1 | /** \file ions.c
|
---|
2 | * Ionic Force, speed, coordinate and energy calculation.
|
---|
3 | * Herein are all the routines for the molecular dynamics calculations such as
|
---|
4 | * reading of configuration files IonsInitRead() and
|
---|
5 | * free'ing RemoveIonsRead(),
|
---|
6 | * summing up forces CalculateIonForce(),
|
---|
7 | * correcting for temperature CorrectVelocities(),
|
---|
8 | * or for fixation center of balance CorrectForces(),
|
---|
9 | * outputting them to file OutputIonForce(),
|
---|
10 | * calculating kinetic CalculateEnergyIonsU(), ewald CalculateEwald() energies,
|
---|
11 | * moving ion UpdateIonsR() (position) UpdateIonsU() (speed),
|
---|
12 | * scaling to match some temperature ScaleTemp()
|
---|
13 | * are gathered.
|
---|
14 | * Finally, needed for structure optimization GetOuterStop() evaluates the stop
|
---|
15 | * condition of a minimal mean force acting on each ion.
|
---|
16 | *
|
---|
17 | Project: ParallelCarParrinello
|
---|
18 | \author Jan Hamaekers
|
---|
19 | \date 2000
|
---|
20 |
|
---|
21 | File: ions.c
|
---|
22 | $Id: ions.c,v 1.34 2007/02/05 16:15:27 foo Exp $
|
---|
23 | */
|
---|
24 |
|
---|
25 | #include <stdlib.h>
|
---|
26 | #include <stdio.h>
|
---|
27 | #include <stddef.h>
|
---|
28 | #include <math.h>
|
---|
29 | #include <string.h>
|
---|
30 | #include <unistd.h>
|
---|
31 | #include "mymath.h"
|
---|
32 |
|
---|
33 |
|
---|
34 | // use double precision fft when we have it
|
---|
35 | #ifdef HAVE_CONFIG_H
|
---|
36 | #include <config.h>
|
---|
37 | #endif
|
---|
38 |
|
---|
39 | #ifdef HAVE_DFFTW_H
|
---|
40 | #include "dfftw.h"
|
---|
41 | #else
|
---|
42 | #include "fftw.h"
|
---|
43 | #endif
|
---|
44 |
|
---|
45 | #include "data.h"
|
---|
46 | #include "errors.h"
|
---|
47 | #include "helpers.h"
|
---|
48 | #include "mymath.h"
|
---|
49 | #include "ions.h"
|
---|
50 | #include "init.h"
|
---|
51 |
|
---|
52 | /** Readin of the ion section of parameter file.
|
---|
53 | * Among others the following paramaters are read from file:
|
---|
54 | * Ions::MaxTypes, IonType::Max_IonsOfType, IonType::Z, IonType::R,
|
---|
55 | * IonType:IMT, ...
|
---|
56 | * \param P Problem at hand (containing Ions and Lattice structures)
|
---|
57 | * \param *source file pointer
|
---|
58 | */
|
---|
59 | void IonsInitRead(struct Problem *P, FILE *source) {
|
---|
60 | struct Ions *I = &P->Ion;
|
---|
61 | struct Lattice *L = &P->Lat;
|
---|
62 | //struct RunStruct *Run = &P->R;
|
---|
63 | int i,it,j,BorAng,IMT,d,me,k;
|
---|
64 | int relative; // whether read-in coordinate are relative (1) or absolute
|
---|
65 | double R[NDIM];
|
---|
66 | double Bohr = BOHRRADIUS; /* Angstroem */
|
---|
67 |
|
---|
68 | I->Max_TotalIons = 0;
|
---|
69 | I->TotalZval = 0;
|
---|
70 | MPI_Comm_rank(MPI_COMM_WORLD, &me);
|
---|
71 | ParseForParameter(P->Call.out[ReadOut],source,"RCut", 0, 1, 1, double_type, &I->R_cut, critical);
|
---|
72 | ParseForParameter(P->Call.out[ReadOut],source,"IsAngstroem", 0, 1, 1, int_type, &BorAng, critical);
|
---|
73 | if (!BorAng) Bohr = 1.0;
|
---|
74 | ParseForParameter(P->Call.out[ReadOut],source,"MaxTypes", 0, 1, 1, int_type, &I->Max_Types, critical);
|
---|
75 | I->I = (struct IonType *) Malloc(sizeof(struct IonType)*I->Max_Types, "IonsInitRead: IonType");
|
---|
76 | if (!ParseForParameter(P->Call.out[ReadOut],source,"RelativeCoord", 0, 1, 1, int_type, &relative, optional))
|
---|
77 | relative = 0;
|
---|
78 | if (!ParseForParameter(P->Call.out[ReadOut],source,"StructOpt", 0, 1, 1, int_type, &I->StructOpt, optional))
|
---|
79 | I->StructOpt = 0;
|
---|
80 |
|
---|
81 | /* Ions Data */
|
