1 | /*
|
---|
2 | * ForceAnnealing.hpp
|
---|
3 | *
|
---|
4 | * Created on: Aug 02, 2014
|
---|
5 | * Author: heber
|
---|
6 | */
|
---|
7 |
|
---|
8 | #ifndef FORCEANNEALING_HPP_
|
---|
9 | #define FORCEANNEALING_HPP_
|
---|
10 |
|
---|
11 | // include config.h
|
---|
12 | #ifdef HAVE_CONFIG_H
|
---|
13 | #include <config.h>
|
---|
14 | #endif
|
---|
15 |
|
---|
16 | #include <algorithm>
|
---|
17 | #include <iterator>
|
---|
18 |
|
---|
19 | #include <boost/bind.hpp>
|
---|
20 |
|
---|
21 | #include "Atom/atom.hpp"
|
---|
22 | #include "Atom/AtomSet.hpp"
|
---|
23 | #include "CodePatterns/Assert.hpp"
|
---|
24 | #include "CodePatterns/Info.hpp"
|
---|
25 | #include "CodePatterns/Log.hpp"
|
---|
26 | #include "CodePatterns/Verbose.hpp"
|
---|
27 | #include "Descriptors/AtomIdDescriptor.hpp"
|
---|
28 | #include "Dynamics/AtomicForceManipulator.hpp"
|
---|
29 | #include "Fragmentation/ForceMatrix.hpp"
|
---|
30 | #include "Graph/BoostGraphCreator.hpp"
|
---|
31 | #include "Graph/BoostGraphHelpers.hpp"
|
---|
32 | #include "Graph/BreadthFirstSearchGatherer.hpp"
|
---|
33 | #include "Helpers/helpers.hpp"
|
---|
34 | #include "Helpers/defs.hpp"
|
---|
35 | #include "LinearAlgebra/LinearSystemOfEquations.hpp"
|
---|
36 | #include "LinearAlgebra/MatrixContent.hpp"
|
---|
37 | #include "LinearAlgebra/Vector.hpp"
|
---|
38 | #include "LinearAlgebra/VectorContent.hpp"
|
---|
39 | #include "Thermostats/ThermoStatContainer.hpp"
|
---|
40 | #include "Thermostats/Thermostat.hpp"
|
---|
41 | #include "World.hpp"
|
---|
42 |
|
---|
43 | /** This class is the essential build block for performing structural optimization.
|
---|
44 | *
|
---|
45 | * Sadly, we have to use some static instances as so far values cannot be passed
|
---|
46 | * between actions. Hence, we need to store the current step and the adaptive-
|
---|
47 | * step width (we cannot perform a line search, as we have no control over the
|
---|
48 | * calculation of the forces).
|
---|
49 | *
|
---|
50 | * However, we do use the bond graph, i.e. if a single atom needs to be shifted
|
---|
51 | * to the left, then the whole molecule left of it is shifted, too. This is
|
---|
52 | * controlled by the \a max_distance parameter.
|
---|
53 | */
|
---|
54 | template <class T>
|
---|
55 | class ForceAnnealing : public AtomicForceManipulator<T>
|
---|
56 | {
|
---|
57 | public:
|
---|
58 | /** Constructor of class ForceAnnealing.
|
---|
59 | *
|
---|
60 | * \note We use a fixed delta t of 1.
|
---|
61 | *
|
---|
62 | * \param _atoms set of atoms to integrate
|
---|
63 | * \param _Deltat time step width in atomic units
|
---|
64 | * \param _IsAngstroem whether length units are in angstroem or bohr radii
|
---|
65 | * \param _maxSteps number of optimization steps to perform
|
---|
66 | * \param _max_distance up to this bond order is bond graph taken into account.
|
---|
67 | */
|
---|
68 | ForceAnnealing(
|
---|
69 | AtomSetMixin<T> &_atoms,
|
---|
70 | const double _Deltat,
|
---|
71 | bool _IsAngstroem,
|
---|
72 | const size_t _maxSteps,
|
---|
73 | const int _max_distance,
|
---|
74 | const double _damping_factor) :
|
---|
75 | AtomicForceManipulator<T>(_atoms, _Deltat, _IsAngstroem),
|
---|
76 | maxSteps(_maxSteps),
|
---|
77 | max_distance(_max_distance),
|
---|
78 | damping_factor(_damping_factor)
|
---|
79 | {}
|
---|
80 |
|
---|
81 | /** Destructor of class ForceAnnealing.
