source: pcp/src/run.c@ 64ca279

Last change on this file since 64ca279 was a0bcf1, checked in by Frederik Heber <heber@…>, 17 years ago

-initial commit
-Minimum set of files needed from ESPACK SVN repository
-Switch to three tantamount package parts instead of all relating to pcp (as at some time Ralf's might find inclusion as well)

  • Property mode set to 100644
File size: 65.3 KB
Line 
1/** \file run.c
2 * Initialization of levels and calculation super-functions.
3 *
4 * Most important functions herein are CalculateForce() and CalculateMD(), which calls various
5 * functions in order to perfom the Molecular Dynamics simulation. MinimiseOccupied() and MinimiseUnOccupied()
6 * call various functions to perform the actual minimisation for the occupied and unoccupied wave functions.
7 * CalculateMinimumStop() evaluates the stop condition for desired precision or step count (or external signals).
8 *
9 * Minor functions are ChangeToLevUp() (which takes the calculation to the next finer level),
10 * UpdateActualPsiNo() (next Psi is minimized and an additional orthonormalization takes place) and UpdateToNewWaves()
11 * (which reinitializes density calculations after the wave functions have changed due to the ionic motion).
12 * OccupyByFermi() re-occupies orbitals according to Fermi distribution if calculated with additional orbitals.
13 * InitRun() and InitRunLevel() prepare the RunStruct with starting values. UpdateIon_PRCG() implements a CG
14 * algorithm to minimize the ionic forces and thus optimize the structure.
15 *
16 *
17 Project: ParallelCarParrinello
18 \author Jan Hamaekers
19 \date 2000
20
21 File: run.c
22 $Id: run.c,v 1.101.2.2 2007-04-21 13:01:13 foo Exp $
23*/
24
25#include <signal.h>
26#include <stdlib.h>
27#include <stdio.h>
28#include <string.h>
29#include <math.h>
30#include <gsl/gsl_multimin.h>
31#include <gsl/gsl_vector.h>
32#include <gsl/gsl_errno.h>
33#include <gsl/gsl_math.h>
34#include <gsl/gsl_min.h>
35#include "mpi.h"
36#include "data.h"
37#include "errors.h"
38#include "helpers.h"
39#include "init.h"
40#include "opt.h"
41#include "myfft.h"
42#include "gramsch.h"
43#include "output.h"
44#include "energy.h"
45#include "density.h"
46#include "ions.h"
47#include "run.h"
48#include "riemann.h"
49#include "mymath.h"
50#include "pcp.h"
51#include "perturbed.h"
52#include "wannier.h"
53
54
55/** Initialization of the (initial) zero and simulation levels in RunStruct structure.
56 * RunStruct::InitLevS is set onto the STANDARTLEVEL in Lattice::Lev[], RunStruct::InitLev0 on
57 * level 0, RunStruct::LevS onto Lattice::MaxLevel-1 (maximum level) and RunStruct::Lev0 onto
58 * Lattice::MaxLevel-2 (one below).
59 * In case of RiemannTensor use an additional Riemann level is intertwined.
60 * \param *P Problem at hand
61 */
62void InitRunLevel(struct Problem *P)
63{
64 struct Lattice *Lat = &P->Lat;
65 struct RunStruct *R = &P->R;
66 struct RiemannTensor *RT = &Lat->RT;
67 int d,i;
68
69 switch (Lat->RT.Use) {
70 case UseNotRT:
71 R->InitLevSNo = STANDARTLEVEL;
72 R->InitLev0No = 0;
73 R->InitLevS = &P->Lat.Lev[R->InitLevSNo];
74 R->InitLev0 = &P->Lat.Lev[R->InitLev0No];
75 R->LevSNo = Lat->MaxLevel-1;
76 R->Lev0No = Lat->MaxLevel-2;
77 R->LevS = &P->Lat.Lev[R->LevSNo];
78 R->Lev0 = &P->Lat.Lev[R->Lev0No];
79 break;
80 case UseRT:
81 R->InitLevSNo = STANDARTLEVEL;
82 R->InitLev0No = 0;
83 R->InitLevS = &P->Lat.Lev[R->InitLevSNo];
84 R->InitLev0 = &P->Lat.Lev[R->InitLev0No];
85
86 /* R->LevSNo = Lat->MaxLevel-1;
87 R->Lev0No = Lat->MaxLevel-2;*/
88 R->LevSNo = Lat->MaxLevel-2;
89 R->Lev0No = Lat->MaxLevel-3;
90
91 R->LevRNo = P->Lat.RT.RiemannLevel;
92 R->LevRSNo = STANDARTLEVEL;
93 R->LevR0No = 0;
94 R->LevS = &P->Lat.Lev[R->LevSNo];
95 R->Lev0 = &P->Lat.Lev[R->Lev0No];
96 R->LevR = &P->Lat.Lev[R->LevRNo];
97 R->LevRS = &P->Lat.Lev[R->LevRSNo];
98 R->LevR0 = &P->Lat.Lev[R->LevR0No];
99 for (d=0; d<NDIM; d++) {
100 RT->NUpLevRS[d] = 1;
101 for (i=R->LevRNo-1; i >= R->LevRSNo; i--)
102 RT->NUpLevRS[d] *= Lat->LevelSizes[i];
103 RT->NUpLevR0[d] = 1;
104 for (i=R->LevRNo-1; i >= R->LevR0No; i--)
105 RT->NUpLevR0[d] *= Lat->LevelSizes[i];
106 }
107 break;
108 }
109}
110
111
112/** Initialization of RunStruct structure.
113 * Most of the actual entries in the RunStruct are set to their starter no-nonsense
114 * values (init if LatticeLevel is not STANDARTLEVEL otherwise normal max): FactorDensity,
115 * all Steps, XCEnergyFactor and HGcFactor, current and archived energie values are zeroed.
116 * \param *P problem at hand
117 */
118void InitRun(struct Problem *P)
119{
120 struct Lattice *Lat = &P->Lat;
121 struct RunStruct *R = &P->R;
122 struct Psis *Psi = &Lat->Psi;
123 int i,j;
124
125#ifndef SHORTSPEED
126 R->MaxMinStepFactor = Psi->AllMaxLocalNo;
127#else
128 R->MaxMinStepFactor = SHORTSPEED;
129#endif
130 if (R->LevSNo == STANDARTLEVEL) {
131 R->ActualMaxMinStep = R->MaxMinStep*R->MaxPsiStep*R->MaxMinStepFactor;
132 R->ActualRelEpsTotalEnergy = R->RelEpsTotalEnergy;
133 R->ActualRelEpsKineticEnergy = R->RelEpsKineticEnergy;
134 R->ActualMaxMinStopStep = R->MaxMinStopStep;
135 R->ActualMaxMinGapStopStep = R->MaxMinGapStopStep;
136 } else {
137 R->ActualMaxMinStep = R->MaxInitMinStep*R->MaxPsiStep*R->MaxMinStepFactor;
138 R->ActualRelEpsTotalEnergy = R->InitRelEpsTotalEnergy;
139 R->ActualRelEpsKineticEnergy = R->InitRelEpsKineticEnergy;
140 R->ActualMaxMinStopStep = R->InitMaxMinStopStep;
141 R->ActualMaxMinGapStopStep = R->InitMaxMinGapStopStep;
142 }
143
144 R->FactorDensityR = 1./Lat->Volume;
145 R->FactorDensityC = Lat->Volume;
146
147 R->OldActualLocalPsiNo = R->ActualLocalPsiNo = 0;
148 R->UseOldPsi = 1;
149 R->MinStep = 0;
150 R->PsiStep = 0;
151 R->AlphaStep = 0;
152 R->DoCalcCGGauss = 0;
153 R->CurrentMin = Occupied;
154
155 R->MinStopStep = 0;
156
157 R->ScanPotential = 0; // in order to deactivate, simply set this to 0
158 R->ScanAtStep = 6; // must not be set to same as ScanPotential (then gradient is never calculated)
159 R->ScanDelta = 0.01; // step size on advance
160 R->ScanFlag = 0; // flag telling that we are scanning
161
162 //R->DoBrent = 0; // InitRun() occurs after ReadParameters(), thus this deactivates DoBrent line search
163
164 /* R->MaxOuterStep = 1;
165 R->MeanForceEps = 0.0;*/
166
167 R->NewRStep = 1;
168 /* Factor */
169 R->XCEnergyFactor = 1.0/R->FactorDensityR;
170 R->HGcFactor = 1.0/Lat->Volume;
171
172 /* Sollte auch geaendert werden */
173 /*Grad->GradientArray[GraSchGradient] = LevS->LPsi->LocalPsi[Psi->LocalNo];*/
174
175 for (j=Occupied;j<Extra;j++)
176 for (i=0; i < RUNMAXOLD; i++) {
177 R->TE[j][i] = 0;
178 R->KE[j][i] = 0;
179 }
180
181 R->MinimisationName = (char **) Malloc((perturbations+3)*(sizeof(char *)), "InitRun: *MinimisationName");
182 for (j=Occupied;j<=Extra;j++)
183 R->MinimisationName[j] = (char *) MallocString(6*(sizeof(char)), "InitRun: MinimisationName[]");
184 strncpy(R->MinimisationName[0],"Occ",6);
185 strncpy(R->MinimisationName[1],"UnOcc",6);
186 strncpy(R->MinimisationName[2],"P0",6);
187 strncpy(R->MinimisationName[3],"P1",6);
188 strncpy(R->MinimisationName[4],"P2",6);
189 strncpy(R->MinimisationName[5],"RxP0",6);
190 strncpy(R->MinimisationName[6],"RxP1",6);
191 strncpy(R->MinimisationName[7],"RxP2",6);
192 strncpy(R->MinimisationName[8],"Extra",6);
193}
194
195/** Re-occupy orbitals according to Fermi (bottom-up energy-wise).
196 * All OnePsiElementAddData#PsiFactor's are set to zero. \a electrons is set to Psi#Use-dependent
197 * Psis#GlobalNo.
198 * Then we go through OnePsiElementAddData#Lambda, find biggest, put one or two electrons into
199 * its PsiFactor, withdraw from \a electrons. Go on as long as there are \a electrons left.
