
|---|
| 1135 | SphericalPointDistribution::IndexList_t::const_iterator enditer = bestmatching.begin(); | 
|---|
| 1136 | std::advance(enditer, NumberIds); | 
|---|
| 1137 | newSet.indices.resize(NumberIds, -1); | 
|---|
| 1138 | std::copy(beginiter, enditer, newSet.indices.begin()); | 
|---|
| 1139 | std::copy(points.begin(),points.end(), std::back_inserter(newSet.polygon)); | 
|---|
| 1140 |  | 
|---|
| 1141 | // determine rotation angles to align the two point distributions with | 
|---|
| 1142 | // respect to bestmatching: | 
|---|
| 1143 | // we use the center between the three first matching points | 
|---|
| 1144 | /// the first rotation brings these two centers to coincide | 
|---|
| 1145 | PolygonWithIndices rotatednewSet = newSet; | 
|---|
| 1146 | { | 
|---|
| 1147 | Rotation_t Rotation = findPlaneAligningRotation(oldSet, newSet); | 
|---|
| 1148 | LOG(5, "DEBUG: Rotating coordinate system by " << Rotation.second | 
|---|
| 1149 | << " around axis " << Rotation.first); | 
|---|
| 1150 | Line Axis(zeroVec, Rotation.first); | 
|---|
| 1151 |  | 
|---|
| 1152 | // apply rotation angle to bring newCenter to oldCenter in joined points | 
|---|
| 1153 | for (VectorArray_t::iterator iter = rotatednewSet.polygon.begin(); | 
|---|
| 1154 | iter != rotatednewSet.polygon.end(); ++iter) { | 
|---|
| 1155 | Vector ¤t = *iter; | 
|---|
| 1156 | LOG(6, "DEBUG: Original joined point is " << current); | 
|---|
| 1157 | current =  Axis.rotateVector(current, Rotation.second); | 
|---|
| 1158 | LOG(6, "DEBUG: Rotated joined point is " << current); | 
|---|
| 1159 | } | 
|---|
| 1160 |  | 
|---|
| 1161 | // apply rotation angle to the whole set of associated points | 
|---|
| 1162 | for (VectorArray_t::iterator iter = associatedpoints.polygon.begin(); | 
|---|
| 1163 | iter != associatedpoints.polygon.end(); ++iter) { | 
|---|
| 1164 | Vector ¤t = *iter; | 
|---|
| 1165 | LOG(6, "DEBUG: Original associated point is " << current); | 
|---|
| 1166 | current =  Axis.rotateVector(current, Rotation.second); | 
|---|
| 1167 | LOG(6, "DEBUG: Rotated associated point is " << current); | 
|---|
| 1168 | } | 
|---|
| 1169 |  | 
|---|
| 1170 | #ifndef NDEBUG | 
|---|
| 1171 | // check: rotated "newCenter" should now equal oldCenter | 
|---|
| 1172 | // we don't check in case of two points as these lie on a great circle | 
|---|
| 1173 | // and the center cannot stably be recalculated. We may reactivate this | 
|---|
| 1174 | // when we calculate centers only once | 
|---|
| 1175 | if (oldSet.indices.size() > 2) { | 
|---|
| 1176 | Vector oldCenter; | 
|---|
| 1177 | Vector rotatednewCenter; | 
|---|
| 1178 | calculateOldAndNewCenters( | 
|---|
| 1179 | oldCenter, rotatednewCenter, | 
|---|
| 1180 | oldSet, rotatednewSet); | 
|---|
| 1181 | oldCenter.Normalize(); | 
|---|
| 1182 | rotatednewCenter.Normalize(); | 
|---|
| 1183 | // check whether centers are anti-parallel (factor -1) | 
|---|
| 1184 | // then we have the "non-unique poles" situation: points lie on great circle | 
|---|
| 1185 | // and both poles are valid solution | 
|---|
| 1186 | if (fabs(oldCenter.ScalarProduct(rotatednewCenter) + 1.) | 
|---|
| 1187 | < std::numeric_limits<double>::epsilon()*1e4) | 
|---|
| 1188 | rotatednewCenter *= -1.; | 
|---|
| 1189 | LOG(4, "CHECK: rotatednewCenter is " << rotatednewCenter | 
|---|
| 1190 | << ", oldCenter is " << oldCenter); | 
|---|
| 1191 | const double difference = (rotatednewCenter - oldCenter).NormSquared(); | 
|---|
| 1192 | ASSERT( difference < std::numeric_limits<double>::epsilon()*1e4, | 
|---|
| 1193 | "matchSphericalPointDistributions() - rotation does not work as expected by " | 
|---|
| 1194 | +toString(difference)+"."); | 
|---|
| 1195 | } | 
|---|
| 1196 | #endif | 
|---|
| 1197 | } | 
|---|
| 1198 | /// the second (orientation) rotation aligns the planes such that the | 
|---|
| 1199 | /// points themselves coincide | 
|---|
