source: src/Analysis/analysis_correlation.cpp@ fac58f

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since fac58f was 99db9b, checked in by Frederik Heber <heber@…>, 9 years ago

Replaced all World::getSelected...() to const version where possible.

  • also added const version of World::getSelectedAtoms().
  • Property mode set to 100644
File size: 29.1 KB
Line 
1/*
2 * Project: MoleCuilder
3 * Description: creates and alters molecular systems
4 * Copyright (C) 2010-2012 University of Bonn. All rights reserved.
5 * Copyright (C) 2013 Frederik Heber. All rights reserved.
6 *
7 *
8 * This file is part of MoleCuilder.
9 *
10 * MoleCuilder is free software: you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation, either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * MoleCuilder is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with MoleCuilder. If not, see <http://www.gnu.org/licenses/>.
22 */
23
24/*
25 * analysis.cpp
26 *
27 * Created on: Oct 13, 2009
28 * Author: heber
29 */
30
31// include config.h
32#ifdef HAVE_CONFIG_H
33#include <config.h>
34#endif
35
36#include "CodePatterns/MemDebug.hpp"
37
38#include <algorithm>
39#include <iostream>
40#include <iomanip>
41#include <limits>
42
43#include "Atom/atom.hpp"
44#include "Bond/bond.hpp"
45#include "Tesselation/BoundaryTriangleSet.hpp"
46#include "Box.hpp"
47#include "Element/element.hpp"
48#include "CodePatterns/Info.hpp"
49#include "CodePatterns/Log.hpp"
50#include "CodePatterns/Verbose.hpp"
51#include "Descriptors/AtomOfMoleculeSelectionDescriptor.hpp"
52#include "Descriptors/MoleculeFormulaDescriptor.hpp"
53#include "Descriptors/MoleculeOfAtomSelectionDescriptor.hpp"
54#include "Formula.hpp"
55#include "LinearAlgebra/Vector.hpp"
56#include "LinearAlgebra/RealSpaceMatrix.hpp"
57#include "LinkedCell/LinkedCell_View.hpp"
58#include "molecule.hpp"
59#include "Tesselation/tesselation.hpp"
60#include "Tesselation/tesselationhelpers.hpp"
61#include "Tesselation/triangleintersectionlist.hpp"
62#include "World.hpp"
63#include "WorldTime.hpp"
64
65#include "analysis_correlation.hpp"
66
67/** Calculates the dipole vector of a given atomSet.
68 *
69 * Note that we use the following procedure as rule of thumb:
70 * -# go through every bond of the atom
71 * -# calculate the difference of electronegativities \f$\Delta\mathrm{EN}\f$
72 * -# if \f$\Delta\mathrm{EN} > 0.5\f$, we align the bond vector in direction of the more negative element
73 * -# sum up all vectors
74 * -# finally, divide by the number of summed vectors
75 *
76 * @param atomsbegin begin iterator of atomSet
77 * @param atomsend end iterator of atomset
78 * @return dipole vector
79 */
80Vector getDipole(molecule::const_iterator atomsbegin, molecule::const_iterator atomsend)
81{
82 Vector DipoleVector;
83 size_t SumOfVectors = 0;
84 Box &domain = World::getInstance().getDomain();
85
86 // go through all atoms
87 for (molecule::const_iterator atomiter = atomsbegin;
88 atomiter != atomsend;
89 ++atomiter) {
90 // go through all bonds
91 const BondList& ListOfBonds = (*atomiter)->getListOfBonds();
92 ASSERT(ListOfBonds.begin() != ListOfBonds.end(),
93 "getDipole() - no bonds in molecule!");
94 for (BondList::const_iterator bonditer = ListOfBonds.begin();
95 bonditer != ListOfBonds.end();
96 ++bonditer) {
97 const atom * Otheratom = (*bonditer)->GetOtherAtom(*atomiter);
98 if (Otheratom->getId() > (*atomiter)->getId()) {
99 const double DeltaEN = (*atomiter)->getType()->getElectronegativity()
100 -Otheratom->getType()->getElectronegativity();
101 // get distance and correct for boundary conditions
102 Vector BondDipoleVector = domain.periodicDistanceVector(
103 (*atomiter)->getPosition(),
104 Otheratom->getPosition());
105 // DeltaEN is always positive, gives correct orientation of vector
106 BondDipoleVector.Normalize();
107 BondDipoleVector *= DeltaEN;
108 LOG(3,"INFO: Dipole vector from bond " << **bonditer << " is " << BondDipoleVector);
109 DipoleVector += BondDipoleVector;
110 SumOfVectors++;
111 }
112 }
113 }
114 LOG(3,"INFO: Sum over all bond dipole vectors is "
115 << DipoleVector << " with " << SumOfVectors << " in total.");
116 if (SumOfVectors != 0)
117 DipoleVector *= 1./(double)SumOfVectors;
118 LOG(2, "INFO: Resulting dipole vector is " << DipoleVector);
119
120 return DipoleVector;
121};
122
123/** Calculate minimum and maximum amount of trajectory steps by going through given atomic trajectories.