|
---|
82 | *
|
---|
83 | */
|
---|
84 | ~ForceAnnealing()
|
---|
85 | {}
|
---|
86 |
|
---|
87 | /** Performs Gradient optimization.
|
---|
88 | *
|
---|
89 | * We assume that forces have just been calculated.
|
---|
90 | *
|
---|
91 | *
|
---|
92 | * \param CurrentTimeStep current time step (i.e. \f$ t + \Delta t \f$ in the sense of the velocity verlet)
|
---|
93 | * \param offset offset in matrix file to the first force component
|
---|
94 | * \todo This is not yet checked if it is correctly working with DoConstrainedMD set >0.
|
---|
95 | */
|
---|
96 | void operator()(
|
---|
97 | const int _CurrentTimeStep,
|
---|
98 | const size_t _offset,
|
---|
99 | const bool _UseBondgraph)
|
---|
100 | {
|
---|
101 | // make sum of forces equal zero
|
---|
102 | AtomicForceManipulator<T>::correctForceMatrixForFixedCenterOfMass(_offset, _CurrentTimeStep);
|
---|
103 |
|
---|
104 | // are we in initial step? Then set static entities
|
---|
105 | Vector maxComponents(zeroVec);
|
---|
106 | if (currentStep == 0) {
|
---|
107 | currentDeltat = AtomicForceManipulator<T>::Deltat;
|
---|
108 | currentStep = 1;
|
---|
109 | LOG(2, "DEBUG: Initial step, setting values, current step is #" << currentStep);
|
---|
110 |
|
---|
111 | // always use atomic annealing on first step
|
---|
112 | anneal(_CurrentTimeStep, _offset, maxComponents);
|
---|
113 | } else {
|
---|
114 | ++currentStep;
|
---|
115 | LOG(2, "DEBUG: current step is #" << currentStep);
|
---|
116 |
|
---|
117 | if (_UseBondgraph)
|
---|
118 | annealWithBondGraph(_CurrentTimeStep, _offset, maxComponents);
|
---|
119 | else
|
---|
120 | anneal(_CurrentTimeStep, _offset, maxComponents);
|
---|
121 | }
|
---|
122 |
|
---|
123 | LOG(1, "STATUS: Largest remaining force components at step #"
|
---|
124 | << currentStep << " are " << maxComponents);
|
---|
125 |
|
---|
126 | // are we in final step? Remember to reset static entities
|
---|
127 | if (currentStep == maxSteps) {
|
---|
128 | LOG(2, "DEBUG: Final step, resetting values");
|
---|
129 | reset();
|
---|
130 | }
|
---|
131 | }
|
---|
132 |
|
---|
133 | /** Helper function to calculate the Barzilai-Borwein stepwidth.
|
---|
134 | *
|
---|
135 | * \param _PositionDifference difference in position between current and last step
|
---|
136 | * \param _GradientDifference difference in gradient between current and last step
|
---|
137 | * \return step width according to Barzilai-Borwein
|
---|
138 | */
|
---|
139 | double getBarzilaiBorweinStepwidth(const Vector &_PositionDifference, const Vector &_GradientDifference)
|
---|
140 | {
|
---|
141 | double stepwidth = 0.;
|
---|
142 | if (_GradientDifference.NormSquared() > MYEPSILON)
|
---|
143 | stepwidth = fabs(_PositionDifference.ScalarProduct(_GradientDifference))/
|
---|
144 | _GradientDifference.NormSquared();
|
---|
145 | if (fabs(stepwidth) < 1e-10) {
|
---|
146 | // dont' warn in first step, deltat usage normal
|
---|
147 | if (currentStep != 1)
|
---|
148 | ELOG(1, "INFO: Barzilai-Borwein stepwidth is zero, using deltat " << currentDeltat << " instead.");
|
---|
149 | stepwidth = currentDeltat;
|
---|
150 | }
|
---|
151 | return stepwidth;
|
---|
152 | }
|
---|
153 |
|
---|
154 | /** Performs Gradient optimization on the atoms.
|
---|
155 | *
|
---|
156 | * We assume that forces have just been calculated.
