1 | /** \file run.c
|
---|
2 | * Initialization of levels and calculation super-functions.
|
---|
3 | *
|
---|
4 | * Most important functions herein are CalculateForce() and CalculateMD(), which calls various
|
---|
5 | * functions in order to perfom the Molecular Dynamics simulation. MinimiseOccupied() and MinimiseUnOccupied()
|
---|
6 | * call various functions to perform the actual minimisation for the occupied and unoccupied wave functions.
|
---|
7 | * CalculateMinimumStop() evaluates the stop condition for desired precision or step count (or external signals).
|
---|
8 | *
|
---|
9 | * Minor functions are ChangeToLevUp() (which takes the calculation to the next finer level),
|
---|
10 | * UpdateActualPsiNo() (next Psi is minimized and an additional orthonormalization takes place) and UpdateToNewWaves()
|
---|
11 | * (which reinitializes density calculations after the wave functions have changed due to the ionic motion).
|
---|
12 | * OccupyByFermi() re-occupies orbitals according to Fermi distribution if calculated with additional orbitals.
|
---|
13 | * InitRun() and InitRunLevel() prepare the RunStruct with starting values. UpdateIon_PRCG() implements a CG
|
---|
14 | * algorithm to minimize the ionic forces and thus optimize the structure.
|
---|
15 | *
|
---|
16 | *
|
---|
17 | Project: ParallelCarParrinello
|
---|
18 | \author Jan Hamaekers
|
---|
19 | \date 2000
|
---|
20 |
|
---|
21 | File: run.c
|
---|
22 | $Id: run.c,v 1.101.2.2 2007-04-21 13:01:13 foo Exp $
|
---|
23 | */
|
---|
24 |
|
---|
25 | #include <signal.h>
|
---|
26 | #include <stdlib.h>
|
---|
27 | #include <stdio.h>
|
---|
28 | #include <string.h>
|
---|
29 | #include <math.h>
|
---|
30 | #include <gsl/gsl_multimin.h>
|
---|
31 | #include <gsl/gsl_vector.h>
|
---|
32 | #include <gsl/gsl_errno.h>
|
---|
33 | #include <gsl/gsl_math.h>
|
---|
34 | #include <gsl/gsl_min.h>
|
---|
35 | #include "mpi.h"
|
---|
36 | #include "data.h"
|
---|
37 | #include "errors.h"
|
---|
38 | #include "helpers.h"
|
---|
39 | #include "init.h"
|
---|
40 | #include "opt.h"
|
---|
41 | #include "myfft.h"
|
---|
42 | #include "gramsch.h"
|
---|
43 | #include "output.h"
|
---|
44 | #include "energy.h"
|
---|
45 | #include "density.h"
|
---|
46 | #include "ions.h"
|
---|
47 | #include "run.h"
|
---|
48 | #include "riemann.h"
|
---|
49 | #include "mymath.h"
|
---|
50 | #include "pcp.h"
|
---|
51 | #include "perturbed.h"
|
---|
52 | #include "wannier.h"
|
---|
53 |
|
---|
54 |
|
---|
55 | /** Initialization of the (initial) zero and simulation levels in RunStruct structure.
|
---|
56 | * RunStruct::InitLevS is set onto the STANDARTLEVEL in Lattice::Lev[], RunStruct::InitLev0 on
|
---|
57 | * level 0, RunStruct::LevS onto Lattice::MaxLevel-1 (maximum level) and RunStruct::Lev0 onto
|
---|
58 | * Lattice::MaxLevel-2 (one below).
|
---|
59 | * In case of RiemannTensor use an additional Riemann level is intertwined.
|
---|
60 | * \param *P Problem at hand
|
---|
61 | */
|
---|
62 | void InitRunLevel(struct Problem *P)
|
---|
63 | {
|
---|
64 | struct Lattice *Lat = &P->Lat;
|
---|
65 | struct RunStruct *R = &P->R;
|
---|
66 | struct RiemannTensor *RT = &Lat->RT;
|
---|
67 | int d,i;
|
---|
68 |
|
---|
69 | switch (Lat->RT.Use) {
|
---|
70 | case UseNotRT:
|
---|
71 | R->InitLevSNo = STANDARTLEVEL;
|
---|
72 | R->InitLev0No = 0;
|
---|
73 | R->InitLevS = &P->Lat.Lev[R->InitLevSNo];
|
---|
74 | R->InitLev0 = &P->Lat.Lev[R->InitLev0No];
|
---|
75 | R->LevSNo = Lat->MaxLevel-1;
|
---|
76 | R->Lev0No = Lat->MaxLevel-2;
|
---|
77 | R->LevS = &P->Lat.Lev[R->LevSNo];
|
---|
78 | R->Lev0 = &P->Lat.Lev[R->Lev0No];
|
---|
79 | break;
|
---|
80 | case UseRT:
|
---|
81 | R->InitLevSNo = STANDARTLEVEL;
|
---|
82 | R->InitLev0No = 0;
|
---|
83 | R->InitLevS = &P->Lat.Lev[R->InitLevSNo];
|
---|
84 | R->InitLev0 = &P->Lat.Lev[R->InitLev0No];
|
---|
85 |
|
---|
86 | /* R->LevSNo = Lat->MaxLevel-1;
|
---|
87 | R->Lev0No = Lat->MaxLevel-2;*/
|
---|
88 | R->LevSNo = Lat->MaxLevel-2;
|
---|
89 | R->Lev0No = Lat->MaxLevel-3;
|
---|
90 |
|
---|
91 | R->LevRNo = P->Lat.RT.RiemannLevel;
|
---|
92 | R->LevRSNo = STANDARTLEVEL;
|
---|
93 | R->LevR0No = 0;
|
---|
94 | R->LevS = &P->Lat.Lev[R->LevSNo];
|
---|
95 | R->Lev0 = &P->Lat.Lev[R->Lev0No];
|
---|
96 | R->LevR = &P->Lat.Lev[R->LevRNo];
|
---|
97 | R->LevRS = &P->Lat.Lev[R->LevRSNo];
|
---|
98 | R->LevR0 = &P->Lat.Lev[R->LevR0No];
|
---|
99 | for (d=0; d<NDIM; d++) {
|
---|
100 | RT->NUpLevRS[d] = 1;
|
---|
101 | for (i=R->LevRNo-1; i >= R->LevRSNo; i--)
|
---|
102 | RT->NUpLevRS[d] *= Lat->LevelSizes[i];
|
---|
103 | RT->NUpLevR0[d] = 1;
|
---|
104 | for (i=R->LevRNo-1; i >= R->LevR0No; i--)
|
---|
105 | RT->NUpLevR0[d] *= Lat->LevelSizes[i];
|
---|
106 | }
|
---|
107 | break;
|
---|
108 | }
|
---|
109 | }
|
---|
110 |
|
---|
111 |
|
---|
112 | /** Initialization of RunStruct structure.
|
---|
113 | * Most of the actual entries in the RunStruct are set to their starter no-nonsense
|
---|
114 | * values (init if LatticeLevel is not STANDARTLEVEL otherwise normal max): FactorDensity,
|
---|
115 | * all Steps, XCEnergyFactor and HGcFactor, current and archived energie values are zeroed.
|
---|
116 | * \param *P problem at hand
|
---|
117 | */
|
---|
118 | void InitRun(struct Problem *P)
|
---|
119 | {
|
---|
120 | struct Lattice *Lat = &P->Lat;
|
---|
121 | struct RunStruct *R = &P->R;
|
---|
122 | struct Psis *Psi = &Lat->Psi;
|
---|
123 | int i,j;
|
---|
124 |
|
---|
125 | #ifndef SHORTSPEED
|
---|
126 | R->MaxMinStepFactor = Psi->AllMaxLocalNo;
|
---|
127 | #else
|
---|
128 | R->MaxMinStepFactor = SHORTSPEED;
|
---|
129 | #endif
|
---|
130 | if (R->LevSNo == STANDARTLEVEL) {
|
---|
131 | R->ActualMaxMinStep = R->MaxMinStep*R->MaxPsiStep*R->MaxMinStepFactor;
|
---|
132 | R->ActualRelEpsTotalEnergy = R->RelEpsTotalEnergy;
|
---|
133 | R->ActualRelEpsKineticEnergy = R->RelEpsKineticEnergy;
|
---|
134 | R->ActualMaxMinStopStep = R->MaxMinStopStep;
|
---|
135 | R->ActualMaxMinGapStopStep = R->MaxMinGapStopStep;
|
---|
136 | } else {
|
---|
137 | R->ActualMaxMinStep = R->MaxInitMinStep*R->MaxPsiStep*R->MaxMinStepFactor;
|
---|
138 | R->ActualRelEpsTotalEnergy = R->InitRelEpsTotalEnergy;
|
---|
139 | R->ActualRelEpsKineticEnergy = R->InitRelEpsKineticEnergy;
|
---|
140 | R->ActualMaxMinStopStep = R->InitMaxMinStopStep;
|
---|
141 | R->ActualMaxMinGapStopStep = R->InitMaxMinGapStopStep;
|
---|
142 | }
|
---|
143 |
|
---|
144 | R->FactorDensityR = 1./Lat->Volume;
|
---|
145 | R->FactorDensityC = Lat->Volume;
|
---|
146 |
|
---|
147 | R->OldActualLocalPsiNo = R->ActualLocalPsiNo = 0;
|
---|
148 | R->UseOldPsi = 1;
|
---|
149 | R->MinStep = 0;
|
---|
150 | R->PsiStep = 0;
|
---|
151 | R->AlphaStep = 0;
|
---|
152 | R->DoCalcCGGauss = 0;
|
---|
153 | R->CurrentMin = Occupied;
|
---|
154 |
|
---|
155 | R->MinStopStep = 0;
|
---|
156 |
|
---|
157 | R->ScanPotential = 0; // in order to deactivate, simply set this to 0
|
---|
158 | R->ScanAtStep = 6; // must not be set to same as ScanPotential (then gradient is never calculated)
|
---|
159 | R->ScanDelta = 0.01; // step size on advance
|
---|
160 | R->ScanFlag = 0; // flag telling that we are scanning
|
---|
161 |
|
---|
162 | //R->DoBrent = 0; // InitRun() occurs after ReadParameters(), thus this deactivates DoBrent line search
|
---|
163 |
|
---|
164 | /* R->MaxOuterStep = 1;
|
---|
165 | R->MeanForceEps = 0.0;*/
|
---|
166 |
|
---|
167 | R->NewRStep = 1;
|
---|
168 | /* Factor */
|
---|
169 | R->XCEnergyFactor = 1.0/R->FactorDensityR;
|
---|
170 | R->HGcFactor = 1.0/Lat->Volume;
|
---|
171 |
|
---|
172 | /* Sollte auch geaendert werden */
|
---|
173 | /*Grad->GradientArray[GraSchGradient] = LevS->LPsi->LocalPsi[Psi->LocalNo];*/
|
---|
174 |
|
---|
175 | for (j=Occupied;j<Extra;j++)
|
---|
176 | for (i=0; i < RUNMAXOLD; i++) {
|
---|
177 | R->TE[j][i] = 0;
|
---|
178 | R->KE[j][i] = 0;
|
---|
179 | }
|
---|
180 |
|
---|
181 | R->MinimisationName = (char **) Malloc((perturbations+3)*(sizeof(char *)), "InitRun: *MinimisationName");
|
---|
182 | for (j=Occupied;j<=Extra;j++)
|
---|
183 | R->MinimisationName[j] = (char *) MallocString(6*(sizeof(char)), "InitRun: MinimisationName[]");
|
---|
184 | strncpy(R->MinimisationName[0],"Occ",6);
|
---|
185 | strncpy(R->MinimisationName[1],"UnOcc",6);
|
---|
186 | strncpy(R->MinimisationName[2],"P0",6);
|
---|
187 | strncpy(R->MinimisationName[3],"P1",6);
|
---|
188 | strncpy(R->MinimisationName[4],"P2",6);
|
---|
189 | strncpy(R->MinimisationName[5],"RxP0",6);
|
---|
190 | strncpy(R->MinimisationName[6],"RxP1",6);
|
---|
191 | strncpy(R->MinimisationName[7],"RxP2",6);
|
---|
192 | strncpy(R->MinimisationName[8],"Extra",6);
|
---|
193 | }
|
---|
194 |
|
---|
195 | /** Re-occupy orbitals according to Fermi (bottom-up energy-wise).
|
---|
196 | * All OnePsiElementAddData#PsiFactor's are set to zero. \a electrons is set to Psi#Use-dependent
|
---|
197 | * Psis#GlobalNo.
|
---|
198 | * Then we go through OnePsiElementAddData#Lambda, find biggest, put one or two electrons into
|
---|
199 | * its PsiFactor, withdraw from \a electrons. Go on as long as there are \a electrons left.