---|
82 | I->RLatticeVec = NULL;
|
---|
83 | I->TotalMass = 0;
|
---|
84 | char *free_name, *name;
|
---|
85 | name = free_name = Malloc(255*sizeof(char),"IonsInitRead: Name");
|
---|
86 | for (i=0; i < I->Max_Types; i++) {
|
---|
87 | sprintf(name,"Ion_Type%i",i+1);
|
---|
88 | I->I[i].corecorr = NotCoreCorrected;
|
---|
89 | I->I[i].Name = MallocString(255, "IonsInitRead: Name");
|
---|
90 | I->I[i].Symbol = MallocString(255, "IonsInitRead: Symbol");
|
---|
91 | ParseForParameter(P->Call.out[ReadOut],source, name, 0, 1, 1, int_type, &I->I[i].Max_IonsOfType, critical);
|
---|
92 | ParseForParameter(P->Call.out[ReadOut],source, name, 0, 2, 1, int_type, &I->I[i].Z, critical);
|
---|
93 | ParseForParameter(P->Call.out[ReadOut],source, name, 0, 3, 1, double_type, &I->I[i].rgauss, critical);
|
---|
94 | ParseForParameter(P->Call.out[ReadOut],source, name, 0, 4, 1, int_type, &I->I[i].l_max, critical);
|
---|
95 | ParseForParameter(P->Call.out[ReadOut],source, name, 0, 5, 1, int_type, &I->I[i].l_loc, critical);
|
---|
96 | ParseForParameter(P->Call.out[ReadOut],source, name, 0, 6, 1, double_type, &I->I[i].IonMass, critical);
|
---|
97 | if(!ParseForParameter(P->Call.out[ReadOut],source, name, 0, 7, 1, string_type, &I->I[i].Name[0], optional))
|
---|
98 | sprintf(&I->I[i].Name[0],"type%i",i);
|
---|
99 | if(!ParseForParameter(P->Call.out[ReadOut],source, name, 0, 8, 1, string_type, &I->I[i].Symbol[0], optional))
|
---|
100 | sprintf(&I->I[i].Symbol[0],"t%i",i);
|
---|
101 | if (P->Call.out[ReadOut]) fprintf(stderr,"(%i) Element name: %s, symbol: %s\n",P->Par.me, I->I[i].Name, I->I[i].Symbol);
|
---|
102 | I->I[i].sigma = (double **) Malloc(sizeof(double *) * I->I[i].Max_IonsOfType, "IonsInitRead: sigma");
|
---|
103 | I->I[i].sigma_rezi = (double **) Malloc(sizeof(double *) * I->I[i].Max_IonsOfType, "IonsInitRead: sigma_rezi");
|
---|
104 | I->I[i].sigma_PAS = (double **) Malloc(sizeof(double *) * I->I[i].Max_IonsOfType, "IonsInitRead: sigma_PAS");
|
---|
105 | I->I[i].sigma_rezi_PAS = (double **) Malloc(sizeof(double *) * I->I[i].Max_IonsOfType, "IonsInitRead: sigma_rezi_PAS");
|
---|
106 | for (it=0;it<I->I[i].Max_IonsOfType;it++) {
|
---|
107 | I->I[i].sigma[it] = (double *) Malloc(sizeof(double) * NDIM*NDIM, "IonsInitRead: sigma");
|
---|
108 | I->I[i].sigma_rezi[it] = (double *) Malloc(sizeof(double) * NDIM*NDIM, "IonsInitRead: sigma_rezi");
|
---|
109 | I->I[i].sigma_PAS[it] = (double *) Malloc(sizeof(double) * NDIM, "IonsInitRead: sigma_PAS");
|
---|
110 | I->I[i].sigma_rezi_PAS[it] = (double *) Malloc(sizeof(double) * NDIM, "IonsInitRead: sigma_rezi_PAS");
|
---|
111 | }
|
---|
112 | //I->I[i].IonFac = I->I[i].IonMass;
|
---|
113 | I->I[i].IonFac = 1/I->I[i].IonMass;
|
---|
114 | I->TotalMass += I->I[i].Max_IonsOfType*I->I[i].IonMass;
|
---|
115 | I->I[i].ZFactor = -I->I[i].Z*4.*PI;
|
---|
116 | I->I[i].alpha = (double *) Malloc(sizeof(double) * I->I[i].Max_IonsOfType, "IonsInitRead: alpha");
|
---|
117 | I->I[i].R = (double *) Malloc(sizeof(double) * NDIM * I->I[i].Max_IonsOfType, "IonsInitRead: R");
|
---|
118 | I->I[i].R_old = (double *) Malloc(sizeof(double) *NDIM* I->I[i].Max_IonsOfType, "IonsInitRead: R_old");
|
---|
119 | I->I[i].R_old_old = (double *) Malloc(sizeof(double) *NDIM* I->I[i].Max_IonsOfType, "IonsInitRead: R_old_old");
|
---|
120 | I->I[i].FIon = (double *) Malloc(sizeof(double) * NDIM * I->I[i].Max_IonsOfType, "IonsInitRead: FIon");
|
---|
121 | I->I[i].FIon_old = (double *) Malloc(sizeof(double) * NDIM * I->I[i].Max_IonsOfType, "IonsInitRead: FIon_old");
|
---|
122 | SetArrayToDouble0(I->I[i].FIon_old, NDIM*I->I[i].Max_IonsOfType);
|
---|
