1 | /*
|
---|
2 | * Project: MoleCuilder
|
---|
3 | * Description: creates and alters molecular systems
|
---|
4 | * Copyright (C) 2014 Frederik Heber. All rights reserved.
|
---|
5 | *
|
---|
6 | *
|
---|
7 | * This file is part of MoleCuilder.
|
---|
8 | *
|
---|
9 | * MoleCuilder is free software: you can redistribute it and/or modify
|
---|
10 | * it under the terms of the GNU General Public License as published by
|
---|
11 | * the Free Software Foundation, either version 2 of the License, or
|
---|
12 | * (at your option) any later version.
|
---|
13 | *
|
---|
14 | * MoleCuilder is distributed in the hope that it will be useful,
|
---|
15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
17 | * GNU General Public License for more details.
|
---|
18 | *
|
---|
19 | * You should have received a copy of the GNU General Public License
|
---|
20 | * along with MoleCuilder. If not, see <http://www.gnu.org/licenses/>.
|
---|
21 | */
|
---|
22 |
|
---|
23 | /*
|
---|
24 | * SphericalPointDistribution.cpp
|
---|
25 | *
|
---|
26 | * Created on: May 30, 2014
|
---|
27 | * Author: heber
|
---|
28 | */
|
---|
29 |
|
---|
30 | // include config.h
|
---|
31 | #ifdef HAVE_CONFIG_H
|
---|
32 | #include <config.h>
|
---|
33 | #endif
|
---|
34 |
|
---|
35 | //#include "CodePatterns/MemDebug.hpp"
|
---|
36 |
|
---|
37 | #include "SphericalPointDistribution.hpp"
|
---|
38 |
|
---|
39 | #include "CodePatterns/Assert.hpp"
|
---|
40 | #include "CodePatterns/IteratorAdaptors.hpp"
|
---|
41 | #include "CodePatterns/Log.hpp"
|
---|
42 | #include "CodePatterns/toString.hpp"
|
---|
43 |
|
---|
44 | #include <algorithm>
|
---|
45 | #include <boost/assign.hpp>
|
---|
46 | #include <cmath>
|
---|
47 | #include <functional>
|
---|
48 | #include <iterator>
|
---|
49 | #include <limits>
|
---|
50 | #include <list>
|
---|
51 | #include <numeric>
|
---|
52 | #include <vector>
|
---|
53 | #include <map>
|
---|
54 |
|
---|
55 | #include "LinearAlgebra/Line.hpp"
|
---|
56 | #include "LinearAlgebra/Plane.hpp"
|
---|
57 | #include "LinearAlgebra/RealSpaceMatrix.hpp"
|
---|
58 | #include "LinearAlgebra/Vector.hpp"
|
---|
59 |
|
---|
60 | using namespace boost::assign;
|
---|
61 |
|
---|
62 | // static entities
|
---|
63 | const double SphericalPointDistribution::SQRT_3(sqrt(3.0));
|
---|
64 | const double SphericalPointDistribution::warn_amplitude = 1e-2;
|
---|
65 | const double SphericalPointDistribution::L1THRESHOLD = 1e-2;
|
---|
66 | const double SphericalPointDistribution::L2THRESHOLD = 2e-1;
|
---|
67 |
|
---|
68 | typedef std::vector<double> DistanceArray_t;
|
---|
69 |
|
---|
70 | // class generator: taken from www.cplusplus.com example std::generate
|
---|
71 | struct c_unique {
|
---|
72 | unsigned int current;
|
---|
73 | c_unique() {current=0;}
|
---|
74 | unsigned int operator()() {return current++;}
|
---|
75 | } UniqueNumber;
|
---|
76 |
|
---|
77 | struct c_unique_list {
|
---|
78 | unsigned int current;
|
---|
79 | c_unique_list() {current=0;}
|
---|
80 | std::list<unsigned int> operator()() {return std::list<unsigned int>(1, current++);}
|
---|
81 | } UniqueNumberList;
|
---|
82 |
|
---|
83 | /** Calculate the center of a given set of points in \a _positions but only
|
---|
84 | * for those indicated by \a _indices.
|
---|
85 | *
|
---|
86 | */
|
---|
87 | inline
|
---|
88 | Vector calculateGeographicMidpoint(
|
---|
89 | const SphericalPointDistribution::VectorArray_t &_positions,
|
---|
90 | const SphericalPointDistribution::IndexList_t &_indices)
|
---|
91 | {
|
---|
92 | Vector Center;
|
---|
93 | Center.Zero();
|
---|
94 | for (SphericalPointDistribution::IndexList_t::const_iterator iter = _indices.begin();
|
---|
95 | iter != _indices.end(); ++iter)
|
---|
96 | Center += _positions[*iter];
|
---|
97 | if (!_indices.empty())
|
---|
98 | Center *= 1./(double)_indices.size();
|
---|
99 |
|
---|
100 | return Center;
|
---|
101 | }
|
---|
102 |
|
---|
103 | inline
|
---|
104 | double calculateMinimumDistance(
|
---|
105 | const Vector &_center,
|
---|
106 | const SphericalPointDistribution::VectorArray_t &_points,
|
---|
107 | const SphericalPointDistribution::IndexList_t & _indices)
|
---|
108 | {
|
---|
109 | double MinimumDistance = 0.;
|
---|
110 | for (SphericalPointDistribution::IndexList_t::const_iterator iter = _indices.begin();
|
---|
111 | iter != _indices.end(); ++iter) {
|
---|
112 | const double angle = _center.Angle(_points[*iter]);
|
---|
113 | MinimumDistance += angle*angle;
|
---|
114 | }
|
---|
115 | return sqrt(MinimumDistance);
|
---|
116 | }
|
---|
117 |
|
---|
118 | /** Calculates the center of minimum distance for a given set of points \a _points.
|
---|
119 | *
|
---|
120 | * According to http://www.geomidpoint.com/calculation.html this goes a follows:
|
---|
121 | * -# Let CurrentPoint be the geographic midpoint found in Method A. this is used as the starting point for the search.
|
---|
122 | * -# Let MinimumDistance be the sum total of all distances from the current point to all locations in 'Your Places'.
|
---|
123 | * -# Find the total distance between each location in 'Your Places' and all other locations in 'Your Places'. If any one of these locations has a new smallest distance then that location becomes the new CurrentPoint and MinimumDistance.
|
---|
124 | * -# Let TestDistance be PI/2 radians (6225 miles or 10018 km).
|
---|
125 | * -# Find the total distance between each of 8 test points and all locations in 'Your Places'. The test points are arranged in a circular pattern around the CurrentPoint at a distance of TestDistance to the north, northeast, east, southeast, south, southwest, west and northwest.
|
---|
126 | * -# If any of these 8 points has a new smallest distance then that point becomes the new CurrentPoint and MinimumDistance and go back to step 5 using that point.
|
---|
127 | * -# If none of the 8 test points has a new smallest distance then divide TestDistance by 2 and go back to step 5 using the same point.
|
---|
128 | * -# Repeat steps 5 to 7 until no new smallest distance can be found or until TestDistance is less than 0.00000002 radians.
|
---|
129 | *
|
---|
130 | * \param _points set of points
|
---|
131 | * \return Center of minimum distance for all these points, is always of length 1
|
---|
132 | */
|
---|
133 | Vector SphericalPointDistribution::calculateCenterOfMinimumDistance(
|
---|
134 | const SphericalPointDistribution::VectorArray_t &_positions,
|
---|
135 | const SphericalPointDistribution::IndexList_t &_indices)
|
---|
136 | {
|
---|
137 | ASSERT( _positions.size() >= _indices.size(),
|
---|
138 | "calculateCenterOfMinimumDistance() - less positions than indices given.");
|
---|
139 | Vector center(1.,0.,0.);
|
---|
140 |
|
---|
141 | /// first treat some special cases
|
---|
142 | // no positions given: return x axis vector (NOT zero!)