|
---|
200 | * \param *P Problem at hand
|
---|
201 | */
|
---|
202 | void OccupyByFermi(struct Problem *P) {
|
---|
203 | struct Lattice *Lat = &P->Lat;
|
---|
204 | struct Psis *Psi = &Lat->Psi;
|
---|
205 | int i, index, electrons = 0;
|
---|
206 | double lambda, electronsperorbit;
|
---|
207 |
|
---|
208 | for (i=0; i< Psi->LocalNo; i++) {// set all PsiFactors to zero
|
---|
209 | Psi->LocalPsiStatus[i].PsiFactor = 0.0;
|
---|
210 | Psi->LocalPsiStatus[i].PsiType = UnOccupied;
|
---|
211 | //Psi->LocalPsiStatus[i].PsiGramSchStatus = (R->DoSeparated) ? NotUsedToOrtho : NotOrthogonal;
|
---|
212 | }
|
---|
213 |
|
---|
214 | electronsperorbit = (Psi->Use == UseSpinUpDown) ? 1 : 2;
|
---|
215 | switch (Psi->PsiST) { // how many electrons may we re-distribute
|
---|
216 | case SpinDouble:
|
---|
217 | electrons = Psi->GlobalNo[PsiMaxNoDouble];
|
---|
218 | break;
|
---|
219 | case SpinUp:
|
---|
220 | electrons = Psi->GlobalNo[PsiMaxNoUp];
|
---|
221 | break;
|
---|
222 | case SpinDown:
|
---|
223 | electrons = Psi->GlobalNo[PsiMaxNoDown];
|
---|
224 | break;
|
---|
225 | }
|
---|
226 | while (electrons > 0) {
|
---|
227 | lambda = 0.0;
|
---|
228 | index = 0;
|
---|
229 | for (i=0; i< Psi->LocalNo; i++) // seek biggest unoccupied one
|
---|
230 | if ((lambda < Psi->AddData[i].Lambda) && (Psi->LocalPsiStatus[i].PsiFactor == 0.0)) {
|
---|
231 | index = i;
|
---|
232 | lambda = Psi->AddData[i].Lambda;
|
---|
233 | }
|
---|
234 | Psi->LocalPsiStatus[index].PsiFactor = electronsperorbit; // occupy state
|
---|
235 | Psi->LocalPsiStatus[index].PsiType = Occupied;
|
---|
236 | electrons--; // one electron less
|
---|
237 | }
|
---|
238 | for (i=0; i< Psi->LocalNo; i++) // set all PsiFactors to zero
|
---|
239 | if (Psi->LocalPsiStatus[i].PsiType == UnOccupied) Psi->LocalPsiStatus[i].PsiFactor = 1.0;
|
---|
240 |
|
---|
241 | SpeedMeasure(P, DensityTime, StartTimeDo);
|
---|
242 | UpdateDensityCalculation(P);
|
---|
243 | SpeedMeasure(P, DensityTime, StopTimeDo);
|
---|
244 | InitPsiEnergyCalculation(P,Occupied); // goes through all orbitals calculating kinetic and non-local
|
---|
245 | CalculateDensityEnergy(P, 0);
|
---|
246 | EnergyAllReduce(P);
|
---|
247 | // SetCurrentMinState(P,UnOccupied);
|
---|
248 | // InitPsiEnergyCalculation(P,UnOccupied); /* STANDARTLEVEL */
|
---|
249 | // CalculateGapEnergy(P); /* STANDARTLEVEL */
|
---|
250 | // EnergyAllReduce(P);
|
---|
251 | // SetCurrentMinState(P,Occupied);
|
---|
252 | }
|
---|
253 |
|
---|
254 | /** Use next local Psi: Update RunStruct::ActualLocalPsiNo.
|
---|
255 | * Increases OnePsiElementAddData::Step, RunStruct::MinStep and RunStruct::PsiStep.
|
---|
256 | * RunStruct::OldActualLocalPsiNo is set to current one and this distributed
|
---|
257 | * (UpdateGramSchOldActualPsiNo()) among process.
|
---|
258 | * Afterwards RunStruct::ActualLocalPsiNo is increased (modulo Psis::LocalNo of
|
---|
259 | * this process) and again distributed (UpdateGramSchActualPsiNo()).
|
---|
260 | * Due to change in the GramSchmidt-Status, GramSch() is called for Orthonormalization.
|
---|
261 | * \param *P Problem at hand#
|
---|
262 | * \param IncType skip types PsiTypeTag#UnOccupied or PsiTypeTag#Occupied we only want next(thus we can handily advance only through either type)
|
---|
263 | */
|
---|
264 | void UpdateActualPsiNo(struct Problem *P, enum PsiTypeTag IncType)
|
---|
265 | {
|
---|
266 | struct RunStruct *R = &P->R;
|
---|
267 | if (R->CurrentMin != IncType) {
|
---|
268 | SetCurrentMinState(P,IncType);
|
---|
269 | R->PsiStep = R->MaxPsiStep; // force step to next Psi
|
---|
270 | }
|
---|
271 | P->Lat.Psi.AddData[R->ActualLocalPsiNo].Step++;
|
---|
272 | R->MinStep++;
|
---|
273 | R->PsiStep++;
|
---|
274 | if (R->OldActualLocalPsiNo != R->ActualLocalPsiNo) {
|
---|
275 | R->OldActualLocalPsiNo = R->ActualLocalPsiNo;
|
---|
276 | UpdateGramSchOldActualPsiNo(P, &P->Lat.Psi);
|
---|
277 | }
|
---|
278 | if (R->PsiStep >= R->MaxPsiStep) {
|
---|
279 | R->PsiStep=0;
|
---|
280 | do {
|
---|
281 | R->ActualLocalPsiNo++;
|
---|
282 | R->ActualLocalPsiNo %= P->Lat.Psi.LocalNo;
|
---|
283 | } while (P->Lat.Psi.AllPsiStatus[R->ActualLocalPsiNo].PsiType != IncType);
|
---|
284 | UpdateGramSchActualPsiNo(P, &P->Lat.Psi);
|
---|
285 | //fprintf(stderr,"(%i) ActualLocalNo: %d\n", P->Par.me, R->ActualLocalPsiNo);
|
---|
286 | }
|
---|
287 | if ((R->UseAddGramSch == 1 && (R->OldActualLocalPsiNo != R->ActualLocalPsiNo || P->Lat.Psi.NoOfPsis == 1)) || R->UseAddGramSch == 2) {
|
---|
288 | if (P->Lat.Psi.LocalPsiStatus[R->OldActualLocalPsiNo].PsiGramSchStatus != NotUsedToOrtho) // don't reset by accident last psi of former minimisation run
|
---|
289 | SetGramSchOldActualPsi(P, &P->Lat.Psi, NotOrthogonal);
|
---|
290 | SpeedMeasure(P, GramSchTime, StartTimeDo);
|
---|
291 | if (R->CurrentMin <= UnOccupied)
|
---|
292 | GramSch(P, R->LevS, &P->Lat.Psi, Orthonormalize);
|
---|
293 | else
|
---|
294 | GramSch(P, R->LevS, &P->Lat.Psi, Orthogonalize); //Orthogonalize
|
---|
295 | SpeedMeasure(P, GramSchTime, StopTimeDo);
|
---|
296 | }
|
---|
297 | }
|
---|
298 |
|
---|
299 | /** Resets all OnePsiElement#DoBrent.\
|
---|
300 | * \param *P Problem at hand
|
---|
301 | * \param *Psi pointer to wave functions
|
---|
302 | */
|
---|
303 | void ResetBrent(struct Problem *P, struct Psis *Psi) {
|
---|
304 | int i;
|
---|
305 | for (i=0; i< Psi->LocalNo; i++) {// set all PsiFactors to zero
|
---|
306 | //fprintf(stderr,"(%i) DoBrent[%i] = %i\n", P->Par.me, i, Psi->LocalPsiStatus[i].DoBrent);
|
---|
307 | if (Psi->LocalPsiStatus[i].PsiType == Occupied) Psi->LocalPsiStatus[i].DoBrent = 4;
|
---|
308 | }
|
---|
309 | }
|
---|
310 |
|
---|
311 | /** Sets current minimisation state.
|
---|
312 | * Stores given \a state in RunStruct#CurrentMin and sets pointer Lattice#E accordingly.
|
---|
313 | * \param *P Problem at hand
|
---|
314 | * \param state given PsiTypeTag state
|
---|
315 | */
|
---|
316 | void SetCurrentMinState(struct Problem *P, enum PsiTypeTag state) {
|
---|
317 | P->R.CurrentMin = state;
|
---|
318 | P->R.TotalEnergy = &(P->R.TE[state][0]);
|
---|
319 | P->R.KineticEnergy = &(P->R.KE[state][0]);
|
---|
320 | P->R.ActualRelTotalEnergy = &(P->R.ActualRelTE[state][0]);
|
---|
321 | P->R.ActualRelKineticEnergy = &(P->R.ActualRelKE[state][0]);
|
---|
322 | P->Lat.E = &(P->Lat.Energy[state]);
|
---|
323 | }
|
---|
324 | /*{
|
---|
325 | struct RunStruct *R = &P->R;
|
---|
326 | struct Lattice *Lat = &P->Lat;
|
---|
327 | struct Psis *Psi = &Lat->Psi;
|
---|
328 | P->Lat.Psi.AddData[R->ActualLocalPsiNo].Step++;
|
---|
329 | R->MinStep++;
|
---|
330 | R->PsiStep++;
|
---|
331 | if (R->OldActualLocalPsiNo != R->ActualLocalPsiNo) { // remember old actual local number
|
---|
332 | R->OldActualLocalPsiNo = R->ActualLocalPsiNo;
|
---|
333 | UpdateGramSchOldActualPsiNo(P, &P->Lat.Psi);
|
---|
334 | }
|
---|
335 | if (R->PsiStep >= R->MaxPsiStep) { // done enough minimisation steps for this orbital?
|
---|
336 | R->PsiStep=0;
|
---|
337 | do { // step on as long as we are still on a SkipType orbital
|
---|
338 | R->ActualLocalPsiNo++;
|
---|
339 | R->ActualLocalPsiNo %= P->Lat.Psi.LocalNo;
|
---|
340 | } while ((P->Lat.Psi.LocalPsiStatus[R->ActualLocalPsiNo].PsiType == SkipType));
|
---|
341 | UpdateGramSchActualPsiNo(P, &P->Lat.Psi);
|
---|
342 | if (R->UseAddGramSch >= 1) {
|
---|
343 | SetGramSchOldActualPsi(P,Psi,NotOrthogonal);
|
---|
344 | // setze von OldActual bis bla auf nicht orthogonal
|
---|
345 | GramSch(P, R->LevS, &P->Lat.Psi, Orthonormalize);
|
---|
346 | }
|
---|
347 | } else if (R->UseAddGramSch == 2) {
|
---|
348 | SetGramSchOldActualPsi(P, &P->Lat.Psi, NotOrthogonal);
|
---|
349 | //if (SkipType == UnOccupied)
|
---|
350 | //ResetGramSch(P,Psi);
|
---|
351 | //fprintf(stderr,"UpdateActualPsiNo: GramSch() for %i\n",R->OldActualLocalPsiNo);
|
---|
352 | GramSch(P, R->LevS, &P->Lat.Psi, Orthonormalize);
|
---|
353 | }
|
---|
354 | }*/
|
---|
355 |
|
---|
356 | /** Upgrades the calculation to the next finer level.
|
---|
357 | * If we are below the initial level,
|
---|
358 | * ChangePsiAndDensToLevUp() prepares density and Psi coefficients.
|
---|
359 | * Then the level change is made as RunStruct::LevSNo and RunStruct::Lev0No are decreased.
|
---|
360 | * The RunStruct::OldActualLocalPsi is set to current one and both are distributed
|
---|
361 | * (UpdateGramSchActualPsiNo(), UpdateGramSchOldActualPsiNo()).
|
---|
362 | * The PseudoPot'entials adopt the level up by calling ChangePseudoToLevUp().
|
---|
363 | * Now we are prepared to reset Energy::PsiEnergy and local and total density energy and
|
---|
364 | * recalculate them: InitPsiEnergyCalculation(), CalculateDensityEnergy() and CalculateIonsEnergy().
|
---|
365 | * Results are gathered EnergyAllReduce() and the output made EnergyOutput().
|
---|
366 | * Finally, the stop condition are reset for the new level (depending if it's the STANDARTLEVEL or
|
---|
367 | * not).
|
---|
368 | * \param *P Problem at hand
|
---|
369 | * \param *Stop is set to zero if we are below or equal to init level (see CalculateForce())
|
---|
370 | * \sa UpdateToNewWaves() very similar in the procedure, only the update of the Psis and density
|
---|
371 | * (ChangePsiAndDensToLevUp()) is already made there.
|
---|
372 | * \bug Missing TotalEnergy shifting for other PsiTypeTag's!