200 * \param *P Problem at hand
201 */
202void OccupyByFermi(struct Problem *P) {
203 struct Lattice *Lat = &P->Lat;
204 struct Psis *Psi = &Lat->Psi;
205 int i, index, electrons = 0;
206 double lambda, electronsperorbit;
207
208 for (i=0; i< Psi->LocalNo; i++) {// set all PsiFactors to zero
209 Psi->LocalPsiStatus[i].PsiFactor = 0.0;
210 Psi->LocalPsiStatus[i].PsiType = UnOccupied;
211 //Psi->LocalPsiStatus[i].PsiGramSchStatus = (R->DoSeparated) ? NotUsedToOrtho : NotOrthogonal;
212 }
213
214 electronsperorbit = (Psi->Use == UseSpinUpDown) ? 1 : 2;
215 switch (Psi->PsiST) { // how many electrons may we re-distribute
216 case SpinDouble:
217 electrons = Psi->GlobalNo[PsiMaxNoDouble];
218 break;
219 case SpinUp:
220 electrons = Psi->GlobalNo[PsiMaxNoUp];
221 break;
222 case SpinDown:
223 electrons = Psi->GlobalNo[PsiMaxNoDown];
224 break;
225 }
226 while (electrons > 0) {
227 lambda = 0.0;
228 index = 0;
229 for (i=0; i< Psi->LocalNo; i++) // seek biggest unoccupied one
230 if ((lambda < Psi->AddData[i].Lambda) && (Psi->LocalPsiStatus[i].PsiFactor == 0.0)) {
231 index = i;
232 lambda = Psi->AddData[i].Lambda;
233 }
234 Psi->LocalPsiStatus[index].PsiFactor = electronsperorbit; // occupy state
235 Psi->LocalPsiStatus[index].PsiType = Occupied;
236 electrons--; // one electron less
237 }
238 for (i=0; i< Psi->LocalNo; i++) // set all PsiFactors to zero
239 if (Psi->LocalPsiStatus[i].PsiType == UnOccupied) Psi->LocalPsiStatus[i].PsiFactor = 1.0;
240
241 SpeedMeasure(P, DensityTime, StartTimeDo);
242 UpdateDensityCalculation(P);
243 SpeedMeasure(P, DensityTime, StopTimeDo);
244 InitPsiEnergyCalculation(P,Occupied); // goes through all orbitals calculating kinetic and non-local
245 CalculateDensityEnergy(P, 0);
246 EnergyAllReduce(P);
247// SetCurrentMinState(P,UnOccupied);
248// InitPsiEnergyCalculation(P,UnOccupied); /* STANDARTLEVEL */
249// CalculateGapEnergy(P); /* STANDARTLEVEL */
250// EnergyAllReduce(P);
251// SetCurrentMinState(P,Occupied);
252}
253
254/** Use next local Psi: Update RunStruct::ActualLocalPsiNo.
255 * Increases OnePsiElementAddData::Step, RunStruct::MinStep and RunStruct::PsiStep.
256 * RunStruct::OldActualLocalPsiNo is set to current one and this distributed
257 * (UpdateGramSchOldActualPsiNo()) among process.
258 * Afterwards RunStruct::ActualLocalPsiNo is increased (modulo Psis::LocalNo of
259 * this process) and again distributed (UpdateGramSchActualPsiNo()).
260 * Due to change in the GramSchmidt-Status, GramSch() is called for Orthonormalization.
261 * \param *P Problem at hand#
262 * \param IncType skip types PsiTypeTag#UnOccupied or PsiTypeTag#Occupied we only want next(thus we can handily advance only through either type)
263 */
264void UpdateActualPsiNo(struct Problem *P, enum PsiTypeTag IncType)
265{
266 struct RunStruct *R = &P->R;
267 if (R->CurrentMin != IncType) {
268 SetCurrentMinState(P,IncType);
269 R->PsiStep = R->MaxPsiStep; // force step to next Psi
270 }
271 P->Lat.Psi.AddData[R->ActualLocalPsiNo].Step++;
272 R->MinStep++;
273 R->PsiStep++;
274 if (R->OldActualLocalPsiNo != R->ActualLocalPsiNo) {
275 R->OldActualLocalPsiNo = R->ActualLocalPsiNo;
276 UpdateGramSchOldActualPsiNo(P, &P->Lat.Psi);
277 }
278 if (R->PsiStep >= R->MaxPsiStep) {
279 R->PsiStep=0;
280 do {
281 R->ActualLocalPsiNo++;
282 R->ActualLocalPsiNo %= P->Lat.Psi.LocalNo;
283 } while (P->Lat.Psi.AllPsiStatus[R->ActualLocalPsiNo].PsiType != IncType);
284 UpdateGramSchActualPsiNo(P, &P->Lat.Psi);
285 //fprintf(stderr,"(%i) ActualLocalNo: %d\n", P->Par.me, R->ActualLocalPsiNo);
286 }
287 if ((R->UseAddGramSch == 1 && (R->OldActualLocalPsiNo != R->ActualLocalPsiNo || P->Lat.Psi.NoOfPsis == 1)) || R->UseAddGramSch == 2) {
288 if (P->Lat.Psi.LocalPsiStatus[R->OldActualLocalPsiNo].PsiGramSchStatus != NotUsedToOrtho) // don't reset by accident last psi of former minimisation run
289 SetGramSchOldActualPsi(P, &P->Lat.Psi, NotOrthogonal);
290 SpeedMeasure(P, GramSchTime, StartTimeDo);
291 if (R->CurrentMin <= UnOccupied)
292 GramSch(P, R->LevS, &P->Lat.Psi, Orthonormalize);
293 else
294 GramSch(P, R->LevS, &P->Lat.Psi, Orthogonalize); //Orthogonalize
295 SpeedMeasure(P, GramSchTime, StopTimeDo);
296 }
297}
298
299/** Resets all OnePsiElement#DoBrent.\
300 * \param *P Problem at hand
301 * \param *Psi pointer to wave functions
302 */
303void ResetBrent(struct Problem *P, struct Psis *Psi) {
304 int i;
305 for (i=0; i< Psi->LocalNo; i++) {// set all PsiFactors to zero
306 //fprintf(stderr,"(%i) DoBrent[%i] = %i\n", P->Par.me, i, Psi->LocalPsiStatus[i].DoBrent);
307 if (Psi->LocalPsiStatus[i].PsiType == Occupied) Psi->LocalPsiStatus[i].DoBrent = 4;
308 }
309}
310
311/** Sets current minimisation state.
312 * Stores given \a state in RunStruct#CurrentMin and sets pointer Lattice#E accordingly.
313 * \param *P Problem at hand
314 * \param state given PsiTypeTag state
315 */
316void SetCurrentMinState(struct Problem *P, enum PsiTypeTag state) {
317 P->R.CurrentMin = state;
318 P->R.TotalEnergy = &(P->R.TE[state][0]);
319 P->R.KineticEnergy = &(P->R.KE[state][0]);
320 P->R.ActualRelTotalEnergy = &(P->R.ActualRelTE[state][0]);
321 P->R.ActualRelKineticEnergy = &(P->R.ActualRelKE[state][0]);
322 P->Lat.E = &(P->Lat.Energy[state]);
323}
324/*{
325 struct RunStruct *R = &P->R;
326 struct Lattice *Lat = &P->Lat;
327 struct Psis *Psi = &Lat->Psi;
328 P->Lat.Psi.AddData[R->ActualLocalPsiNo].Step++;
329 R->MinStep++;
330 R->PsiStep++;
331 if (R->OldActualLocalPsiNo != R->ActualLocalPsiNo) { // remember old actual local number
332 R->OldActualLocalPsiNo = R->ActualLocalPsiNo;
333 UpdateGramSchOldActualPsiNo(P, &P->Lat.Psi);
334 }
335 if (R->PsiStep >= R->MaxPsiStep) { // done enough minimisation steps for this orbital?
336 R->PsiStep=0;
337 do { // step on as long as we are still on a SkipType orbital
338 R->ActualLocalPsiNo++;
339 R->ActualLocalPsiNo %= P->Lat.Psi.LocalNo;
340 } while ((P->Lat.Psi.LocalPsiStatus[R->ActualLocalPsiNo].PsiType == SkipType));
341 UpdateGramSchActualPsiNo(P, &P->Lat.Psi);
342 if (R->UseAddGramSch >= 1) {
343 SetGramSchOldActualPsi(P,Psi,NotOrthogonal);
344 // setze von OldActual bis bla auf nicht orthogonal
345 GramSch(P, R->LevS, &P->Lat.Psi, Orthonormalize);
346 }
347 } else if (R->UseAddGramSch == 2) {
348 SetGramSchOldActualPsi(P, &P->Lat.Psi, NotOrthogonal);
349 //if (SkipType == UnOccupied)
350 //ResetGramSch(P,Psi);
351 //fprintf(stderr,"UpdateActualPsiNo: GramSch() for %i\n",R->OldActualLocalPsiNo);
352 GramSch(P, R->LevS, &P->Lat.Psi, Orthonormalize);
353 }
354}*/
355
356/** Upgrades the calculation to the next finer level.
357 * If we are below the initial level,
358 * ChangePsiAndDensToLevUp() prepares density and Psi coefficients.
359 * Then the level change is made as RunStruct::LevSNo and RunStruct::Lev0No are decreased.
360 * The RunStruct::OldActualLocalPsi is set to current one and both are distributed
361 * (UpdateGramSchActualPsiNo(), UpdateGramSchOldActualPsiNo()).
362 * The PseudoPot'entials adopt the level up by calling ChangePseudoToLevUp().
363 * Now we are prepared to reset Energy::PsiEnergy and local and total density energy and
364 * recalculate them: InitPsiEnergyCalculation(), CalculateDensityEnergy() and CalculateIonsEnergy().
365 * Results are gathered EnergyAllReduce() and the output made EnergyOutput().
366 * Finally, the stop condition are reset for the new level (depending if it's the STANDARTLEVEL or
367 * not).
368 * \param *P Problem at hand
369 * \param *Stop is set to zero if we are below or equal to init level (see CalculateForce())
370 * \sa UpdateToNewWaves() very similar in the procedure, only the update of the Psis and density
371 * (ChangePsiAndDensToLevUp()) is already made there.
372 * \bug Missing TotalEnergy shifting for other PsiTypeTag's!