|
---|
143 | {
|
---|
144 | if (_indices.empty())
|
---|
145 | return center;
|
---|
146 | // one position given: return it directly
|
---|
147 | if (_positions.size() == (size_t)1)
|
---|
148 | return _positions[0];
|
---|
149 | // two positions on a line given: return closest point to (1.,0.,0.)
|
---|
150 | if (fabs(_positions[0].ScalarProduct(_positions[1]) + 1.)
|
---|
151 | < std::numeric_limits<double>::epsilon()*1e4) {
|
---|
152 | Vector candidate;
|
---|
153 | if (_positions[0].ScalarProduct(center) > _positions[1].ScalarProduct(center))
|
---|
154 | candidate = _positions[0];
|
---|
155 | else
|
---|
156 | candidate = _positions[1];
|
---|
157 | // non-uniqueness: all positions on great circle, normal to given line are valid
|
---|
158 | // so, we just pick one because returning a unique point is topmost priority
|
---|
159 | Vector normal;
|
---|
160 | normal.GetOneNormalVector(candidate);
|
---|
161 | Vector othernormal = candidate;
|
---|
162 | othernormal.VectorProduct(normal);
|
---|
163 | // now both normal and othernormal describe the plane containing the great circle
|
---|
164 | Plane greatcircle(normal, zeroVec, othernormal);
|
---|
165 | // check which axis is contained and pick the one not
|
---|
166 | if (greatcircle.isContained(center)) {
|
---|
167 | center = Vector(0.,1.,0.);
|
---|
168 | if (greatcircle.isContained(center))
|
---|
169 | center = Vector(0.,0.,1.);
|
---|
170 | // now we are done cause a plane cannot contain all three axis vectors
|
---|
171 | }
|
---|
172 | center = greatcircle.getClosestPoint(candidate);
|
---|
173 | // assure length of 1
|
---|
174 | center.Normalize();
|
---|
175 | }
|
---|
176 | }
|
---|
177 |
|
---|
178 | // start with geographic midpoint
|
---|
179 | center = calculateGeographicMidpoint(_positions, _indices);
|
---|
180 | if (!center.IsZero()) {
|
---|
181 | center.Normalize();
|
---|
182 | LOG(4, "DEBUG: Starting with geographical midpoint of " << _positions << " under indices "
|
---|
183 | << _indices << " is " << center);
|
---|
184 | } else {
|
---|
185 | // any point is good actually
|
---|
186 | center = _positions[0];
|
---|
187 | LOG(4, "DEBUG: Starting with first position " << center);
|
---|
188 | }
|
---|
189 |
|
---|
190 | // calculate initial MinimumDistance
|
---|
191 | double MinimumDistance = calculateMinimumDistance(center, _positions, _indices);
|
---|
192 | LOG(5, "DEBUG: MinimumDistance to this center is " << MinimumDistance);
|
---|
193 |
|
---|
194 | // check all present points whether they may serve as a better center
|
---|
195 | for (SphericalPointDistribution::IndexList_t::const_iterator iter = _indices.begin();
|
---|
196 | iter != _indices.end(); ++iter) {
|
---|
197 | const Vector ¢erCandidate = _positions[*iter];
|
---|
198 | const double candidateDistance = calculateMinimumDistance(centerCandidate, _positions, _indices);
|
---|
199 | if (candidateDistance < MinimumDistance) {
|
---|
200 | MinimumDistance = candidateDistance;
|
---|
201 | center = centerCandidate;
|
---|
202 | LOG(5, "DEBUG: new MinimumDistance to current test point " << MinimumDistance
|
---|
203 | << " is " << center);
|
---|
204 | }
|
---|
205 | }
|
---|
206 | LOG(5, "DEBUG: new MinimumDistance to center " << center << " is " << MinimumDistance);
|
---|
207 |
|
---|
208 | // now iterate over TestDistance
|
---|
209 | double TestDistance = Vector(1.,0.,0.).Angle(Vector(0.,1.,0.));
|
---|
210 | // LOG(6, "DEBUG: initial TestDistance is " << TestDistance);
|
---|
211 |
|
---|
212 | const double threshold = sqrt(std::numeric_limits<double>::epsilon());
|
---|
213 | // check each of eight test points at N, NE, E, SE, S, SW, W, NW
|
---|
214 | typedef std::vector<double> angles_t;
|
---|
215 | angles_t testangles;
|
---|
216 | testangles += 0./180.*M_PI, 45./180.*M_PI, 90./180.*M_PI, 135./180.*M_PI,
|
---|
217 | 180./180.*M_PI, 225./180.*M_PI, 270./180.*M_PI, 315./180.*M_PI;
|
---|
218 | while (TestDistance > threshold) {
|
---|
219 | Vector OneNormal;
|
---|
220 | OneNormal.GetOneNormalVector(center);
|
---|
221 | Line RotationAxis(zeroVec, OneNormal);
|
---|
222 | Vector North = RotationAxis.rotateVector(center,TestDistance);
|
---|
223 | Line CompassRose(zeroVec, center);
|
---|
224 | bool updatedflag = false;
|
---|
225 | for (angles_t::const_iterator angleiter = testangles.begin();
|
---|
226 | angleiter != testangles.end(); ++angleiter) {
|
---|
227 | Vector centerCandidate = CompassRose.rotateVector(North, *angleiter);
|
---|
228 | // centerCandidate.Normalize();
|
---|
229 | const double candidateDistance = calculateMinimumDistance(centerCandidate, _positions, _indices);
|
---|
230 | if (candidateDistance < MinimumDistance) {
|
---|
231 | MinimumDistance = candidateDistance;
|
---|
232 | center = centerCandidate;
|
---|
233 | updatedflag = true;
|
---|
234 | LOG(5, "DEBUG: new MinimumDistance to test point at " << *angleiter/M_PI*180.
|
---|
235 | << "° is " << MinimumDistance);
|
---|
236 | }
|
---|
237 | }
|
---|
238 |
|
---|
239 | // if no new point, decrease TestDistance
|
---|
240 | if (!updatedflag) {
|
---|
241 | TestDistance *= 0.5;
|
---|
242 | // LOG(6, "DEBUG: TestDistance is now " << TestDistance);
|
---|
243 | }
|
---|
244 | }
|
---|
245 | LOG(4, "DEBUG: Final MinimumDistance to center " << center << " is " << MinimumDistance);
|
---|
246 |
|
---|
247 | return center;
|
---|
248 | }
|
---|
249 |
|
---|
250 | Vector calculateCenterOfMinimumDistance(
|
---|
251 | const SphericalPointDistribution::PolygonWithIndices &_points)
|
---|
252 | {
|
---|
253 | return SphericalPointDistribution::calculateCenterOfMinimumDistance(_points.polygon, _points.indices);
|
---|
254 | }
|
---|
255 |
|
---|
256 | /** Calculate the center of a given set of points in \a _positions but only
|
---|
257 | * for those indicated by \a _indices.