124 * \param vector of atoms whose trajectories to check for [min,max]
125 * \return range with [min, max]
126 */
127range<size_t> getMaximumTrajectoryBounds(const std::vector<const atom *> &atoms)
128{
129 // get highest trajectory size
130 LOG(0,"STATUS: Retrieving maximum amount of time steps ...");
131 if (atoms.size() == 0)
132 return range<size_t>(0,0);
133 size_t max_timesteps = std::numeric_limits<size_t>::min();
134 size_t min_timesteps = std::numeric_limits<size_t>::max();
135 BOOST_FOREACH(const atom *_atom, atoms) {
136 if (_atom->getTrajectorySize() > max_timesteps)
137 max_timesteps = _atom->getTrajectorySize();
138 if (_atom->getTrajectorySize() < min_timesteps)
139 min_timesteps = _atom->getTrajectorySize();
140 }
141 LOG(1,"INFO: Minimum number of time steps found is " << min_timesteps);
142 LOG(1,"INFO: Maximum number of time steps found is " << max_timesteps);
143
144 return range<size_t>(min_timesteps, max_timesteps);
145}
146
147/** Calculates the angular dipole zero orientation from current time step.
148 * \param molecules vector of molecules to calculate dipoles of
149 * \return map with orientation vector for each atomic id given in \a atoms.
150 */
151std::map<atomId_t, Vector> CalculateZeroAngularDipole(const std::vector<const molecule *> &molecules)
152{
153 // get zero orientation for each molecule.
154 LOG(0,"STATUS: Calculating dipoles for current time step ...");
155 std::map<atomId_t, Vector> ZeroVector;
156 BOOST_FOREACH(const molecule *_mol, molecules) {
157 const Vector Dipole = getDipole(_mol->begin(),_mol->end());
158 for(molecule::const_iterator iter = _mol->begin(); iter != _mol->end(); ++iter)
159 ZeroVector[(*iter)->getId()] = Dipole;
160 LOG(2,"INFO: Zero alignment for molecule " << _mol->getId() << " is " << Dipole);
161 }
162 LOG(1,"INFO: We calculated zero orientation for a total of " << molecules.size() << " molecule(s).");
163
164 return ZeroVector;
165}
166
167/** Calculates the dipole angular correlation for given molecule type.
168 * Calculate the change of the dipole orientation angle over time.
169 * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si))
170 * Angles are given in degrees.
171 * \param &atoms list of atoms of the molecules taking part (Note: molecules may
172 * change over time as bond structure is recalculated, hence we need the atoms)
173 * \param timestep time step to calculate angular correlation for (relative to
174 * \a ZeroVector)
175 * \param ZeroVector map with Zero orientation vector for each atom in \a atoms.
176 * \param DontResetTime don't reset time to old value (triggers re-creation of bond system)
177 * \return Map of doubles with values the pair of the two atoms.