373 */
374static void ChangeToLevUp(struct Problem *P, int *Stop)
375{
376 struct RunStruct *R = &P->R;
377 struct Lattice *Lat = &P->Lat;
378 struct Psis *Psi = &Lat->Psi;
379 struct Energy *E = Lat->E;
380 struct RiemannTensor *RT = &Lat->RT;
381 int i;
382 if (R->LevSNo <= R->InitLevSNo) {
383 fprintf(stderr, "(%i) ChangeLevUp: LevSNo(%i) <= InitLevSNo(%i)\n", P->Par.me, R->LevSNo, R->InitLevSNo);
384 *Stop = 1;
385 return;
386 }
387 if (P->Call.out[LeaderOut] && (P->Par.me == 0))
388 fprintf(stderr, "(0) ChangeLevUp: LevSNo(%i) InitLevSNo(%i)\n", R->LevSNo, R->InitLevSNo);
389 *Stop = 0;
390 P->Speed.LevUpSteps++;
391 SpeedMeasure(P, SimTime, StopTimeDo);
392 SpeedMeasure(P, InitSimTime, StartTimeDo);
393 SpeedMeasure(P, InitDensityTime, StartTimeDo);
394 ChangePsiAndDensToLevUp(P);
395 SpeedMeasure(P, InitDensityTime, StopTimeDo);
396 R->LevSNo--;
397 R->Lev0No--;
398 if (RT->ActualUse == standby && R->LevSNo == STANDARTLEVEL) {
399 P->Lat.RT.ActualUse = active;
400 CalculateRiemannTensorData(P);
401 Error(SomeError, "Calculate RT: Not further implemented");
402 }
403 R->LevS = &P->Lat.Lev[R->LevSNo];
404 R->Lev0 = &P->Lat.Lev[R->Lev0No];
405 R->OldActualLocalPsiNo = R->ActualLocalPsiNo;
406 UpdateGramSchActualPsiNo(P, &P->Lat.Psi);
407 UpdateGramSchOldActualPsiNo(P, &P->Lat.Psi);
408 ResetBrent(P, &P->Lat.Psi);
409 R->PsiStep=0;
410 R->MinStep=0;
411 P->Grad.GradientArray[GraSchGradient] = R->LevS->LPsi->LocalPsi[Psi->LocalNo];
412 ChangePseudoToLevUp(P);
413 for (i=0; i<MAXALLPSIENERGY; i++)
414 SetArrayToDouble0(E->PsiEnergy[i], Psi->LocalNo);
415 SetArrayToDouble0(E->AllLocalDensityEnergy, MAXALLDENSITYENERGY);
416 SetArrayToDouble0(E->AllTotalDensityEnergy, MAXALLDENSITYENERGY);
417 for (i=MAXOLD-1; i > 0; i--) {
418 E->TotalEnergy[i] = E->TotalEnergy[i-1];
419 Lat->Energy[UnOccupied].TotalEnergy[i] = Lat->Energy[UnOccupied].TotalEnergy[i-1];
420 }
421 InitPsiEnergyCalculation(P,Occupied);
422 CalculateDensityEnergy(P,1);
423 CalculateIonsEnergy(P);
424 EnergyAllReduce(P);
425/* SetCurrentMinState(P,UnOccupied);
426 InitPsiEnergyCalculation(P,UnOccupied);
427 CalculateGapEnergy(P);
428 EnergyAllReduce(P);
429 SetCurrentMinState(P,Occupied);*/
430 EnergyOutput(P,0);
431 if (R->LevSNo == STANDARTLEVEL) {
432 R->ActualMaxMinStep = R->MaxMinStep*R->MaxPsiStep*R->MaxMinStepFactor;
433 R->ActualRelEpsTotalEnergy = R->RelEpsTotalEnergy;
434 R->ActualRelEpsKineticEnergy = R->RelEpsKineticEnergy;
435 R->ActualMaxMinStopStep = R->MaxMinStopStep;
436 R->ActualMaxMinGapStopStep = R->MaxMinGapStopStep;
437 } else {
438 R->ActualMaxMinStep = R->MaxInitMinStep*R->MaxPsiStep*R->MaxMinStepFactor;
439 R->ActualRelEpsTotalEnergy = R->InitRelEpsTotalEnergy;
440 R->ActualRelEpsKineticEnergy = R->InitRelEpsKineticEnergy;
441 R->ActualMaxMinStopStep = R->InitMaxMinStopStep;
442 R->ActualMaxMinGapStopStep = R->InitMaxMinGapStopStep;
443 }
444 R->MinStopStep = 0;
445 SpeedMeasure(P, InitSimTime, StopTimeDo);
446 SpeedMeasure(P, SimTime, StartTimeDo);
447 if (P->Call.out[LeaderOut] && (P->Par.me == 0))
448 fprintf(stderr, "(0) ChangeLevUp: LevSNo(%i) InitLevSNo(%i) Done\n", R->LevSNo, R->InitLevSNo);
449}
450
451/** Updates after the wave functions have changed (e.g.\ Ion moved).
452 * Old and current RunStruct::ActualLocalPsiNo are zeroed and distributed among the processes.
453 * InitDensityCalculation() is called, afterwards the pseudo potentials update to the new
454 * wave functions UpdatePseudoToNewWaves().
455 * Energy::AllLocalDensityEnergy, Energy::AllTotalDensityEnergy, Energy::AllTotalIonsEnergy and
456 * Energy::PsiEnergy[i] are set to zero.
457 * We are set to recalculate all of the following energies: Psis InitPsiEnergyCalculation(), density
458 * CalculateDensityEnergy(), ionic CalculateIonsEnergy() and ewald CalculateEwald().
459 * Results are gathered from all processes EnergyAllReduce() and EnergyOutput() is called.
460 * Finally, the various conditons in the RunStruct for stopping the calculation are set: number of
461 * minimisation steps, relative total or kinetic energy change or how often stop condition was
462 * evaluated.
463 * \param *P Problem at hand
464 */
465static void UpdateToNewWaves(struct Problem *P)
466{
467 struct RunStruct *R = &P->R;
468 struct Lattice *Lat = &P->Lat;
469 struct Psis *Psi = &Lat->Psi;
470 struct Energy *E = Lat->E;
471 int i,type;
472 R->OldActualLocalPsiNo = R->ActualLocalPsiNo = 0;
473 //if (isnan((double)R->LevS->LPsi->LocalPsi[R->OldActualLocalPsiNo][0].re)) { fprintf(stderr,"(%i) WARNING in UpdateGramSchActualPsiNo(): LPsi->LocalPsi[%i]_[%i] = NaN!\n", P->Par.me, R->OldActualLocalPsiNo, 0); Error(SomeError, "NaN-Fehler!"); }
474 UpdateGramSchActualPsiNo(P, &P->Lat.Psi);
475 UpdateGramSchOldActualPsiNo(P, &P->Lat.Psi);
476 R->PsiStep=0;
477 R->MinStep=0;
478 SpeedMeasure(P, InitDensityTime, StartTimeDo);
479 //if (isnan((double)R->LevS->LPsi->LocalPsi[R->OldActualLocalPsiNo][0].re)) { fprintf(stderr,"(%i) WARNING in Update../InitDensityCalculation(): LPsi->LocalPsi[%i]_[%i] = NaN!\n", P->Par.me, R->OldActualLocalPsiNo, 0); Error(SomeError, "NaN-Fehler!"); }
480 InitDensityCalculation(P);
481 SpeedMeasure(P, InitDensityTime, StopTimeDo);
482 UpdatePseudoToNewWaves(P);
483 for (i=0; i<MAXALLPSIENERGY; i++)
484 SetArrayToDouble0(E->PsiEnergy[i], Psi->LocalNo);
485 SetArrayToDouble0(E->AllLocalDensityEnergy, MAXALLDENSITYENERGY);
486 SetArrayToDouble0(E->AllTotalDensityEnergy, MAXALLDENSITYENERGY);
487 SetArrayToDouble0(E->AllTotalIonsEnergy, MAXALLIONSENERGY);
488 InitPsiEnergyCalculation(P,Occupied);
489 CalculateDensityEnergy(P,1);
490 CalculateIonsEnergy(P);
491 CalculateEwald(P, 0);
492 EnergyAllReduce(P);
493 if (R->DoUnOccupied) {
494 SetCurrentMinState(P,UnOccupied);
495 InitPsiEnergyCalculation(P,UnOccupied); /* STANDARTLEVEL */
496 CalculateGapEnergy(P); /* STANDARTLEVEL */
497 EnergyAllReduce(P);
498 }
499 if (R->DoPerturbation)
500 for(type=Perturbed_P0;type <=Perturbed_RxP2;type++) {
501 SetCurrentMinState(P,type);
502 InitPerturbedEnergyCalculation(P,1); /* STANDARTLEVEL */
503 EnergyAllReduce(P);
504 }
505 SetCurrentMinState(P,Occupied);
506 E->TotalEnergyOuter[0] = E->TotalEnergy[0];
507 EnergyOutput(P,0);
508 R->ActualMaxMinStep = R->MaxMinStep*R->MaxPsiStep*R->MaxMinStepFactor;
509 R->ActualRelEpsTotalEnergy = R->RelEpsTotalEnergy;
510 R->ActualRelEpsKineticEnergy = R->RelEpsKineticEnergy;
511 R->ActualMaxMinStopStep = R->MaxMinStopStep;
512 R->ActualMaxMinGapStopStep = R->MaxMinGapStopStep;
513 R->MinStopStep = 0;
514}
515
516/** Evaluates the stop condition and returns 0 or 1 for occupied states.
517 * Stop is set when:
518 * - SuperStop at best possible point (e.g.\ LevelChange): RunStruct::PsiStep == 0 && SuperStop == 1
519 * - RunStruct::PsiStep && RunStruct::MinStopStep modulo RunStruct::ActualMaxMinStopStep == 0
520 * - To many minimisation steps: RunStruct::MinStep > RunStruct::ActualMaxMinStopStep
521 * - below relative rate of change:
522 * - Remember old values: Shift all RunStruct::TotalEnergy and RunStruct::KineticEnergy by
523 * one and transfer current one from Energy::TotalEnergy and Energy::AllTotalPsiEnergy[KineticEnergy].
524 * - if more than one minimisation step was made, calculate the relative changes of total
525 * energy and kinetic energy and store them in RunStruct::ActualRelTotalEnergy and
526 * RunStruct::ActualRelKineticEnergy and check them against the sought for minimum
527 * values RunStruct::ActualRelEpsTotalEnergy and RunStruct::ActualRelEpsKineticEnergy.
528 * - if RunStruct::PsiStep is zero (default), increase RunStruct::MinStopStep
529 * \param *P Problem at hand
530 * \param SuperStop 1 - external signal: ceasing calculation, 0 - no signal
531 * \return Stop: 1 - stop, 0 - continue
532 */
533int CalculateMinimumStop(struct Problem *P, int SuperStop)
534{
535 int Stop = 0, i;
536 struct RunStruct *R = &P->R;
537 struct Energy *E = P->Lat.E;
538 if (R->PsiStep == 0 && SuperStop) Stop = 1;
539 if (R->PsiStep == 0 && ((R->MinStopStep % R->ActualMaxMinStopStep == 0 && R->CurrentMin != UnOccupied) || (R->MinStopStep % R->ActualMaxMinGapStopStep == 0 && R->CurrentMin == UnOccupied))) {
540// if (R->MinStep >= R->ActualMaxMinStep) {
541// Stop = 1;
542// fprintf(stderr,"(%i) MinStep %i >= %i MaxMinStep.\n", P->Par.me, R->MinStep, R->ActualMaxMinStep);
543// }
544 for (i=RUNMAXOLD-1; i > 0; i--) {
545 R->TotalEnergy[i] = R->TotalEnergy[i-1];
546 R->KineticEnergy[i] = R->KineticEnergy[i-1];
547 }
548 R->TotalEnergy[0] = E->TotalEnergy[0];
549 R->KineticEnergy[0] = E->AllTotalPsiEnergy[KineticEnergy];
550 if (R->MinStopStep) {
551 //if (R->TotalEnergy[1] < MYEPSILON) fprintf(stderr,"CalculateMinimumStop: R->TotalEnergy[1] = %lg\n",R->TotalEnergy[1]);
552 R->ActualRelTotalEnergy[0] = fabs((R->TotalEnergy[0]-R->TotalEnergy[1])/R->TotalEnergy[1]);
553 //if (R->KineticEnergy[1] < MYEPSILON) fprintf(stderr,"CalculateMinimumStop: R->KineticEnergy[1] = %lg\n",R->KineticEnergy[1]);
554 //if (R->CurrentMin < Perturbed_P0)
555 R->ActualRelKineticEnergy[0] = fabs((R->KineticEnergy[0]-R->KineticEnergy[1])/R->KineticEnergy[1]);
556 //else R->ActualRelKineticEnergy[0] = 0.;
557 if (P->Call.out[LeaderOut] && (P->Par.me == 0))
558 switch (R->CurrentMin) {
559 default:
560 fprintf(stderr, "ARelTE: %e\tARelKE: %e\n", R->ActualRelTotalEnergy[0], R->ActualRelKineticEnergy[0]);
561 break;
562 case UnOccupied:
563 fprintf(stderr, "(%i) -------------------------> ARelTGE: %e\tARelKGE: %e\n", P->Par.me, R->ActualRelTotalEnergy[0], R->ActualRelKineticEnergy[0]);
564 break;
565 }
566 if ((R->ActualRelTotalEnergy[0] < R->ActualRelEpsTotalEnergy) &&
567 (R->ActualRelKineticEnergy[0] < R->ActualRelEpsKineticEnergy))
568 Stop = 1;
569 }
570 }
571 if (R->PsiStep == 0)
572 R->MinStopStep++;
573 if (P->Call.WriteSrcFiles == 2)
574 OutputVisSrcFiles(P, R->CurrentMin);
575 return(Stop);
576}
577
578/** Evaluates the stop condition and returns 0 or 1 for gap energies.