123 | I->I[i].SearchDir = Malloc(sizeof(double) * NDIM * I->I[i].Max_IonsOfType, "IonsInitRead: SearchDir");
|
---|
124 | I->I[i].GammaA = Malloc(sizeof(double) * I->I[i].Max_IonsOfType, "IonsInitRead: GammaA");
|
---|
125 | SetArrayToDouble0(I->I[i].GammaA, I->I[i].Max_IonsOfType);
|
---|
126 | I->I[i].U = (double *) Malloc(sizeof(double) *NDIM* I->I[i].Max_IonsOfType, "IonsInitRead: U");
|
---|
127 | SetArrayToDouble0(I->I[i].U, NDIM*I->I[i].Max_IonsOfType);
|
---|
128 | I->I[i].SFactor = NULL;
|
---|
129 | I->I[i].IMT = (enum IonMoveType *) Malloc(sizeof(enum IonMoveType) * I->I[i].Max_IonsOfType, "IonsInitRead: IMT");
|
---|
130 | I->I[i].FIonL = (double *) Malloc(sizeof(double) * NDIM * I->I[i].Max_IonsOfType, "IonsInitRead: FIonL");
|
---|
131 | I->I[i].FIonNL = (double *) Malloc(sizeof(double) * NDIM * I->I[i].Max_IonsOfType, "IonsInitRead: FIonNL");
|
---|
132 | I->I[i].FEwald = (double *) Malloc(sizeof(double) * NDIM * I->I[i].Max_IonsOfType, "IonsInitRead: FEwald");
|
---|
133 | I->I[i].alpha = (double *) Malloc(sizeof(double) * I->I[i].Max_IonsOfType, "IonsInitRead: alpha");
|
---|
134 | for (j=0; j < I->I[i].Max_IonsOfType; j++) {
|
---|
135 | I->I[i].alpha[j] = 2.;
|
---|
136 | sprintf(name,"Ion_Type%i_%i",i+1,j+1);
|
---|
137 | ParseForParameter(P->Call.out[ReadOut],source, name, 0, 1, 1, double_type, &R[0], critical);
|
---|
138 | ParseForParameter(P->Call.out[ReadOut],source, name, 0, 2, 1, double_type, &R[1], critical);
|
---|
139 | ParseForParameter(P->Call.out[ReadOut],source, name, 0, 3, 1, double_type, &R[2], critical);
|
---|
140 | ParseForParameter(P->Call.out[ReadOut],source, name, 0, 4, 1, int_type, &IMT, critical);
|
---|
141 | // change if coordinates were relative
|
---|
142 | if (relative) {
|
---|
143 | //fprintf(stderr,"(%i)Ion coordinates are relative %i ... \n",P->Par.me, relative);
|
---|
144 | RMat33Vec3(&I->I[i].R[0+NDIM*j], L->RealBasis, R); // multiply with real basis
|
---|
145 | } else {
|
---|
146 | for (k=0;k<NDIM;k++) // and copy to old vector
|
---|
147 | I->I[i].R[k+NDIM*j] = R[k];
|
---|
148 | }
|
---|
149 | if (IMT < 0 || IMT >= MaxIonMoveType) {
|
---|
150 | fprintf(stderr,"Bad Ion MoveType set to MoveIon for Ion (%i,%i)\n",i,j);
|
---|
151 | IMT = 0;
|
---|
152 | }
|
---|
153 |
|
---|
154 | if ((P->Call.out[ReadOut])) { // rotate coordinates
|
---|
155 | fprintf(stderr,"(%i) coordinates of Ion %i: (x,y,z) = (",P->Par.me,j);
|
---|
156 | for(k=0;k<NDIM;k++) {
|
---|
157 | fprintf(stderr,"%lg ",I->I[i].R[k+NDIM*j]);
|
---|
158 | if (k != NDIM-1) fprintf(stderr,", ");
|
---|
159 | else fprintf(stderr,")\n");
|
---|
160 | }
|
---|
161 | }
|
---|
162 |
|
---|
163 | I->I[i].IMT[j] = (enum IonMoveType)IMT;
|
---|
164 | SM(&I->I[i].R[NDIM*j], 1./Bohr, NDIM);
|
---|
165 | RMat33Vec3(R, L->InvBasis, &I->I[i].R[NDIM*j]);
|
---|
166 | for (d=0; d <NDIM; d++) {
|
---|
167 | while (R[d] < 0)
|
---|
168 | R[d] += 1.0;
|
---|
169 | while (R[d] >= 1.0)
|
---|
170 | R[d] -= 1.0;
|
---|
171 | }
|
---|
172 | RMat33Vec3(&I->I[i].R[NDIM*j], L->RealBasis, R);
|
---|
173 | for (d=0; d <NDIM; d++) {
|
---|
174 | I->I[i].R_old_old[d+NDIM*j] = I->I[i].R_old[d+NDIM*j] = I->I[i].R[d+NDIM*j];
|
---|
175 | }
|
---|
176 | I->Max_TotalIons++;
|
---|
177 | }
|
---|
178 | }
|
---|
179 | Free(free_name);
|
---|
180 | I->Max_Max_IonsOfType = 0;
|
---|
181 | for (i=0; i < I->Max_Types; i++)
|
---|
182 | I->Max_Max_IonsOfType = MAX(I->Max_Max_IonsOfType, I->I[i].Max_IonsOfType);
|
---|
183 | I->FTemp = (double *) Malloc(sizeof(double) * NDIM * I->Max_Max_IonsOfType, "IonsInitRead:");
|
---|
184 | }
|
---|
185 |
|
---|
186 | /** Calculated Ewald force.