178 */
179DipoleAngularCorrelationMap *DipoleAngularCorrelation(
180 const Formula &DipoleFormula,
181 const size_t timestep,
182 const std::map<atomId_t, Vector> &ZeroVector,
183 const enum ResetWorldTime DoTimeReset
184 )
185{
186 Info FunctionInfo(__func__);
187 DipoleAngularCorrelationMap *outmap = new DipoleAngularCorrelationMap;
188
189 unsigned int oldtime = 0;
190 if (DoTimeReset == DoResetTime) {
191 // store original time step
192 oldtime = WorldTime::getTime();
193 }
194
195 // set time step
196 LOG(0,"STATUS: Stepping onto to time step " << timestep << ".");
197 World::getInstance().setTime(timestep);
198
199 // get all molecules for this time step
200 World::getInstance().clearMoleculeSelection();
201 World::getInstance().selectAllMolecules(MoleculeByFormula(DipoleFormula));
202 std::vector<const molecule *> molecules =
203 const_cast<const World &>(World::getInstance()).getSelectedMolecules();
204 LOG(1,"INFO: There are " << molecules.size() << " molecules for time step " << timestep << ".");
205
206 // calculate dipoles for each
207 LOG(0,"STATUS: Calculating dipoles for time step " << timestep << " ...");
208 size_t i=0;
209 size_t Counter_rejections = 0;
210 BOOST_FOREACH(const molecule *_mol, molecules) {
211 const Vector Dipole = getDipole(_mol->begin(),_mol->end());
212 LOG(3,"INFO: Dipole vector at time step " << timestep << " for for molecule "
213 << _mol->getId() << " is " << Dipole);
214 // check that all atoms are valid (zeroVector known)
215 molecule::const_iterator iter = _mol->begin();
216 for(; iter != _mol->end(); ++iter) {
217 if (!ZeroVector.count((*iter)->getId()))
218 break;
219 }
220 if (iter != _mol->end()) {
221 ELOG(2, "Skipping molecule " << _mol->getName() << " as not all atoms have a valid zeroVector.");
222 ++Counter_rejections;
223 continue;
224 } else
225 iter = _mol->begin();
226 std::map<atomId_t, Vector>::const_iterator zeroValue = ZeroVector.find((*iter)->getId()); //due to iter is const
227 double angle = 0.;
228 LOG(2, "INFO: ZeroVector of first atom " << **iter << " is "
229 << zeroValue->second << ".");
230 LOG(4, "INFO: Squared norm of difference vector is "
231 << (zeroValue->second - Dipole).NormSquared() << ".");
232 if ((zeroValue->second - Dipole).NormSquared() > MYEPSILON)
233 angle = Dipole.Angle(zeroValue->second) * (180./M_PI);
234 else
235 LOG(2, "INFO: Both vectors (almost) coincide, numerically unstable, angle set to zero.");
236 // we print six digits, hence round up to six digit precision
237 const double precision = 1e-6;
238 angle = precision*floor(angle/precision);
239 LOG(1,"INFO: Resulting relative angle for molecule " << _mol->getName()
240 << " is " << angle << ".");
241 outmap->insert ( std::make_pair (angle, *iter ) );
242 ++i;
243 }
244 ASSERT(Counter_rejections <= molecules.size(),
245 "DipoleAngularCorrelation() - more rejections ("+toString(Counter_rejections)
246 +") than there are molecules ("+toString(molecules.size())+").");
247 LOG(1,"INFO: " << Counter_rejections << " molecules have been rejected in time step " << timestep << ".");
248
249 LOG(0,"STATUS: Done with calculating dipoles.");
250
251 if (DoTimeReset == DoResetTime) {
252 // re-set to original time step again
253 World::getInstance().setTime(oldtime);
254 }
255
256 // and return results
257 return outmap;
258};
259
260/** Calculates the dipole correlation for given molecule type.