579 * Stop is set when:
580 * - SuperStop at best possible point (e.g.\ LevelChange): RunStruct::PsiStep == 0 && SuperStop == 1
581 * - RunStruct::PsiStep && RunStruct::MinStopStep modulo RunStruct::ActualMaxMinStopStep == 0
582 * - To many minimisation steps: RunStruct::MinStep > RunStruct::ActualMaxMinStopStep
583 * - below relative rate of change:
584 * - Remember old values: Shift all RunStruct::TotalEnergy and RunStruct::KineticEnergy by
585 * one and transfer current one from Energy::TotalEnergy and Energy::AllTotalPsiEnergy[KineticEnergy].
586 * - if more than one minimisation step was made, calculate the relative changes of total
587 * energy and kinetic energy and store them in RunStruct::ActualRelTotalEnergy and
588 * RunStruct::ActualRelKineticEnergy and check them against the sought for minimum
589 * values RunStruct::ActualRelEpsTotalEnergy and RunStruct::ActualRelEpsKineticEnergy.
590 * - if RunStruct::PsiStep is zero (default), increase RunStruct::MinStopStep
591 * \param *P Problem at hand
592 * \param SuperStop 1 - external signal: ceasing calculation, 0 - no signal
593 * \return Stop: 1 - stop, 0 - continue
594 * \sa CalculateMinimumStop() - same procedure for occupied states
595 *//*
596static double CalculateGapStop(struct Problem *P, int SuperStop)
597{
598 int Stop = 0, i;
599 struct RunStruct *R = &P->R;
600 struct Lattice *Lat = &P->Lat;
601 struct Energy *E = P->Lat.E;
602 if (R->PsiStep == 0 && SuperStop) Stop = 1;
603 if (R->PsiStep == 0 && (R->MinStopStep % R->ActualMaxMinGapStopStep) == 0) {
604 if (R->MinStep >= R->ActualMaxMinStep) Stop = 1;
605 for (i=RUNMAXOLD-1; i > 0; i--) {
606 R->TotalGapEnergy[i] = R->TotalGapEnergy[i-1];
607 R->KineticGapEnergy[i] = R->KineticGapEnergy[i-1];
608 }
609 R->TotalGapEnergy[0] = Lat->Energy[UnOccupied].TotalEnergy[0];
610 R->KineticGapEnergy[0] = E->AllTotalPsiEnergy[GapPsiEnergy];
611 if (R->MinStopStep) {
612 if (R->TotalGapEnergy[1] < MYEPSILON) fprintf(stderr,"CalculateMinimumStop: R->TotalGapEnergy[1] = %lg\n",R->TotalGapEnergy[1]);
613 R->ActualRelTotalGapEnergy[0] = fabs((R->TotalGapEnergy[0]-R->TotalGapEnergy[1])/R->TotalGapEnergy[1]);
614 if (R->KineticGapEnergy[1] < MYEPSILON) fprintf(stderr,"CalculateMinimumStop: R->KineticGapEnergy[1] = %lg\n",R->KineticGapEnergy[1]);
615 R->ActualRelKineticGapEnergy[0] = fabs((R->KineticGapEnergy[0]-R->KineticGapEnergy[1])/R->KineticGapEnergy[1]);
616 if (P->Call.out[LeaderOut] && (P->Par.me == 0))
617 fprintf(stderr, "(%i) -------------------------> ARelTGE: %e\tARelKGE: %e\n", P->Par.me, R->ActualRelTotalGapEnergy[0], R->ActualRelKineticGapEnergy[0]);
618 if ((R->ActualRelTotalGapEnergy[0] < R->ActualRelEpsTotalGapEnergy) &&
619 (R->ActualRelKineticGapEnergy[0] < R->ActualRelEpsKineticGapEnergy))
620 Stop = 1;
621 }
622 }
623 if (R->PsiStep == 0)
624 R->MinStopStep++;
625
626 return(Stop);
627}*/
628
629#define StepTolerance 1e-4
630
631static void CalculateEnergy(struct Problem *P) {
632 SpeedMeasure(P, DensityTime, StartTimeDo);
633 UpdateDensityCalculation(P);
634 SpeedMeasure(P, DensityTime, StopTimeDo);
635 UpdatePsiEnergyCalculation(P);
636 CalculateDensityEnergy(P, 0);
637 //CalculateIonsEnergy(P);
638 EnergyAllReduce(P);
639}
640
641/** Energy functional depending on one parameter \a x (for a certain Psi in a certain conjugate direction).
642 * \param x parameter for the which the function must be minimized
643 * \param *params additional params
644 * \return total energy if Psi is changed according to the given parameter
645 */
646static double fn1 (double x, void * params) {
647 struct Problem *P = (struct Problem *)(params);
648 struct RunStruct *R = &P->R;
649 struct Lattice *Lat = &P->Lat;
650 struct LatticeLevel *LevS = R->LevS;
651 int ElementSize = (sizeof(fftw_complex) / sizeof(double));
652 int i=R->ActualLocalPsiNo;
653 double ret;
654
655 //fprintf(stderr,"(%i) Evaluating fnl at %lg ...\n",P->Par.me, x);
656 //TestForOrth(P,R->LevS,P->Grad.GradientArray[GraSchGradient]);
657 CalculateNewWave(P, &x); // also stores Psi to oldPsi
658 //TestGramSch(P,R->LevS,&P->Lat.Psi,Occupied);
659 //fprintf(stderr,"(%i) Testing for orthogonality of %i against ...\n",P->Par.me, R->ActualLocalPsiNo);
660 //TestForOrth(P, LevS, LevS->LPsi->LocalPsi[R->ActualLocalPsiNo]);
661 //UpdateActualPsiNo(P, Occupied);
662 //UpdateEnergyArray(P);
663 CalculateEnergy(P);
664 ret = Lat->E->TotalEnergy[0];
665 memcpy(LevS->LPsi->LocalPsi[i], LevS->LPsi->OldLocalPsi[i], ElementSize*LevS->MaxG*sizeof(double)); // restore old Psi from OldPsi
666 //fprintf(stderr,"(%i) Psi %i at %p retrieved from OldPsi at %p: Old[0] %lg+i%lg\n", P->Par.me, R->ActualLocalPsiNo, LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].re, LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].im);
667 CalculateEnergy(P);
668 //fprintf(stderr,"(%i) fnl(%lg) = %lg\n", P->Par.me, x, ret);
669 return ret;
670}
671
672#ifdef HAVE_INLINE
673inline void flip(double *a, double *b) {
674#else
675void flip(double *a, double *b) {
676#endif
677 double tmp = *a;
678 *a = *b;
679 *b = tmp;
680}
681
682
683/** Minimise PsiType#Occupied orbitals.
684 * It is checked whether CallOptions#ReadSrcFiles is set and thus coefficients for the level have to be
685 * read from file and afterwards initialized.
686 *
687 * Then follows the main loop, until a stop condition is met:
688 * -# CalculateNewWave()\n
689 * Over a conjugate gradient method the next (minimal) wave function is sought for.
690 * -# UpdateActualPsiNo()\n
691 * Switch local Psi to next one.
692 * -# UpdateEnergyArray()\n
693 * Shift archived energy values to make space for next one.
694 * -# UpdateDensityCalculation(), SpeedMeasure()'d in DensityTime\n
695 * Calculate TotalLocalDensity of LocalPsis and gather results as TotalDensity.
696 * -# UpdatePsiEnergyCalculation()\n
697 * Calculate kinetic and non-local energy contributons from the Psis.
698 * -# CalculateDensityEnergy()\n
699 * Calculate remaining energy contributions from the Density and adds \f$V_xc\f$ onto DensityTypes#HGDensity.
700 * -# CalculateIonsEnergy()\n
701 * Calculate the Gauss self energy of the Ions.
702 * -# EnergyAllReduce()\n
703 * Gather PsiEnergy results from all processes and sum up together with all other contributions to TotalEnergy.
704 * -# CheckCPULIM()\n
705 * Check if external signal has been received (e.g. end of time slit on cluster), break operation at next possible moment.
706 * -# CalculateMinimumStop()\n
707 * Evaluates stop condition if desired precision or steps or ... have been reached. Otherwise go to
708 * CalculateNewWave().
709 *
710 * Before return orthonormality is tested.