|
---|
157 | *
|
---|
158 | * \param CurrentTimeStep current time step (i.e. \f$ t + \Delta t \f$ in the sense of the velocity verlet)
|
---|
159 | * \param offset offset in matrix file to the first force component
|
---|
160 | * \param maxComponents to be filled with maximum force component over all atoms
|
---|
161 | */
|
---|
162 | void anneal(
|
---|
163 | const int CurrentTimeStep,
|
---|
164 | const size_t offset,
|
---|
165 | Vector &maxComponents)
|
---|
166 | {
|
---|
167 | for(typename AtomSetMixin<T>::iterator iter = AtomicForceManipulator<T>::atoms.begin();
|
---|
168 | iter != AtomicForceManipulator<T>::atoms.end(); ++iter) {
|
---|
169 | // atom's force vector gives steepest descent direction
|
---|
170 | const Vector oldPosition = (*iter)->getPositionAtStep(CurrentTimeStep-1 >= 0 ? CurrentTimeStep - 1 : 0);
|
---|
171 | const Vector currentPosition = (*iter)->getPositionAtStep(CurrentTimeStep);
|
---|
172 | const Vector oldGradient = (*iter)->getAtomicForceAtStep(CurrentTimeStep-1 >= 0 ? CurrentTimeStep - 1 : 0);
|
---|
173 | const Vector currentGradient = (*iter)->getAtomicForceAtStep(CurrentTimeStep);
|
---|
174 | LOG(4, "DEBUG: oldPosition for atom " << **iter << " is " << oldPosition);
|
---|
175 | LOG(4, "DEBUG: currentPosition for atom " << **iter << " is " << currentPosition);
|
---|
176 | LOG(4, "DEBUG: oldGradient for atom " << **iter << " is " << oldGradient);
|
---|
177 | LOG(4, "DEBUG: currentGradient for atom " << **iter << " is " << currentGradient);
|
---|
178 | // LOG(4, "DEBUG: Force for atom " << **iter << " is " << currentGradient);
|
---|
179 |
|
---|
180 | // we use Barzilai-Borwein update with position reversed to get descent
|
---|
181 | const double stepwidth = getBarzilaiBorweinStepwidth(
|
---|
182 | currentPosition - oldPosition, currentGradient - oldGradient);
|
---|
183 | Vector PositionUpdate = stepwidth * currentGradient;
|
---|
184 | LOG(3, "DEBUG: Update would be " << stepwidth << "*" << currentGradient << " = " << PositionUpdate);
|
---|
185 |
|
---|
186 | // extract largest components for showing progress of annealing
|
---|
187 | for(size_t i=0;i<NDIM;++i)
|
---|
188 | maxComponents[i] = std::max(maxComponents[i], fabs(currentGradient[i]));
|
---|
189 |
|
---|
190 | // are we in initial step? Then don't check against velocity
|
---|
191 | if ((currentStep > 1) && (!(*iter)->getAtomicVelocity().IsZero()))
|
---|
192 | // update with currentDelta tells us how the current gradient relates to
|
---|
193 | // the last one: If it has become larger, reduce currentDelta
|
---|
194 | if ((PositionUpdate.ScalarProduct((*iter)->getAtomicVelocity()) < 0)
|
---|
195 | && (currentDeltat > MinimumDeltat)) {
|
---|
196 | currentDeltat = .5*currentDeltat;
|
---|
197 | LOG(2, "DEBUG: Upgrade in other direction: " << PositionUpdate.NormSquared()
|
---|
198 | << " > " << (*iter)->getAtomicVelocity().NormSquared()
|
---|
199 | << ", decreasing deltat: " << currentDeltat);
|
---|
200 | PositionUpdate = currentDeltat * currentGradient;
|
---|
201 | }
|
---|
202 | // finally set new values
|
---|
203 | (*iter)->setPosition(currentPosition + PositionUpdate);
|
---|
204 | (*iter)->setAtomicVelocity(PositionUpdate);
|
---|
205 | //std::cout << "Id of atom is " << (*iter)->getId() << std::endl;
|
---|
206 | // (*iter)->VelocityVerletUpdateU((*iter)->getId(), CurrentTimeStep-1, Deltat, IsAngstroem);
|
---|
207 | }
|
---|
208 | }
|
---|
209 |
|
---|
210 | /** Performs Gradient optimization on the bonds.