261 * I.e. we calculate how the angle between any two given dipoles in the
262 * systems behaves. Sort of pair correlation but distance is replaced by
263 * the orientation distance, i.e. an angle.
264 * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si))
265 * Angles are given in degrees.
266 * \param *molecules vector of molecules
267 * \return Map of doubles with values the pair of the two atoms.
268 */
269DipoleCorrelationMap *DipoleCorrelation(
270 const std::vector<const molecule *> &molecules)
271{
272 Info FunctionInfo(__func__);
273 DipoleCorrelationMap *outmap = new DipoleCorrelationMap;
274// double distance = 0.;
275// Box &domain = World::getInstance().getDomain();
276//
277 if (molecules.empty()) {
278 ELOG(1, "No molecule given.");
279 return outmap;
280 }
281
282 for (std::vector<const molecule *>::const_iterator MolWalker = molecules.begin();
283 MolWalker != molecules.end(); ++MolWalker) {
284 LOG(2, "INFO: Current molecule is " << (*MolWalker)->getId() << ".");
285 const Vector Dipole = getDipole((*MolWalker)->begin(), (*MolWalker)->end());
286 std::vector<const molecule *>::const_iterator MolOtherWalker = MolWalker;
287 for (++MolOtherWalker; MolOtherWalker != molecules.end();
288 ++MolOtherWalker) {
289 LOG(2, "INFO: Current other molecule is " << (*MolOtherWalker)->getId() << ".");
290 const Vector OtherDipole = getDipole((*MolOtherWalker)->begin(), (*MolOtherWalker)->end());
291 const double angle = Dipole.Angle(OtherDipole) * (180./M_PI);
292 LOG(1, "Angle is " << angle << ".");
293 outmap->insert ( make_pair (angle, make_pair ((*MolWalker), (*MolOtherWalker)) ) );
294 }
295 }
296 return outmap;
297};
298
299/** Calculates the pair correlation between given atom sets.
300 *
301 * Note we correlate each of the \a &atomsfirst with each of the second set
302 * \a &atoms_second. However, we are aware of double counting. If an atom is
303 * in either set, the pair is counted only once.
304 *
305 * \param &atoms_first vector of atoms
306 * \param &atoms_second vector of atoms
307 * \param max_distance maximum distance for the correlation
308 * \return Map of doubles with values the pair of the two atoms.
309 */
310PairCorrelationMap *PairCorrelation(
311 const World::ConstAtomComposite &atoms_first,
312 const World::ConstAtomComposite &atoms_second,
313 const double max_distance)
314{
315 Info FunctionInfo(__func__);
316 PairCorrelationMap *outmap = new PairCorrelationMap;
317 //double distance = 0.;
318 Box &domain = World::getInstance().getDomain();
319
320 if (atoms_first.empty() || atoms_second.empty()) {
321 ELOG(1, "No atoms given.");
322 return outmap;
323 }
324
325 //!> typedef for an unsorted container, (output) compatible with STL algorithms
326 typedef std::vector<const TesselPoint *> LinkedVector;
327
328 // create intersection (to know when to check for double-counting)
329 LinkedVector intersected_atoms(atoms_second.size(), NULL);
330 LinkedVector::iterator intersected_atoms_end =
331 std::set_intersection(
332 atoms_first.begin(),atoms_first.end(),
333 atoms_second.begin(), atoms_second.end(),
334 intersected_atoms.begin());
335 const LinkedCell::LinkedList intersected_atoms_set(intersected_atoms.begin(), intersected_atoms_end);
336
337 // get linked cell view
338 LinkedCell::LinkedCell_View LC = World::getInstance().getLinkedCell(max_distance);
339
340 // convert second to _sorted_ set
341 LinkedCell::LinkedList atoms_second_set(atoms_second.begin(), atoms_second.end());
342 LOG(2, "INFO: first set has " << atoms_first.size()
343 << " and second set has " << atoms_second_set.size() << " atoms.");
344
345 // fill map
346 for (World::ConstAtomComposite::const_iterator iter = atoms_first.begin();
347 iter != atoms_first.end();
348 ++iter) {
349 const TesselPoint * const Walker = *iter;
350 LOG(3, "INFO: Current point is " << Walker->getName() << ".");
351 // obtain all possible neighbors (that is a sorted set)
352 LinkedCell::LinkedList ListOfNeighbors = LC.getPointsInsideSphere(
353 max_distance,
354 Walker->getPosition());
355 LOG(2, "INFO: There are " << ListOfNeighbors.size() << " neighbors.");
356
357 // create intersection with second set
358 // NOTE: STL algorithms do mostly not work on sorted container because reassignment
359 // of a value may also require changing its position.