711 * \param *P Problem at hand
712 * \param *Stop flag to determine if epsilon stop conditions have met
713 * \param *SuperStop flag to determinte whether external signal's required end of calculations
714 */
715static void MinimiseOccupied(struct Problem *P, int *Stop, int *SuperStop)
716{
717 struct RunStruct *R = &P->R;
718 struct Lattice *Lat = &P->Lat;
719 struct Psis *Psi = &Lat->Psi;
720 //struct FileData *F = &P->Files;
721// int i;
722// double norm;
723 //double dEdt0,ddEddt0,HartreeddEddt0,XCddEddt0, d[4], D[4],ConDirHConDir;
724 struct LatticeLevel *LevS = R->LevS;
725 int ElementSize = (sizeof(fftw_complex) / sizeof(double));
726 int iter = 0, status, max_iter=10;
727 const gsl_min_fminimizer_type *T;
728 gsl_min_fminimizer *s;
729 double m, a, b;
730 double f_m = 0., f_a, f_b;
731 double dcos, dsin;
732 int g;
733 fftw_complex *ConDir = P->Grad.GradientArray[ConDirGradient];
734 fftw_complex *source = NULL, *oldsource = NULL;
735 gsl_function F;
736 F.function = &fn1;
737 F.params = (void *) P;
738 T = gsl_min_fminimizer_brent;
739 s = gsl_min_fminimizer_alloc (T);
740 int DoBrent, StartLocalPsiNo;
741
742 ResetBrent(P,Psi);
743 *Stop = 0;
744 if (P->Call.ReadSrcFiles) {
745 if (!ReadSrcPsiDensity(P,Occupied,1, R->LevSNo)) { // if file for level exists and desired, read from file
746 P->Call.ReadSrcFiles = 0; // -r was bogus, remove it, have to start anew
747 fprintf(stderr,"(%i) Re-initializing, files are missing/corrupted...\n", P->Par.me);
748 InitPsisValue(P, Psi->TypeStartIndex[Occupied], Psi->TypeStartIndex[Occupied+1]); // initialize perturbed array for this run
749 ResetGramSchTagType(P, Psi, Occupied, NotOrthogonal); // loaded values are orthonormal
750 SpeedMeasure(P, InitGramSchTime, StartTimeDo);
751 GramSch(P, R->LevS, Psi, Orthonormalize);
752 SpeedMeasure(P, InitGramSchTime, StopTimeDo);
753 } else {
754 SpeedMeasure(P, InitSimTime, StartTimeDo);
755 fprintf(stderr,"(%i) Reading from file...\n", P->Par.me);
756 ReadSrcPsiDensity(P, Occupied, 0, R->LevSNo);
757 ResetGramSchTagType(P, Psi, Occupied, IsOrthonormal); // loaded values are orthonormal
758 }
759 SpeedMeasure(P, InitDensityTime, StartTimeDo);
760 InitDensityCalculation(P);
761 SpeedMeasure(P, InitDensityTime, StopTimeDo);
762 InitPsiEnergyCalculation(P, Occupied); // go through all orbitals calculating kinetic and non-local
763 StartLocalPsiNo = R->ActualLocalPsiNo;
764 do { // otherwise OnePsiElementAddData#Lambda is calculated only for current Psi not for all
765 CalculateDensityEnergy(P, 0);
766 UpdateActualPsiNo(P, Occupied);
767 } while (R->ActualLocalPsiNo != StartLocalPsiNo);
768 CalculateIonsEnergy(P);
769 EnergyAllReduce(P);
770 SpeedMeasure(P, InitSimTime, StopTimeDo);
771 R->LevS->Step++;
772 EnergyOutput(P,0);
773 }
774 if (P->Call.ReadSrcFiles != 1) { // otherwise minimise oneself
775 fprintf(stderr,"(%i)Beginning minimisation of type %s ...\n", P->Par.me, R->MinimisationName[Occupied]);
776 while (*Stop != 1) { // loop testing condition over all Psis
777 // in the following loop, we have two cases:
778 // 1) still far away and just guessing: Use the normal CalculateNewWave() to improve Psi
779 // 2) closer (DoBrent=-1): use brent line search instead
780 // and due to these two cases, we also have two ifs inside each in order to catch stepping from one case
781 // to the other - due to decreasing DoBrent and/or stepping to the next Psi (which may not yet be DoBrent==1)
782
783 // case 1)
784 if (Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent != 1) {
785 //SetArrayToDouble0((double *)LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo],LevS->MaxG*2);
786 memcpy(LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], ElementSize*LevS->MaxG*sizeof(double)); // restore old Psi from OldPsi
787 //fprintf(stderr,"(%i) Psi %i at %p stored in OldPsi at %p: Old[0] %lg+i%lg\n", P->Par.me, R->ActualLocalPsiNo, LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].re, LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].im);
788 f_m = P->Lat.E->TotalEnergy[0]; // grab first value
789 m = 0.;
790 CalculateNewWave(P,NULL);
791 if ((R->DoBrent == 1) && (fabs(Lat->E->delta[0]) < M_PI/4.))
792 Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent--;
793 if (Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent != 1) {
794 UpdateActualPsiNo(P, Occupied);
795 UpdateEnergyArray(P);
796 CalculateEnergy(P); // just to get a sensible delta
797 if ((R->ActualLocalPsiNo != R->OldActualLocalPsiNo) && (Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent == 1)) {
798 R->OldActualLocalPsiNo = R->ActualLocalPsiNo;
799 // if we stepped on to a new Psi, which is already down at DoBrent=1 unlike the last one,
800 // then an up-to-date gradient is missing for the following Brent line search
801 fprintf(stderr,"(%i) We stepped on to a new Psi, which is already in the Brent regime ...re-calc delta\n", P->Par.me);
802 memcpy(LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], ElementSize*LevS->MaxG*sizeof(double)); // restore old Psi from OldPsi
803 //fprintf(stderr,"(%i) Psi %i at %p stored in OldPsi at %p: Old[0] %lg+i%lg\n", P->Par.me, R->ActualLocalPsiNo, LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].re, LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].im);
804 f_m = P->Lat.E->TotalEnergy[0]; // grab first value
805 m = 0.;
806 DoBrent = Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent;
807 Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent = 2;
808 CalculateNewWave(P,NULL);
809 Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent = DoBrent;
810 }
811 //fprintf(stderr,"(%i) fnl(%lg) = %lg\n", P->Par.me, m, f_m);
812 }
813 }
814
815 // case 2)
816 if (Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent == 1) {
817 R->PsiStep=R->MaxPsiStep; // no more fresh gradients from this point for current ActualLocalPsiNo
818 a = b = 0.5*fabs(Lat->E->delta[0]);
819 // we have a meaningful first minimum guess from above CalculateNewWave() resp. from end of this if of last step: Lat->E->delta[0]
820 source = LevS->LPsi->LocalPsi[R->ActualLocalPsiNo];
821 oldsource = LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo];
822 //SetArrayToDouble0((double *)source,LevS->MaxG*2);
823 do {
824 a -= fabs(Lat->E->delta[0]) == 0 ? 0.1 : fabs(Lat->E->delta[0]);
825 if (a < -M_PI/2.) a = -M_PI/2.;// for this to work we need the pre-estimation which leads us into a nice regime (without gradient being the better _initial_ guess for a Psi)
826 dcos = cos(a);
827 dsin = sin(a);
828 for (g = 0; g < LevS->MaxG; g++) { // Here all coefficients are updated for the new found wave function
829 //if (isnan(ConDir[g].re)) { fprintf(stderr,"WARNGING: CalculateLineSearch(): ConDir_%i(%i) = NaN!\n", R->ActualLocalPsiNo, g); Error(SomeError, "NaN-Fehler!"); }
830 c_re(source[g]) = c_re(oldsource[g])*dcos + c_re(ConDir[g])*dsin;
831 c_im(source[g]) = c_im(oldsource[g])*dcos + c_im(ConDir[g])*dsin;
832 }
833 CalculateEnergy(P);
834 f_a = P->Lat.E->TotalEnergy[0]; // grab second value at left border
835 //fprintf(stderr,"(%i) fnl(%lg) = %lg, Check ConDir[0] = %lg+i%lg, source[0] = %lg+i%lg, oldsource[0] = %lg+i%lg, TotDens[0] = %lg\n", P->Par.me, a, f_a, ConDir[0].re, ConDir[0].im, source[0].re, source[0].im, oldsource[0].re, oldsource[0].im, R->Lev0->Dens->DensityArray[TotalDensity][0]);
836 } while (f_a < f_m);
837
838 //SetArrayToDouble0((double *)source,LevS->MaxG*2);
839 do {
840 b += fabs(Lat->E->delta[0]) == 0 ? 0.1 : fabs(Lat->E->delta[0]);
841 if (b > M_PI/2.) b = M_PI/2.;
842 dcos = cos(b);
843 dsin = sin(b);
844 for (g = 0; g < LevS->MaxG; g++) { // Here all coefficients are updated for the new found wave function
845 //if (isnan(ConDir[g].re)) { fprintf(stderr,"WARNGING: CalculateLineSearch(): ConDir_%i(%i) = NaN!\n", R->ActualLocalPsiNo, g); Error(SomeError, "NaN-Fehler!"); }
846 c_re(source[g]) = c_re(oldsource[g])*dcos + c_re(ConDir[g])*dsin;
847 c_im(source[g]) = c_im(oldsource[g])*dcos + c_im(ConDir[g])*dsin;
848 }
849 CalculateEnergy(P);
850 f_b = P->Lat.E->TotalEnergy[0]; // grab second value at left border
851 //fprintf(stderr,"(%i) fnl(%lg) = %lg\n", P->Par.me, b, f_b);
852 } while (f_b < f_m);
853
854 memcpy(source, oldsource, ElementSize*LevS->MaxG*sizeof(double)); // restore old Psi from OldPsi
855 //fprintf(stderr,"(%i) Psi %i at %p retrieved from OldPsi at %p: Old[0] %lg+i%lg\n", P->Par.me, R->ActualLocalPsiNo, LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].re, LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].im);
856 CalculateEnergy(P);
857
858 fprintf(stderr,"(%i) Preparing brent with f(a) (%lg,%lg)\t f(b) (%lg,%lg)\t f(m) (%lg,%lg) ...\n", P->Par.me,a,f_a,b,f_b,m,f_m);
859 iter=0;
860 gsl_min_fminimizer_set_with_values (s, &F, m, f_m, a, f_a, b, f_b);
861 fprintf (stderr,"(%i) using %s method\n",P->Par.me, gsl_min_fminimizer_name (s));
862 fprintf (stderr,"(%i) %5s [%9s, %9s] %9s %9s\n",P->Par.me, "iter", "lower", "upper", "min", "err(est)");
863 fprintf (stderr,"(%i) %5d [%.7f, %.7f] %.7f %.7f\n",P->Par.me, iter, a, b, m, b - a);
864 do {
865 iter++;
866 status = gsl_min_fminimizer_iterate (s);
867
868 m = gsl_min_fminimizer_x_minimum (s);
869 a = gsl_min_fminimizer_x_lower (s);
870 b = gsl_min_fminimizer_x_upper (s);
871
872 status = gsl_min_test_interval (a, b, 0.001, 0.0);
873
874 if (status == GSL_SUCCESS)
875 fprintf (stderr,"(%i) Converged:\n",P->Par.me);
876
877 fprintf (stderr,"(%i) %5d [%.7f, %.7f] %.7f %.7f\n",P->Par.me,
878 iter, a, b, m, b - a);
879 } while (status == GSL_CONTINUE && iter < max_iter);
880 CalculateNewWave(P,&m);
881 TestGramSch(P,LevS,Psi,Occupied);
882 UpdateActualPsiNo(P, Occupied); // step on due setting to MaxPsiStep further above
883 UpdateEnergyArray(P);
884 CalculateEnergy(P);
885 //fprintf(stderr,"(%i) Final value for Psi %i: %lg\n", P->Par.me, R->ActualLocalPsiNo, P->Lat.E->TotalEnergy[0]);
886 R->MinStopStep = R->ActualMaxMinStopStep; // check stop condition every time
887 if (*SuperStop != 1)
888 *SuperStop = CheckCPULIM(P);
889 *Stop = CalculateMinimumStop(P, *SuperStop);
890 R->OldActualLocalPsiNo = R->ActualLocalPsiNo;
891 if (Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent == 1) { // new wave function means new gradient!