|
---|
258 | *
|
---|
259 | */
|
---|
260 | inline
|
---|
261 | Vector calculateCenter(
|
---|
262 | const SphericalPointDistribution::VectorArray_t &_positions,
|
---|
263 | const SphericalPointDistribution::IndexList_t &_indices)
|
---|
264 | {
|
---|
265 | // Vector Center;
|
---|
266 | // Center.Zero();
|
---|
267 | // for (SphericalPointDistribution::IndexList_t::const_iterator iter = _indices.begin();
|
---|
268 | // iter != _indices.end(); ++iter)
|
---|
269 | // Center += _positions[*iter];
|
---|
270 | // if (!_indices.empty())
|
---|
271 | // Center *= 1./(double)_indices.size();
|
---|
272 | //
|
---|
273 | // return Center;
|
---|
274 | return SphericalPointDistribution::calculateCenterOfMinimumDistance(_positions, _indices);
|
---|
275 | }
|
---|
276 |
|
---|
277 | /** Calculate the center of a given set of points in \a _positions but only
|
---|
278 | * for those indicated by \a _indices.
|
---|
279 | *
|
---|
280 | */
|
---|
281 | inline
|
---|
282 | Vector calculateCenter(
|
---|
283 | const SphericalPointDistribution::PolygonWithIndices &_polygon)
|
---|
284 | {
|
---|
285 | return calculateCenter(_polygon.polygon, _polygon.indices);
|
---|
286 | }
|
---|
287 |
|
---|
288 | inline
|
---|
289 | DistanceArray_t calculatePairwiseDistances(
|
---|
290 | const SphericalPointDistribution::VectorArray_t &_points,
|
---|
291 | const SphericalPointDistribution::IndexTupleList_t &_indices
|
---|
292 | )
|
---|
293 | {
|
---|
294 | DistanceArray_t result;
|
---|
295 | for (SphericalPointDistribution::IndexTupleList_t::const_iterator firstiter = _indices.begin();
|
---|
296 | firstiter != _indices.end(); ++firstiter) {
|
---|
297 |
|
---|
298 | // calculate first center from possible tuple of indices
|
---|
299 | Vector FirstCenter;
|
---|
300 | ASSERT(!firstiter->empty(), "calculatePairwiseDistances() - there is an empty tuple.");
|
---|
301 | if (firstiter->size() == 1) {
|
---|
302 | FirstCenter = _points[*firstiter->begin()];
|
---|
303 | } else {
|
---|
304 | FirstCenter = calculateCenter( _points, *firstiter);
|
---|
305 | if (!FirstCenter.IsZero())
|
---|
306 | FirstCenter.Normalize();
|
---|
307 | }
|
---|
308 |
|
---|
309 | for (SphericalPointDistribution::IndexTupleList_t::const_iterator seconditer = firstiter;
|
---|
310 | seconditer != _indices.end(); ++seconditer) {
|
---|
311 | if (firstiter == seconditer)
|
---|
312 | continue;
|
---|
313 |
|
---|
314 | // calculate second center from possible tuple of indices
|
---|
315 | Vector SecondCenter;
|
---|
316 | ASSERT(!seconditer->empty(), "calculatePairwiseDistances() - there is an empty tuple.");
|
---|
317 | if (seconditer->size() == 1) {
|
---|
318 | SecondCenter = _points[*seconditer->begin()];
|
---|
319 | } else {
|
---|
320 | SecondCenter = calculateCenter( _points, *seconditer);
|
---|
321 | if (!SecondCenter.IsZero())
|
---|
322 | SecondCenter.Normalize();
|
---|
323 | }
|
---|
324 |
|
---|
325 | // calculate distance between both centers
|
---|
326 | double distance = 2.; // greatest distance on surface of sphere with radius 1.
|
---|
327 | if ((!FirstCenter.IsZero()) && (!SecondCenter.IsZero()))
|
---|
328 | distance = (FirstCenter - SecondCenter).NormSquared();
|
---|
329 | result.push_back(distance);
|
---|
330 | }
|
---|
331 | }
|
---|
332 | return result;
|
---|
333 | }
|
---|
334 |
|
---|
335 | /** Decides by an orthonormal third vector whether the sign of the rotation
|
---|
336 | * angle should be negative or positive.
|
---|
337 | *
|
---|
338 | * \return -1 or 1
|
---|
339 | */
|
---|
340 | inline
|
---|
341 | double determineSignOfRotation(
|
---|
342 | const Vector &_oldPosition,
|
---|
343 | const Vector &_newPosition,
|
---|
344 | const Vector &_RotationAxis
|
---|
345 | )
|
---|
346 | {
|
---|
347 | Vector dreiBein(_oldPosition);
|
---|
348 | dreiBein.VectorProduct(_RotationAxis);
|
---|
349 | ASSERT( !dreiBein.IsZero(), "determineSignOfRotation() - dreiBein is zero.");
|
---|
350 | dreiBein.Normalize();
|
---|
351 | const double sign =
|
---|
352 | (dreiBein.ScalarProduct(_newPosition) < 0.) ? -1. : +1.;
|
---|
353 | LOG(6, "DEBUG: oldCenter on plane is " << _oldPosition
|
---|
354 | << ", newCenter on plane is " << _newPosition
|
---|
355 | << ", and dreiBein is " << dreiBein);
|
---|
356 | return sign;
|
---|
357 | }
|
---|
358 |
|
---|
359 | /** Convenience function to recalculate old and new center for determining plane
|
---|
360 | * rotation.
|
---|
361 | */
|
---|
362 | inline
|
---|
363 | void calculateOldAndNewCenters(
|
---|
364 | Vector &_oldCenter,
|
---|
365 | Vector &_newCenter,
|
---|
366 | const SphericalPointDistribution::PolygonWithIndices &_referencepositions,
|
---|
367 | const SphericalPointDistribution::PolygonWithIndices &_currentpositions)
|
---|
368 | {
|
---|
369 | _oldCenter = calculateCenter(_referencepositions.polygon, _referencepositions.indices);
|
---|
370 | // C++11 defines a copy_n function ...
|
---|
371 | _newCenter = calculateCenter( _currentpositions.polygon, _currentpositions.indices);
|
---|
372 | }
|
---|
373 | /** Returns squared L2 error of the given \a _Matching.
|
---|
374 | *
|
---|
375 | * We compare the pair-wise distances of each associated matching
|
---|
376 | * and check whether these distances each match between \a _old and
|
---|
377 | * \a _new.