360 LinkedVector intersected_set(atoms_second.size(), NULL);
361 LinkedVector::iterator intersected_end =
362 std::set_intersection(
363 ListOfNeighbors.begin(),ListOfNeighbors.end(),
364 atoms_second_set.begin(), atoms_second_set.end(),
365 intersected_set.begin());
366 // count remaining elements
367 LOG(2, "INFO: Intersection with second set has " << int(intersected_end - intersected_set.begin()) << " elements.");
368 // we have some possible candidates, go through each
369 for (LinkedVector::const_iterator neighboriter = intersected_set.begin();
370 neighboriter != intersected_end;
371 ++neighboriter) {
372 const TesselPoint * const OtherWalker = (*neighboriter);
373 LinkedCell::LinkedList::const_iterator equaliter = intersected_atoms_set.find(OtherWalker);
374 if ((equaliter != intersected_atoms_set.end()) && (OtherWalker <= Walker)) {
375 // present in both sets, assure that we are larger
376 continue;
377 }
378 LOG(3, "INFO: Current other point is " << *OtherWalker << ".");
379 const double distance = domain.periodicDistance(OtherWalker->getPosition(),Walker->getPosition());
380 LOG(3, "INFO: Resulting distance is " << distance << ".");
381 outmap->insert (
382 std::pair<double, std::pair <const TesselPoint *, const TesselPoint*> > (
383 distance,
384 std::make_pair (Walker, OtherWalker)
385 )
386 );
387 }
388 }
389 // and return
390 return outmap;
391};
392
393/** Calculates the distance (pair) correlation between a given element and a point.
394 * \param *molecules list of molecules structure
395 * \param &elements vector of elements to correlate with point
396 * \param *point vector to the correlation point
397 * \return Map of dobules with values as pairs of atom and the vector
398 */
399CorrelationToPointMap *CorrelationToPoint(
400 const std::vector<const molecule *> &molecules,
401 const std::vector<const element *> &elements,
402 const Vector *point )
403{
404 Info FunctionInfo(__func__);
405 CorrelationToPointMap *outmap = new CorrelationToPointMap;
406 double distance = 0.;
407 Box &domain = World::getInstance().getDomain();
408
409 if (molecules.empty()) {
410 LOG(1, "No molecule given.");
411 return outmap;
412 }
413
414 for (std::vector<const molecule *>::const_iterator MolWalker = molecules.begin();
415 MolWalker != molecules.end();
416 MolWalker++) {
417 LOG(2, "Current molecule is " << *MolWalker << ".");
418 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
419 LOG(3, "Current atom is " << **iter << ".");
420 for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
421 if ((*type == NULL) || ((*iter)->getType() == *type)) {
422 distance = domain.periodicDistance((*iter)->getPosition(),*point);
423 LOG(4, "Current distance is " << distance << ".");
424 outmap->insert (
425 std::pair<double, std::pair<const atom *, const Vector*> >(
426 distance,
427 std::pair<const atom *, const Vector*> (
428 (*iter),
429 point)
430 )
431 );
432 }
433 }
434 }
435
436 return outmap;
437};
438
439/** Calculates the distance (pair) correlation between a given element, all its periodic images and a point.