|
---|
373 | */
|
---|
374 | static void ChangeToLevUp(struct Problem *P, int *Stop)
|
---|
375 | {
|
---|
376 | struct RunStruct *R = &P->R;
|
---|
377 | struct Lattice *Lat = &P->Lat;
|
---|
378 | struct Psis *Psi = &Lat->Psi;
|
---|
379 | struct Energy *E = Lat->E;
|
---|
380 | struct RiemannTensor *RT = &Lat->RT;
|
---|
381 | int i;
|
---|
382 | if (R->LevSNo <= R->InitLevSNo) {
|
---|
383 | fprintf(stderr, "(%i) ChangeLevUp: LevSNo(%i) <= InitLevSNo(%i)\n", P->Par.me, R->LevSNo, R->InitLevSNo);
|
---|
384 | *Stop = 1;
|
---|
385 | return;
|
---|
386 | }
|
---|
387 | if (P->Call.out[LeaderOut] && (P->Par.me == 0))
|
---|
388 | fprintf(stderr, "(0) ChangeLevUp: LevSNo(%i) InitLevSNo(%i)\n", R->LevSNo, R->InitLevSNo);
|
---|
389 | *Stop = 0;
|
---|
390 | P->Speed.LevUpSteps++;
|
---|
391 | SpeedMeasure(P, SimTime, StopTimeDo);
|
---|
392 | SpeedMeasure(P, InitSimTime, StartTimeDo);
|
---|
393 | SpeedMeasure(P, InitDensityTime, StartTimeDo);
|
---|
394 | ChangePsiAndDensToLevUp(P);
|
---|
395 | SpeedMeasure(P, InitDensityTime, StopTimeDo);
|
---|
396 | R->LevSNo--;
|
---|
397 | R->Lev0No--;
|
---|
398 | if (RT->ActualUse == standby && R->LevSNo == STANDARTLEVEL) {
|
---|
399 | P->Lat.RT.ActualUse = active;
|
---|
400 | CalculateRiemannTensorData(P);
|
---|
401 | Error(SomeError, "Calculate RT: Not further implemented");
|
---|
402 | }
|
---|
403 | R->LevS = &P->Lat.Lev[R->LevSNo];
|
---|
404 | R->Lev0 = &P->Lat.Lev[R->Lev0No];
|
---|
405 | R->OldActualLocalPsiNo = R->ActualLocalPsiNo;
|
---|
406 | UpdateGramSchActualPsiNo(P, &P->Lat.Psi);
|
---|
407 | UpdateGramSchOldActualPsiNo(P, &P->Lat.Psi);
|
---|
408 | ResetBrent(P, &P->Lat.Psi);
|
---|
409 | R->PsiStep=0;
|
---|
410 | R->MinStep=0;
|
---|
411 | P->Grad.GradientArray[GraSchGradient] = R->LevS->LPsi->LocalPsi[Psi->LocalNo];
|
---|
412 | ChangePseudoToLevUp(P);
|
---|
413 | for (i=0; i<MAXALLPSIENERGY; i++)
|
---|
414 | SetArrayToDouble0(E->PsiEnergy[i], Psi->LocalNo);
|
---|
415 | SetArrayToDouble0(E->AllLocalDensityEnergy, MAXALLDENSITYENERGY);
|
---|
416 | SetArrayToDouble0(E->AllTotalDensityEnergy, MAXALLDENSITYENERGY);
|
---|
417 | for (i=MAXOLD-1; i > 0; i--) {
|
---|
418 | E->TotalEnergy[i] = E->TotalEnergy[i-1];
|
---|
419 | Lat->Energy[UnOccupied].TotalEnergy[i] = Lat->Energy[UnOccupied].TotalEnergy[i-1];
|
---|
420 | }
|
---|
421 | InitPsiEnergyCalculation(P,Occupied);
|
---|
422 | CalculateDensityEnergy(P,1);
|
---|
423 | CalculateIonsEnergy(P);
|
---|
424 | EnergyAllReduce(P);
|
---|
425 | /* SetCurrentMinState(P,UnOccupied);
|
---|
426 | InitPsiEnergyCalculation(P,UnOccupied);
|
---|
427 | CalculateGapEnergy(P);
|
---|
428 | EnergyAllReduce(P);
|
---|
429 | SetCurrentMinState(P,Occupied);*/
|
---|
430 | EnergyOutput(P,0);
|
---|
431 | if (R->LevSNo == STANDARTLEVEL) {
|
---|
432 | R->ActualMaxMinStep = R->MaxMinStep*R->MaxPsiStep*R->MaxMinStepFactor;
|
---|
433 | R->ActualRelEpsTotalEnergy = R->RelEpsTotalEnergy;
|
---|
434 | R->ActualRelEpsKineticEnergy = R->RelEpsKineticEnergy;
|
---|
435 | R->ActualMaxMinStopStep = R->MaxMinStopStep;
|
---|
436 | R->ActualMaxMinGapStopStep = R->MaxMinGapStopStep;
|
---|
437 | } else {
|
---|
438 | R->ActualMaxMinStep = R->MaxInitMinStep*R->MaxPsiStep*R->MaxMinStepFactor;
|
---|
439 | R->ActualRelEpsTotalEnergy = R->InitRelEpsTotalEnergy;
|
---|
440 | R->ActualRelEpsKineticEnergy = R->InitRelEpsKineticEnergy;
|
---|
441 | R->ActualMaxMinStopStep = R->InitMaxMinStopStep;
|
---|
442 | R->ActualMaxMinGapStopStep = R->InitMaxMinGapStopStep;
|
---|
443 | }
|
---|
444 | R->MinStopStep = 0;
|
---|
445 | SpeedMeasure(P, InitSimTime, StopTimeDo);
|
---|
446 | SpeedMeasure(P, SimTime, StartTimeDo);
|
---|
447 | if (P->Call.out[LeaderOut] && (P->Par.me == 0))
|
---|
448 | fprintf(stderr, "(0) ChangeLevUp: LevSNo(%i) InitLevSNo(%i) Done\n", R->LevSNo, R->InitLevSNo);
|
---|
449 | }
|
---|
450 |
|
---|
451 | /** Updates after the wave functions have changed (e.g.\ Ion moved).
|
---|
452 | * Old and current RunStruct::ActualLocalPsiNo are zeroed and distributed among the processes.
|
---|
453 | * InitDensityCalculation() is called, afterwards the pseudo potentials update to the new
|
---|
454 | * wave functions UpdatePseudoToNewWaves().
|
---|
455 | * Energy::AllLocalDensityEnergy, Energy::AllTotalDensityEnergy, Energy::AllTotalIonsEnergy and
|
---|
456 | * Energy::PsiEnergy[i] are set to zero.
|
---|
457 | * We are set to recalculate all of the following energies: Psis InitPsiEnergyCalculation(), density
|
---|
458 | * CalculateDensityEnergy(), ionic CalculateIonsEnergy() and ewald CalculateEwald().
|
---|
459 | * Results are gathered from all processes EnergyAllReduce() and EnergyOutput() is called.
|
---|
460 | * Finally, the various conditons in the RunStruct for stopping the calculation are set: number of
|
---|
461 | * minimisation steps, relative total or kinetic energy change or how often stop condition was
|
---|
462 | * evaluated.
|
---|
463 | * \param *P Problem at hand
|
---|
464 | */
|
---|
465 | static void UpdateToNewWaves(struct Problem *P)
|
---|
466 | {
|
---|
467 | struct RunStruct *R = &P->R;
|
---|
468 | struct Lattice *Lat = &P->Lat;
|
---|
469 | struct Psis *Psi = &Lat->Psi;
|
---|
470 | struct Energy *E = Lat->E;
|
---|
471 | int i,type;
|
---|
472 | R->OldActualLocalPsiNo = R->ActualLocalPsiNo = 0;
|
---|
473 | //if (isnan((double)R->LevS->LPsi->LocalPsi[R->OldActualLocalPsiNo][0].re)) { fprintf(stderr,"(%i) WARNING in UpdateGramSchActualPsiNo(): LPsi->LocalPsi[%i]_[%i] = NaN!\n", P->Par.me, R->OldActualLocalPsiNo, 0); Error(SomeError, "NaN-Fehler!"); }
|
---|
474 | UpdateGramSchActualPsiNo(P, &P->Lat.Psi);
|
---|
475 | UpdateGramSchOldActualPsiNo(P, &P->Lat.Psi);
|
---|
476 | R->PsiStep=0;
|
---|
477 | R->MinStep=0;
|
---|
478 | SpeedMeasure(P, InitDensityTime, StartTimeDo);
|
---|
479 | //if (isnan((double)R->LevS->LPsi->LocalPsi[R->OldActualLocalPsiNo][0].re)) { fprintf(stderr,"(%i) WARNING in Update../InitDensityCalculation(): LPsi->LocalPsi[%i]_[%i] = NaN!\n", P->Par.me, R->OldActualLocalPsiNo, 0); Error(SomeError, "NaN-Fehler!"); }
|
---|
480 | InitDensityCalculation(P);
|
---|
481 | SpeedMeasure(P, InitDensityTime, StopTimeDo);
|
---|
482 | UpdatePseudoToNewWaves(P);
|
---|
483 | for (i=0; i<MAXALLPSIENERGY; i++)
|
---|
484 | SetArrayToDouble0(E->PsiEnergy[i], Psi->LocalNo);
|
---|
485 | SetArrayToDouble0(E->AllLocalDensityEnergy, MAXALLDENSITYENERGY);
|
---|
486 | SetArrayToDouble0(E->AllTotalDensityEnergy, MAXALLDENSITYENERGY);
|
---|
487 | SetArrayToDouble0(E->AllTotalIonsEnergy, MAXALLIONSENERGY);
|
---|
488 | InitPsiEnergyCalculation(P,Occupied);
|
---|
489 | CalculateDensityEnergy(P,1);
|
---|
490 | CalculateIonsEnergy(P);
|
---|
491 | CalculateEwald(P, 0);
|
---|
492 | EnergyAllReduce(P);
|
---|
493 | if (R->DoUnOccupied) {
|
---|
494 | SetCurrentMinState(P,UnOccupied);
|
---|
495 | InitPsiEnergyCalculation(P,UnOccupied); /* STANDARTLEVEL */
|
---|
496 | CalculateGapEnergy(P); /* STANDARTLEVEL */
|
---|
497 | EnergyAllReduce(P);
|
---|
498 | }
|
---|
499 | if (R->DoPerturbation)
|
---|
500 | for(type=Perturbed_P0;type <=Perturbed_RxP2;type++) {
|
---|
501 | SetCurrentMinState(P,type);
|
---|
502 | InitPerturbedEnergyCalculation(P,1); /* STANDARTLEVEL */
|
---|
503 | EnergyAllReduce(P);
|
---|
504 | }
|
---|
505 | SetCurrentMinState(P,Occupied);
|
---|
506 | E->TotalEnergyOuter[0] = E->TotalEnergy[0];
|
---|
507 | EnergyOutput(P,0);
|
---|
508 | R->ActualMaxMinStep = R->MaxMinStep*R->MaxPsiStep*R->MaxMinStepFactor;
|
---|
509 | R->ActualRelEpsTotalEnergy = R->RelEpsTotalEnergy;
|
---|
510 | R->ActualRelEpsKineticEnergy = R->RelEpsKineticEnergy;
|
---|
511 | R->ActualMaxMinStopStep = R->MaxMinStopStep;
|
---|
512 | R->ActualMaxMinGapStopStep = R->MaxMinGapStopStep;
|
---|
513 | R->MinStopStep = 0;
|
---|
514 | }
|
---|
515 |
|
---|
516 | /** Evaluates the stop condition and returns 0 or 1 for occupied states.
|
---|
517 | * Stop is set when:
|
---|
518 | * - SuperStop at best possible point (e.g.\ LevelChange): RunStruct::PsiStep == 0 && SuperStop == 1
|
---|
519 | * - RunStruct::PsiStep && RunStruct::MinStopStep modulo RunStruct::ActualMaxMinStopStep == 0
|
---|
520 | * - To many minimisation steps: RunStruct::MinStep > RunStruct::ActualMaxMinStopStep
|
---|
521 | * - below relative rate of change:
|
---|
522 | * - Remember old values: Shift all RunStruct::TotalEnergy and RunStruct::KineticEnergy by
|
---|
523 | * one and transfer current one from Energy::TotalEnergy and Energy::AllTotalPsiEnergy[KineticEnergy].
|
---|
524 | * - if more than one minimisation step was made, calculate the relative changes of total
|
---|
525 | * energy and kinetic energy and store them in RunStruct::ActualRelTotalEnergy and
|
---|
526 | * RunStruct::ActualRelKineticEnergy and check them against the sought for minimum
|
---|
527 | * values RunStruct::ActualRelEpsTotalEnergy and RunStruct::ActualRelEpsKineticEnergy.
|
---|
528 | * - if RunStruct::PsiStep is zero (default), increase RunStruct::MinStopStep
|
---|
529 | * \param *P Problem at hand
|
---|
530 | * \param SuperStop 1 - external signal: ceasing calculation, 0 - no signal
|
---|
531 | * \return Stop: 1 - stop, 0 - continue
|
---|
532 | */
|
---|
533 | int CalculateMinimumStop(struct Problem *P, int SuperStop)
|
---|
534 | {
|
---|
535 | int Stop = 0, i;
|
---|
536 | struct RunStruct *R = &P->R;
|
---|
537 | struct Energy *E = P->Lat.E;
|
---|
538 | if (R->PsiStep == 0 && SuperStop) Stop = 1;
|
---|
539 | if (R->PsiStep == 0 && ((R->MinStopStep % R->ActualMaxMinStopStep == 0 && R->CurrentMin != UnOccupied) || (R->MinStopStep % R->ActualMaxMinGapStopStep == 0 && R->CurrentMin == UnOccupied))) {
|
---|
540 | // if (R->MinStep >= R->ActualMaxMinStep) {
|
---|
541 | // Stop = 1;
|
---|
542 | // fprintf(stderr,"(%i) MinStep %i >= %i MaxMinStep.\n", P->Par.me, R->MinStep, R->ActualMaxMinStep);
|
---|
543 | // }
|
---|
544 | for (i=RUNMAXOLD-1; i > 0; i--) {
|
---|
545 | R->TotalEnergy[i] = R->TotalEnergy[i-1];
|
---|
546 | R->KineticEnergy[i] = R->KineticEnergy[i-1];
|
---|
547 | }
|
---|
548 | R->TotalEnergy[0] = E->TotalEnergy[0];
|
---|
549 | R->KineticEnergy[0] = E->AllTotalPsiEnergy[KineticEnergy];
|
---|
550 | if (R->MinStopStep) {
|
---|
551 | //if (R->TotalEnergy[1] < MYEPSILON) fprintf(stderr,"CalculateMinimumStop: R->TotalEnergy[1] = %lg\n",R->TotalEnergy[1]);
|
---|
552 | R->ActualRelTotalEnergy[0] = fabs((R->TotalEnergy[0]-R->TotalEnergy[1])/R->TotalEnergy[1]);
|
---|
553 | //if (R->KineticEnergy[1] < MYEPSILON) fprintf(stderr,"CalculateMinimumStop: R->KineticEnergy[1] = %lg\n",R->KineticEnergy[1]);
|
---|
554 | //if (R->CurrentMin < Perturbed_P0)
|
---|
555 | R->ActualRelKineticEnergy[0] = fabs((R->KineticEnergy[0]-R->KineticEnergy[1])/R->KineticEnergy[1]);
|
---|
556 | //else R->ActualRelKineticEnergy[0] = 0.;
|
---|
557 | if (P->Call.out[LeaderOut] && (P->Par.me == 0))
|
---|
558 | switch (R->CurrentMin) {
|
---|
559 | default:
|
---|
560 | fprintf(stderr, "ARelTE: %e\tARelKE: %e\n", R->ActualRelTotalEnergy[0], R->ActualRelKineticEnergy[0]);
|
---|
561 | break;
|
---|
562 | case UnOccupied:
|
---|
563 | fprintf(stderr, "(%i) -------------------------> ARelTGE: %e\tARelKGE: %e\n", P->Par.me, R->ActualRelTotalEnergy[0], R->ActualRelKineticEnergy[0]);
|
---|
564 | break;
|
---|
565 | }
|
---|
566 | if ((R->ActualRelTotalEnergy[0] < R->ActualRelEpsTotalEnergy) &&
|
---|
567 | (R->ActualRelKineticEnergy[0] < R->ActualRelEpsKineticEnergy))
|
---|
568 | Stop = 1;
|
---|
569 | }
|
---|
570 | }
|
---|
571 | if (R->PsiStep == 0)
|
---|
572 | R->MinStopStep++;
|
---|
573 | if (P->Call.WriteSrcFiles == 2)
|
---|
574 | OutputVisSrcFiles(P, R->CurrentMin);
|
---|
575 | return(Stop);
|
---|
576 | }
|
---|
577 |
|
---|
578 | /** Evaluates the stop condition and returns 0 or 1 for gap energies.