|
---|
211 | *
|
---|
212 | * We assume that forces have just been calculated. These forces are projected
|
---|
213 | * onto the bonds and these are annealed subsequently by moving atoms in the
|
---|
214 | * bond neighborhood on either side conjunctively.
|
---|
215 | *
|
---|
216 | *
|
---|
217 | * \param CurrentTimeStep current time step (i.e. t where \f$ t + \Delta t \f$ is in the sense of the velocity verlet)
|
---|
218 | * \param offset offset in matrix file to the first force component
|
---|
219 | * \param maxComponents to be filled with maximum force component over all atoms
|
---|
220 | */
|
---|
221 | void annealWithBondGraph(
|
---|
222 | const int CurrentTimeStep,
|
---|
223 | const size_t offset,
|
---|
224 | Vector &maxComponents)
|
---|
225 | {
|
---|
226 | // get nodes on either side of selected bond via BFS discovery
|
---|
227 | // std::vector<atomId_t> atomids;
|
---|
228 | // for(typename AtomSetMixin<T>::iterator iter = AtomicForceManipulator<T>::atoms.begin();
|
---|
229 | // iter != AtomicForceManipulator<T>::atoms.end(); ++iter) {
|
---|
230 | // atomids.push_back((*iter)->getId());
|
---|
231 | // }
|
---|
232 | // ASSERT( atomids.size() == AtomicForceManipulator<T>::atoms.size(),
|
---|
233 | // "ForceAnnealing() - could not gather all atomic ids?");
|
---|
234 | BoostGraphCreator BGcreator;
|
---|
235 | BGcreator.createFromRange(
|
---|
236 | AtomicForceManipulator<T>::atoms.begin(),
|
---|
237 | AtomicForceManipulator<T>::atoms.end(),
|
---|
238 | AtomicForceManipulator<T>::atoms.size(),
|
---|
239 | BreadthFirstSearchGatherer::AlwaysTruePredicate);
|
---|
240 | BreadthFirstSearchGatherer NodeGatherer(BGcreator);
|
---|
241 |
|
---|
242 | /// We assume that a force is local, i.e. a bond is too short yet and hence
|
---|
243 | /// the atom needs to be moved. However, all the adjacent (bound) atoms might
|
---|
244 | /// already be at the perfect distance. If we just move the atom alone, we ruin
|
---|
245 | /// all the other bonds. Hence, it would be sensible to move every atom found
|
---|
246 | /// through the bond graph in the direction of the force as well by the same
|
---|
247 | /// PositionUpdate. This is almost what we are going to do.
|
---|
248 |
|
---|
249 | /// One more issue is: If we need to shorten bond, then we use the PositionUpdate
|
---|
250 | /// also on the the other bond partner already. This is because it is in the
|
---|
251 | /// direction of the bond. Therefore, the update is actually performed twice on
|
---|
252 | /// each bond partner, i.e. the step size is twice as large as it should be.
|
---|
253 | /// This problem only occurs when bonds need to be shortened, not when they
|
---|
254 | /// need to be made longer (then the force vector is facing the other
|
---|
255 | /// direction than the bond vector).
|
---|
256 | /// As a remedy we need to average the force on either end of the bond and
|
---|
257 | /// check whether each gradient points inwards out or outwards with respect
|
---|
258 | /// to the bond and then shift accordingly.
|
---|
259 | /// One more issue is that the projection onto the bond directions does not
|
---|
260 | /// recover the gradient but may be larger as the bond directions are a
|
---|
261 | /// generating system and not a basis (e.g. 3 bonds on a plane where 2 would
|
---|
262 | /// suffice to span the plane). To this end, we need to account for the
|
---|
263 | /// overestimation and obtain a weighting for each bond.