|
---|
187 | * \f[
|
---|
188 | * E_{K-K} = \frac{1}{2} \sum_L \sum_{K=\{(I_s,I_a,J_s,J_a)|R_{I_s,I_a} - R_{J_s,J_a} - L\neq 0\}} \frac{Z_{I_s} Z_{J_s}} {|R_{I_s,I_a} - R_{J_s,J_a} - L|}
|
---|
189 | * \textnormal{erfc} \Bigl ( \frac{|R_{I_s,I_a} - R_{J_s,J_a} - L|} {\sqrt{r_{I_s}^{Gauss}+r_{J_s}^{Gauss}}}\Bigr )
|
---|
190 | * \qquad (4.10)
|
---|
191 | * \f]
|
---|
192 | * Calculates the core-to-core force between the ions of all super cells.
|
---|
193 | * In order for this series to converge there must be a certain summation
|
---|
194 | * applied, which is the ewald summation and which is nothing else but to move
|
---|
195 | * in a circular motion from the current cell to the outside up to Ions::R_cut.
|
---|
196 | * \param *P Problem at hand
|
---|
197 | * \param first additional calculation beforehand if != 0
|
---|
198 | */
|
---|
199 | void CalculateEwald(struct Problem *P, int first)
|
---|
200 | {
|
---|
201 | int r,is,is1,is2,ia1,ia2,ir,ir2,i,j,k,ActualVec,MaxVec,MaxCell,Is_Neighb_Cell,LocalActualVec;
|
---|
202 | int MaxPar=P->Par.procs, ParMe=P->Par.me, MaxLocalVec, StartVec;
|
---|
203 | double rcut2,r2,erre2,addesr,addpre,arg,fac,gkl,esr,fxx,repand;
|
---|
204 | double R1[3];
|
---|
205 | double R2[3];
|
---|
206 | double R3[3];
|
---|
207 | double t[3];
|
---|
208 | struct Lattice *L = &P->Lat;
|
---|
209 | struct PseudoPot *PP = &P->PP;
|
---|
210 | struct Ions *I = &P->Ion;
|
---|
211 | if (I->R_cut != 0.0) {
|
---|
212 | if (first) {
|
---|
213 | SpeedMeasure(P, InitSimTime, StopTimeDo);
|
---|
214 | rcut2 = I->R_cut*I->R_cut;
|
---|
215 | ActualVec =0;
|
---|
216 | MaxCell = (int)5.*I->R_cut/pow(L->Volume,1./3.);
|
---|
217 | if (MaxCell < 2) MaxCell = 2;
|
---|
218 | for (i = -MaxCell; i <= MaxCell; i++) {
|
---|
219 | for (j = -MaxCell; j <= MaxCell; j++) {
|
---|
220 | for (k = -MaxCell; k <= MaxCell; k++) {
|
---|
221 | r2 = 0.0;
|
---|
222 | for (ir=0; ir <3; ir++) {
|
---|
223 | t[ir] = i*L->RealBasis[0*NDIM+ir]+j*L->RealBasis[1*NDIM+ir]+k*L->RealBasis[2*NDIM+ir];
|
---|
224 | r2 = t[ir]*t[ir];
|
---|
225 | }
|
---|
226 | Is_Neighb_Cell = ((abs(i)<=1) && (abs(j)<=1) && (abs(k)<=1));
|
---|
227 | if ((r2 <= rcut2) || Is_Neighb_Cell) {
|
---|
228 | ActualVec++;
|
---|
229 | }
|
---|
230 | }
|
---|
231 | }
|
---|
232 | }
|
---|
233 | MaxVec = ActualVec;
|
---|
234 | I->MaxVec = ActualVec;
|
---|
235 | MaxLocalVec = MaxVec / MaxPar;
|
---|
236 | StartVec = ParMe*MaxLocalVec;
|
---|
237 | r = MaxVec % MaxPar;
|
---|
238 | if (ParMe >= r) {
|
---|
239 | StartVec += r;
|
---|
240 | } else {
|
---|
241 | StartVec += ParMe;
|
---|
242 | MaxLocalVec++;
|
---|
243 | }
|
---|
244 | I->MaxLocalVec = MaxLocalVec;
|
---|
245 | LocalActualVec = ActualVec = 0;
|
---|
246 | I->RLatticeVec = (double *)
|
---|
247 | Realloc(I->RLatticeVec, sizeof(double)*NDIM*MaxLocalVec, "CalculateEwald:");
|
---|
248 | for (i = -MaxCell; i <= MaxCell; i++) {
|
---|
249 | for (j = -MaxCell; j <= MaxCell; j++) {
|
---|
250 | for (k = -MaxCell; k <= MaxCell; k++) {
|
---|
251 | r2 = 0.0;
|
---|
252 | for (ir=0; ir <3; ir++) {
|
---|
