1 | #ifndef mymath_h
|
---|
2 | #define mymath_h
|
---|
3 | /** \file mymath.h
|
---|
4 | * Header file for \ref mymath.c
|
---|
5 | *
|
---|
6 | * Contains declarations of the functions implemented in \ref mymath.c, shorter
|
---|
7 | * definitions of mathematical constants such as PI, square root of 2 SQRT2
|
---|
8 | * and hard-coded constructs for calculating maximum MAX(), row majors CalcRowMajor2D(),
|
---|
9 | * CalcRowMajor3D(), determinants RDET2(), RDET3(), scalar products real RSP3()
|
---|
10 | * and complex CSP3re(), CSP3im(), euclidian norm real RNORMSQ3() and complex CNORMSQ3(),
|
---|
11 | * complex multiplication CCMULTre(), CCMULTim(), complex multiplication with scalar
|
---|
12 | * RCMULTre(), RCMULTim().
|
---|
13 | *
|
---|
14 | Project: ParallelCarParrinello
|
---|
15 | Jan Hamaekers
|
---|
16 | 2000
|
---|
17 |
|
---|
18 | File: mymath.h
|
---|
19 | $Id: mymath.h,v 1.15 2007-03-29 13:35:51 foo Exp $
|
---|
20 | */
|
---|
21 |
|
---|
22 | // use double precision fft when we have it
|
---|
23 | #ifdef HAVE_CONFIG_H
|
---|
24 | #include <config.h>
|
---|
25 | #endif
|
---|
26 |
|
---|
27 | #if defined _BSD_SOURCE || defined _XOPEN_SOURCE
|
---|
28 | //! short form for pi from math.h
|
---|
29 | # define PI M_PI
|
---|
30 | //! short form for square root of 2 from math.h
|
---|
31 | # define SQRT2 M_SQRT2
|
---|
32 | #else /* generische Form */
|
---|
33 | //! short form for pi
|
---|
34 | # define PI (acos(-1.0))
|
---|
35 | //! short form for square root of 2
|
---|
36 | # define SQRT2 (sqrt(2.))
|
---|
37 | #endif
|
---|
38 |
|
---|
39 | //! Bohr radius in Angstrᅵm
|
---|
40 | //#define BOHRRADIUS 0.5291772108
|
---|
41 |
|
---|
42 | #include "defs.h"
|
---|
43 |
|
---|
44 | #ifdef HAVE_DFFTW_H
|
---|
45 | #include "dfftw.h"
|
---|
46 | #else
|
---|
47 | #include "fftw.h"
|
---|
48 | #endif
|
---|
49 |
|
---|
50 | #define MAX(a,b) ((a) > (b) ? (a) : (b)) //!< returns maximum of a or b
|
---|
51 | #define CalcRowMajor3D(R0,R1,R2,N0,N1,N2) ((R2)+(N2)*((R1)+(N1)*(R0)))//!< calculates row major of 3x3 matrix
|
---|
52 | #define CalcRowMajor2D(R0,R1,N0,N1) ((R1)+(N1)*(R0)) //!< calculates row major of 2x2 matrix
|
---|
53 | #define RSP3(a,b) ((a)[0]*(b)[0] + (a)[1]*(b)[1] + (a)[2]*(b)[2]) //!< scalar product of two 3-dim vectors
|
---|
54 | #define RNORMSQ3(a) ((a)[0]*(a)[0] + (a)[1]*(a)[1] + (a)[2]*(a)[2]) //!< squared euclidian norm
|
---|
55 | #define RDET3(a) ((a)[0]*(a)[4]*(a)[8] + (a)[3]*(a)[7]*(a)[2] + (a)[6]*(a)[1]*(a)[5] - (a)[2]*(a)[4]*(a)[6] - (a)[5]*(a)[7]*(a)[0] - (a)[8]*(a)[1]*(a)[3]) //!< hard-coded determinant of a 3x3 matrix
|
---|
56 | #define RDET2(a0,a1,a2,a3) ((a0)*(a3)-(a1)*(a2)) //!< hard-coded determinant of a 2x2 matrix
|
---|
57 | #define CCMULTre(a,b) ((a).re*(b).re - (a).im*(b).im) //!< real part of a complex multiplication
|
---|
58 | #define CCMULTim(a,b) ((a).re*(b).im + (a).im*(b).re) //!< imaginary part of a complex multiplication
|
---|
59 | #define RCMULTre(a,b) ((a).re*(b)) //!< real part of a complex number scaled by a real number
|
---|
60 | #define RCMULTim(a,b) ((a).im*(b)) //!< imaginary part of a complex number scaled by a real number
|
---|
61 | #define CSP3re(a,b) (CCMULTre((a)[0],(b)[0]) + CCMULTre((a)[1],(b)[1]) + CCMULTre((a)[2],(b)[2])) //!< real part of a scalar product of two 3x3 complex vectors
|
---|
62 | #define CSP3im(a,b) (CCMULTim((a)[0],(b)[0]) + CCMULTim((a)[1],(b)[1]) + CCMULTim((a)[2],(b)[2])) //!< imaginary part of a scalar product of two 3x3 complex vectors
|
---|
63 | #define CNORMSQ3(a) ((a).re[0]*(a).re[0] + (a).re[1]*(a).re[1] + (a).re[2]*(a).re[2] + (a).im[0]*(a).im[0] + (a).im[1]*(a).im[1] + (a).im[2]*(a).im[2]) //!< square of complex euclidian norm
|
---|
64 |
|
---|
65 | inline double tpow(double, int);
|
---|
66 | inline int Rest(int n, int m);
|
---|
67 | inline void RTranspose3(double *A);
|
---|
68 | inline void RMatMat33(double C[NDIM*NDIM], const double A[NDIM*NDIM], const double B[NDIM*NDIM]);
|
---|
69 | inline void RMat33Vec3(double C[NDIM], const double M[NDIM*NDIM], const double V[NDIM]);
|
---|
70 | inline int RMatReci3(double B[NDIM_NDIM], const double A[NDIM_NDIM]);
|
---|
71 | inline void RVec3Mat33(double C[NDIM], const double V[NDIM], const double M[NDIM*NDIM]);
|
---|
72 | inline void VP3(double V[NDIM], double A[NDIM], double B[NDIM]);
|
---|
73 | /* Skalarprodukt */
|
---|
74 | inline double SP(const double *a, const double *b, const int n);
|
---|
75 | /* Multiplikation mit Skalar */
|
---|
76 | inline void SM(double *a, const double c, const int n);
|
---|
77 | /* Nullvektor erzeugen */
|
---|
78 | inline void NV(double *a, int n);
|
---|
79 | inline double dSum(int n, double *dx, int incx);
|
---|
80 | inline double Simps(int n, double *f, double h);
|
---|
81 | inline double derf(double x);
|
---|
82 | /* Initialisiere a array[3] mit b - c Orte mit periodisch */
|
---|
83 | double Dist(const double *a, const double *b, const int n);
|
---|
84 | inline void SetArrayToDouble0(double *a, int n);
|
---|
85 | void PrintCMat330(fftw_complex M[NDIM_NDIM]);
|
---|
86 | void PrintRMat330(fftw_real M[NDIM_NDIM]);
|
---|
87 | void PrintCVec30(fftw_complex M[NDIM]);
|
---|
88 | void PrintRVec30(fftw_real M[NDIM]);
|
---|
89 | void RotateToAlign(fftw_real Q[NDIM_NDIM], fftw_real matrix[NDIM_NDIM], fftw_real vector[NDIM]);
|
---|
90 | #endif
|
---|