|
---|
264 |
|
---|
265 | // gather weights
|
---|
266 | typedef std::deque<double> weights_t;
|
---|
267 | typedef std::map<atomId_t, weights_t > weights_per_atom_t;
|
---|
268 | std::vector<weights_per_atom_t> weights_per_atom(2);
|
---|
269 | for (size_t timestep = 0; timestep <= 1; ++timestep) {
|
---|
270 | const size_t CurrentStep = CurrentTimeStep-2*timestep >= 0 ? CurrentTimeStep - 2*timestep : 0;
|
---|
271 | LOG(2, "DEBUG: CurrentTimeStep is " << CurrentTimeStep
|
---|
272 | << ", timestep is " << timestep
|
---|
273 | << ", and CurrentStep is " << CurrentStep);
|
---|
274 |
|
---|
275 | for(typename AtomSetMixin<T>::const_iterator iter = AtomicForceManipulator<T>::atoms.begin();
|
---|
276 | iter != AtomicForceManipulator<T>::atoms.end(); ++iter) {
|
---|
277 | const atom &walker = *(*iter);
|
---|
278 | const Vector &walkerGradient = walker.getAtomicForceAtStep(CurrentStep);
|
---|
279 |
|
---|
280 | if (walkerGradient.Norm() > MYEPSILON) {
|
---|
281 |
|
---|
282 | // gather BondVector and projected gradient over all bonds
|
---|
283 | const BondList& ListOfBonds = walker.getListOfBondsAtStep(CurrentStep);
|
---|
284 | std::vector<double> projected_forces;
|
---|
285 | std::vector<Vector> BondVectors;
|
---|
286 | projected_forces.reserve(ListOfBonds.size());
|
---|
287 | for(BondList::const_iterator bonditer = ListOfBonds.begin();
|
---|
288 | bonditer != ListOfBonds.end(); ++bonditer) {
|
---|
289 | const bond::ptr ¤t_bond = *bonditer;
|
---|
290 | BondVectors.push_back(
|
---|
291 | current_bond->leftatom->getPositionAtStep(CurrentStep)
|
---|
292 | - current_bond->rightatom->getPositionAtStep(CurrentStep));
|
---|
293 | Vector &BondVector = BondVectors.back();
|
---|
294 | BondVector.Normalize();
|
---|
295 | projected_forces.push_back( walkerGradient.ScalarProduct(BondVector) );
|
---|
296 | }
|
---|
297 |
|
---|
298 | // go through all bonds and check what magnitude is represented by the others
|
---|
299 | // i.e. sum of scalar products against other bonds
|
---|
300 | std::pair<weights_per_atom_t::iterator, bool> inserter =
|
---|
301 | weights_per_atom[timestep-1].insert(
|
---|
302 | std::make_pair(walker.getId(), weights_t()) );
|
---|
303 | ASSERT( inserter.second,
|
---|
304 | "ForceAnnealing::operator() - weight map for atom "+toString(walker)
|
---|
305 | +" and time step "+toString(timestep-1)+" already filled?");
|
---|
306 | weights_t &weights = inserter.first->second;
|
---|
307 | for (std::vector<Vector>::const_iterator iter = BondVectors.begin();
|
---|
308 | iter != BondVectors.end(); ++iter) {
|
---|
309 | std::vector<double> scps;
|
---|
310 | std::transform(
|
---|
311 | BondVectors.begin(), BondVectors.end(),
|
---|
312 | std::back_inserter(scps),
|
---|
313 | boost::bind(&Vector::ScalarProduct, boost::cref(*iter), _1)
|
---|
314 | );
|
---|
315 | const double scp_sum = std::accumulate(scps.begin(), scps.end(), 0.);
|
---|
316 | weights.push_back( 1./scp_sum );
|
---|
317 | }
|
---|
318 | // for testing we check whether all weighted scalar products now come out as 1.