|
---|
579 | * Stop is set when:
|
---|
580 | * - SuperStop at best possible point (e.g.\ LevelChange): RunStruct::PsiStep == 0 && SuperStop == 1
|
---|
581 | * - RunStruct::PsiStep && RunStruct::MinStopStep modulo RunStruct::ActualMaxMinStopStep == 0
|
---|
582 | * - To many minimisation steps: RunStruct::MinStep > RunStruct::ActualMaxMinStopStep
|
---|
583 | * - below relative rate of change:
|
---|
584 | * - Remember old values: Shift all RunStruct::TotalEnergy and RunStruct::KineticEnergy by
|
---|
585 | * one and transfer current one from Energy::TotalEnergy and Energy::AllTotalPsiEnergy[KineticEnergy].
|
---|
586 | * - if more than one minimisation step was made, calculate the relative changes of total
|
---|
587 | * energy and kinetic energy and store them in RunStruct::ActualRelTotalEnergy and
|
---|
588 | * RunStruct::ActualRelKineticEnergy and check them against the sought for minimum
|
---|
589 | * values RunStruct::ActualRelEpsTotalEnergy and RunStruct::ActualRelEpsKineticEnergy.
|
---|
590 | * - if RunStruct::PsiStep is zero (default), increase RunStruct::MinStopStep
|
---|
591 | * \param *P Problem at hand
|
---|
592 | * \param SuperStop 1 - external signal: ceasing calculation, 0 - no signal
|
---|
593 | * \return Stop: 1 - stop, 0 - continue
|
---|
594 | * \sa CalculateMinimumStop() - same procedure for occupied states
|
---|
595 | *//*
|
---|
596 | static double CalculateGapStop(struct Problem *P, int SuperStop)
|
---|
597 | {
|
---|
598 | int Stop = 0, i;
|
---|
599 | struct RunStruct *R = &P->R;
|
---|
600 | struct Lattice *Lat = &P->Lat;
|
---|
601 | struct Energy *E = P->Lat.E;
|
---|
602 | if (R->PsiStep == 0 && SuperStop) Stop = 1;
|
---|
603 | if (R->PsiStep == 0 && (R->MinStopStep % R->ActualMaxMinGapStopStep) == 0) {
|
---|
604 | if (R->MinStep >= R->ActualMaxMinStep) Stop = 1;
|
---|
605 | for (i=RUNMAXOLD-1; i > 0; i--) {
|
---|
606 | R->TotalGapEnergy[i] = R->TotalGapEnergy[i-1];
|
---|
607 | R->KineticGapEnergy[i] = R->KineticGapEnergy[i-1];
|
---|
608 | }
|
---|
609 | R->TotalGapEnergy[0] = Lat->Energy[UnOccupied].TotalEnergy[0];
|
---|
610 | R->KineticGapEnergy[0] = E->AllTotalPsiEnergy[GapPsiEnergy];
|
---|
611 | if (R->MinStopStep) {
|
---|
612 | if (R->TotalGapEnergy[1] < MYEPSILON) fprintf(stderr,"CalculateMinimumStop: R->TotalGapEnergy[1] = %lg\n",R->TotalGapEnergy[1]);
|
---|
613 | R->ActualRelTotalGapEnergy[0] = fabs((R->TotalGapEnergy[0]-R->TotalGapEnergy[1])/R->TotalGapEnergy[1]);
|
---|
614 | if (R->KineticGapEnergy[1] < MYEPSILON) fprintf(stderr,"CalculateMinimumStop: R->KineticGapEnergy[1] = %lg\n",R->KineticGapEnergy[1]);
|
---|
615 | R->ActualRelKineticGapEnergy[0] = fabs((R->KineticGapEnergy[0]-R->KineticGapEnergy[1])/R->KineticGapEnergy[1]);
|
---|
616 | if (P->Call.out[LeaderOut] && (P->Par.me == 0))
|
---|
617 | fprintf(stderr, "(%i) -------------------------> ARelTGE: %e\tARelKGE: %e\n", P->Par.me, R->ActualRelTotalGapEnergy[0], R->ActualRelKineticGapEnergy[0]);
|
---|
618 | if ((R->ActualRelTotalGapEnergy[0] < R->ActualRelEpsTotalGapEnergy) &&
|
---|
619 | (R->ActualRelKineticGapEnergy[0] < R->ActualRelEpsKineticGapEnergy))
|
---|
620 | Stop = 1;
|
---|
621 | }
|
---|
622 | }
|
---|
623 | if (R->PsiStep == 0)
|
---|
624 | R->MinStopStep++;
|
---|
625 |
|
---|
626 | return(Stop);
|
---|
627 | }*/
|
---|
628 |
|
---|
629 | #define StepTolerance 1e-4
|
---|
630 |
|
---|
631 | static void CalculateEnergy(struct Problem *P) {
|
---|
632 | SpeedMeasure(P, DensityTime, StartTimeDo);
|
---|
633 | UpdateDensityCalculation(P);
|
---|
634 | SpeedMeasure(P, DensityTime, StopTimeDo);
|
---|
635 | UpdatePsiEnergyCalculation(P);
|
---|
636 | CalculateDensityEnergy(P, 0);
|
---|
637 | //CalculateIonsEnergy(P);
|
---|
638 | EnergyAllReduce(P);
|
---|
639 | }
|
---|
640 |
|
---|
641 | /** Energy functional depending on one parameter \a x (for a certain Psi in a certain conjugate direction).
|
---|
642 | * \param x parameter for the which the function must be minimized
|
---|
643 | * \param *params additional params
|
---|
644 | * \return total energy if Psi is changed according to the given parameter
|
---|
645 | */
|
---|
646 | static double fn1 (double x, void * params) {
|
---|
647 | struct Problem *P = (struct Problem *)(params);
|
---|
648 | struct RunStruct *R = &P->R;
|
---|
649 | struct Lattice *Lat = &P->Lat;
|
---|
650 | struct LatticeLevel *LevS = R->LevS;
|
---|
651 | int ElementSize = (sizeof(fftw_complex) / sizeof(double));
|
---|
652 | int i=R->ActualLocalPsiNo;
|
---|
653 | double ret;
|
---|
654 |
|
---|
655 | //fprintf(stderr,"(%i) Evaluating fnl at %lg ...\n",P->Par.me, x);
|
---|
656 | //TestForOrth(P,R->LevS,P->Grad.GradientArray[GraSchGradient]);
|
---|
657 | CalculateNewWave(P, &x); // also stores Psi to oldPsi
|
---|
658 | //TestGramSch(P,R->LevS,&P->Lat.Psi,Occupied);
|
---|
659 | //fprintf(stderr,"(%i) Testing for orthogonality of %i against ...\n",P->Par.me, R->ActualLocalPsiNo);
|
---|
660 | //TestForOrth(P, LevS, LevS->LPsi->LocalPsi[R->ActualLocalPsiNo]);
|
---|
661 | //UpdateActualPsiNo(P, Occupied);
|
---|
662 | //UpdateEnergyArray(P);
|
---|
663 | CalculateEnergy(P);
|
---|
664 | ret = Lat->E->TotalEnergy[0];
|
---|
665 | memcpy(LevS->LPsi->LocalPsi[i], LevS->LPsi->OldLocalPsi[i], ElementSize*LevS->MaxG*sizeof(double)); // restore old Psi from OldPsi
|
---|
666 | //fprintf(stderr,"(%i) Psi %i at %p retrieved from OldPsi at %p: Old[0] %lg+i%lg\n", P->Par.me, R->ActualLocalPsiNo, LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].re, LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].im);
|
---|
667 | CalculateEnergy(P);
|
---|
668 | //fprintf(stderr,"(%i) fnl(%lg) = %lg\n", P->Par.me, x, ret);
|
---|
669 | return ret;
|
---|
670 | }
|
---|
671 |
|
---|
672 | #ifdef HAVE_INLINE
|
---|
673 | inline void flip(double *a, double *b) {
|
---|
674 | #else
|
---|
675 | void flip(double *a, double *b) {
|
---|
676 | #endif
|
---|
677 | double tmp = *a;
|
---|
678 | *a = *b;
|
---|
679 | *b = tmp;
|
---|
680 | }
|
---|
681 |
|
---|
682 |
|
---|
683 | /** Minimise PsiType#Occupied orbitals.
|
---|
684 | * It is checked whether CallOptions#ReadSrcFiles is set and thus coefficients for the level have to be
|
---|
685 | * read from file and afterwards initialized.
|
---|
686 | *
|
---|
687 | * Then follows the main loop, until a stop condition is met:
|
---|
688 | * -# CalculateNewWave()\n
|
---|
689 | * Over a conjugate gradient method the next (minimal) wave function is sought for.
|
---|
690 | * -# UpdateActualPsiNo()\n
|
---|
691 | * Switch local Psi to next one.
|
---|
692 | * -# UpdateEnergyArray()\n
|
---|
693 | * Shift archived energy values to make space for next one.
|
---|
694 | * -# UpdateDensityCalculation(), SpeedMeasure()'d in DensityTime\n
|
---|
695 | * Calculate TotalLocalDensity of LocalPsis and gather results as TotalDensity.
|
---|
696 | * -# UpdatePsiEnergyCalculation()\n
|
---|
697 | * Calculate kinetic and non-local energy contributons from the Psis.
|
---|
698 | * -# CalculateDensityEnergy()\n
|
---|
699 | * Calculate remaining energy contributions from the Density and adds \f$V_xc\f$ onto DensityTypes#HGDensity.
|
---|
700 | * -# CalculateIonsEnergy()\n
|
---|
701 | * Calculate the Gauss self energy of the Ions.
|
---|
702 | * -# EnergyAllReduce()\n
|
---|
703 | * Gather PsiEnergy results from all processes and sum up together with all other contributions to TotalEnergy.
|
---|
704 | * -# CheckCPULIM()\n
|
---|
705 | * Check if external signal has been received (e.g. end of time slit on cluster), break operation at next possible moment.
|
---|
706 | * -# CalculateMinimumStop()\n
|
---|
707 | * Evaluates stop condition if desired precision or steps or ... have been reached. Otherwise go to
|
---|
708 | * CalculateNewWave().
|
---|
709 | *
|
---|
710 | * Before return orthonormality is tested.