|
---|
378 | *
|
---|
379 | * \param _old first set of returnpolygon (fewer or equal to \a _new)
|
---|
380 | * \param _new second set of returnpolygon
|
---|
381 | * \param _Matching matching between the two sets
|
---|
382 | * \return pair with L1 and squared L2 error
|
---|
383 | */
|
---|
384 | std::pair<double, double> SphericalPointDistribution::calculateErrorOfMatching(
|
---|
385 | const VectorArray_t &_old,
|
---|
386 | const VectorArray_t &_new,
|
---|
387 | const IndexTupleList_t &_Matching)
|
---|
388 | {
|
---|
389 | std::pair<double, double> errors( std::make_pair( 0., 0. ) );
|
---|
390 |
|
---|
391 | if (_Matching.size() > 1) {
|
---|
392 | LOG(5, "INFO: Matching is " << _Matching);
|
---|
393 |
|
---|
394 | // calculate all pair-wise distances
|
---|
395 | IndexTupleList_t keys(_old.size(), IndexList_t() );
|
---|
396 | std::generate (keys.begin(), keys.end(), UniqueNumberList);
|
---|
397 |
|
---|
398 | const DistanceArray_t firstdistances = calculatePairwiseDistances(_old, keys);
|
---|
399 | const DistanceArray_t seconddistances = calculatePairwiseDistances(_new, _Matching);
|
---|
400 |
|
---|
401 | ASSERT( firstdistances.size() == seconddistances.size(),
|
---|
402 | "calculateL2ErrorOfMatching() - mismatch in pair-wise distance array sizes.");
|
---|
403 | DistanceArray_t::const_iterator firstiter = firstdistances.begin();
|
---|
404 | DistanceArray_t::const_iterator seconditer = seconddistances.begin();
|
---|
405 | for (;(firstiter != firstdistances.end()) && (seconditer != seconddistances.end());
|
---|
406 | ++firstiter, ++seconditer) {
|
---|
407 | const double gap = fabs(*firstiter - *seconditer);
|
---|
408 | // L1 error
|
---|
409 | if (errors.first < gap)
|
---|
410 | errors.first = gap;
|
---|
411 | // L2 error
|
---|
412 | errors.second += gap*gap;
|
---|
413 | }
|
---|
414 | } else {
|
---|
415 | // check whether we have any zero centers: Combining points on new sphere may result
|
---|
416 | // in zero centers
|
---|
417 | for (SphericalPointDistribution::IndexTupleList_t::const_iterator iter = _Matching.begin();
|
---|
418 | iter != _Matching.end(); ++iter) {
|
---|
419 | if ((iter->size() != 1) && (calculateCenter( _new, *iter).IsZero())) {
|
---|
420 | errors.first = 2.;
|
---|
421 | errors.second = 2.;
|
---|
422 | }
|
---|
423 | }
|
---|
424 | }
|
---|
425 | LOG(4, "INFO: Resulting errors for matching (L1, L2): "
|
---|
426 | << errors.first << "," << errors.second << ".");
|
---|
427 |
|
---|
428 | return errors;
|
---|
429 | }
|
---|
430 |
|
---|
431 | SphericalPointDistribution::Polygon_t SphericalPointDistribution::removeMatchingPoints(
|
---|
432 | const PolygonWithIndices &_points
|
---|
433 | )
|
---|
434 | {
|
---|
435 | SphericalPointDistribution::Polygon_t remainingpoints;
|
---|
436 | IndexArray_t indices(_points.indices.begin(), _points.indices.end());
|
---|
437 | std::sort(indices.begin(), indices.end());
|
---|
438 | LOG(4, "DEBUG: sorted matching is " << indices);
|
---|
439 | IndexArray_t remainingindices(_points.polygon.size(), -1);
|
---|
440 | std::generate(remainingindices.begin(), remainingindices.end(), UniqueNumber);
|
---|
441 | IndexArray_t::iterator remainiter = std::set_difference(
|
---|
442 | remainingindices.begin(), remainingindices.end(),
|
---|
443 | indices.begin(), indices.end(),
|
---|
444 | remainingindices.begin());
|
---|
445 | remainingindices.erase(remainiter, remainingindices.end());
|
---|
446 | LOG(4, "DEBUG: remaining indices are " << remainingindices);
|
---|
447 | for (IndexArray_t::const_iterator iter = remainingindices.begin();
|
---|
448 | iter != remainingindices.end(); ++iter) {
|
---|
449 | remainingpoints.push_back(_points.polygon[*iter]);
|
---|
450 | }
|
---|
451 |
|
---|
452 | return remainingpoints;
|
---|
453 | }
|
---|
454 |
|
---|
455 | /** Recursive function to go through all possible matchings.
|
---|
456 | *
|
---|
457 | * \param _MCS structure holding global information to the recursion
|
---|
458 | * \param _matching current matching being build up
|
---|
459 | * \param _indices contains still available indices
|
---|
460 | * \param _remainingweights current weights to fill (each weight a place)
|
---|
461 | * \param _remainiter iterator over the weights, indicating the current position we match
|
---|
462 | * \param _matchingsize
|
---|
463 | */
|
---|
464 | void SphericalPointDistribution::recurseMatchings(
|
---|
465 | MatchingControlStructure &_MCS,
|
---|
466 | IndexTupleList_t &_matching,
|
---|
467 | IndexList_t _indices,
|
---|
468 | WeightsArray_t &_remainingweights,
|
---|
469 | WeightsArray_t::iterator _remainiter,
|
---|
470 | const unsigned int _matchingsize
|
---|
471 | )
|
---|
472 | {
|
---|
473 | LOG(5, "DEBUG: Recursing with current matching " << _matching
|
---|
474 | << ", remaining indices " << _indices
|
---|
475 | << ", and remaining weights " << _matchingsize);
|
---|
476 | if (!_MCS.foundflag) {
|
---|
477 | LOG(5, "DEBUG: Current matching has size " << _matching.size() << ", places left " << _matchingsize);
|
---|
478 | if (_matchingsize > 0) {
|
---|
479 | // go through all indices
|
---|
480 | for (IndexList_t::iterator iter = _indices.begin();
|
---|
481 | (iter != _indices.end()) && (!_MCS.foundflag);) {
|
---|
482 |
|
---|
483 | // check whether we can stay in the current bin or have to move on to next one
|
---|
484 | if (*_remainiter == 0) {
|
---|
485 | // we need to move on
|
---|
486 | if (_remainiter != _remainingweights.end()) {
|
---|
487 | ++_remainiter;
|
---|
488 | } else {
|
---|
489 | // as we check _matchingsize > 0 this should be impossible
|
---|
490 | ASSERT( 0, "recurseMatchings() - we must not come to this position.");
|
---|
491 | }
|
---|
492 | }
|
---|
493 |
|
---|
494 | // advance in matching to current bin to fill in
|
---|
495 | const size_t OldIndex = std::distance(_remainingweights.begin(), _remainiter);
|
---|
496 | while (_matching.size() <= OldIndex) { // add empty lists of new bin is opened
|
---|
497 | LOG(6, "DEBUG: Extending _matching.");
|
---|
498 | _matching.push_back( IndexList_t() );
|
---|
499 | }
|
---|
500 | IndexTupleList_t::iterator filliniter = _matching.begin();
|
---|
501 | std::advance(filliniter, OldIndex);
|
---|
502 |
|
---|
503 | // check whether connection between bins' indices and candidate is satisfied
|
---|
504 | {
|
---|
505 | adjacency_t::const_iterator finder = _MCS.adjacency.find(*iter);
|
---|
506 | ASSERT( finder != _MCS.adjacency.end(),
|
---|
507 | "recurseMatchings() - "+toString(*iter)+" is not in adjacency list.");
|
---|
508 | if ((!filliniter->empty())
|
---|
509 | && (finder->second.find(*filliniter->begin()) == finder->second.end())) {
|
---|
510 | LOG(5, "DEBUG; Skipping index " << *iter
|
---|
511 | << " as is not connected to current set." << *filliniter << ".");
|
---|
512 | ++iter; // note that for loop does not contain incrementor
|
---|
513 | continue;
|
---|
514 | }
|
---|
515 | }
|
---|
516 |
|
---|
517 | // add index to matching
|
---|
518 | filliniter->push_back(*iter);
|
---|
519 | --(*_remainiter);
|
---|
520 | LOG(6, "DEBUG: Adding " << *iter << " to matching at " << OldIndex << ".");
|
---|
521 | // remove index but keep iterator to position (is the next to erase element)
|
---|
522 | IndexList_t::iterator backupiter = _indices.erase(iter);
|
---|
523 | // recurse with decreased _matchingsize
|
---|
524 | recurseMatchings(_MCS, _matching, _indices, _remainingweights, _remainiter, _matchingsize-1);
|
---|
525 | // re-add chosen index and reset index to new position
|
---|
526 | _indices.insert(backupiter, filliniter->back());
|
---|
527 | iter = backupiter;
|
---|
528 | // remove index from _matching to make space for the next one
|
---|
529 | filliniter->pop_back();
|
---|
530 | ++(*_remainiter);
|
---|
531 | }
|
---|
532 | // gone through all indices then exit recursion
|
---|
533 | if (_matching.empty())
|
---|
534 | _MCS.foundflag = true;
|
---|
535 | } else {
|
---|
536 | LOG(4, "INFO: Found matching " << _matching);
|
---|
537 | // calculate errors
|
---|
538 | std::pair<double, double> errors = calculateErrorOfMatching(
|
---|
539 | _MCS.oldpoints, _MCS.newpoints, _matching);
|
---|
540 | if (errors.first < L1THRESHOLD) {
|
---|
541 | _MCS.bestmatching = _matching;
|
---|
542 | _MCS.foundflag = true;
|
---|
543 | } else if (_MCS.bestL2 > errors.second) {
|
---|
544 | _MCS.bestmatching = _matching;
|
---|
545 | _MCS.bestL2 = errors.second;
|
---|
546 | }
|
---|
547 | }
|
---|
548 | }
|
---|
549 | }
|
---|
550 |
|
---|
551 | SphericalPointDistribution::MatchingControlStructure::MatchingControlStructure(
|
---|
552 | const adjacency_t &_adjacency,
|
---|
553 | const VectorArray_t &_oldpoints,
|
---|
554 | const VectorArray_t &_newpoints,
|
---|
555 | const WeightsArray_t &_weights
|
---|
556 | ) :
|
---|
557 | foundflag(false),
|
---|
558 | bestL2(std::numeric_limits<double>::max()),
|
---|
559 | adjacency(_adjacency),
|
---|
560 | oldpoints(_oldpoints),
|
---|
561 | newpoints(_newpoints),
|
---|
562 | weights(_weights)
|
---|
563 | {}
|
---|
564 |
|
---|
565 | /** Finds combinatorially the best matching between points in \a _polygon
|
---|
566 | * and \a _newpolygon.