|
---|
319 | #ifndef NDEBUG
|
---|
320 | for (std::vector<Vector>::const_iterator iter = BondVectors.begin();
|
---|
321 | iter != BondVectors.end(); ++iter) {
|
---|
322 | double scp_sum = 0.;
|
---|
323 | weights_t::const_iterator weightiter = weights.begin();
|
---|
324 | for (std::vector<Vector>::const_iterator otheriter = BondVectors.begin();
|
---|
325 | otheriter != BondVectors.end(); ++otheriter, ++weightiter) {
|
---|
326 | scp_sum += (*weightiter)*(*iter).ScalarProduct(*otheriter);
|
---|
327 | }
|
---|
328 | ASSERT( fabs(scp_sum - 1.) < MYEPSILON,
|
---|
329 | "ForceAnnealing::operator() - for BondVector "+toString(*iter)
|
---|
330 | +" we have weighted scalar product of "+toString(scp_sum)+" != 1.");
|
---|
331 | }
|
---|
332 | #endif
|
---|
333 | } else {
|
---|
334 | LOG(2, "DEBUG: Gradient is " << walkerGradient << " less than "
|
---|
335 | << MYEPSILON << " for atom " << walker);
|
---|
336 | }
|
---|
337 | }
|
---|
338 | }
|
---|
339 |
|
---|
340 | // step through each bond and shift the atoms
|
---|
341 | std::map<atomId_t, Vector> GatheredUpdates; //!< gathers all updates which are applied at the end
|
---|
342 | // for (size_t i = 0;i<bondvector.size();++i) {
|
---|
343 | // const atom* bondatom[2] = {
|
---|
344 | // bondvector[i]->leftatom,
|
---|
345 | // bondvector[i]->rightatom};
|
---|
346 | // const double &bondforce = bondforces[i];
|
---|
347 | // const double &oldbondforce = oldbondforces[i];
|
---|
348 | // const double bondforcedifference = (bondforce - oldbondforce);
|
---|
349 | // Vector BondVector = (bondatom[0]->getPosition() - bondatom[1]->getPosition());
|
---|
350 | // BondVector.Normalize();
|
---|
351 | // double stepwidth = 0.;
|
---|
352 | // for (size_t n=0;n<2;++n) {
|
---|
353 | // const Vector oldPosition = bondatom[n]->getPositionAtStep(CurrentTimeStep-2 >= 0 ? CurrentTimeStep - 2 : 0);
|
---|
354 | // const Vector currentPosition = bondatom[n]->getPosition();
|
---|
355 | // stepwidth += fabs((currentPosition - oldPosition).ScalarProduct(BondVector))/bondforcedifference;
|
---|
356 | // }
|
---|
357 | // stepwidth = stepwidth/2;
|
---|
358 | // Vector PositionUpdate = stepwidth * BondVector;
|
---|
359 | // if (fabs(stepwidth) < 1e-10) {
|
---|
360 | // // dont' warn in first step, deltat usage normal
|
---|
361 | // if (currentStep != 1)
|
---|
362 | // ELOG(1, "INFO: Barzilai-Borwein stepwidth is zero, using deltat " << currentDeltat << " instead.");
|
---|
363 | // PositionUpdate = currentDeltat * BondVector;
|
---|
364 | // }
|
---|
365 | // LOG(3, "DEBUG: Update would be " << PositionUpdate);
|
---|
366 | //
|
---|
367 | // // remove the edge
|
---|
368 | //#ifndef NDEBUG
|
---|
369 | // const bool status =
|
---|
370 | //#endif
|
---|
371 | // BGcreator.removeEdge(bondatom[0]->getId(), bondatom[1]->getId());
|
---|
372 | // ASSERT( status, "ForceAnnealing() - edge to found bond is not present?");
|
---|
373 | //
|
---|
374 | // // gather nodes for either atom
|
---|
375 | // BoostGraphHelpers::Nodeset_t bondside_set[2];
|
---|
376 | // BreadthFirstSearchGatherer::distance_map_t distance_map[2];
|
---|
377 | // for (size_t n=0;n<2;++n) {
|
---|
378 | // bondside_set[n] = NodeGatherer(bondatom[n]->getId(), max_distance);
|
---|
379 | // distance_map[n] = NodeGatherer.getDistances();
|
---|
380 | // std::sort(bondside_set[n].begin(), bondside_set[n].end());
|
---|
381 | // }
|
---|
382 | //
|
---|
383 | // // re-add edge
|
---|
384 | // BGcreator.addEdge(bondatom[0]->getId(), bondatom[1]->getId());
|
---|
385 | //
|
---|
386 | // // add PositionUpdate for all nodes in the bondside_set
|
---|
387 | // for (size_t n=0;n<2;++n) {
|
---|
388 | // for (BoostGraphHelpers::Nodeset_t::const_iterator setiter = bondside_set[n].begin();
|
---|
389 | // setiter != bondside_set[n].end(); ++setiter) {