|
---|
711 | * \param *P Problem at hand
|
---|
712 | * \param *Stop flag to determine if epsilon stop conditions have met
|
---|
713 | * \param *SuperStop flag to determinte whether external signal's required end of calculations
|
---|
714 | */
|
---|
715 | static void MinimiseOccupied(struct Problem *P, int *Stop, int *SuperStop)
|
---|
716 | {
|
---|
717 | struct RunStruct *R = &P->R;
|
---|
718 | struct Lattice *Lat = &P->Lat;
|
---|
719 | struct Psis *Psi = &Lat->Psi;
|
---|
720 | //struct FileData *F = &P->Files;
|
---|
721 | // int i;
|
---|
722 | // double norm;
|
---|
723 | //double dEdt0,ddEddt0,HartreeddEddt0,XCddEddt0, d[4], D[4],ConDirHConDir;
|
---|
724 | struct LatticeLevel *LevS = R->LevS;
|
---|
725 | int ElementSize = (sizeof(fftw_complex) / sizeof(double));
|
---|
726 | int iter = 0, status, max_iter=10;
|
---|
727 | const gsl_min_fminimizer_type *T;
|
---|
728 | gsl_min_fminimizer *s;
|
---|
729 | double m, a, b;
|
---|
730 | double f_m = 0., f_a, f_b;
|
---|
731 | double dcos, dsin;
|
---|
732 | int g;
|
---|
733 | fftw_complex *ConDir = P->Grad.GradientArray[ConDirGradient];
|
---|
734 | fftw_complex *source = NULL, *oldsource = NULL;
|
---|
735 | gsl_function F;
|
---|
736 | F.function = &fn1;
|
---|
737 | F.params = (void *) P;
|
---|
738 | T = gsl_min_fminimizer_brent;
|
---|
739 | s = gsl_min_fminimizer_alloc (T);
|
---|
740 | int DoBrent, StartLocalPsiNo;
|
---|
741 |
|
---|
742 | ResetBrent(P,Psi);
|
---|
743 | *Stop = 0;
|
---|
744 | if (P->Call.ReadSrcFiles) {
|
---|
745 | if (!ReadSrcPsiDensity(P,Occupied,1, R->LevSNo)) { // if file for level exists and desired, read from file
|
---|
746 | P->Call.ReadSrcFiles = 0; // -r was bogus, remove it, have to start anew
|
---|
747 | fprintf(stderr,"(%i) Re-initializing, files are missing/corrupted...\n", P->Par.me);
|
---|
748 | InitPsisValue(P, Psi->TypeStartIndex[Occupied], Psi->TypeStartIndex[Occupied+1]); // initialize perturbed array for this run
|
---|
749 | ResetGramSchTagType(P, Psi, Occupied, NotOrthogonal); // loaded values are orthonormal
|
---|
750 | SpeedMeasure(P, InitGramSchTime, StartTimeDo);
|
---|
751 | GramSch(P, R->LevS, Psi, Orthonormalize);
|
---|
752 | SpeedMeasure(P, InitGramSchTime, StopTimeDo);
|
---|
753 | } else {
|
---|
754 | SpeedMeasure(P, InitSimTime, StartTimeDo);
|
---|
755 | fprintf(stderr,"(%i) Reading from file...\n", P->Par.me);
|
---|
756 | ReadSrcPsiDensity(P, Occupied, 0, R->LevSNo);
|
---|
757 | ResetGramSchTagType(P, Psi, Occupied, IsOrthonormal); // loaded values are orthonormal
|
---|
758 | }
|
---|
759 | SpeedMeasure(P, InitDensityTime, StartTimeDo);
|
---|
760 | InitDensityCalculation(P);
|
---|
761 | SpeedMeasure(P, InitDensityTime, StopTimeDo);
|
---|
762 | InitPsiEnergyCalculation(P, Occupied); // go through all orbitals calculating kinetic and non-local
|
---|
763 | StartLocalPsiNo = R->ActualLocalPsiNo;
|
---|
764 | do { // otherwise OnePsiElementAddData#Lambda is calculated only for current Psi not for all
|
---|
765 | CalculateDensityEnergy(P, 0);
|
---|
766 | UpdateActualPsiNo(P, Occupied);
|
---|
767 | } while (R->ActualLocalPsiNo != StartLocalPsiNo);
|
---|
768 | CalculateIonsEnergy(P);
|
---|
769 | EnergyAllReduce(P);
|
---|
770 | SpeedMeasure(P, InitSimTime, StopTimeDo);
|
---|
771 | R->LevS->Step++;
|
---|
772 | EnergyOutput(P,0);
|
---|
773 | }
|
---|
774 | if (P->Call.ReadSrcFiles != 1) { // otherwise minimise oneself
|
---|
775 | fprintf(stderr,"(%i)Beginning minimisation of type %s ...\n", P->Par.me, R->MinimisationName[Occupied]);
|
---|
776 | while (*Stop != 1) { // loop testing condition over all Psis
|
---|
777 | // in the following loop, we have two cases:
|
---|
778 | // 1) still far away and just guessing: Use the normal CalculateNewWave() to improve Psi
|
---|
779 | // 2) closer (DoBrent=-1): use brent line search instead
|
---|
780 | // and due to these two cases, we also have two ifs inside each in order to catch stepping from one case
|
---|
781 | // to the other - due to decreasing DoBrent and/or stepping to the next Psi (which may not yet be DoBrent==1)
|
---|
782 |
|
---|
783 | // case 1)
|
---|
784 | if (Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent != 1) {
|
---|
785 | //SetArrayToDouble0((double *)LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo],LevS->MaxG*2);
|
---|
786 | memcpy(LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], ElementSize*LevS->MaxG*sizeof(double)); // restore old Psi from OldPsi
|
---|
787 | //fprintf(stderr,"(%i) Psi %i at %p stored in OldPsi at %p: Old[0] %lg+i%lg\n", P->Par.me, R->ActualLocalPsiNo, LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].re, LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].im);
|
---|
788 | f_m = P->Lat.E->TotalEnergy[0]; // grab first value
|
---|
789 | m = 0.;
|
---|
790 | CalculateNewWave(P,NULL);
|
---|
791 | if ((R->DoBrent == 1) && (fabs(Lat->E->delta[0]) < M_PI/4.))
|
---|
792 | Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent--;
|
---|
793 | if (Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent != 1) {
|
---|
794 | UpdateActualPsiNo(P, Occupied);
|
---|
795 | UpdateEnergyArray(P);
|
---|
796 | CalculateEnergy(P); // just to get a sensible delta
|
---|
797 | if ((R->ActualLocalPsiNo != R->OldActualLocalPsiNo) && (Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent == 1)) {
|
---|
798 | R->OldActualLocalPsiNo = R->ActualLocalPsiNo;
|
---|
799 | // if we stepped on to a new Psi, which is already down at DoBrent=1 unlike the last one,
|
---|
800 | // then an up-to-date gradient is missing for the following Brent line search
|
---|
801 | fprintf(stderr,"(%i) We stepped on to a new Psi, which is already in the Brent regime ...re-calc delta\n", P->Par.me);
|
---|
802 | memcpy(LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], ElementSize*LevS->MaxG*sizeof(double)); // restore old Psi from OldPsi
|
---|
803 | //fprintf(stderr,"(%i) Psi %i at %p stored in OldPsi at %p: Old[0] %lg+i%lg\n", P->Par.me, R->ActualLocalPsiNo, LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].re, LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].im);
|
---|
804 | f_m = P->Lat.E->TotalEnergy[0]; // grab first value
|
---|
805 | m = 0.;
|
---|
806 | DoBrent = Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent;
|
---|
807 | Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent = 2;
|
---|
808 | CalculateNewWave(P,NULL);
|
---|
809 | Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent = DoBrent;
|
---|
810 | }
|
---|
811 | //fprintf(stderr,"(%i) fnl(%lg) = %lg\n", P->Par.me, m, f_m);
|
---|
812 | }
|
---|
813 | }
|
---|
814 |
|
---|
815 | // case 2)
|
---|
816 | if (Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent == 1) {
|
---|
817 | R->PsiStep=R->MaxPsiStep; // no more fresh gradients from this point for current ActualLocalPsiNo
|
---|
818 | a = b = 0.5*fabs(Lat->E->delta[0]);
|
---|
819 | // we have a meaningful first minimum guess from above CalculateNewWave() resp. from end of this if of last step: Lat->E->delta[0]
|
---|
820 | source = LevS->LPsi->LocalPsi[R->ActualLocalPsiNo];
|
---|
821 | oldsource = LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo];
|
---|
822 | //SetArrayToDouble0((double *)source,LevS->MaxG*2);
|
---|
823 | do {
|
---|
824 | a -= fabs(Lat->E->delta[0]) == 0 ? 0.1 : fabs(Lat->E->delta[0]);
|
---|
825 | if (a < -M_PI/2.) a = -M_PI/2.;// for this to work we need the pre-estimation which leads us into a nice regime (without gradient being the better _initial_ guess for a Psi)
|
---|
826 | dcos = cos(a);
|
---|
827 | dsin = sin(a);
|
---|
828 | for (g = 0; g < LevS->MaxG; g++) { // Here all coefficients are updated for the new found wave function
|
---|
829 | //if (isnan(ConDir[g].re)) { fprintf(stderr,"WARNGING: CalculateLineSearch(): ConDir_%i(%i) = NaN!\n", R->ActualLocalPsiNo, g); Error(SomeError, "NaN-Fehler!"); }
|
---|
830 | c_re(source[g]) = c_re(oldsource[g])*dcos + c_re(ConDir[g])*dsin;
|
---|
831 | c_im(source[g]) = c_im(oldsource[g])*dcos + c_im(ConDir[g])*dsin;
|
---|
832 | }
|
---|
833 | CalculateEnergy(P);
|
---|
834 | f_a = P->Lat.E->TotalEnergy[0]; // grab second value at left border
|
---|
835 | //fprintf(stderr,"(%i) fnl(%lg) = %lg, Check ConDir[0] = %lg+i%lg, source[0] = %lg+i%lg, oldsource[0] = %lg+i%lg, TotDens[0] = %lg\n", P->Par.me, a, f_a, ConDir[0].re, ConDir[0].im, source[0].re, source[0].im, oldsource[0].re, oldsource[0].im, R->Lev0->Dens->DensityArray[TotalDensity][0]);
|
---|
836 | } while (f_a < f_m);
|
---|
837 |
|
---|
838 | //SetArrayToDouble0((double *)source,LevS->MaxG*2);
|
---|
839 | do {
|
---|
840 | b += fabs(Lat->E->delta[0]) == 0 ? 0.1 : fabs(Lat->E->delta[0]);
|
---|
841 | if (b > M_PI/2.) b = M_PI/2.;
|
---|
842 | dcos = cos(b);
|
---|
843 | dsin = sin(b);
|
---|
844 | for (g = 0; g < LevS->MaxG; g++) { // Here all coefficients are updated for the new found wave function
|
---|
845 | //if (isnan(ConDir[g].re)) { fprintf(stderr,"WARNGING: CalculateLineSearch(): ConDir_%i(%i) = NaN!\n", R->ActualLocalPsiNo, g); Error(SomeError, "NaN-Fehler!"); }
|
---|
846 | c_re(source[g]) = c_re(oldsource[g])*dcos + c_re(ConDir[g])*dsin;
|
---|
847 | c_im(source[g]) = c_im(oldsource[g])*dcos + c_im(ConDir[g])*dsin;
|
---|
848 | }
|
---|
849 | CalculateEnergy(P);
|
---|
850 | f_b = P->Lat.E->TotalEnergy[0]; // grab second value at left border
|
---|
851 | //fprintf(stderr,"(%i) fnl(%lg) = %lg\n", P->Par.me, b, f_b);
|
---|
852 | } while (f_b < f_m);
|
---|
853 |
|
---|
854 | memcpy(source, oldsource, ElementSize*LevS->MaxG*sizeof(double)); // restore old Psi from OldPsi
|
---|
855 | //fprintf(stderr,"(%i) Psi %i at %p retrieved from OldPsi at %p: Old[0] %lg+i%lg\n", P->Par.me, R->ActualLocalPsiNo, LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].re, LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].im);
|
---|
856 | CalculateEnergy(P);
|
---|
857 |
|
---|
858 | fprintf(stderr,"(%i) Preparing brent with f(a) (%lg,%lg)\t f(b) (%lg,%lg)\t f(m) (%lg,%lg) ...\n", P->Par.me,a,f_a,b,f_b,m,f_m);
|
---|
859 | iter=0;
|
---|
860 | gsl_min_fminimizer_set_with_values (s, &F, m, f_m, a, f_a, b, f_b);
|
---|
861 | fprintf (stderr,"(%i) using %s method\n",P->Par.me, gsl_min_fminimizer_name (s));
|
---|
862 | fprintf (stderr,"(%i) %5s [%9s, %9s] %9s %9s\n",P->Par.me, "iter", "lower", "upper", "min", "err(est)");
|
---|
863 | fprintf (stderr,"(%i) %5d [%.7f, %.7f] %.7f %.7f\n",P->Par.me, iter, a, b, m, b - a);
|
---|
864 | do {
|
---|
865 | iter++;
|
---|
866 | status = gsl_min_fminimizer_iterate (s);
|
---|
867 |
|
---|
868 | m = gsl_min_fminimizer_x_minimum (s);
|
---|
869 | a = gsl_min_fminimizer_x_lower (s);
|
---|
870 | b = gsl_min_fminimizer_x_upper (s);
|
---|
871 |
|
---|
872 | status = gsl_min_test_interval (a, b, 0.001, 0.0);
|
---|
873 |
|
---|
874 | if (status == GSL_SUCCESS)
|
---|
875 | fprintf (stderr,"(%i) Converged:\n",P->Par.me);
|
---|
876 |
|
---|
877 | fprintf (stderr,"(%i) %5d [%.7f, %.7f] %.7f %.7f\n",P->Par.me,
|
---|
878 | iter, a, b, m, b - a);
|
---|
879 | } while (status == GSL_CONTINUE && iter < max_iter);
|
---|
880 | CalculateNewWave(P,&m);
|
---|
881 | TestGramSch(P,LevS,Psi,Occupied);
|
---|
882 | UpdateActualPsiNo(P, Occupied); // step on due setting to MaxPsiStep further above
|
---|
883 | UpdateEnergyArray(P);
|
---|
884 | CalculateEnergy(P);
|
---|
885 | //fprintf(stderr,"(%i) Final value for Psi %i: %lg\n", P->Par.me, R->ActualLocalPsiNo, P->Lat.E->TotalEnergy[0]);
|
---|
886 | R->MinStopStep = R->ActualMaxMinStopStep; // check stop condition every time
|
---|
887 | if (*SuperStop != 1)
|
---|
888 | *SuperStop = CheckCPULIM(P);
|
---|
889 | *Stop = CalculateMinimumStop(P, *SuperStop);
|
---|
890 | R->OldActualLocalPsiNo = R->ActualLocalPsiNo;
|
---|
891 | if (Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent == 1) { // new wave function means new gradient!