| 1200 | if (bestmatching.size() > 1) { | 
|---|
| 1201 | Rotation_t Rotation = findPointAligningRotation(oldSet, rotatednewSet); | 
|---|
| 1202 |  | 
|---|
| 1203 | // construct RotationAxis and two points on its plane, defining the angle | 
|---|
| 1204 | Rotation.first.Normalize(); | 
|---|
| 1205 | const Line RotationAxis(zeroVec, Rotation.first); | 
|---|
| 1206 |  | 
|---|
| 1207 | LOG(5, "DEBUG: Rotating around self is " << Rotation.second | 
|---|
| 1208 | << " around axis " << RotationAxis); | 
|---|
| 1209 |  | 
|---|
| 1210 | #ifndef NDEBUG | 
|---|
| 1211 | // check: first bestmatching in rotated_newpolygon and remainingnew | 
|---|
| 1212 | // should now equal | 
|---|
| 1213 | { | 
|---|
| 1214 | const IndexList_t::const_iterator iter = bestmatching.begin(); | 
|---|
| 1215 |  | 
|---|
| 1216 | // check whether both old and newPosition are at same distance to oldCenter | 
|---|
| 1217 | Vector oldCenter = calculateCenter(oldSet); | 
|---|
| 1218 | const double distance = fabs( | 
|---|
| 1219 | (oldSet.polygon[0] - oldCenter).NormSquared() | 
|---|
| 1220 | - (rotatednewSet.polygon[*iter] - oldCenter).NormSquared() | 
|---|
| 1221 | ); | 
|---|
| 1222 | LOG(4, "CHECK: Squared distance between oldPosition and newPosition " | 
|---|
| 1223 | << " with respect to oldCenter " << oldCenter << " is " << distance); | 
|---|
| 1224 | //        ASSERT( distance < warn_amplitude, | 
|---|
| 1225 | //            "matchSphericalPointDistributions() - old and newPosition's squared distance to oldCenter differs by " | 
|---|
| 1226 | //            +toString(distance)); | 
|---|
| 1227 |  | 
|---|
| 1228 | Vector rotatednew = RotationAxis.rotateVector( | 
|---|
| 1229 | rotatednewSet.polygon[*iter], | 
|---|
| 1230 | Rotation.second); | 
|---|
| 1231 | LOG(4, "CHECK: rotated first new bestmatching is " << rotatednew | 
|---|
| 1232 | << " while old was " << oldSet.polygon[0]); | 
|---|
| 1233 | const double difference = (rotatednew - oldSet.polygon[0]).NormSquared(); | 
|---|
| 1234 | ASSERT( difference < distance+1e-8, | 
|---|
| 1235 | "matchSphericalPointDistributions() - orientation rotation ends up off by " | 
|---|
| 1236 | +toString(difference)+", more than " | 
|---|
| 1237 | +toString(distance+1e-8)+"."); | 
|---|
| 1238 | } | 
|---|
| 1239 | #endif | 
|---|
| 1240 |  | 
|---|
| 1241 | // align the set of associated points only here | 
|---|
| 1242 | for (VectorArray_t::iterator iter = associatedpoints.polygon.begin(); | 
|---|
| 1243 | iter != associatedpoints.polygon.end(); ++iter) { | 
|---|
| 1244 | Vector ¤t = *iter; | 
|---|
| 1245 | LOG(6, "DEBUG: Original associated point is " << current); | 
|---|
| 1246 | current = RotationAxis.rotateVector(current, Rotation.second); | 
|---|
| 1247 | LOG(6, "DEBUG: Rotated associated point is " << current); | 
|---|
| 1248 | } | 
|---|
| 1249 | } | 
|---|
| 1250 | } | 
|---|
| 1251 |  | 
|---|
| 1252 | return associatedpoints; | 
|---|
| 1253 | } | 
|---|
| 1254 |  | 
|---|
| 1255 | SphericalPointDistribution::PolygonWithIndexTuples | 
|---|
| 1256 | SphericalPointDistribution::getIdentityAssociation( | 
|---|
| 1257 | const WeightedPolygon_t &_polygon) | 
|---|
| 1258 | { | 
|---|
| 1259 | unsigned int index = 0; | 
|---|
| 1260 | SphericalPointDistribution::PolygonWithIndexTuples returnpolygon; | 
|---|
| 1261 | for (WeightedPolygon_t::const_iterator iter = _polygon.begin(); | 
|---|
| 1262 | iter != _polygon.end(); ++iter, ++index) { | 
|---|
| 1263 | returnpolygon.polygon.push_back( iter->first ); | 
|---|
| 1264 | ASSERT( iter->second == 1, | 
|---|
| 1265 | "getIdentityAssociation() - bond with direction " | 
|---|
| 1266 | +toString(iter->second) | 
|---|
| 1267 | +" has degree higher than 1, getIdentityAssociation makes no sense."); | 
|---|
| 1268 | returnpolygon.indices.push_back( IndexList_t(1, index) ); | 
|---|
| 1269 | } | 
|---|
| 1270 | return returnpolygon; | 
|---|
| 1271 | } | 
|---|