|
---|
390 | // const BreadthFirstSearchGatherer::distance_map_t::const_iterator diter
|
---|
391 | // = distance_map[n].find(*setiter);
|
---|
392 | // ASSERT( diter != distance_map[n].end(),
|
---|
393 | // "ForceAnnealing() - could not find distance to an atom.");
|
---|
394 | // const double factor = pow(damping_factor, diter->second);
|
---|
395 | // LOG(3, "DEBUG: Update for atom #" << *setiter << " will be "
|
---|
396 | // << factor << "*" << PositionUpdate);
|
---|
397 | // if (GatheredUpdates.count((*setiter))) {
|
---|
398 | // GatheredUpdates[(*setiter)] += factor*PositionUpdate;
|
---|
399 | // } else {
|
---|
400 | // GatheredUpdates.insert(
|
---|
401 | // std::make_pair(
|
---|
402 | // (*setiter),
|
---|
403 | // factor*PositionUpdate) );
|
---|
404 | // }
|
---|
405 | // }
|
---|
406 | // // invert for other atom
|
---|
407 | // PositionUpdate *= -1;
|
---|
408 | // }
|
---|
409 | // }
|
---|
410 | // delete[] bondforces;
|
---|
411 | // delete[] oldbondforces;
|
---|
412 |
|
---|
413 | for(typename AtomSetMixin<T>::iterator iter = AtomicForceManipulator<T>::atoms.begin();
|
---|
414 | iter != AtomicForceManipulator<T>::atoms.end(); ++iter) {
|
---|
415 | atom &walker = *(*iter);
|
---|
416 | // extract largest components for showing progress of annealing
|
---|
417 | const Vector currentGradient = walker.getAtomicForce();
|
---|
418 | for(size_t i=0;i<NDIM;++i)
|
---|
419 | maxComponents[i] = std::max(maxComponents[i], fabs(currentGradient[i]));
|
---|
420 |
|
---|
421 | // reset force vector for next step except on final one
|
---|
422 | if (currentStep != maxSteps)
|
---|
423 | walker.setAtomicForce(zeroVec);
|
---|
424 | }
|
---|
425 |
|
---|
426 | // apply the gathered updates
|
---|
427 | for (std::map<atomId_t, Vector>::const_iterator iter = GatheredUpdates.begin();
|
---|
428 | iter != GatheredUpdates.end(); ++iter) {
|
---|
429 | const atomId_t &atomid = iter->first;
|
---|
430 | const Vector &update = iter->second;
|
---|
431 | atom* const walker = World::getInstance().getAtom(AtomById(atomid));
|
---|
432 | ASSERT( walker != NULL,
|
---|
433 | "ForceAnnealing() - walker with id "+toString(atomid)+" has suddenly disappeared.");
|
---|
434 | LOG(3, "DEBUG: Applying update " << update << " to atom #" << atomid
|
---|
435 | << ", namely " << *walker);
|
---|
436 | walker->setPosition( walker->getPosition() + update );
|
---|
437 | }
|
---|
438 | }
|
---|
439 |
|
---|
440 | /** Reset function to unset static entities and artificial velocities.
|
---|
441 | *
|
---|
442 | */
|
---|
443 | void reset()
|
---|
444 | {
|
---|
445 | currentDeltat = 0.;
|
---|
446 | currentStep = 0;
|
---|
447 | }
|
---|
448 |
|
---|
449 | private:
|
---|
450 | //!> contains the current step in relation to maxsteps
|
---|
451 | static size_t currentStep;
|
---|
452 | //!> contains the maximum number of steps, determines initial and final step with currentStep
|
---|
453 | size_t maxSteps;
|
---|
454 | static double currentDeltat;
|
---|
455 | //!> minimum deltat for internal while loop (adaptive step width)
|
---|
456 | static double MinimumDeltat;
|
---|
457 | //!> contains the maximum bond graph distance up to which shifts of a single atom are spread
|
---|
458 | const int max_distance;
|
---|
459 | //!> the shifted is dampened by this factor with the power of the bond graph distance to the shift causing atom
|
---|
460 | const double damping_factor;
|
---|
461 | };
|
---|
462 |
|
---|
463 | template <class T>
|
---|
464 | double ForceAnnealing<T>::currentDeltat = 0.;
|
---|
465 | template <class T>
|
---|
466 | size_t ForceAnnealing<T>::currentStep = 0;
|
---|
467 | template <class T>
|
---|
468 | double ForceAnnealing<T>::MinimumDeltat = 1e-8;
|
---|
469 |
|
---|
470 | #endif /* FORCEANNEALING_HPP_ */
|
---|