440 * \param *molecules list of molecules structure
441 * \param &elements vector of elements to correlate to point
442 * \param *point vector to the correlation point
443 * \param ranges[NDIM] interval boundaries for the periodic images to scan also
444 * \return Map of dobules with values as pairs of atom and the vector
445 */
446CorrelationToPointMap *PeriodicCorrelationToPoint(
447 const std::vector<const molecule *> &molecules,
448 const std::vector<const element *> &elements,
449 const Vector *point,
450 const int ranges[NDIM] )
451{
452 Info FunctionInfo(__func__);
453 CorrelationToPointMap *outmap = new CorrelationToPointMap;
454 double distance = 0.;
455 int n[NDIM];
456 Vector periodicX;
457 Vector checkX;
458
459 if (molecules.empty()) {
460 LOG(1, "No molecule given.");
461 return outmap;
462 }
463
464 for (std::vector<const molecule *>::const_iterator MolWalker = molecules.begin();
465 MolWalker != molecules.end();
466 MolWalker++) {
467 RealSpaceMatrix FullMatrix = World::getInstance().getDomain().getM();
468 RealSpaceMatrix FullInverseMatrix = World::getInstance().getDomain().getMinv();
469 LOG(2, "Current molecule is " << *MolWalker << ".");
470 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
471 LOG(3, "Current atom is " << **iter << ".");
472 for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
473 if ((*type == NULL) || ((*iter)->getType() == *type)) {
474 periodicX = FullInverseMatrix * ((*iter)->getPosition()); // x now in [0,1)^3
475 // go through every range in xyz and get distance
476 for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++)
477 for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++)
478 for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) {
479 checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX);
480 distance = checkX.distance(*point);
481 LOG(4, "Current distance is " << distance << ".");
482 outmap->insert (
483 std::pair<double,
484 std::pair<const atom *, const Vector*> >(
485 distance,
486 std::pair<const atom *, const Vector*> (
487 *iter,
488 point)
489 )
490 );
491 }
492 }
493 }
494 }
495
496 return outmap;
497};
498
499/** Calculates the distance (pair) correlation between a given element and a surface.
500 * \param *molecules list of molecules structure
501 * \param &elements vector of elements to correlate to surface
502 * \param *Surface pointer to Tesselation class surface
503 * \param *LC LinkedCell_deprecated structure to quickly find neighbouring atoms
504 * \return Map of doubles with values as pairs of atom and the BoundaryTriangleSet that's closest
505 */
506CorrelationToSurfaceMap *CorrelationToSurface(
507 const std::vector<const molecule *> &molecules,
508 const std::vector<const element *> &elements,
509 const Tesselation * const Surface,
510 const LinkedCell_deprecated *LC )
511{
512 Info FunctionInfo(__func__);
513 CorrelationToSurfaceMap *outmap = new CorrelationToSurfaceMap;
514 double distance = 0;
515 class BoundaryTriangleSet *triangle = NULL;
516 Vector centroid;
517
518 if ((Surface == NULL) || (LC == NULL) || (molecules.empty())) {
519 ELOG(1, "No Tesselation, no LinkedCell or no molecule given.");
520 return outmap;
521 }
522
523 for (std::vector<const molecule *>::const_iterator MolWalker = molecules.begin();
524 MolWalker != molecules.end();
525 MolWalker++) {
526 LOG(2, "Current molecule is " << (*MolWalker)->name << ".");
527 if ((*MolWalker)->empty())
528 LOG(2, "\t is empty.");
529 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
530 LOG(3, "\tCurrent atom is " << *(*iter) << ".");
531 for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
532 if ((*type == NULL) || ((*iter)->getType() == *type)) {
533 TriangleIntersectionList Intersections((*iter)->getPosition(),Surface,LC);
534 distance = Intersections.GetSmallestDistance();
535 triangle = Intersections.GetClosestTriangle();
536 outmap->insert (
537 std::pair<double,
538 std::pair<const atom *, BoundaryTriangleSet*> >(
539 distance,
540 std::pair<const atom *, BoundaryTriangleSet*> (
541 (*iter),
542 triangle)
543 )
544 );
545 }
546 }
547 }
548
549 return outmap;
550};
551
552/** Calculates the distance (pair) correlation between a given element, all its periodic images and and a surface.