892 DoBrent = Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent;
893 Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent = 2;
894 //SetArrayToDouble0((double *)LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo],LevS->MaxG*2);
895 memcpy(LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], ElementSize*LevS->MaxG*sizeof(double)); // restore old Psi from OldPsi
896 //fprintf(stderr,"(%i) Psi %i at %p stored in OldPsi at %p: Old[0] %lg+i%lg\n", P->Par.me, R->ActualLocalPsiNo, LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].re, LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].im);
897 f_m = P->Lat.E->TotalEnergy[0]; // grab first value
898 m = 0.;
899 CalculateNewWave(P,NULL);
900 Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent = DoBrent;
901 }
902 }
903
904 if (Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent != 1) { // otherwise the following checks eliminiate stop=1 from above
905 if (*SuperStop != 1)
906 *SuperStop = CheckCPULIM(P);
907 *Stop = CalculateMinimumStop(P, *SuperStop);
908 }
909 /*EnergyOutput(P, Stop);*/
910 P->Speed.Steps++;
911 R->LevS->Step++;
912 /*ControlNativeDensity(P);*/
913 //fprintf(stderr,"(%i) Stop %i\n",P->Par.me, Stop);
914 }
915 //OutputVisSrcFiles(P, Occupied); // is now done after localization (ComputeMLWF())
916 }
917 TestGramSch(P,R->LevS,Psi, Occupied);
918}
919
920/** Minimisation of the PsiTagType#UnOccupied orbitals in the field of the occupied ones.
921 * Assuming RunStruct#ActualLocalPsiNo is currenlty still an occupied wave function, we stop onward to the first
922 * unoccupied and reset RunStruct#OldActualLocalPsiNo. Then it is checked whether CallOptions#ReadSrcFiles is set
923 * and thus coefficients for the level have to be read from file and afterwards initialized.
924 *
925 * Then follows the main loop, until a stop condition is met:
926 * -# CalculateNewWave()\n
927 * Over a conjugate gradient method the next (minimal) wave function is sought for.
928 * -# UpdateActualPsiNo()\n
929 * Switch local Psi to next one.
930 * -# UpdateEnergyArray()\n
931 * Shift archived energy values to make space for next one.
932 * -# UpdateDensityCalculation(), SpeedMeasure()'d in DensityTime\n
933 * Calculate TotalLocalDensity of LocalPsis and gather results as TotalDensity.
934 * -# UpdatePsiEnergyCalculation()\n
935 * Calculate kinetic and non-local energy contributons from the Psis.
936 * -# CalculateGapEnergy()\n
937 * Calculate Gap energies (Hartreepotential, Pseudo) and the gradient.
938 * -# EnergyAllReduce()\n
939 * Gather PsiEnergy results from all processes and sum up together with all other contributions to TotalEnergy.
940 * -# CheckCPULIM()\n
941 * Check if external signal has been received (e.g. end of time slit on cluster), break operation at next possible moment.
942 * -# CalculateMinimumStop()\n
943 * Evaluates stop condition if desired precision or steps or ... have been reached. Otherwise go to
944 * CalculateNewWave().
945 *
946 * Afterwards, the coefficients are written to file by OutputVisSrcFiles() if desired. Orthonormality is tested, we step
947 * back to the occupied wave functions and the densities are re-initialized.
948 * \param *P Problem at hand
949 * \param *Stop flag to determine if epsilon stop conditions have met
950 * \param *SuperStop flag to determinte whether external signal's required end of calculations
951 */
952static void MinimiseUnoccupied (struct Problem *P, int *Stop, int *SuperStop) {
953 struct RunStruct *R = &P->R;
954 struct Lattice *Lat = &P->Lat;
955 struct Psis *Psi = &Lat->Psi;
956 int StartLocalPsiNo;
957
958 *Stop = 0;
959 R->PsiStep = R->MaxPsiStep; // in case it's zero from CalculateForce()
960 UpdateActualPsiNo(P, UnOccupied); // step on to next unoccupied one
961 R->OldActualLocalPsiNo = R->ActualLocalPsiNo; // reset, otherwise OldActualLocalPsiNo still points to occupied wave function
962 UpdateGramSchOldActualPsiNo(P,Psi);
963 if (P->Call.ReadSrcFiles && ReadSrcPsiDensity(P,UnOccupied,1, R->LevSNo)) {
964 SpeedMeasure(P, InitSimTime, StartTimeDo);
965 fprintf(stderr,"(%i) Reading from file...\n", P->Par.me);
966 ReadSrcPsiDensity(P, UnOccupied, 0, R->LevSNo);
967 if (P->Call.ReadSrcFiles != 2) {
968 ResetGramSchTagType(P, Psi, UnOccupied, IsOrthonormal); // loaded values are orthonormal
969 SpeedMeasure(P, DensityTime, StartTimeDo);
970 InitDensityCalculation(P);
971 SpeedMeasure(P, DensityTime, StopTimeDo);
972 InitPsiEnergyCalculation(P,UnOccupied); // go through all orbitals calculating kinetic and non-local
973 //CalculateDensityEnergy(P, 0);
974 StartLocalPsiNo = R->ActualLocalPsiNo;
975 do { // otherwise OnePsiElementAddData#Lambda is calculated only for current Psi not for all
976 CalculateGapEnergy(P);
977 UpdateActualPsiNo(P, Occupied);
978 } while (R->ActualLocalPsiNo != StartLocalPsiNo);
979 EnergyAllReduce(P);
980 }
981 SpeedMeasure(P, InitSimTime, StopTimeDo);
982 }
983 if (P->Call.ReadSrcFiles != 1) {
984 SpeedMeasure(P, InitSimTime, StartTimeDo);
985 ResetGramSchTagType(P, Psi, UnOccupied, NotOrthogonal);
986 SpeedMeasure(P, GramSchTime, StartTimeDo);
987 GramSch(P, R->LevS, Psi, Orthonormalize);
988 SpeedMeasure(P, GramSchTime, StopTimeDo);
989 SpeedMeasure(P, InitDensityTime, StartTimeDo);
990 InitDensityCalculation(P);
991 SpeedMeasure(P, InitDensityTime, StopTimeDo);
992 InitPsiEnergyCalculation(P,UnOccupied); // go through all orbitals calculating kinetic and non-local
993 //CalculateDensityEnergy(P, 0);
994 CalculateGapEnergy(P);
995 EnergyAllReduce(P);
996 SpeedMeasure(P, InitSimTime, StopTimeDo);
997 R->LevS->Step++;
998 EnergyOutput(P,0);
999 fprintf(stderr,"(%i)Beginning minimisation of type %s ...\n", P->Par.me, R->MinimisationName[UnOccupied]);
1000 while (*Stop != 1) {
1001 CalculateNewWave(P,NULL);
1002 UpdateActualPsiNo(P, UnOccupied);
1003 /* New */
1004 UpdateEnergyArray(P);
1005 SpeedMeasure(P, DensityTime, StartTimeDo);
1006 UpdateDensityCalculation(P);
1007 SpeedMeasure(P, DensityTime, StopTimeDo);
1008 UpdatePsiEnergyCalculation(P);
1009 //CalculateDensityEnergy(P, 0);
1010 CalculateGapEnergy(P); //calculates XC, HGDensity, afterwards gradient, where V_xc is added upon HGDensity
1011 EnergyAllReduce(P);
1012 if (*SuperStop != 1)
1013 *SuperStop = CheckCPULIM(P);
1014 *Stop = CalculateMinimumStop(P, *SuperStop);
1015 /*EnergyOutput(P, Stop);*/
1016 P->Speed.Steps++;
1017 R->LevS->Step++;
1018 /*ControlNativeDensity(P);*/
1019 }
1020 OutputVisSrcFiles(P, UnOccupied);
1021// if (!TestReadnWriteSrcDensity(P,UnOccupied))
1022// Error(SomeError,"TestReadnWriteSrcDensity failed!");
1023 }
1024 TestGramSch(P,R->LevS,Psi, UnOccupied);
1025 ResetGramSchTagType(P, Psi, UnOccupied, NotUsedToOrtho);
1026 // re-calculate Occupied values (in preparation for perturbed ones)
1027 UpdateActualPsiNo(P, Occupied); // step on to next occupied one
1028 SpeedMeasure(P, DensityTime, StartTimeDo);
1029 InitDensityCalculation(P); // re-init densities to occupied standard
1030 SpeedMeasure(P, DensityTime, StopTimeDo);
1031// InitPsiEnergyCalculation(P,Occupied);
1032// CalculateDensityEnergy(P, 0);
1033// EnergyAllReduce(P);
1034}
1035
1036
1037/** Calculate the forces.
1038 * From RunStruct::LevSNo downto RunStruct::InitLevSNo the following routines are called in a loop:
1039 * -# In case of RunStruct#DoSeparated another loop begins for the unoccupied states with some reinitalization
1040 * before and afterwards. The loop however is much the same as the one above.
1041 * -# ChangeToLevUp()\n
1042 * Repeat the loop or when the above stop is reached, the level is changed and the loop repeated.
1043 *
1044 * Afterwards comes the actual force and energy calculation by calling:
1045 * -# ControlNativeDensity()\n
1046 * Checks if the density still reproduces particle number.
1047 * -# CalculateIonLocalForce(), SpeedMeasure()'d in LocFTime\n
1048 * Calculale local part of force acting on Ions.
1049 * -# CalculateIonNonLocalForce(), SpeedMeasure()'d in NonLocFTime\n
1050 * Calculale local part of force acting on Ions.
1051 * -# CalculateEwald()\n
1052 * Calculate Ewald force acting on Ions.
1053 * -# CalculateIonForce()\n
1054 * Sum up those three contributions.
1055 * -# CorrectForces()\n
1056 * Shifts center of gravity of all forces for each Ion, so that the cell itself remains at rest.
1057 * -# GetOuterStop()
1058 * Calculates a mean force per Ion.