|
---|
567 | *
|
---|
568 | * We find the matching with the smallest L2 error, where we break when we stumble
|
---|
569 | * upon a matching with zero error.
|
---|
570 | *
|
---|
571 | * As points in \a _polygon may be have a weight greater 1 we have to match it to
|
---|
572 | * multiple points in \a _newpolygon. Eventually, these multiple points are combined
|
---|
573 | * for their center of weight, which is the only thing follow-up function see of
|
---|
574 | * these multiple points. Hence, we actually modify \a _newpolygon in the process
|
---|
575 | * such that the returned IndexList_t indicates a bijective mapping in the end.
|
---|
576 | *
|
---|
577 | * \sa recurseMatchings() for going through all matchings
|
---|
578 | *
|
---|
579 | * \param _polygon here, we have indices 0,1,2,...
|
---|
580 | * \param _newpolygon and here we need to find the correct indices
|
---|
581 | * \return list of indices: first in \a _polygon goes to first index for \a _newpolygon
|
---|
582 | */
|
---|
583 | SphericalPointDistribution::IndexList_t SphericalPointDistribution::findBestMatching(
|
---|
584 | const WeightedPolygon_t &_polygon
|
---|
585 | )
|
---|
586 | {
|
---|
587 | // transform lists into arrays
|
---|
588 | VectorArray_t oldpoints;
|
---|
589 | VectorArray_t newpoints;
|
---|
590 | WeightsArray_t weights;
|
---|
591 | for (WeightedPolygon_t::const_iterator iter = _polygon.begin();
|
---|
592 | iter != _polygon.end(); ++iter) {
|
---|
593 | oldpoints.push_back(iter->first);
|
---|
594 | weights.push_back(iter->second);
|
---|
595 | }
|
---|
596 | newpoints.insert(newpoints.begin(), points.begin(), points.end() );
|
---|
597 | MatchingControlStructure MCS(adjacency, oldpoints, newpoints, weights);
|
---|
598 |
|
---|
599 | // search for bestmatching combinatorially
|
---|
600 | {
|
---|
601 | // translate polygon into vector to enable index addressing
|
---|
602 | IndexList_t indices(points.size());
|
---|
603 | std::generate(indices.begin(), indices.end(), UniqueNumber);
|
---|
604 | IndexTupleList_t matching;
|
---|
605 |
|
---|
606 | // walk through all matchings
|
---|
607 | WeightsArray_t remainingweights = MCS.weights;
|
---|
608 | unsigned int placesleft = std::accumulate(remainingweights.begin(), remainingweights.end(), 0);
|
---|
609 | recurseMatchings(MCS, matching, indices, remainingweights, remainingweights.begin(), placesleft);
|
---|
610 | }
|
---|
611 | if (MCS.foundflag)
|
---|
612 | LOG(3, "Found a best matching beneath L1 threshold of " << L1THRESHOLD);
|
---|
613 | else {
|
---|
614 | if (MCS.bestL2 < warn_amplitude)
|
---|
615 | LOG(3, "Picking matching is " << MCS.bestmatching << " with best L2 error of "
|
---|
616 | << MCS.bestL2);
|
---|
617 | else if (MCS.bestL2 < L2THRESHOLD)
|
---|
618 | ELOG(2, "Picking matching is " << MCS.bestmatching
|
---|
619 | << " with rather large L2 error of " << MCS.bestL2);
|
---|
620 | else
|
---|
621 | ELOG(1, "findBestMatching() - matching "+toString(MCS.bestmatching)
|
---|
622 | +" has L2 error of "+toString(MCS.bestL2)+" that is too large.");
|
---|
623 | }
|
---|
624 |
|
---|
625 | // combine multiple points and create simple IndexList from IndexTupleList
|
---|
626 | const SphericalPointDistribution::IndexList_t IndexList =
|
---|
627 | joinPoints(points, MCS.newpoints, MCS.bestmatching);
|
---|
628 |
|
---|
629 | return IndexList;
|
---|
630 | }
|
---|
631 |
|
---|
632 | SphericalPointDistribution::IndexList_t SphericalPointDistribution::joinPoints(
|
---|
633 | Polygon_t &_newpolygon,
|
---|
634 | const VectorArray_t &_newpoints,
|
---|
635 | const IndexTupleList_t &_bestmatching
|
---|
636 | )
|
---|
637 | {
|
---|
638 | // combine all multiple points
|
---|
639 | IndexList_t IndexList;
|
---|
640 | IndexArray_t removalpoints;
|
---|
641 | unsigned int UniqueIndex = _newpolygon.size(); // all indices up to size are used right now
|
---|
642 | VectorArray_t newCenters;
|
---|
643 | newCenters.reserve(_bestmatching.size());
|
---|
644 | for (IndexTupleList_t::const_iterator tupleiter = _bestmatching.begin();
|
---|
645 | tupleiter != _bestmatching.end(); ++tupleiter) {
|
---|
646 | ASSERT (tupleiter->size() > 0,
|
---|
647 | "findBestMatching() - encountered tuple in bestmatching with size 0.");
|
---|
648 | if (tupleiter->size() == 1) {
|
---|
649 | // add point and index
|
---|
650 | IndexList.push_back(*tupleiter->begin());
|
---|
651 | } else {
|
---|
652 | // combine into weighted and normalized center
|
---|
653 | Vector Center = calculateCenter(_newpoints, *tupleiter);
|
---|
654 | Center.Normalize();
|
---|
655 | _newpolygon.push_back(Center);
|
---|
656 | LOG(5, "DEBUG: Combining " << tupleiter->size() << " points to weighted center "
|
---|
657 | << Center << " with new index " << UniqueIndex);
|
---|
658 | // mark for removal
|
---|
659 | removalpoints.insert(removalpoints.end(), tupleiter->begin(), tupleiter->end());
|
---|
660 | // add new index
|
---|
661 | IndexList.push_back(UniqueIndex++);
|
---|
662 | }
|
---|
663 | }
|
---|
664 | // IndexList is now our new bestmatching (that is bijective)
|
---|
665 | LOG(4, "DEBUG: Our new bijective IndexList reads as " << IndexList);
|
---|
666 |
|
---|
667 | // modifying _newpolygon: remove all points in removalpoints, add those in newCenters
|
---|
668 | Polygon_t allnewpoints = _newpolygon;
|
---|
669 | {
|
---|
670 | _newpolygon.clear();
|
---|
671 | std::sort(removalpoints.begin(), removalpoints.end());
|
---|