253 | t[ir] = i*L->RealBasis[0*NDIM+ir]+j*L->RealBasis[1*NDIM+ir]+k*L->RealBasis[2*NDIM+ir];
|
---|
254 | r2 = t[ir]*t[ir];
|
---|
255 | }
|
---|
256 | Is_Neighb_Cell = ((abs(i)<=1) && (abs(j)<=1) && (abs(k)<=1));
|
---|
257 | if ((r2 <= rcut2) || Is_Neighb_Cell) {
|
---|
258 | if (ActualVec >= StartVec && ActualVec < StartVec+MaxLocalVec) {
|
---|
259 | I->RLatticeVec[0+NDIM*LocalActualVec] = t[0];
|
---|
260 | I->RLatticeVec[1+NDIM*LocalActualVec] = t[1];
|
---|
261 | I->RLatticeVec[2+NDIM*LocalActualVec] = t[2];
|
---|
262 | LocalActualVec++;
|
---|
263 | }
|
---|
264 | ActualVec++;
|
---|
265 | }
|
---|
266 | }
|
---|
267 | }
|
---|
268 | }
|
---|
269 | SpeedMeasure(P, InitSimTime, StartTimeDo);
|
---|
270 | }
|
---|
271 | SpeedMeasure(P, EwaldTime, StartTimeDo);
|
---|
272 | esr = 0.0;
|
---|
273 | for (is1=0;is1 < I->Max_Types; is1++)
|
---|
274 | for (ia1=0;ia1 < I->I[is1].Max_IonsOfType; ia1++)
|
---|
275 | for (i=0; i< NDIM; i++)
|
---|
276 | I->FTemp[i+NDIM*(ia1)] = 0;
|
---|
277 | for (is1=0;is1 < I->Max_Types; is1++) {
|
---|
278 | for (ia1=0;ia1 < I->I[is1].Max_IonsOfType; ia1++) {
|
---|
279 | for (i=0;i<3;i++) {
|
---|
280 | R1[i]=I->I[is1].R[i+NDIM*ia1];
|
---|
281 | }
|
---|
282 | for (ir2=0;ir2<I->MaxLocalVec;ir2++) {
|
---|
283 | for (is2=0;is2 < I->Max_Types; is2++) {
|
---|
284 | gkl=1./sqrt(I->I[is1].rgauss*I->I[is1].rgauss + I->I[is2].rgauss*I->I[is2].rgauss);
|
---|
285 | for (ia2=0;ia2<I->I[is2].Max_IonsOfType; ia2++) {
|
---|
286 | for (i=0;i<3;i++) {
|
---|
287 | R2[i]=I->RLatticeVec[i+NDIM*ir2]+I->I[is2].R[i+NDIM*ia2];
|
---|
288 | }
|
---|
289 | erre2=0.0;
|
---|
290 | for (i=0;i<3;i++) {
|
---|
291 | R3[i] = R1[i]-R2[i];
|
---|
292 | erre2+=R3[i]*R3[i];
|
---|
293 | }
|
---|
294 | if (erre2 > MYEPSILON) {
|
---|
295 | arg=sqrt(erre2);
|
---|
296 | fac=PP->zval[is1]*PP->zval[is2]/arg*0.5;
|
---|
297 |
|
---|
298 | arg *= gkl;
|
---|
299 | addesr = derf(arg);
|
---|
300 | addesr = (1.0-addesr)*fac;
|
---|
301 | esr += addesr;
|
---|
302 | addpre=exp(-arg*arg)*gkl;
|
---|
303 | addpre=PP->fac1sqrtPI*PP->zval[is1]*PP->zval[is2]*addpre;
|
---|
304 | repand=(addesr+addpre)/erre2;
|
---|
305 | for (i=0;i<3;i++) {
|
---|
306 | fxx=repand*R3[i];
|
---|
307 | /*fprintf(stderr,"%i %i %i %i %i %g\n",is1+1,ia1+1,is2+1,ia2+1,i+1,fxx);*/
|
---|
308 | I->FTemp[i+NDIM*(ia1)] += fxx;
|
---|
309 | I->FTemp[i+NDIM*(ia2)] -= fxx;
|
---|
310 | }
|
---|
311 | }
|
---|
312 | }
|
---|
313 | }
|
---|
314 | }
|
---|
315 | }
|
---|
316 | }
|
---|
317 | } else {
|
---|
318 | esr = 0.0;
|
---|
319 | for (is1=0;is1 < I->Max_Types; is1++)
|
---|
320 | for (ia1=0;ia1 < I->I[is1].Max_IonsOfType; ia1++)
|
---|
321 | for (i=0; i< NDIM; i++)
|
---|
322 | I->FTemp[i+NDIM*(ia1)] = 0.;
|
---|
323 | }
|
---|
324 | SpeedMeasure(P, EwaldTime, StopTimeDo);
|
---|
325 | for (is=0;is < I->Max_Types; is++) {
|
---|
326 | MPI_Allreduce (I->FTemp , I->I[is].FEwald, NDIM*I->I[is].Max_IonsOfType, MPI_DOUBLE, MPI_SUM, P->Par.comm);
|
---|
327 | }
|
---|
328 | MPI_Allreduce ( &esr, &L->E->AllTotalIonsEnergy[EwaldEnergy], 1, MPI_DOUBLE, MPI_SUM, P->Par.comm);
|
---|
329 | }
|
---|
330 |
|
---|
331 | /** Sum up all forces acting on Ions.