1059 * \param *P Problem at hand
1060 * \return 1 - cpulim received, break operation, 0 - continue as normal
1061 */
1062int CalculateForce(struct Problem *P)
1063{
1064 struct RunStruct *R = &P->R;
1065 struct Lattice *Lat = &P->Lat;
1066 struct Psis *Psi = &Lat->Psi;
1067 struct LatticeLevel *LevS = R->LevS;
1068 struct FileData *F = &P->Files;
1069 struct Ions *I = &P->Ion;
1070 int Stop=0, SuperStop = 0, OuterStop = 0;
1071 //int i, j;
1072 while ((R->LevSNo > R->InitLevSNo) || (!Stop && R->LevSNo == R->InitLevSNo)) {
1073 // occupied
1074 R->PsiStep = R->MaxPsiStep; // reset in-Psi-minimisation-counter, so that we really advance to the next wave function
1075 R->OldActualLocalPsiNo = R->ActualLocalPsiNo; // reset OldActualLocalPsiNo, as it might still point to a perturbed wave function from last level
1076 UpdateGramSchOldActualPsiNo(P,Psi);
1077 MinimiseOccupied(P, &Stop, &SuperStop);
1078 if (!I->StructOpt) {
1079 if ((P->Call.ReadSrcFiles != 1) || (!ParseWannierFile(P))) { // only localize and store if they have just been minimised (hence don't come solely from file), otherwise read stored values from file (if possible)
1080 SpeedMeasure(P, WannierTime, StartTimeDo);
1081 ComputeMLWF(P); // localization of orbitals
1082 SpeedMeasure(P, WannierTime, StopTimeDo);
1083 OutputVisSrcFiles(P, Occupied); // rewrite now localized orbitals
1084 // if (!TestReadnWriteSrcDensity(P,Occupied))
1085 // Error(SomeError,"TestReadnWriteSrcDensity failed!");
1086 }
1087
1088// // plot psi cuts
1089// for (i=0; i < Psi->MaxPsiOfType; i++) // go through all wave functions (here without the extra ones for each process)
1090// if ((Psi->AllPsiStatus[i].PsiType == Occupied) && (Psi->AllPsiStatus[i].my_color_comm_ST_Psi == P->Par.my_color_comm_ST_Psi))
1091// for (j=0;j<NDIM;j++) {
1092// //fprintf(stderr,"(%i) Plotting Psi %i/%i cut axis %i at coordinate %lg \n",P->Par.me, i, Psi->AllPsiStatus[i].MyGlobalNo, j, Lat->Psi.AddData[Psi->AllPsiStatus[i].MyLocalNo].WannierCentre[j]);
1093// CalculateOneDensityR(Lat, R->LevS, R->Lev0->Dens, R->LevS->LPsi->LocalPsi[Psi->AllPsiStatus[i].MyLocalNo], R->Lev0->Dens->DensityArray[ActualDensity], R->FactorDensityR, 0);
1094// PlotSrcPlane(P, j, Lat->Psi.AddData[Psi->AllPsiStatus[i].MyLocalNo].WannierCentre[j], Psi->AllPsiStatus[i].MyGlobalNo, R->Lev0->Dens->DensityArray[ActualDensity]);
1095// }
1096
1097 // unoccupied calc
1098 if (R->DoUnOccupied) {
1099 MinimiseUnoccupied(P, &Stop, &SuperStop);
1100 }
1101 // hamiltonian
1102 CalculateHamiltonian(P); // lambda_{kl} needed (and for bandgap after UnOccupied)
1103
1104 // perturbed calc
1105 if ((R->DoPerturbation)) { // && R->LevSNo <= R->InitLevSNo) {
1106 AllocCurrentDensity(R->Lev0->Dens);// lock current density arrays
1107 MinimisePerturbed(P, &Stop, &SuperStop); // herein InitDensityCalculation() is called, thus no need to call it beforehand
1108
1109 SpeedMeasure(P, CurrDensTime, StartTimeDo);
1110 if (SuperStop != 1) {
1111 if ((R->DoFullCurrent == 1) || ((R->DoFullCurrent == 2) && (CheckOrbitalOverlap(P) == 1))) { //test to check whether orbitals have mutual overlap and thus \\DeltaJ_{xc} must not be dropped
1112 R->DoFullCurrent = 1; // set to 1 if it was 2 but Check...() yielded necessity
1113 debug(P,"Filling with Delta j ...");
1114 FillDeltaCurrentDensity(P);
1115 }// else
1116 //debug(P,"There is no overlap between orbitals.");
1117 //debug(P,"Filling with j ...");
1118 //FillCurrentDensity(P);
1119 }
1120 SpeedMeasure(P, CurrDensTime, StopTimeDo);
1121 TestCurrent(P,0);
1122 TestCurrent(P,1);
1123 TestCurrent(P,2);
1124 if (F->DoOutCurr) {
1125 debug(P,"OutputCurrentDensity");
1126 OutputCurrentDensity(P);
1127 }
1128 if (R->VectorPlane != -1) {
1129 debug(P,"PlotVectorPlane");
1130 PlotVectorPlane(P,R->VectorPlane,R->VectorCut);
1131 }
1132 fprintf(stderr,"(%i) ECut [L%i] = %e Ht\n", P->Par.me, R->Lev0->LevelNo, pow(2*M_PI*M_PI/Lat->Volume*R->Lev0->TotalAllMaxG, 2./3.));
1133 debug(P,"Calculation of magnetic susceptibility");
1134 CalculateMagneticSusceptibility(P);
1135 debug(P,"Normal calculation of shielding over R-space");
1136 CalculateChemicalShielding(P);
1137 debug(P,"Reciprocal calculation of shielding over G-space");
1138 CalculateChemicalShieldingByReciprocalCurrentDensity(P);
1139 SpeedMeasure(P, CurrDensTime, StopTimeDo);
1140 DisAllocCurrentDensity(R->Lev0->Dens); // unlock current density arrays
1141 } else {
1142 InitDensityCalculation(P); // all unperturbed(!) wave functions've "changed" from ComputeMLWF(), thus reinit density
1143 }
1144 //fprintf(stderr,"(%i) DoubleG: %p, CArray[22]: %p, OldLocalPsi: %p\n", P->Par.me, R->LevS->DoubleG, R->Lev0->Dens->DensityCArray[22], R->LevS->LPsi->OldLocalPsi);
1145 }
1146
1147// if (!I->StructOpt && R->DoPerturbation) {
1148// InitDensityCalculation(P); // most of the density array were used during FillCurrentDensity(), thus reinit density
1149// }
1150
1151 // next level
1152 ChangeToLevUp(P, &Stop);
1153 //if (isnan(LevS->LPsi->LocalPsi[R->ActualLocalPsiNo][0].re)) { fprintf(stderr,"(%i) WARNING in ChangeToLevUp(): LPsi->LocalPsi[%i]_[%i] = NaN!\n", P->Par.me, R->ActualLocalPsiNo, 0); Error(SomeError, "NaN-Fehler!"); }
1154 LevS = R->LevS; // re-set pointer that's changed from LevUp
1155 }
1156 //fprintf(stderr,"(%i) DoubleG: %p, CArray[22]: %p, OldLocalPsi: %p\n", P->Par.me, R->LevS->DoubleG, R->Lev0->Dens->DensityCArray[22], R->LevS->LPsi->OldLocalPsi);
1157 // necessary for correct ionic forces ...
1158 SpeedMeasure(P, LocFTime, StartTimeDo);
1159 CalculateIonLocalForce(P);
1160 SpeedMeasure(P, LocFTime, StopTimeDo);
1161 SpeedMeasure(P, NonLocFTime, StartTimeDo);
1162 CalculateIonNonLocalForce(P);
1163 SpeedMeasure(P, NonLocFTime, StopTimeDo);
1164 CalculateEwald(P, 0);
1165 CalculateIonForce(P);
1166 CorrectForces(P);
1167 // ... on output of densities
1168 if (F->DoOutOrbitals) { // output of each orbital
1169 debug(P,"OutputVisAllOrbital");
1170 OutputVisAllOrbital(P,0,1,Occupied);
1171 }
1172
1173 OutputNorm(stderr, P);
1174 //fprintf(stderr,"(%i) DoubleG: %p, CArray[22]: %p, OldLocalPsi: %p\n", P->Par.me, R->LevS->DoubleG, R->Lev0->Dens->DensityCArray[22], R->LevS->LPsi->OldLocalPsi);
1175 OutputVis(P, P->R.Lev0->Dens->DensityArray[TotalDensity]);
1176 TestGramSch(P,LevS,Psi, -1);
1177 SpeedMeasure(P, SimTime, StopTimeDo);
1178 /*TestGramSch(P, R->LevS, &P->Lat.Psi); */
1179 ControlNativeDensity(P);
1180 SpeedMeasure(P, LocFTime, StartTimeDo);
1181 CalculateIonLocalForce(P);
1182 SpeedMeasure(P, LocFTime, StopTimeDo);
1183 SpeedMeasure(P, NonLocFTime, StartTimeDo);
1184 CalculateIonNonLocalForce(P);
1185 SpeedMeasure(P, NonLocFTime, StopTimeDo);
1186 CalculateEwald(P, 0);
1187 CalculateIonForce(P);
1188 CorrectForces(P);
1189 GetOuterStop(P);
1190 //fprintf(stderr,"(%i) DoubleG: %p, CArray[22]: %p, OldLocalPsi: %p\n", P->Par.me, R->LevS->DoubleG, R->Lev0->Dens->DensityCArray[22], R->LevS->LPsi->OldLocalPsi);
1191 if (SuperStop) OuterStop = 1;
1192 return OuterStop;
1193}
1194
1195/** Wrapper for CalculateForce() for simplex minimisation of ionic forces.
1196 * \param *v vector with degrees of freedom
1197 * \param *params additional arguments, here Problem at hand
1198 */
1199double my_f(const gsl_vector *v, void *params)
1200{
1201 struct Problem *P = (struct Problem *)params;
1202 struct RunStruct *R = &P->R;
1203 struct Ions *I = &P->Ion;
1204 struct Energy *E = P->Lat.E;
1205 int i;
1206 double *R_ion, *R_old, *R_old_old, *FIon;
1207 double norm = 0.;
1208 int is,ia,k,index;
1209 int OuterStop;
1210 // update ion positions from vector coordinates
1211 index=0;
1212 for (is=0; is < I->Max_Types; is++) // for all elements
1213 for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) { // for all ions of element
1214 R_ion = &I->I[is].R[NDIM*ia];
1215 R_old = &I->I[is].R_old[NDIM*ia];
1216 R_old_old = &I->I[is].R_old_old[NDIM*ia];
1217 for (k=0;k<NDIM;k++) { // for all dimensions
1218 R_old_old[k] = R_old[k];
1219 R_old[k] = R_ion[k];
1220 R_ion[k] = gsl_vector_get (v, index++);
1221 }
1222 }
1223 // recalculate ionic forces (do electronic minimisation)
1224 R->OuterStep++;
1225 if (P->Call.out[NormalOut]) fprintf(stderr,"(%i) Commencing Fletcher-Reeves step %i ... \n",P->Par.me, R->OuterStep);
1226 R->NewRStep++;
1227 OutputIonCoordinates(P);
1228 UpdateWaveAfterIonMove(P);
1229 for (i=MAXOLD-1; i > 0; i--) // store away old energies
1230 E->TotalEnergyOuter[i] = E->TotalEnergyOuter[i-1];
1231 UpdateToNewWaves(P);
1232 E->TotalEnergyOuter[0] = E->TotalEnergy[0];
1233 OuterStop = CalculateForce(P);
1234 UpdateIonsU(P);
1235 CorrectVelocity(P);
1236 CalculateEnergyIonsU(P);
1237/* if ((P->R.ScaleTempStep > 0) && ((R->OuterStep-1) % P->R.ScaleTempStep == 0))
1238 ScaleTemp(P);*/
1239 if ((R->OuterStep-1) % P->R.OutSrcStep == 0)
1240 OutputVisSrcFiles(P, Occupied);
1241 if ((R->OuterStep-1) % P->R.OutVisStep == 0) {
1242/* // recalculate density for the specific wave function ...