672 | size_t i = 0;
|
---|
673 | IndexArray_t::const_iterator removeiter = removalpoints.begin();
|
---|
674 | for (Polygon_t::iterator iter = allnewpoints.begin();
|
---|
675 | iter != allnewpoints.end(); ++iter, ++i) {
|
---|
676 | if ((removeiter != removalpoints.end()) && (i == *removeiter)) {
|
---|
677 | // don't add, go to next remove index
|
---|
678 | ++removeiter;
|
---|
679 | } else {
|
---|
680 | // otherwise add points
|
---|
681 | _newpolygon.push_back(*iter);
|
---|
682 | }
|
---|
683 | }
|
---|
684 | }
|
---|
685 | LOG(4, "DEBUG: The polygon with recentered points removed is " << _newpolygon);
|
---|
686 |
|
---|
687 | // map IndexList to new shrinked _newpolygon
|
---|
688 | typedef std::set<unsigned int> IndexSet_t;
|
---|
689 | IndexSet_t SortedIndexList(IndexList.begin(), IndexList.end());
|
---|
690 | IndexList.clear();
|
---|
691 | {
|
---|
692 | size_t offset = 0;
|
---|
693 | IndexSet_t::const_iterator listiter = SortedIndexList.begin();
|
---|
694 | IndexArray_t::const_iterator removeiter = removalpoints.begin();
|
---|
695 | for (size_t i = 0; i < allnewpoints.size(); ++i) {
|
---|
696 | if ((removeiter != removalpoints.end()) && (i == *removeiter)) {
|
---|
697 | ++offset;
|
---|
698 | ++removeiter;
|
---|
699 | } else if ((listiter != SortedIndexList.end()) && (i == *listiter)) {
|
---|
700 | IndexList.push_back(*listiter - offset);
|
---|
701 | ++listiter;
|
---|
702 | }
|
---|
703 | }
|
---|
704 | }
|
---|
705 | LOG(4, "DEBUG: Our new bijective IndexList corrected for removed points reads as "
|
---|
706 | << IndexList);
|
---|
707 |
|
---|
708 | return IndexList;
|
---|
709 | }
|
---|
710 |
|
---|
711 | SphericalPointDistribution::Rotation_t SphericalPointDistribution::findPlaneAligningRotation(
|
---|
712 | const PolygonWithIndices &_referencepositions,
|
---|
713 | const PolygonWithIndices &_currentpositions
|
---|
714 | )
|
---|
715 | {
|
---|
716 | #ifndef NDEBUG
|
---|
717 | bool dontcheck = false;
|
---|
718 | #endif
|
---|
719 | // initialize to no rotation
|
---|
720 | Rotation_t Rotation;
|
---|
721 | Rotation.first.Zero();
|
---|
722 | Rotation.first[0] = 1.;
|
---|
723 | Rotation.second = 0.;
|
---|
724 |
|
---|
725 | // calculate center of triangle/line/point consisting of first points of matching
|
---|
726 | Vector oldCenter;
|
---|
727 | Vector newCenter;
|
---|
728 | calculateOldAndNewCenters(
|
---|
729 | oldCenter, newCenter,
|
---|
730 | _referencepositions, _currentpositions);
|
---|
731 |
|
---|
732 | ASSERT( !oldCenter.IsZero() && !newCenter.IsZero(),
|
---|
733 | "findPlaneAligningRotation() - either old "+toString(oldCenter)
|
---|
734 | +" or new center "+toString(newCenter)+" are zero.");
|
---|
735 | LOG(4, "DEBUG: oldCenter is " << oldCenter << ", newCenter is " << newCenter);
|
---|
736 | if (!oldCenter.IsEqualTo(newCenter)) {
|
---|
737 | // calculate rotation axis and angle
|
---|
738 | Rotation.first = oldCenter;
|
---|
739 | if (oldCenter.IsParallelTo(newCenter, 1e-6))
|
---|
740 | Rotation.first.GetOneNormalVector(oldCenter);
|
---|
741 | else {
|
---|
742 | Rotation.first.VectorProduct(newCenter);
|
---|
743 | Rotation.first.Normalize();
|
---|
744 | }
|
---|
745 | // construct reference vector to determine direction of rotation
|
---|
746 | const double sign = determineSignOfRotation(newCenter, oldCenter, Rotation.first);
|
---|
747 | Rotation.second = sign * oldCenter.Angle(newCenter);
|
---|
748 | } else {
|
---|
749 | // no rotation required anymore
|
---|
750 | }
|
---|
751 |
|
---|
752 | #ifndef NDEBUG
|
---|
753 | // check: rotation brings newCenter onto oldCenter position
|
---|
754 | if (!dontcheck) {
|
---|
755 | Line Axis(zeroVec, Rotation.first);
|
---|
756 | Vector test = Axis.rotateVector(newCenter, Rotation.second);
|
---|
757 | LOG(4, "CHECK: rotated newCenter is " << test
|
---|
758 | << ", oldCenter is " << oldCenter);
|
---|
759 | ASSERT( (test - oldCenter).NormSquared() < std::numeric_limits<double>::epsilon()*1e4,
|
---|
760 | "matchSphericalPointDistributions() - rotation does not work as expected by "
|
---|
761 | +toString((test - oldCenter).NormSquared())+".");
|
---|
762 | }
|
---|
763 | #endif
|
---|
764 |
|
---|
765 | return Rotation;
|
---|
766 | }
|
---|
767 |
|
---|
768 | SphericalPointDistribution::Rotation_t SphericalPointDistribution::findPointAligningRotation(
|
---|
769 | const PolygonWithIndices &remainingold,
|
---|
770 | const PolygonWithIndices &remainingnew)
|
---|
771 | {
|
---|
772 | // initialize rotation to zero
|
---|
773 | Rotation_t Rotation;
|
---|
774 | Rotation.first.Zero();
|
---|
775 | Rotation.first[0] = 1.;
|
---|
776 | Rotation.second = 0.;
|
---|
777 |
|
---|
778 | // recalculate center
|
---|
779 | Vector oldCenter;
|
---|
780 | Vector newCenter;
|
---|
781 | calculateOldAndNewCenters(
|
---|
782 | oldCenter, newCenter,
|
---|
783 | remainingold, remainingnew);
|
---|
784 |
|
---|
785 | Vector oldPosition = remainingnew.polygon[*remainingnew.indices.begin()];
|
---|
786 | Vector newPosition = remainingold.polygon[0];
|
---|
787 | LOG(6, "DEBUG: oldPosition is " << oldPosition << " (length: "
|
---|
788 | << oldPosition.Norm() << ") and newPosition is " << newPosition << " length(: "
|
---|
789 | << newPosition.Norm() << ")");
|
---|
790 |
|
---|
791 | if (!oldPosition.IsEqualTo(newPosition)) {
|
---|
792 | // we rotate at oldCenter and around the radial direction, which is again given
|
---|
793 | // by oldCenter.