|
---|
332 | * IonType::FIon = IonType::FEwald + IonType::FIonL + IonType::FIonNL for all
|
---|
333 | * dimensions #NDIM and each Ion of IonType
|
---|
334 | * \param *P Problem at hand
|
---|
335 | */
|
---|
336 | void CalculateIonForce(struct Problem *P)
|
---|
337 | {
|
---|
338 | struct Ions *I = &P->Ion;
|
---|
339 | int i,j,d;
|
---|
340 | for (i=0; i < I->Max_Types; i++)
|
---|
341 | for (j=0; j < I->I[i].Max_IonsOfType; j++)
|
---|
342 | for (d=0; d<NDIM;d++)
|
---|
343 | I->I[i].FIon[d+j*NDIM] = I->I[i].FEwald[d+j*NDIM] + I->I[i].FIonL[d+j*NDIM] + I->I[i].FIonNL[d+j*NDIM];
|
---|
344 | }
|
---|
345 |
|
---|
346 | /** Write Forces to FileData::ForcesFile.
|
---|
347 | * goes through all Ions per IonType and each dimension of #NDIM and prints in one line:
|
---|
348 | * Position IonType::R, total force Ion IonType::FIon, local force IonType::FIonL,
|
---|
349 | * non-local IonType::FIonNL, ewald force IonType::FEwald
|
---|
350 | * \param *P Problem at hand
|
---|
351 | */
|
---|
352 | void OutputIonForce(struct Problem *P)
|
---|
353 | {
|
---|
354 | struct RunStruct *R = &P->R;
|
---|
355 | struct FileData *F = &P->Files;
|
---|
356 | struct Ions *I = &P->Ion;
|
---|
357 | FILE *fout = NULL;
|
---|
358 | int i,j;
|
---|
359 | if (F->MeOutMes != 1) return;
|
---|
360 | fout = F->ForcesFile;
|
---|
361 | for (i=0; i < I->Max_Types; i++)
|
---|
362 | for (j=0; j < I->I[i].Max_IonsOfType; j++)
|
---|
363 | fprintf(fout, "%i\t%i\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\n", i,j,
|
---|
364 | I->I[i].R[0+j*NDIM], I->I[i].R[1+j*NDIM], I->I[i].R[2+j*NDIM],
|
---|
365 | I->I[i].FIon[0+j*NDIM], I->I[i].FIon[1+j*NDIM], I->I[i].FIon[2+j*NDIM],
|
---|
366 | I->I[i].FIonL[0+j*NDIM], I->I[i].FIonL[1+j*NDIM], I->I[i].FIonL[2+j*NDIM],
|
---|
367 | I->I[i].FIonNL[0+j*NDIM], I->I[i].FIonNL[1+j*NDIM], I->I[i].FIonNL[2+j*NDIM],
|
---|
368 | I->I[i].FEwald[0+j*NDIM], I->I[i].FEwald[1+j*NDIM], I->I[i].FEwald[2+j*NDIM]);
|
---|
369 | fflush(fout);
|
---|
370 | fprintf(fout, "MeanForce:\t%e\n", R->MeanForce[0]);
|
---|
371 | }
|
---|
372 |
|
---|
373 | /** Frees memory IonType.