|
---|
892 | DoBrent = Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent;
|
---|
893 | Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent = 2;
|
---|
894 | //SetArrayToDouble0((double *)LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo],LevS->MaxG*2);
|
---|
895 | memcpy(LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], ElementSize*LevS->MaxG*sizeof(double)); // restore old Psi from OldPsi
|
---|
896 | //fprintf(stderr,"(%i) Psi %i at %p stored in OldPsi at %p: Old[0] %lg+i%lg\n", P->Par.me, R->ActualLocalPsiNo, LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].re, LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].im);
|
---|
897 | f_m = P->Lat.E->TotalEnergy[0]; // grab first value
|
---|
898 | m = 0.;
|
---|
899 | CalculateNewWave(P,NULL);
|
---|
900 | Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent = DoBrent;
|
---|
901 | }
|
---|
902 | }
|
---|
903 |
|
---|
904 | if (Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent != 1) { // otherwise the following checks eliminiate stop=1 from above
|
---|
905 | if (*SuperStop != 1)
|
---|
906 | *SuperStop = CheckCPULIM(P);
|
---|
907 | *Stop = CalculateMinimumStop(P, *SuperStop);
|
---|
908 | }
|
---|
909 | /*EnergyOutput(P, Stop);*/
|
---|
910 | P->Speed.Steps++;
|
---|
911 | R->LevS->Step++;
|
---|
912 | /*ControlNativeDensity(P);*/
|
---|
913 | //fprintf(stderr,"(%i) Stop %i\n",P->Par.me, Stop);
|
---|
914 | }
|
---|
915 | //OutputVisSrcFiles(P, Occupied); // is now done after localization (ComputeMLWF())
|
---|
916 | }
|
---|
917 | TestGramSch(P,R->LevS,Psi, Occupied);
|
---|
918 | }
|
---|
919 |
|
---|
920 | /** Minimisation of the PsiTagType#UnOccupied orbitals in the field of the occupied ones.
|
---|
921 | * Assuming RunStruct#ActualLocalPsiNo is currenlty still an occupied wave function, we stop onward to the first
|
---|
922 | * unoccupied and reset RunStruct#OldActualLocalPsiNo. Then it is checked whether CallOptions#ReadSrcFiles is set
|
---|
923 | * and thus coefficients for the level have to be read from file and afterwards initialized.
|
---|
924 | *
|
---|
925 | * Then follows the main loop, until a stop condition is met:
|
---|
926 | * -# CalculateNewWave()\n
|
---|
927 | * Over a conjugate gradient method the next (minimal) wave function is sought for.
|
---|
928 | * -# UpdateActualPsiNo()\n
|
---|
929 | * Switch local Psi to next one.
|
---|
930 | * -# UpdateEnergyArray()\n
|
---|
931 | * Shift archived energy values to make space for next one.
|
---|
932 | * -# UpdateDensityCalculation(), SpeedMeasure()'d in DensityTime\n
|
---|
933 | * Calculate TotalLocalDensity of LocalPsis and gather results as TotalDensity.
|
---|
934 | * -# UpdatePsiEnergyCalculation()\n
|
---|
935 | * Calculate kinetic and non-local energy contributons from the Psis.
|
---|
936 | * -# CalculateGapEnergy()\n
|
---|
937 | * Calculate Gap energies (Hartreepotential, Pseudo) and the gradient.
|
---|
938 | * -# EnergyAllReduce()\n
|
---|
939 | * Gather PsiEnergy results from all processes and sum up together with all other contributions to TotalEnergy.
|
---|
940 | * -# CheckCPULIM()\n
|
---|
941 | * Check if external signal has been received (e.g. end of time slit on cluster), break operation at next possible moment.
|
---|
942 | * -# CalculateMinimumStop()\n
|
---|
943 | * Evaluates stop condition if desired precision or steps or ... have been reached. Otherwise go to
|
---|
944 | * CalculateNewWave().
|
---|
945 | *
|
---|
946 | * Afterwards, the coefficients are written to file by OutputVisSrcFiles() if desired. Orthonormality is tested, we step
|
---|
947 | * back to the occupied wave functions and the densities are re-initialized.
|
---|
948 | * \param *P Problem at hand
|
---|
949 | * \param *Stop flag to determine if epsilon stop conditions have met
|
---|
950 | * \param *SuperStop flag to determinte whether external signal's required end of calculations
|
---|
951 | */
|
---|
952 | static void MinimiseUnoccupied (struct Problem *P, int *Stop, int *SuperStop) {
|
---|
953 | struct RunStruct *R = &P->R;
|
---|
954 | struct Lattice *Lat = &P->Lat;
|
---|
955 | struct Psis *Psi = &Lat->Psi;
|
---|
956 | int StartLocalPsiNo;
|
---|
957 |
|
---|
958 | *Stop = 0;
|
---|
959 | R->PsiStep = R->MaxPsiStep; // in case it's zero from CalculateForce()
|
---|
960 | UpdateActualPsiNo(P, UnOccupied); // step on to next unoccupied one
|
---|
961 | R->OldActualLocalPsiNo = R->ActualLocalPsiNo; // reset, otherwise OldActualLocalPsiNo still points to occupied wave function
|
---|
962 | UpdateGramSchOldActualPsiNo(P,Psi);
|
---|
963 | if (P->Call.ReadSrcFiles && ReadSrcPsiDensity(P,UnOccupied,1, R->LevSNo)) {
|
---|
964 | SpeedMeasure(P, InitSimTime, StartTimeDo);
|
---|
965 | fprintf(stderr,"(%i) Reading from file...\n", P->Par.me);
|
---|
966 | ReadSrcPsiDensity(P, UnOccupied, 0, R->LevSNo);
|
---|
967 | if (P->Call.ReadSrcFiles != 2) {
|
---|
968 | ResetGramSchTagType(P, Psi, UnOccupied, IsOrthonormal); // loaded values are orthonormal
|
---|
969 | SpeedMeasure(P, DensityTime, StartTimeDo);
|
---|
970 | InitDensityCalculation(P);
|
---|
971 | SpeedMeasure(P, DensityTime, StopTimeDo);
|
---|
972 | InitPsiEnergyCalculation(P,UnOccupied); // go through all orbitals calculating kinetic and non-local
|
---|
973 | //CalculateDensityEnergy(P, 0);
|
---|
974 | StartLocalPsiNo = R->ActualLocalPsiNo;
|
---|
975 | do { // otherwise OnePsiElementAddData#Lambda is calculated only for current Psi not for all
|
---|
976 | CalculateGapEnergy(P);
|
---|
977 | UpdateActualPsiNo(P, Occupied);
|
---|
978 | } while (R->ActualLocalPsiNo != StartLocalPsiNo);
|
---|
979 | EnergyAllReduce(P);
|
---|
980 | }
|
---|
981 | SpeedMeasure(P, InitSimTime, StopTimeDo);
|
---|
982 | }
|
---|
983 | if (P->Call.ReadSrcFiles != 1) {
|
---|
984 | SpeedMeasure(P, InitSimTime, StartTimeDo);
|
---|
985 | ResetGramSchTagType(P, Psi, UnOccupied, NotOrthogonal);
|
---|
986 | SpeedMeasure(P, GramSchTime, StartTimeDo);
|
---|
987 | GramSch(P, R->LevS, Psi, Orthonormalize);
|
---|
988 | SpeedMeasure(P, GramSchTime, StopTimeDo);
|
---|
989 | SpeedMeasure(P, InitDensityTime, StartTimeDo);
|
---|
990 | InitDensityCalculation(P);
|
---|
991 | SpeedMeasure(P, InitDensityTime, StopTimeDo);
|
---|
992 | InitPsiEnergyCalculation(P,UnOccupied); // go through all orbitals calculating kinetic and non-local
|
---|
993 | //CalculateDensityEnergy(P, 0);
|
---|
994 | CalculateGapEnergy(P);
|
---|
995 | EnergyAllReduce(P);
|
---|
996 | SpeedMeasure(P, InitSimTime, StopTimeDo);
|
---|
997 | R->LevS->Step++;
|
---|
998 | EnergyOutput(P,0);
|
---|
999 | fprintf(stderr,"(%i)Beginning minimisation of type %s ...\n", P->Par.me, R->MinimisationName[UnOccupied]);
|
---|
1000 | while (*Stop != 1) {
|
---|
1001 | CalculateNewWave(P,NULL);
|
---|
1002 | UpdateActualPsiNo(P, UnOccupied);
|
---|
1003 | /* New */
|
---|
1004 | UpdateEnergyArray(P);
|
---|
1005 | SpeedMeasure(P, DensityTime, StartTimeDo);
|
---|
1006 | UpdateDensityCalculation(P);
|
---|
1007 | SpeedMeasure(P, DensityTime, StopTimeDo);
|
---|
1008 | UpdatePsiEnergyCalculation(P);
|
---|
1009 | //CalculateDensityEnergy(P, 0);
|
---|
1010 | CalculateGapEnergy(P); //calculates XC, HGDensity, afterwards gradient, where V_xc is added upon HGDensity
|
---|
1011 | EnergyAllReduce(P);
|
---|
1012 | if (*SuperStop != 1)
|
---|
1013 | *SuperStop = CheckCPULIM(P);
|
---|
1014 | *Stop = CalculateMinimumStop(P, *SuperStop);
|
---|
1015 | /*EnergyOutput(P, Stop);*/
|
---|
1016 | P->Speed.Steps++;
|
---|
1017 | R->LevS->Step++;
|
---|
1018 | /*ControlNativeDensity(P);*/
|
---|
1019 | }
|
---|
1020 | OutputVisSrcFiles(P, UnOccupied);
|
---|
1021 | // if (!TestReadnWriteSrcDensity(P,UnOccupied))
|
---|
1022 | // Error(SomeError,"TestReadnWriteSrcDensity failed!");
|
---|
1023 | }
|
---|
1024 | TestGramSch(P,R->LevS,Psi, UnOccupied);
|
---|
1025 | ResetGramSchTagType(P, Psi, UnOccupied, NotUsedToOrtho);
|
---|
1026 | // re-calculate Occupied values (in preparation for perturbed ones)
|
---|
1027 | UpdateActualPsiNo(P, Occupied); // step on to next occupied one
|
---|
1028 | SpeedMeasure(P, DensityTime, StartTimeDo);
|
---|
1029 | InitDensityCalculation(P); // re-init densities to occupied standard
|
---|
1030 | SpeedMeasure(P, DensityTime, StopTimeDo);
|
---|
1031 | // InitPsiEnergyCalculation(P,Occupied);
|
---|
1032 | // CalculateDensityEnergy(P, 0);
|
---|
1033 | // EnergyAllReduce(P);
|
---|
1034 | }
|
---|
1035 |
|
---|
1036 |
|
---|
1037 | /** Calculate the forces.
|
---|
1038 | * From RunStruct::LevSNo downto RunStruct::InitLevSNo the following routines are called in a loop:
|
---|
1039 | * -# In case of RunStruct#DoSeparated another loop begins for the unoccupied states with some reinitalization
|
---|
1040 | * before and afterwards. The loop however is much the same as the one above.
|
---|
1041 | * -# ChangeToLevUp()\n
|
---|
1042 | * Repeat the loop or when the above stop is reached, the level is changed and the loop repeated.
|
---|
1043 | *
|
---|
1044 | * Afterwards comes the actual force and energy calculation by calling:
|
---|
1045 | * -# ControlNativeDensity()\n
|
---|
1046 | * Checks if the density still reproduces particle number.
|
---|
1047 | * -# CalculateIonLocalForce(), SpeedMeasure()'d in LocFTime\n
|
---|
1048 | * Calculale local part of force acting on Ions.
|
---|
1049 | * -# CalculateIonNonLocalForce(), SpeedMeasure()'d in NonLocFTime\n
|
---|
1050 | * Calculale local part of force acting on Ions.
|
---|
1051 | * -# CalculateEwald()\n
|
---|
1052 | * Calculate Ewald force acting on Ions.
|
---|
1053 | * -# CalculateIonForce()\n
|
---|
1054 | * Sum up those three contributions.
|
---|
1055 | * -# CorrectForces()\n
|
---|
1056 | * Shifts center of gravity of all forces for each Ion, so that the cell itself remains at rest.
|
---|
1057 | * -# GetOuterStop()
|
---|
1058 | * Calculates a mean force per Ion.