|
---|
794 | Rotation.first = oldCenter;
|
---|
795 | Rotation.first.Normalize(); // note weighted sum of normalized weight is not normalized
|
---|
796 | LOG(6, "DEBUG: Using oldCenter " << oldCenter << " as rotation center and "
|
---|
797 | << Rotation.first << " as axis.");
|
---|
798 | oldPosition -= oldCenter;
|
---|
799 | newPosition -= oldCenter;
|
---|
800 | oldPosition = (oldPosition - oldPosition.Projection(Rotation.first));
|
---|
801 | newPosition = (newPosition - newPosition.Projection(Rotation.first));
|
---|
802 | LOG(6, "DEBUG: Positions after projection are " << oldPosition << " and " << newPosition);
|
---|
803 |
|
---|
804 | // construct reference vector to determine direction of rotation
|
---|
805 | const double sign = determineSignOfRotation(oldPosition, newPosition, Rotation.first);
|
---|
806 | Rotation.second = sign * oldPosition.Angle(newPosition);
|
---|
807 | } else {
|
---|
808 | LOG(6, "DEBUG: oldPosition and newPosition are equivalent, hence no orientating rotation.");
|
---|
809 | }
|
---|
810 |
|
---|
811 | return Rotation;
|
---|
812 | }
|
---|
813 |
|
---|
814 | void SphericalPointDistribution::initSelf(const int _NumberOfPoints)
|
---|
815 | {
|
---|
816 | switch (_NumberOfPoints)
|
---|
817 | {
|
---|
818 | case 0:
|
---|
819 | points = get<0>();
|
---|
820 | adjacency = getConnections<0>();
|
---|
821 | break;
|
---|
822 | case 1:
|
---|
823 | points = get<1>();
|
---|
824 | adjacency = getConnections<1>();
|
---|
825 | break;
|
---|
826 | case 2:
|
---|
827 | points = get<2>();
|
---|
828 | adjacency = getConnections<2>();
|
---|
829 | break;
|
---|
830 | case 3:
|
---|
831 | points = get<3>();
|
---|
832 | adjacency = getConnections<3>();
|
---|
833 | break;
|
---|
834 | case 4:
|
---|
835 | points = get<4>();
|
---|
836 | adjacency = getConnections<4>();
|
---|
837 | break;
|
---|
838 | case 5:
|
---|
839 | points = get<5>();
|
---|
840 | adjacency = getConnections<5>();
|
---|
841 | break;
|
---|
842 | case 6:
|
---|
843 | points = get<6>();
|
---|
844 | adjacency = getConnections<6>();
|
---|
845 | break;
|
---|
846 | case 7:
|
---|
847 | points = get<7>();
|
---|
848 | adjacency = getConnections<7>();
|
---|
849 | break;
|
---|
850 | case 8:
|
---|
851 | points = get<8>();
|
---|
852 | adjacency = getConnections<8>();
|
---|
853 | break;
|
---|
854 | case 9:
|
---|
855 | points = get<9>();
|
---|
856 | adjacency = getConnections<9>();
|
---|
857 | break;
|
---|
858 | case 10:
|
---|
859 | points = get<10>();
|
---|
860 | adjacency = getConnections<10>();
|
---|
861 | break;
|
---|
862 | case 11:
|
---|
863 | points = get<11>();
|
---|
864 | adjacency = getConnections<11>();
|
---|
865 | break;
|
---|
866 | case 12:
|
---|
867 | points = get<12>();
|
---|
868 | adjacency = getConnections<12>();
|
---|
869 | break;
|
---|
870 | case 14:
|
---|
871 | points = get<14>();
|
---|
872 | adjacency = getConnections<14>();
|
---|
873 | break;
|
---|
874 | default:
|
---|
875 | ASSERT(0, "SphericalPointDistribution::initSelf() - cannot deal with the case "
|
---|
876 | +toString(_NumberOfPoints)+".");
|
---|
877 | }
|
---|
878 | LOG(3, "DEBUG: Ideal polygon is " << points);
|
---|
879 | }
|
---|
880 |
|
---|
881 | SphericalPointDistribution::Polygon_t
|
---|
882 | SphericalPointDistribution::getRemainingPoints(
|
---|
883 | const WeightedPolygon_t &_polygon,
|
---|
884 | const int _N)
|
---|
885 | {
|
---|
886 | SphericalPointDistribution::Polygon_t remainingpoints;
|
---|
887 |
|
---|
888 | // initialze to given number of points
|
---|
889 | initSelf(_N);
|
---|
890 | LOG(2, "INFO: Matching old polygon " << _polygon
|
---|
891 | << " with new polygon " << points);
|
---|
892 |
|
---|
893 | // check whether any points will remain vacant
|
---|
894 | int RemainingPoints = _N;
|
---|
895 | for (WeightedPolygon_t::const_iterator iter = _polygon.begin();
|
---|
896 | iter != _polygon.end(); ++iter)
|
---|
897 | RemainingPoints -= iter->second;
|
---|
898 | if (RemainingPoints == 0)
|
---|
899 | return remainingpoints;
|
---|
900 |
|
---|
901 | if (_N > 0) {
|
---|
902 | IndexList_t bestmatching = findBestMatching(_polygon);
|
---|
903 | LOG(2, "INFO: Best matching is " << bestmatching);
|
---|
904 |
|
---|
905 | const size_t NumberIds = std::min(bestmatching.size(), (size_t)3);
|
---|
906 | // create old set
|
---|
907 | PolygonWithIndices oldSet;
|
---|
908 | oldSet.indices.resize(NumberIds, -1);
|
---|
909 | std::generate(oldSet.indices.begin(), oldSet.indices.end(), UniqueNumber);
|
---|
910 | for (WeightedPolygon_t::const_iterator iter = _polygon.begin();
|
---|
911 | iter != _polygon.end(); ++iter)
|
---|
912 | oldSet.polygon.push_back(iter->first);
|
---|
913 |
|
---|
914 | // _newpolygon has changed, so now convert to array with matched indices
|
---|
915 | PolygonWithIndices newSet;
|
---|
916 | SphericalPointDistribution::IndexList_t::const_iterator beginiter = bestmatching.begin();
|
---|
917 | SphericalPointDistribution::IndexList_t::const_iterator enditer = bestmatching.begin();
|
---|
918 | std::advance(enditer, NumberIds);
|
---|
919 | newSet.indices.resize(NumberIds, -1);
|
---|
920 | std::copy(beginiter, enditer, newSet.indices.begin());
|
---|
921 | std::copy(points.begin(),points.end(), std::back_inserter(newSet.polygon));
|
---|
922 |
|
---|
923 | // determine rotation angles to align the two point distributions with
|
---|
924 | // respect to bestmatching:
|
---|
925 | // we use the center between the three first matching points
|
---|
926 | /// the first rotation brings these two centers to coincide
|
---|
927 | PolygonWithIndices rotatednewSet = newSet;
|
---|
928 | {
|
---|
929 | Rotation_t Rotation = findPlaneAligningRotation(oldSet, newSet);
|
---|
930 | LOG(5, "DEBUG: Rotating coordinate system by " << Rotation.second
|
---|
931 | << " around axis " << Rotation.first);
|
---|
932 | Line Axis(zeroVec, Rotation.first);
|
---|
933 |
|
---|
934 | // apply rotation angle to bring newCenter to oldCenter
|
---|
935 | for (VectorArray_t::iterator iter = rotatednewSet.polygon.begin();
|
---|
936 | iter != rotatednewSet.polygon.end(); ++iter) {
|
---|
937 | Vector ¤t = *iter;
|
---|
938 | LOG(6, "DEBUG: Original point is " << current);
|
---|
939 | current = Axis.rotateVector(current, Rotation.second);
|
---|
940 | LOG(6, "DEBUG: Rotated point is " << current);
|
---|
941 | }
|
---|
942 |
|
---|
943 | #ifndef NDEBUG
|
---|
944 | // check: rotated "newCenter" should now equal oldCenter
|
---|
945 | // we don't check in case of two points as these lie on a great circle
|
---|
946 | // and the center cannot stably be recalculated. We may reactivate this
|
---|
947 | // when we calculate centers only once
|
---|
948 | if (oldSet.indices.size() > 2) {
|
---|
949 | Vector oldCenter;
|
---|
950 | Vector rotatednewCenter;
|
---|
951 | calculateOldAndNewCenters(
|
---|
952 | oldCenter, rotatednewCenter,
|
---|
953 | oldSet, rotatednewSet);
|
---|
954 | oldCenter.Normalize();
|
---|
955 | rotatednewCenter.Normalize();
|
---|
956 | // check whether centers are anti-parallel (factor -1)
|
---|
957 | // then we have the "non-unique poles" situation: points lie on great circle
|
---|
958 | // and both poles are valid solution
|
---|
959 | if (fabs(oldCenter.ScalarProduct(rotatednewCenter) + 1.)