553 * Note that we also put all periodic images found in the cells given by [ -ranges[i], ranges[i] ] and i=0,...,NDIM-1.
554 * I.e. We multiply the atom::node with the inverse of the domain matrix, i.e. transform it to \f$[0,0^3\f$, then add per
555 * axis an integer from [ -ranges[i], ranges[i] ] onto it and multiply with the domain matrix to bring it back into
556 * the real space. Then, we Tesselation::FindClosestTriangleToPoint() and DistanceToTrianglePlane().
557 * \param *molecules list of molecules structure
558 * \param &elements vector of elements to correlate to surface
559 * \param *Surface pointer to Tesselation class surface
560 * \param *LC LinkedCell_deprecated structure to quickly find neighbouring atoms
561 * \param ranges[NDIM] interval boundaries for the periodic images to scan also
562 * \return Map of doubles with values as pairs of atom and the BoundaryTriangleSet that's closest
563 */
564CorrelationToSurfaceMap *PeriodicCorrelationToSurface(
565 const std::vector<const molecule *> &molecules,
566 const std::vector<const element *> &elements,
567 const Tesselation * const Surface,
568 const LinkedCell_deprecated *LC,
569 const int ranges[NDIM] )
570{
571 Info FunctionInfo(__func__);
572 CorrelationToSurfaceMap *outmap = new CorrelationToSurfaceMap;
573 double distance = 0;
574 class BoundaryTriangleSet *triangle = NULL;
575 Vector centroid;
576 int n[NDIM];
577 Vector periodicX;
578 Vector checkX;
579
580 if ((Surface == NULL) || (LC == NULL) || (molecules.empty())) {
581 LOG(1, "No Tesselation, no LinkedCell or no molecule given.");
582 return outmap;
583 }
584
585 double ShortestDistance = 0.;
586 BoundaryTriangleSet *ShortestTriangle = NULL;
587 for (std::vector<const molecule *>::const_iterator MolWalker = molecules.begin();
588 MolWalker != molecules.end();
589 MolWalker++) {
590 RealSpaceMatrix FullMatrix = World::getInstance().getDomain().getM();
591 RealSpaceMatrix FullInverseMatrix = World::getInstance().getDomain().getMinv();
592 LOG(2, "Current molecule is " << *MolWalker << ".");
593 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
594 LOG(3, "Current atom is " << **iter << ".");
595 for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
596 if ((*type == NULL) || ((*iter)->getType() == *type)) {
597 periodicX = FullInverseMatrix * ((*iter)->getPosition()); // x now in [0,1)^3
598 // go through every range in xyz and get distance
599 ShortestDistance = -1.;
600 for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++)
601 for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++)
602 for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) {
603 checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX);
604 TriangleIntersectionList Intersections(checkX,Surface,LC);
605 distance = Intersections.GetSmallestDistance();
606 triangle = Intersections.GetClosestTriangle();
607 if ((ShortestDistance == -1.) || (distance < ShortestDistance)) {
608 ShortestDistance = distance;
609 ShortestTriangle = triangle;
610 }
611 }
612 // insert
613 outmap->insert (
614 std::pair<double,
615 std::pair<const atom *, BoundaryTriangleSet*> >(
616 ShortestDistance,
617 std::pair<const atom *, BoundaryTriangleSet*> (
618 *iter,
619 ShortestTriangle)
620 )
621 );
622 //LOG(1, "INFO: Inserting " << Walker << " with distance " << ShortestDistance << " to " << *ShortestTriangle << ".");
623 }
624 }
625 }
626
627 return outmap;
628};
629
630/** Returns the index of the bin for a given value.