|
---|
374 | * All pointers from IonType and the pointer on it are free'd
|
---|
375 | * \param *I Ions structure to be free'd
|
---|
376 | * \sa IonsInitRead where memory is allocated
|
---|
377 | */
|
---|
378 | void RemoveIonsRead(struct Ions *I)
|
---|
379 | {
|
---|
380 | int i, it;
|
---|
381 | for (i=0; i < I->Max_Types; i++) {
|
---|
382 | //fprintf(stderr,"Name\n");
|
---|
383 | Free(I->I[i].Name);
|
---|
384 | //fprintf(stderr,"Abbreviation\n");
|
---|
385 | Free(I->I[i].Symbol);
|
---|
386 | for (it=0;it<I->I[i].Max_IonsOfType;it++) {
|
---|
387 | //fprintf(stderr,"sigma[it]\n");
|
---|
388 | Free(I->I[i].sigma[it]);
|
---|
389 | //fprintf(stderr,"sigma_rezi[it]\n");
|
---|
390 | Free(I->I[i].sigma_rezi[it]);
|
---|
391 | //fprintf(stderr,"sigma_PAS[it]\n");
|
---|
392 | Free(I->I[i].sigma_PAS[it]);
|
---|
393 | //fprintf(stderr,"sigma_rezi_PAS[it]\n");
|
---|
394 | Free(I->I[i].sigma_rezi_PAS[it]);
|
---|
395 | }
|
---|
396 | //fprintf(stderr,"sigma\n");
|
---|
397 | Free(I->I[i].sigma);
|
---|
398 | //fprintf(stderr,"sigma_rezi\n");
|
---|
399 | Free(I->I[i].sigma_rezi);
|
---|
400 | //fprintf(stderr,"sigma_PAS\n");
|
---|
401 | Free(I->I[i].sigma_PAS);
|
---|
402 | //fprintf(stderr,"sigma_rezi_PAS\n");
|
---|
403 | Free(I->I[i].sigma_rezi_PAS);
|
---|
404 | //fprintf(stderr,"R\n");
|
---|
405 | Free(I->I[i].R);
|
---|
406 | //fprintf(stderr,"R_old\n");
|
---|
407 | Free(I->I[i].R_old);
|
---|
408 | //fprintf(stderr,"R_old_old\n");
|
---|
409 | Free(I->I[i].R_old_old);
|
---|
410 | //fprintf(stderr,"FIon\n");
|
---|
411 | Free(I->I[i].FIon);
|
---|
412 | //fprintf(stderr,"FIon_old\n");
|
---|
413 | Free(I->I[i].FIon_old);
|
---|
414 | //fprintf(stderr,"SearchDir\n");
|
---|
415 | Free(I->I[i].SearchDir);
|
---|
416 | //fprintf(stderr,"GammaA\n");
|
---|
417 | Free(I->I[i].GammaA);
|
---|
418 | //fprintf(stderr,"FIonL\n");
|
---|
419 | Free(I->I[i].FIonL);
|
---|
420 | //fprintf(stderr,"FIonNL\n");
|
---|
421 | Free(I->I[i].FIonNL);
|
---|
422 | //fprintf(stderr,"U\n");
|
---|
423 | Free(I->I[i].U);
|
---|
424 | //fprintf(stderr,"SFactor\n");
|
---|
425 | Free(I->I[i].SFactor);
|
---|
426 | //fprintf(stderr,"IMT\n");
|
---|
427 | Free(I->I[i].IMT);
|
---|
428 | //fprintf(stderr,"FEwald\n");
|
---|
429 | Free(I->I[i].FEwald);
|
---|
430 | Free(I->I[i].alpha);
|
---|
431 | }
|
---|
432 | //fprintf(stderr,"RLatticeVec\n");
|
---|
433 | if (I->R_cut == 0.0)
|
---|
434 | Free(I->RLatticeVec);
|
---|
435 | //fprintf(stderr,"FTemp\n");
|
---|
436 | Free(I->FTemp);
|
---|
437 | //fprintf(stderr,"I\n");
|
---|
438 | Free(I->I);
|
---|
439 | }
|
---|
440 |
|
---|
441 | /** Shifts center of gravity of ion forces IonType::FIon.
|
---|
442 | * First sums up all forces of movable ions to a "force temperature",
|
---|
443 | * then reduces each force by this temp, so that all in all
|
---|
444 | * the net force is 0.
|
---|
445 | * \param *P Problem at hand
|
---|
446 | * \sa CorrectVelocity
|
---|
447 | * \note why is FTemp not divided by number of ions: is probably correct, but this
|
---|
448 | * function was not really meaningful from the beginning.
|
---|
449 | */
|
---|
450 | void CorrectForces(struct Problem *P)
|
---|
451 | {
|
---|
452 | struct Ions *I = &P->Ion;
|
---|
453 | double *FIon;
|
---|
454 | double FTemp[NDIM];
|
---|
455 | int is, ia, d;
|
---|
456 | for (d=0; d<NDIM; d++)
|
---|
457 | FTemp[d] = 0;
|
---|
458 | for (is=0; is < I->Max_Types; is++) { // calculate force temperature for each type ...
|
---|
459 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) { // .. and each ion of this type ...
|
---|
460 | FIon = &I->I[is].FIon[NDIM*ia];
|
---|
461 | if (I->I[is].IMT[ia] == MoveIon) { // .. if it's movable
|
---|
462 | for (d=0; d<NDIM; d++)
|
---|
463 | FTemp[d] += FIon[d];
|
---|
464 | }
|
---|
465 | }
|
---|
466 | }
|
---|
467 | for (is=0; is < I->Max_Types; is++) { // and then reduce each by this value
|
---|
468 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
|
---|
469 | FIon = &I->I[is].FIon[NDIM*ia];
|
---|
470 | if (I->I[is].IMT[ia] == MoveIon) {
|
---|
471 | for (d=0; d<NDIM; d++)
|
---|
472 | FIon[d] -= FTemp[d]; // (?) why not -= FTemp[d]/I->Max_TotalIons
|
---|
473 | }
|
---|
474 | }
|
---|
475 | }
|
---|
476 | }
|
---|
477 |
|
---|
478 |
|
---|
479 | /** Shifts center of gravity of ion velocities (rather momentums).