|
---|
960 | < std::numeric_limits<double>::epsilon()*1e4)
|
---|
961 | rotatednewCenter *= -1.;
|
---|
962 | LOG(4, "CHECK: rotatednewCenter is " << rotatednewCenter
|
---|
963 | << ", oldCenter is " << oldCenter);
|
---|
964 | const double difference = (rotatednewCenter - oldCenter).NormSquared();
|
---|
965 | ASSERT( difference < std::numeric_limits<double>::epsilon()*1e4,
|
---|
966 | "matchSphericalPointDistributions() - rotation does not work as expected by "
|
---|
967 | +toString(difference)+".");
|
---|
968 | }
|
---|
969 | #endif
|
---|
970 | }
|
---|
971 | /// the second (orientation) rotation aligns the planes such that the
|
---|
972 | /// points themselves coincide
|
---|
973 | if (bestmatching.size() > 1) {
|
---|
974 | Rotation_t Rotation = findPointAligningRotation(oldSet, rotatednewSet);
|
---|
975 |
|
---|
976 | // construct RotationAxis and two points on its plane, defining the angle
|
---|
977 | Rotation.first.Normalize();
|
---|
978 | const Line RotationAxis(zeroVec, Rotation.first);
|
---|
979 |
|
---|
980 | LOG(5, "DEBUG: Rotating around self is " << Rotation.second
|
---|
981 | << " around axis " << RotationAxis);
|
---|
982 |
|
---|
983 | #ifndef NDEBUG
|
---|
984 | // check: first bestmatching in rotated_newpolygon and remainingnew
|
---|
985 | // should now equal
|
---|
986 | {
|
---|
987 | const IndexList_t::const_iterator iter = bestmatching.begin();
|
---|
988 |
|
---|
989 | // check whether both old and newPosition are at same distance to oldCenter
|
---|
990 | Vector oldCenter = calculateCenter(oldSet);
|
---|
991 | const double distance = fabs(
|
---|
992 | (oldSet.polygon[0] - oldCenter).NormSquared()
|
---|
993 | - (rotatednewSet.polygon[*iter] - oldCenter).NormSquared()
|
---|
994 | );
|
---|
995 | LOG(4, "CHECK: Squared distance between oldPosition and newPosition "
|
---|
996 | << " with respect to oldCenter " << oldCenter << " is " << distance);
|
---|
997 | // ASSERT( distance < warn_amplitude,
|
---|
998 | // "matchSphericalPointDistributions() - old and newPosition's squared distance to oldCenter differs by "
|
---|
999 | // +toString(distance));
|
---|
1000 |
|
---|
1001 | Vector rotatednew = RotationAxis.rotateVector(
|
---|
1002 | rotatednewSet.polygon[*iter],
|
---|
1003 | Rotation.second);
|
---|
1004 | LOG(4, "CHECK: rotated first new bestmatching is " << rotatednew
|
---|
1005 | << " while old was " << oldSet.polygon[0]);
|
---|
1006 | const double difference = (rotatednew - oldSet.polygon[0]).NormSquared();
|
---|
1007 | ASSERT( difference < distance+1e-8,
|
---|
1008 | "matchSphericalPointDistributions() - orientation rotation ends up off by "
|
---|
1009 | +toString(difference)+", more than "
|
---|
1010 | +toString(distance+1e-8)+".");
|
---|
1011 | }
|
---|
1012 | #endif
|
---|
1013 |
|
---|
1014 | for (VectorArray_t::iterator iter = rotatednewSet.polygon.begin();
|
---|
1015 | iter != rotatednewSet.polygon.end(); ++iter) {
|
---|
1016 | Vector ¤t = *iter;
|
---|
1017 | LOG(6, "DEBUG: Original point is " << current);
|
---|
1018 | current = RotationAxis.rotateVector(current, Rotation.second);
|
---|
1019 | LOG(6, "DEBUG: Rotated point is " << current);
|
---|
1020 | }
|
---|
1021 | }
|
---|
1022 |
|
---|
1023 | // remove all points in matching and return remaining ones
|
---|
1024 | SphericalPointDistribution::Polygon_t remainingpoints =
|
---|
1025 | removeMatchingPoints(rotatednewSet);
|
---|
1026 | LOG(2, "INFO: Remaining points are " << remainingpoints);
|
---|
1027 | return remainingpoints;
|
---|
1028 | } else
|
---|
1029 | return points;
|
---|
1030 | }
|
---|
1031 |
|
---|
1032 | SphericalPointDistribution::Polygon_t
|
---|
1033 | SphericalPointDistribution::getSimplePolygon(const int _NumberOfPoints) const
|
---|
1034 | {
|
---|
1035 | Polygon_t returnpolygon;
|
---|
1036 |
|
---|
1037 | switch (_NumberOfPoints)
|
---|
1038 | {
|
---|
1039 | case 0:
|
---|
1040 | returnpolygon = get<0>();
|
---|
1041 | break;
|
---|
1042 | case 1:
|
---|
1043 | returnpolygon = get<1>();
|
---|
1044 | break;
|
---|
1045 | case 2:
|
---|
1046 | returnpolygon = get<2>();
|
---|
1047 | break;
|
---|
1048 | case 3:
|
---|
1049 | returnpolygon = get<3>();
|
---|
1050 | break;
|
---|
1051 | case 4:
|
---|
1052 | returnpolygon = get<4>();
|
---|
1053 | break;
|
---|
1054 | case 5:
|
---|
1055 | returnpolygon = get<5>();
|
---|
1056 | break;
|
---|
1057 | case 6:
|
---|
1058 | returnpolygon = get<6>();
|
---|
1059 | break;
|
---|
1060 | case 7:
|
---|
1061 | returnpolygon = get<7>();
|
---|
1062 | break;
|
---|
1063 | case 8:
|
---|
1064 | returnpolygon = get<8>();
|
---|
1065 | break;
|
---|
1066 | case 9:
|
---|
1067 | returnpolygon = get<9>();
|
---|
1068 | break;
|
---|
1069 | case 10:
|
---|
1070 | returnpolygon = get<10>();
|
---|
1071 | break;
|
---|
1072 | case 11:
|
---|
1073 | returnpolygon = get<11>();
|
---|
1074 | break;
|
---|
1075 | case 12:
|
---|
1076 | returnpolygon = get<12>();
|
---|
1077 | break;
|
---|
1078 | case 14:
|
---|
1079 | returnpolygon = get<14>();
|
---|
1080 | break;
|
---|
1081 | default:
|
---|
1082 | ASSERT(0, "SphericalPointDistribution::initSelf() - cannot deal with the case "
|
---|
1083 | +toString(_NumberOfPoints)+".");
|
---|
1084 | }
|
---|
1085 |
|
---|
1086 | return returnpolygon;
|
---|
1087 | }
|
---|
1088 |
|
---|