|
---|
1059 | * \param *P Problem at hand
|
---|
1060 | * \return 1 - cpulim received, break operation, 0 - continue as normal
|
---|
1061 | */
|
---|
1062 | int CalculateForce(struct Problem *P)
|
---|
1063 | {
|
---|
1064 | struct RunStruct *R = &P->R;
|
---|
1065 | struct Lattice *Lat = &P->Lat;
|
---|
1066 | struct Psis *Psi = &Lat->Psi;
|
---|
1067 | struct LatticeLevel *LevS = R->LevS;
|
---|
1068 | struct FileData *F = &P->Files;
|
---|
1069 | struct Ions *I = &P->Ion;
|
---|
1070 | int Stop=0, SuperStop = 0, OuterStop = 0;
|
---|
1071 | //int i, j;
|
---|
1072 | while ((R->LevSNo > R->InitLevSNo) || (!Stop && R->LevSNo == R->InitLevSNo)) {
|
---|
1073 | // occupied
|
---|
1074 | R->PsiStep = R->MaxPsiStep; // reset in-Psi-minimisation-counter, so that we really advance to the next wave function
|
---|
1075 | R->OldActualLocalPsiNo = R->ActualLocalPsiNo; // reset OldActualLocalPsiNo, as it might still point to a perturbed wave function from last level
|
---|
1076 | UpdateGramSchOldActualPsiNo(P,Psi);
|
---|
1077 | MinimiseOccupied(P, &Stop, &SuperStop);
|
---|
1078 | if (!I->StructOpt) {
|
---|
1079 | if ((P->Call.ReadSrcFiles != 1) || (!ParseWannierFile(P))) { // only localize and store if they have just been minimised (hence don't come solely from file), otherwise read stored values from file (if possible)
|
---|
1080 | SpeedMeasure(P, WannierTime, StartTimeDo);
|
---|
1081 | ComputeMLWF(P); // localization of orbitals
|
---|
1082 | SpeedMeasure(P, WannierTime, StopTimeDo);
|
---|
1083 | OutputVisSrcFiles(P, Occupied); // rewrite now localized orbitals
|
---|
1084 | // if (!TestReadnWriteSrcDensity(P,Occupied))
|
---|
1085 | // Error(SomeError,"TestReadnWriteSrcDensity failed!");
|
---|
1086 | }
|
---|
1087 |
|
---|
1088 | // // plot psi cuts
|
---|
1089 | // for (i=0; i < Psi->MaxPsiOfType; i++) // go through all wave functions (here without the extra ones for each process)
|
---|
1090 | // if ((Psi->AllPsiStatus[i].PsiType == Occupied) && (Psi->AllPsiStatus[i].my_color_comm_ST_Psi == P->Par.my_color_comm_ST_Psi))
|
---|
1091 | // for (j=0;j<NDIM;j++) {
|
---|
1092 | // //fprintf(stderr,"(%i) Plotting Psi %i/%i cut axis %i at coordinate %lg \n",P->Par.me, i, Psi->AllPsiStatus[i].MyGlobalNo, j, Lat->Psi.AddData[Psi->AllPsiStatus[i].MyLocalNo].WannierCentre[j]);
|
---|
1093 | // CalculateOneDensityR(Lat, R->LevS, R->Lev0->Dens, R->LevS->LPsi->LocalPsi[Psi->AllPsiStatus[i].MyLocalNo], R->Lev0->Dens->DensityArray[ActualDensity], R->FactorDensityR, 0);
|
---|
1094 | // PlotSrcPlane(P, j, Lat->Psi.AddData[Psi->AllPsiStatus[i].MyLocalNo].WannierCentre[j], Psi->AllPsiStatus[i].MyGlobalNo, R->Lev0->Dens->DensityArray[ActualDensity]);
|
---|
1095 | // }
|
---|
1096 |
|
---|
1097 | // unoccupied calc
|
---|
1098 | if (R->DoUnOccupied) {
|
---|
1099 | MinimiseUnoccupied(P, &Stop, &SuperStop);
|
---|
1100 | }
|
---|
1101 | // hamiltonian
|
---|
1102 | CalculateHamiltonian(P); // lambda_{kl} needed (and for bandgap after UnOccupied)
|
---|
1103 |
|
---|
1104 | // perturbed calc
|
---|
1105 | if ((R->DoPerturbation)) { // && R->LevSNo <= R->InitLevSNo) {
|
---|
1106 | AllocCurrentDensity(R->Lev0->Dens);// lock current density arrays
|
---|
1107 | MinimisePerturbed(P, &Stop, &SuperStop); // herein InitDensityCalculation() is called, thus no need to call it beforehand
|
---|
1108 |
|
---|
1109 | SpeedMeasure(P, CurrDensTime, StartTimeDo);
|
---|
1110 | if (SuperStop != 1) {
|
---|
1111 | if ((R->DoFullCurrent == 1) || ((R->DoFullCurrent == 2) && (CheckOrbitalOverlap(P) == 1))) { //test to check whether orbitals have mutual overlap and thus \\DeltaJ_{xc} must not be dropped
|
---|
1112 | R->DoFullCurrent = 1; // set to 1 if it was 2 but Check...() yielded necessity
|
---|
1113 | debug(P,"Filling with Delta j ...");
|
---|
1114 | FillDeltaCurrentDensity(P);
|
---|
1115 | }// else
|
---|
1116 | //debug(P,"There is no overlap between orbitals.");
|
---|
1117 | //debug(P,"Filling with j ...");
|
---|
1118 | //FillCurrentDensity(P);
|
---|
1119 | }
|
---|
1120 | SpeedMeasure(P, CurrDensTime, StopTimeDo);
|
---|
1121 | TestCurrent(P,0);
|
---|
1122 | TestCurrent(P,1);
|
---|
1123 | TestCurrent(P,2);
|
---|
1124 | if (F->DoOutCurr) {
|
---|
1125 | debug(P,"OutputCurrentDensity");
|
---|
1126 | OutputCurrentDensity(P);
|
---|
1127 | }
|
---|
1128 | if (R->VectorPlane != -1) {
|
---|
1129 | debug(P,"PlotVectorPlane");
|
---|
1130 | PlotVectorPlane(P,R->VectorPlane,R->VectorCut);
|
---|
1131 | }
|
---|
1132 | fprintf(stderr,"(%i) ECut [L%i] = %e Ht\n", P->Par.me, R->Lev0->LevelNo, pow(2*M_PI*M_PI/Lat->Volume*R->Lev0->TotalAllMaxG, 2./3.));
|
---|
1133 | debug(P,"Calculation of magnetic susceptibility");
|
---|
1134 | CalculateMagneticSusceptibility(P);
|
---|
1135 | debug(P,"Normal calculation of shielding over R-space");
|
---|
1136 | CalculateChemicalShielding(P);
|
---|
1137 | debug(P,"Reciprocal calculation of shielding over G-space");
|
---|
1138 | CalculateChemicalShieldingByReciprocalCurrentDensity(P);
|
---|
1139 | SpeedMeasure(P, CurrDensTime, StopTimeDo);
|
---|
1140 | DisAllocCurrentDensity(R->Lev0->Dens); // unlock current density arrays
|
---|
1141 | } else {
|
---|
1142 | InitDensityCalculation(P); // all unperturbed(!) wave functions've "changed" from ComputeMLWF(), thus reinit density
|
---|
1143 | }
|
---|
1144 | //fprintf(stderr,"(%i) DoubleG: %p, CArray[22]: %p, OldLocalPsi: %p\n", P->Par.me, R->LevS->DoubleG, R->Lev0->Dens->DensityCArray[22], R->LevS->LPsi->OldLocalPsi);
|
---|
1145 | }
|
---|
1146 |
|
---|
1147 | // if (!I->StructOpt && R->DoPerturbation) {
|
---|
1148 | // InitDensityCalculation(P); // most of the density array were used during FillCurrentDensity(), thus reinit density
|
---|
1149 | // }
|
---|
1150 |
|
---|
1151 | // next level
|
---|
1152 | ChangeToLevUp(P, &Stop);
|
---|
1153 | //if (isnan(LevS->LPsi->LocalPsi[R->ActualLocalPsiNo][0].re)) { fprintf(stderr,"(%i) WARNING in ChangeToLevUp(): LPsi->LocalPsi[%i]_[%i] = NaN!\n", P->Par.me, R->ActualLocalPsiNo, 0); Error(SomeError, "NaN-Fehler!"); }
|
---|
1154 | LevS = R->LevS; // re-set pointer that's changed from LevUp
|
---|
1155 | }
|
---|
1156 | //fprintf(stderr,"(%i) DoubleG: %p, CArray[22]: %p, OldLocalPsi: %p\n", P->Par.me, R->LevS->DoubleG, R->Lev0->Dens->DensityCArray[22], R->LevS->LPsi->OldLocalPsi);
|
---|
1157 | // necessary for correct ionic forces ...
|
---|
1158 | SpeedMeasure(P, LocFTime, StartTimeDo);
|
---|
1159 | CalculateIonLocalForce(P);
|
---|
1160 | SpeedMeasure(P, LocFTime, StopTimeDo);
|
---|
1161 | SpeedMeasure(P, NonLocFTime, StartTimeDo);
|
---|
1162 | CalculateIonNonLocalForce(P);
|
---|
1163 | SpeedMeasure(P, NonLocFTime, StopTimeDo);
|
---|
1164 | CalculateEwald(P, 0);
|
---|
1165 | CalculateIonForce(P);
|
---|
1166 | CorrectForces(P);
|
---|
1167 | // ... on output of densities
|
---|
1168 | if (F->DoOutOrbitals) { // output of each orbital
|
---|
1169 | debug(P,"OutputVisAllOrbital");
|
---|
1170 | OutputVisAllOrbital(P,0,1,Occupied);
|
---|
1171 | }
|
---|
1172 |
|
---|
1173 | OutputNorm(stderr, P);
|
---|
1174 | //fprintf(stderr,"(%i) DoubleG: %p, CArray[22]: %p, OldLocalPsi: %p\n", P->Par.me, R->LevS->DoubleG, R->Lev0->Dens->DensityCArray[22], R->LevS->LPsi->OldLocalPsi);
|
---|
1175 | OutputVis(P, P->R.Lev0->Dens->DensityArray[TotalDensity]);
|
---|
1176 | TestGramSch(P,LevS,Psi, -1);
|
---|
1177 | SpeedMeasure(P, SimTime, StopTimeDo);
|
---|
1178 | /*TestGramSch(P, R->LevS, &P->Lat.Psi); */
|
---|
1179 | ControlNativeDensity(P);
|
---|
1180 | SpeedMeasure(P, LocFTime, StartTimeDo);
|
---|
1181 | CalculateIonLocalForce(P);
|
---|
1182 | SpeedMeasure(P, LocFTime, StopTimeDo);
|
---|
1183 | SpeedMeasure(P, NonLocFTime, StartTimeDo);
|
---|
1184 | CalculateIonNonLocalForce(P);
|
---|
1185 | SpeedMeasure(P, NonLocFTime, StopTimeDo);
|
---|
1186 | CalculateEwald(P, 0);
|
---|
1187 | CalculateIonForce(P);
|
---|
1188 | CorrectForces(P);
|
---|
1189 | GetOuterStop(P);
|
---|
1190 | //fprintf(stderr,"(%i) DoubleG: %p, CArray[22]: %p, OldLocalPsi: %p\n", P->Par.me, R->LevS->DoubleG, R->Lev0->Dens->DensityCArray[22], R->LevS->LPsi->OldLocalPsi);
|
---|
1191 | if (SuperStop) OuterStop = 1;
|
---|
1192 | return OuterStop;
|
---|
1193 | }
|
---|
1194 |
|
---|
1195 | /** Wrapper for CalculateForce() for simplex minimisation of ionic forces.
|
---|
1196 | * \param *v vector with degrees of freedom
|
---|
1197 | * \param *params additional arguments, here Problem at hand
|
---|
1198 | */
|
---|
1199 | double my_f(const gsl_vector *v, void *params)
|
---|
1200 | {
|
---|
1201 | struct Problem *P = (struct Problem *)params;
|
---|
1202 | struct RunStruct *R = &P->R;
|
---|
1203 | struct Ions *I = &P->Ion;
|
---|
1204 | struct Energy *E = P->Lat.E;
|
---|
1205 | int i;
|
---|
1206 | double *R_ion, *R_old, *R_old_old, *FIon;
|
---|
1207 | double norm = 0.;
|
---|
1208 | int is,ia,k,index;
|
---|
1209 | int OuterStop;
|
---|
1210 | // update ion positions from vector coordinates
|
---|
1211 | index=0;
|
---|
1212 | for (is=0; is < I->Max_Types; is++) // for all elements
|
---|
1213 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) { // for all ions of element
|
---|
1214 | R_ion = &I->I[is].R[NDIM*ia];
|
---|
1215 | R_old = &I->I[is].R_old[NDIM*ia];
|
---|
1216 | R_old_old = &I->I[is].R_old_old[NDIM*ia];
|
---|
1217 | for (k=0;k<NDIM;k++) { // for all dimensions
|
---|
1218 | R_old_old[k] = R_old[k];
|
---|
1219 | R_old[k] = R_ion[k];
|
---|
1220 | R_ion[k] = gsl_vector_get (v, index++);
|
---|
1221 | }
|
---|
1222 | }
|
---|
1223 | // recalculate ionic forces (do electronic minimisation)
|
---|
1224 | R->OuterStep++;
|
---|
1225 | if (P->Call.out[NormalOut]) fprintf(stderr,"(%i) Commencing Fletcher-Reeves step %i ... \n",P->Par.me, R->OuterStep);
|
---|
1226 | R->NewRStep++;
|
---|
1227 | OutputIonCoordinates(P);
|
---|
1228 | UpdateWaveAfterIonMove(P);
|
---|
1229 | for (i=MAXOLD-1; i > 0; i--) // store away old energies
|
---|
1230 | E->TotalEnergyOuter[i] = E->TotalEnergyOuter[i-1];
|
---|
1231 | UpdateToNewWaves(P);
|
---|
1232 | E->TotalEnergyOuter[0] = E->TotalEnergy[0];
|
---|
1233 | OuterStop = CalculateForce(P);
|
---|
1234 | UpdateIonsU(P);
|
---|
1235 | CorrectVelocity(P);
|
---|
1236 | CalculateEnergyIonsU(P);
|
---|
1237 | /* if ((P->R.ScaleTempStep > 0) && ((R->OuterStep-1) % P->R.ScaleTempStep == 0))
|
---|
1238 | ScaleTemp(P);*/
|
---|
1239 | if ((R->OuterStep-1) % P->R.OutSrcStep == 0)
|
---|
1240 | OutputVisSrcFiles(P, Occupied);
|
---|
1241 | if ((R->OuterStep-1) % P->R.OutVisStep == 0) {
|
---|
1242 | /* // recalculate density for the specific wave function ...