631 * \param value value whose bin to look for
632 * \param BinWidth width of bin
633 * \param BinStart first bin
634 */
635int GetBin ( const double value, const double BinWidth, const double BinStart )
636{
637 //Info FunctionInfo(__func__);
638 int bin =(int) (floor((value - BinStart)/BinWidth));
639 return (bin);
640};
641
642
643/** Adds header part that is unique to BinPairMap.
644 *
645 * @param file stream to print to
646 */
647void OutputCorrelation_Header( ofstream * const file )
648{
649 *file << "\tCount";
650};
651
652/** Prints values stored in BinPairMap iterator.
653 *
654 * @param file stream to print to
655 * @param runner iterator pointing at values to print
656 */
657void OutputCorrelation_Value( ofstream * const file, BinPairMap::const_iterator &runner )
658{
659 *file << runner->second;
660};
661
662
663/** Adds header part that is unique to DipoleAngularCorrelationMap.
664 *
665 * @param file stream to print to
666 */
667void OutputDipoleAngularCorrelation_Header( ofstream * const file )
668{
669 *file << "\tFirstAtomOfMolecule";
670};
671
672/** Prints values stored in DipoleCorrelationMap iterator.
673 *
674 * @param file stream to print to
675 * @param runner iterator pointing at values to print
676 */
677void OutputDipoleAngularCorrelation_Value( ofstream * const file, DipoleAngularCorrelationMap::const_iterator &runner )
678{
679 *file << *(runner->second);
680};
681
682
683/** Adds header part that is unique to DipoleAngularCorrelationMap.
684 *
685 * @param file stream to print to
686 */
687void OutputDipoleCorrelation_Header( ofstream * const file )
688{
689 *file << "\tMolecule";
690};
691
692/** Prints values stored in DipoleCorrelationMap iterator.
693 *
694 * @param file stream to print to
695 * @param runner iterator pointing at values to print
696 */
697void OutputDipoleCorrelation_Value( ofstream * const file, DipoleCorrelationMap::const_iterator &runner )
698{
699 *file << runner->second.first->getId() << "\t" << runner->second.second->getId();
700};
701
702
703/** Adds header part that is unique to PairCorrelationMap.
704 *
705 * @param file stream to print to
706 */
707void OutputPairCorrelation_Header( ofstream * const file )
708{
709 *file << "\tAtom1\tAtom2";
710};
711
712/** Prints values stored in PairCorrelationMap iterator.
713 *
714 * @param file stream to print to
715 * @param runner iterator pointing at values to print
716 */
717void OutputPairCorrelation_Value( ofstream * const file, PairCorrelationMap::const_iterator &runner )
718{
719 *file << *(runner->second.first) << "\t" << *(runner->second.second);
720};
721
722
723/** Adds header part that is unique to CorrelationToPointMap.
724 *
725 * @param file stream to print to
726 */
727void OutputCorrelationToPoint_Header( ofstream * const file )
728{
729 *file << "\tAtom::x[i]-point.x[i]";
730};
731
732/** Prints values stored in CorrelationToPointMap iterator.
733 *
734 * @param file stream to print to
735 * @param runner iterator pointing at values to print
736 */
737void OutputCorrelationToPoint_Value( ofstream * const file, CorrelationToPointMap::const_iterator &runner )
738{
739 for (int i=0;i<NDIM;i++)
740 *file << "\t" << setprecision(8) << (runner->second.first->at(i) - runner->second.second->at(i));
741};
742
743
744/** Adds header part that is unique to CorrelationToSurfaceMap.
745 *
746 * @param file stream to print to
747 */
748void OutputCorrelationToSurface_Header( ofstream * const file )
749{
750 *file << "\tTriangle";
751};
752
753/** Prints values stored in CorrelationToSurfaceMap iterator.
754 *
755 * @param file stream to print to
756 * @param runner iterator pointing at values to print
757 */
758void OutputCorrelationToSurface_Value( ofstream * const file, CorrelationToSurfaceMap::const_iterator &runner )
759{
760 *file << *(runner->second.first) << "\t" << *(runner->second.second);
761};
Note: See TracBrowser for help on using the repository browser.