1243 CalculateOneDensityR(Lat, LevS, Dens0, PsiDat, Dens0->DensityArray[ActualDensity], R->FactorDensityR, 0);
1244 // ... and output (wherein ActualDensity is used instead of TotalDensity)
1245 OutputVis(P);
1246 OutputIonForce(P);
1247 EnergyOutput(P, 1);*/
1248 }
1249 // sum up mean force
1250 for (is=0; is < I->Max_Types; is++)
1251 for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
1252 FIon = &I->I[is].FIon[NDIM*ia];
1253 norm += sqrt(RSP3(FIon,FIon));
1254 }
1255 if (P->Par.me == 0) fprintf(stderr,"(%i) Mean Force over all Ions %e\n",P->Par.me, norm);
1256 return norm;
1257}
1258
1259void my_df(const gsl_vector *v, void *params, gsl_vector *df)
1260{
1261 struct Problem *P = (struct Problem *)params;
1262 struct Ions *I = &P->Ion;
1263 double *FIon;
1264 int is,ia,k, index=0;
1265 for (is=0; is < I->Max_Types; is++) // for all elements
1266 for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) { // for all ions of element
1267 FIon = &I->I[is].FIon[NDIM*ia];
1268 for (k=0;k<NDIM;k++) { // for all dimensions
1269 gsl_vector_set (df, index++, FIon[k]);
1270 }
1271 }
1272}
1273
1274void my_fdf (const gsl_vector *x, void *params, double *f, gsl_vector *df)
1275{
1276 *f = my_f(x, params);
1277 my_df(x, params, df);
1278}
1279
1280
1281/** CG implementation for the structure optimization.
1282 * We follow the example from the GSL manual.
1283 * \param *P Problem at hand
1284 */
1285void UpdateIon_PRCG(struct Problem *P)
1286{
1287 struct RunStruct *Run = &P->R;
1288 struct Ions *I = &P->Ion;
1289 size_t np = NDIM*I->Max_TotalIons; // d.o.f = number of ions times number of dimensions
1290 int is, ia, k, index;
1291 double *R;
1292
1293 const gsl_multimin_fdfminimizer_type *T;
1294 gsl_multimin_fdfminimizer *s;
1295 gsl_vector *x;
1296 gsl_multimin_function_fdf minex_func;
1297
1298 size_t iter = 0;
1299 int status;
1300
1301 /* Starting point */
1302 x = gsl_vector_alloc (np);
1303
1304 index=0;
1305 for (is=0; is < I->Max_Types; is++) // for all elements
1306 for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) { // for all ions of element
1307 R = &I->I[is].R[NDIM*ia];
1308 for (k=0;k<NDIM;k++) // for all dimensions
1309 gsl_vector_set (x, index++, R[k]);
1310 }
1311
1312 /* Initialize method and iterate */
1313 minex_func.f = &my_f;
1314 minex_func.df = &my_df;
1315 minex_func.fdf = &my_fdf;
1316 minex_func.n = np;
1317 minex_func.params = (void *)P;
1318
1319 T = gsl_multimin_fdfminimizer_conjugate_pr;
1320 s = gsl_multimin_fdfminimizer_alloc (T, np);
1321
1322 gsl_multimin_fdfminimizer_set (s, &minex_func, x, 0.1, 1e-4);
1323
1324 do {
1325 iter++;
1326 status = gsl_multimin_fdfminimizer_iterate(s);
1327
1328 if (status)
1329 break;
1330
1331 status = gsl_multimin_test_gradient (s->gradient, 1e-4);
1332
1333 if (status == GSL_SUCCESS)
1334 if (P->Par.me == 0) fprintf (stderr,"(%i) converged to minimum at\n", P->Par.me);
1335
1336 if (P->Par.me == 0) fprintf (stderr, "(%i) %5d %10.5f\n", P->Par.me, (int)iter, s->f);
1337 } while (status == GSL_CONTINUE && iter < Run->MaxOuterStep);
1338
1339 gsl_vector_free(x);
1340 gsl_multimin_fdfminimizer_free (s);
1341}
1342
1343/** Does the Molecular Dynamics Calculations.
1344 * All of the following is SpeedMeasure()'d in SimTime.
1345 * Initialization by calling:
1346 * -# CorrectVelocity()\n
1347 * Shifts center of gravity of Ions momenta, so that the cell itself remains at rest.
1348 * -# CalculateEnergyIonsU(), SpeedMeasure()'d in TimeTypes#InitSimTime\n
1349 * Calculates kinetic energy of "movable" Ions.
1350 * -# CalculateForce()\n
1351 * Does the minimisation, calculates densities, then energies and finally the forces.
1352 * -# OutputVisSrcFiles()\n
1353 * If desired, so-far made calculations are stored to file for later restarting.
1354 * -# OutputIonForce()\n
1355 * Write ion forces to file.
1356 * -# EnergyOutput()\n
1357 * Write calculated energies to screen or file.
1358 *
1359 * The simulation phase begins:
1360 * -# UpdateIonsR()\n
1361 * Move Ions according to the calculated force.
1362 * -# UpdateWaveAfterIonMove()\n
1363 * Update wave functions by averaging LocalPsi coefficients after the Ions have been shifted.
1364 * -# UpdateToNewWaves()\n
1365 * Update after wave functions have changed.
1366 * -# CalculateForce()\n
1367 * Does the minimisation, calculates densities, then energies and finally the forces.
1368 * -# UpdateIonsU()\n
1369 * Change ion's velocities according to the calculated acting force.
1370 * -# CorrectVelocity()\n
1371 * Shifts center of gravity of Ions momenta, so that the cell itself remains at rest.
1372 * -# CalculateEnergyIonsU()\n
1373 * Calculates kinetic energy of "movable" Ions.
1374 * -# ScaleTemp()\n
1375 * The temperature is scaled, so the systems energy remains constant (they must not gain momenta out of nothing)
1376 * -# OutputVisSrcFiles()\n
1377 * If desired, so-far made calculations are stored to file for later restarting.
1378 * -# OutputVis()\n
1379 * Visulization data for OpenDX is written at certain steps if desired.
1380 * -# OutputIonForce()\n
1381 * Write ion forces to file.
1382 * -# EnergyOutput()\n
1383 * Write calculated energies to screen or file.
1384 *
1385 * After the ground state is found:
1386 * -# CalculateUnOccupied()\n
1387 * Energies of unoccupied orbitals - that have been left out completely so far -
1388 * are calculated.
1389 * -# TestGramSch()\n
1390 * Test if orbitals are still orthogonal.
1391 * -# CalculateHamiltonian()\n
1392 * Construct Hamiltonian and calculate Eigenvalues.
1393 * -# ComputeMLWF()\n
1394 * Localize orbital wave functions.
1395 *
1396 * \param *P Problem at hand
1397 */
1398void CalculateMD(struct Problem *P)
1399{
1400 struct RunStruct *R = &P->R;
1401 struct Ions *I = &P->Ion;
1402 int OuterStop = 0;
1403 SpeedMeasure(P, SimTime, StartTimeDo);
1404 SpeedMeasure(P, InitSimTime, StartTimeDo);
1405 R->OuterStep = 0;
1406 CorrectVelocity(P);
1407 CalculateEnergyIonsU(P);
1408 OuterStop = CalculateForce(P);
1409 R->OuterStep++;
1410 P->Speed.InitSteps++;
1411 SpeedMeasure(P, InitSimTime, StopTimeDo);
1412 OutputIonForce(P);
1413 EnergyOutput(P, 1);
1414 if (R->MaxOuterStep > 0) {
1415 debug(P,"Commencing Fletcher-Reeves minimisation on ionic structure ...");
1416 UpdateIon_PRCG(P);
1417 }
1418 if (I->StructOpt && !OuterStop) {
1419 I->StructOpt = 0;
1420 OuterStop = CalculateForce(P);
1421 }
1422 /* while (!OuterStop && R->OuterStep <= R->MaxOuterStep) {
1423 R->OuterStep++;
1424 if (P->Call.out[NormalOut]) fprintf(stderr,"(%i) Commencing MD steps %i ... \n",P->Par.me, R->OuterStep);
1425 P->R.t += P->R.delta_t; // increase current time by delta_t
1426 R->NewRStep++;
1427 if (P->Ion.StructOpt == 1) {
1428 UpdateIons(P);
1429 OutputIonCoordinates(P);
1430 } else {
1431 UpdateIonsR(P);
1432 }
1433 UpdateWaveAfterIonMove(P);
1434 for (i=MAXOLD-1; i > 0; i--) // store away old energies
1435 E->TotalEnergyOuter[i] = E->TotalEnergyOuter[i-1];
1436 UpdateToNewWaves(P);
1437 E->TotalEnergyOuter[0] = E->TotalEnergy[0];
1438 OuterStop = CalculateForce(P);
1439 UpdateIonsU(P);
1440 CorrectVelocity(P);
1441 CalculateEnergyIonsU(P);
1442 if ((P->R.ScaleTempStep > 0) && ((R->OuterStep-1) % P->R.ScaleTempStep == 0))
1443 ScaleTemp(P);
1444 if ((R->OuterStep-1) % P->R.OutSrcStep == 0)
1445 OutputVisSrcFiles(P, Occupied);
1446 if ((R->OuterStep-1) % P->R.OutVisStep == 0) {
1447 // recalculate density for the specific wave function ...
1448 //CalculateOneDensityR(Lat, LevS, Dens0, PsiDat, Dens0->DensityArray[ActualDensity], R->FactorDensityR, 0);
1449 // ... and output (wherein ActualDensity is used instead of TotalDensity)
1450 //OutputVis(P);
1451 //OutputIonForce(P);
1452 //EnergyOutput(P, 1);
1453 }
1454 }*/
1455 SpeedMeasure(P, SimTime, StopTimeDo);
1456 // hack to output each orbital before and after spread-minimisation
1457/* if (P->Files.MeOutVis) P->Files.OutputPosType = (enum ModeType *) Realloc(P->Files.OutputPosType,sizeof(enum ModeType)*(P->Files.OutVisStep+P->Lat.Psi.MaxPsiOfType*2),"OutputVis");
1458 OutputVisAllOrbital(P, 0, 2, Occupied);
1459 CalculateHamiltonian(P);
1460 if (P->Files.MeOutVis) P->Files.OutVisStep -= (P->Lat.Psi.MaxPsiOfType)*2;
1461 OutputVisAllOrbital(P, 1, 2, Occupied);*/
1462 CloseOutputFiles(P);
1463}
Note: See TracBrowser for help on using the repository browser.