|
---|
1243 | CalculateOneDensityR(Lat, LevS, Dens0, PsiDat, Dens0->DensityArray[ActualDensity], R->FactorDensityR, 0);
|
---|
1244 | // ... and output (wherein ActualDensity is used instead of TotalDensity)
|
---|
1245 | OutputVis(P);
|
---|
1246 | OutputIonForce(P);
|
---|
1247 | EnergyOutput(P, 1);*/
|
---|
1248 | }
|
---|
1249 | // sum up mean force
|
---|
1250 | for (is=0; is < I->Max_Types; is++)
|
---|
1251 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
|
---|
1252 | FIon = &I->I[is].FIon[NDIM*ia];
|
---|
1253 | norm += sqrt(RSP3(FIon,FIon));
|
---|
1254 | }
|
---|
1255 | if (P->Par.me == 0) fprintf(stderr,"(%i) Mean Force over all Ions %e\n",P->Par.me, norm);
|
---|
1256 | return norm;
|
---|
1257 | }
|
---|
1258 |
|
---|
1259 | void my_df(const gsl_vector *v, void *params, gsl_vector *df)
|
---|
1260 | {
|
---|
1261 | struct Problem *P = (struct Problem *)params;
|
---|
1262 | struct Ions *I = &P->Ion;
|
---|
1263 | double *FIon;
|
---|
1264 | int is,ia,k, index=0;
|
---|
1265 | for (is=0; is < I->Max_Types; is++) // for all elements
|
---|
1266 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) { // for all ions of element
|
---|
1267 | FIon = &I->I[is].FIon[NDIM*ia];
|
---|
1268 | for (k=0;k<NDIM;k++) { // for all dimensions
|
---|
1269 | gsl_vector_set (df, index++, FIon[k]);
|
---|
1270 | }
|
---|
1271 | }
|
---|
1272 | }
|
---|
1273 |
|
---|
1274 | void my_fdf (const gsl_vector *x, void *params, double *f, gsl_vector *df)
|
---|
1275 | {
|
---|
1276 | *f = my_f(x, params);
|
---|
1277 | my_df(x, params, df);
|
---|
1278 | }
|
---|
1279 |
|
---|
1280 |
|
---|
1281 | /** CG implementation for the structure optimization.
|
---|
1282 | * We follow the example from the GSL manual.
|
---|
1283 | * \param *P Problem at hand
|
---|
1284 | */
|
---|
1285 | void UpdateIon_PRCG(struct Problem *P)
|
---|
1286 | {
|
---|
1287 | struct RunStruct *Run = &P->R;
|
---|
1288 | struct Ions *I = &P->Ion;
|
---|
1289 | size_t np = NDIM*I->Max_TotalIons; // d.o.f = number of ions times number of dimensions
|
---|
1290 | int is, ia, k, index;
|
---|
1291 | double *R;
|
---|
1292 |
|
---|
1293 | const gsl_multimin_fdfminimizer_type *T;
|
---|
1294 | gsl_multimin_fdfminimizer *s;
|
---|
1295 | gsl_vector *x;
|
---|
1296 | gsl_multimin_function_fdf minex_func;
|
---|
1297 |
|
---|
1298 | size_t iter = 0;
|
---|
1299 | int status;
|
---|
1300 |
|
---|
1301 | /* Starting point */
|
---|
1302 | x = gsl_vector_alloc (np);
|
---|
1303 |
|
---|
1304 | index=0;
|
---|
1305 | for (is=0; is < I->Max_Types; is++) // for all elements
|
---|
1306 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) { // for all ions of element
|
---|
1307 | R = &I->I[is].R[NDIM*ia];
|
---|
1308 | for (k=0;k<NDIM;k++) // for all dimensions
|
---|
1309 | gsl_vector_set (x, index++, R[k]);
|
---|
1310 | }
|
---|
1311 |
|
---|
1312 | /* Initialize method and iterate */
|
---|
1313 | minex_func.f = &my_f;
|
---|
1314 | minex_func.df = &my_df;
|
---|
1315 | minex_func.fdf = &my_fdf;
|
---|
1316 | minex_func.n = np;
|
---|
1317 | minex_func.params = (void *)P;
|
---|
1318 |
|
---|
1319 | T = gsl_multimin_fdfminimizer_conjugate_pr;
|
---|
1320 | s = gsl_multimin_fdfminimizer_alloc (T, np);
|
---|
1321 |
|
---|
1322 | gsl_multimin_fdfminimizer_set (s, &minex_func, x, 0.1, 1e-4);
|
---|
1323 |
|
---|
1324 | do {
|
---|
1325 | iter++;
|
---|
1326 | status = gsl_multimin_fdfminimizer_iterate(s);
|
---|
1327 |
|
---|
1328 | if (status)
|
---|
1329 | break;
|
---|
1330 |
|
---|
1331 | status = gsl_multimin_test_gradient (s->gradient, 1e-4);
|
---|
1332 |
|
---|
1333 | if (status == GSL_SUCCESS)
|
---|
1334 | if (P->Par.me == 0) fprintf (stderr,"(%i) converged to minimum at\n", P->Par.me);
|
---|
1335 |
|
---|
1336 | if (P->Par.me == 0) fprintf (stderr, "(%i) %5d %10.5f\n", P->Par.me, (int)iter, s->f);
|
---|
1337 | } while (status == GSL_CONTINUE && iter < Run->MaxOuterStep);
|
---|
1338 |
|
---|
1339 | gsl_vector_free(x);
|
---|
1340 | gsl_multimin_fdfminimizer_free (s);
|
---|
1341 | }
|
---|
1342 |
|
---|
1343 | /** Does the Molecular Dynamics Calculations.
|
---|
1344 | * All of the following is SpeedMeasure()'d in SimTime.
|
---|
1345 | * Initialization by calling:
|
---|
1346 | * -# CorrectVelocity()\n
|
---|
1347 | * Shifts center of gravity of Ions momenta, so that the cell itself remains at rest.
|
---|
1348 | * -# CalculateEnergyIonsU(), SpeedMeasure()'d in TimeTypes#InitSimTime\n
|
---|
1349 | * Calculates kinetic energy of "movable" Ions.
|
---|
1350 | * -# CalculateForce()\n
|
---|
1351 | * Does the minimisation, calculates densities, then energies and finally the forces.
|
---|
1352 | * -# OutputVisSrcFiles()\n
|
---|
1353 | * If desired, so-far made calculations are stored to file for later restarting.
|
---|
1354 | * -# OutputIonForce()\n
|
---|
1355 | * Write ion forces to file.
|
---|
1356 | * -# EnergyOutput()\n
|
---|
1357 | * Write calculated energies to screen or file.
|
---|
1358 | *
|
---|
1359 | * The simulation phase begins:
|
---|
1360 | * -# UpdateIonsR()\n
|
---|
1361 | * Move Ions according to the calculated force.
|
---|
1362 | * -# UpdateWaveAfterIonMove()\n
|
---|
1363 | * Update wave functions by averaging LocalPsi coefficients after the Ions have been shifted.
|
---|
1364 | * -# UpdateToNewWaves()\n
|
---|
1365 | * Update after wave functions have changed.
|
---|
1366 | * -# CalculateForce()\n
|
---|
1367 | * Does the minimisation, calculates densities, then energies and finally the forces.
|
---|
1368 | * -# UpdateIonsU()\n
|
---|
1369 | * Change ion's velocities according to the calculated acting force.
|
---|
1370 | * -# CorrectVelocity()\n
|
---|
1371 | * Shifts center of gravity of Ions momenta, so that the cell itself remains at rest.
|
---|
1372 | * -# CalculateEnergyIonsU()\n
|
---|
1373 | * Calculates kinetic energy of "movable" Ions.
|
---|
1374 | * -# ScaleTemp()\n
|
---|
1375 | * The temperature is scaled, so the systems energy remains constant (they must not gain momenta out of nothing)
|
---|
1376 | * -# OutputVisSrcFiles()\n
|
---|
1377 | * If desired, so-far made calculations are stored to file for later restarting.
|
---|
1378 | * -# OutputVis()\n
|
---|
1379 | * Visulization data for OpenDX is written at certain steps if desired.
|
---|
1380 | * -# OutputIonForce()\n
|
---|
1381 | * Write ion forces to file.
|
---|
1382 | * -# EnergyOutput()\n
|
---|
1383 | * Write calculated energies to screen or file.
|
---|
1384 | *
|
---|
1385 | * After the ground state is found:
|
---|
1386 | * -# CalculateUnOccupied()\n
|
---|
1387 | * Energies of unoccupied orbitals - that have been left out completely so far -
|
---|
1388 | * are calculated.
|
---|
1389 | * -# TestGramSch()\n
|
---|
1390 | * Test if orbitals are still orthogonal.
|
---|
1391 | * -# CalculateHamiltonian()\n
|
---|
1392 | * Construct Hamiltonian and calculate Eigenvalues.
|
---|
1393 | * -# ComputeMLWF()\n
|
---|
1394 | * Localize orbital wave functions.
|
---|
1395 | *
|
---|
1396 | * \param *P Problem at hand
|
---|
1397 | */
|
---|
1398 | void CalculateMD(struct Problem *P)
|
---|
1399 | {
|
---|
1400 | struct RunStruct *R = &P->R;
|
---|
1401 | struct Ions *I = &P->Ion;
|
---|
1402 | int OuterStop = 0;
|
---|
1403 | SpeedMeasure(P, SimTime, StartTimeDo);
|
---|
1404 | SpeedMeasure(P, InitSimTime, StartTimeDo);
|
---|
1405 | R->OuterStep = 0;
|
---|
1406 | CorrectVelocity(P);
|
---|
1407 | CalculateEnergyIonsU(P);
|
---|
1408 | OuterStop = CalculateForce(P);
|
---|
1409 | R->OuterStep++;
|
---|
1410 | P->Speed.InitSteps++;
|
---|
1411 | SpeedMeasure(P, InitSimTime, StopTimeDo);
|
---|
1412 | OutputIonForce(P);
|
---|
1413 | EnergyOutput(P, 1);
|
---|
1414 | if (R->MaxOuterStep > 0) {
|
---|
1415 | debug(P,"Commencing Fletcher-Reeves minimisation on ionic structure ...");
|
---|
1416 | UpdateIon_PRCG(P);
|
---|
1417 | }
|
---|
1418 | if (I->StructOpt && !OuterStop) {
|
---|
1419 | I->StructOpt = 0;
|
---|
1420 | OuterStop = CalculateForce(P);
|
---|
1421 | }
|
---|
1422 | /* while (!OuterStop && R->OuterStep <= R->MaxOuterStep) {
|
---|
1423 | R->OuterStep++;
|
---|
1424 | if (P->Call.out[NormalOut]) fprintf(stderr,"(%i) Commencing MD steps %i ... \n",P->Par.me, R->OuterStep);
|
---|
1425 | P->R.t += P->R.delta_t; // increase current time by delta_t
|
---|
1426 | R->NewRStep++;
|
---|
1427 | if (P->Ion.StructOpt == 1) {
|
---|
1428 | UpdateIons(P);
|
---|
1429 | OutputIonCoordinates(P);
|
---|
1430 | } else {
|
---|
1431 | UpdateIonsR(P);
|
---|
1432 | }
|
---|
1433 | UpdateWaveAfterIonMove(P);
|
---|
1434 | for (i=MAXOLD-1; i > 0; i--) // store away old energies
|
---|
1435 | E->TotalEnergyOuter[i] = E->TotalEnergyOuter[i-1];
|
---|
1436 | UpdateToNewWaves(P);
|
---|
1437 | E->TotalEnergyOuter[0] = E->TotalEnergy[0];
|
---|
1438 | OuterStop = CalculateForce(P);
|
---|
1439 | UpdateIonsU(P);
|
---|
1440 | CorrectVelocity(P);
|
---|
1441 | CalculateEnergyIonsU(P);
|
---|
1442 | if ((P->R.ScaleTempStep > 0) && ((R->OuterStep-1) % P->R.ScaleTempStep == 0))
|
---|
1443 | ScaleTemp(P);
|
---|
1444 | if ((R->OuterStep-1) % P->R.OutSrcStep == 0)
|
---|
1445 | OutputVisSrcFiles(P, Occupied);
|
---|
1446 | if ((R->OuterStep-1) % P->R.OutVisStep == 0) {
|
---|
1447 | // recalculate density for the specific wave function ...
|
---|
1448 | //CalculateOneDensityR(Lat, LevS, Dens0, PsiDat, Dens0->DensityArray[ActualDensity], R->FactorDensityR, 0);
|
---|
1449 | // ... and output (wherein ActualDensity is used instead of TotalDensity)
|
---|
1450 | //OutputVis(P);
|
---|
1451 | //OutputIonForce(P);
|
---|
1452 | //EnergyOutput(P, 1);
|
---|
1453 | }
|
---|
1454 | }*/
|
---|
1455 | SpeedMeasure(P, SimTime, StopTimeDo);
|
---|
1456 | // hack to output each orbital before and after spread-minimisation
|
---|
1457 | /* if (P->Files.MeOutVis) P->Files.OutputPosType = (enum ModeType *) Realloc(P->Files.OutputPosType,sizeof(enum ModeType)*(P->Files.OutVisStep+P->Lat.Psi.MaxPsiOfType*2),"OutputVis");
|
---|
1458 | OutputVisAllOrbital(P, 0, 2, Occupied);
|
---|
1459 | CalculateHamiltonian(P);
|
---|
1460 | if (P->Files.MeOutVis) P->Files.OutVisStep -= (P->Lat.Psi.MaxPsiOfType)*2;
|
---|
1461 | OutputVisAllOrbital(P, 1, 2, Occupied);*/
|
---|
1462 | CloseOutputFiles(P);
|
---|
1463 | }
|
---|