|
---|
480 | * First sums up ion speed U times their IonMass (summed up for each
|
---|
481 | * dimension), then reduces the velocity by temp per Ions::TotalMass (so here
|
---|
482 | * total number of Ions is included)
|
---|
483 | * \param *P Problem at hand
|
---|
484 | * \sa CorrectForces
|
---|
485 | */
|
---|
486 | void CorrectVelocity(struct Problem *P)
|
---|
487 | {
|
---|
488 | struct Ions *I = &P->Ion;
|
---|
489 | double *U;
|
---|
490 | double UTemp[NDIM];
|
---|
491 | int is, ia, d;
|
---|
492 | for (d=0; d<NDIM; d++)
|
---|
493 | UTemp[d] = 0;
|
---|
494 | for (is=0; is < I->Max_Types; is++) { // all types ...
|
---|
495 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) { // ... all ions per type ...
|
---|
496 | U = &I->I[is].U[NDIM*ia];
|
---|
497 | if (I->I[is].IMT[ia] == MoveIon) { // ... if it's movable
|
---|
498 | for (d=0; d<NDIM; d++)
|
---|
499 | UTemp[d] += I->I[is].IonMass*U[d];
|
---|
500 | }
|
---|
501 | }
|
---|
502 | }
|
---|
503 | for (is=0; is < I->Max_Types; is++) {
|
---|
504 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
|
---|
505 | U = &I->I[is].U[NDIM*ia];
|
---|
506 | if (I->I[is].IMT[ia] == MoveIon) {
|
---|
507 | for (d=0; d<NDIM; d++)
|
---|
508 | U[d] -= UTemp[d]/I->TotalMass; // shift by mean velocity over mass and number of ions
|
---|
509 | }
|
---|
510 | }
|
---|
511 | }
|
---|
512 | }
|
---|
513 |
|
---|
514 | /** Moves ions according to calculated force.
|
---|
515 | * Goes through each type of IonType and each ion therein, takes mass and
|
---|
516 | * Newton to move each ion to new coordinates IonType::R, while remembering the last
|
---|
517 | * two coordinates and the last force of the ion. Coordinates R are being
|
---|
518 | * transformed to inverted base, shifted by +-1.0 and back-transformed to
|
---|
519 | * real base.
|
---|
520 | * \param *P Problem at hand
|
---|
521 | * \sa CalculateIonForce
|
---|
522 | * \sa UpdateIonsU
|
---|
523 | * \warning U is not changed here, only used to move the ion.
|
---|
524 | */
|
---|
525 | void UpdateIonsR(struct Problem *P)
|
---|
526 | {
|
---|
527 | struct Ions *I = &P->Ion;
|
---|
528 | int is, ia, d;
|
---|
529 | double *R, *R_old, *R_old_old, *FIon, *FIon_old, *U, *FIonL, *FIonNL, *FEwald;
|
---|
530 | double IonMass, a;
|
---|
531 | double sR[NDIM], sRold[NDIM], sRoldold[NDIM];
|
---|
532 | const int delta_t = P->R.delta_t;
|
---|
533 | for (is=0; is < I->Max_Types; is++) { // go through all types ...
|
---|
534 | IonMass = I->I[is].IonMass;
|
---|
535 | if (IonMass < MYEPSILON) fprintf(stderr,"UpdateIonsR: IonMass = %lg",IonMass);
|
---|
536 | a = delta_t*0.5/IonMass; // F/m = a and thus: s = 0.5 * F/m * t^2 + v * t =: t * (F * a + v)
|
---|
537 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) { // .. and each ion of the type
|
---|
538 | FIon = &I->I[is].FIon[NDIM*ia];
|
---|
539 | FIonL = &I->I[is].FIonL[NDIM*ia];
|
---|
540 | FIonNL = &I->I[is].FIonNL[NDIM*ia];
|
---|
541 | FEwald = &I->I[is].FEwald[NDIM*ia];
|
---|
542 | FIon_old = &I->I[is].FIon_old[NDIM*ia];
|
---|
543 | U = &I->I[is].U[NDIM*ia];
|
---|
544 | R = &I->I[is].R[NDIM*ia];
|
---|
545 | R_old = &I->I[is].R_old[NDIM*ia];
|
---|
546 | R_old_old = &I->I[is].R_old_old[NDIM*ia];
|
---|
547 | if (I->I[is].IMT[ia] == MoveIon) {
|
---|
548 | for (d=0; d<NDIM; d++) {
|
---|
549 | R_old_old[d] = R_old[d]; // shift old values
|
---|
550 | R_old[d] = R[d];
|
---|
551 | R[d] += delta_t*(U[d]+a*FIon[d]); // F = m * a and s = 0.5 * a * t^2
|
---|
552 | FIon_old[d] = FIon[d]; // store old force
|
---|
553 | FIon[d] = 0; // zero all as a sign that's been moved
|
---|
554 | FIonL[d] = 0;
|
---|
555 | FIonNL[d] = 0;
|
---|
556 | FEwald[d] = 0;
|
---|
557 | }
|
---|
558 | RMat33Vec3(sR, P->Lat.InvBasis, R);
|
---|
559 | RMat33Vec3(sRold, P->Lat.InvBasis, R_old);
|
---|
560 | RMat33Vec3(sRoldold, P->Lat.InvBasis, R_old_old);
|
---|
561 | for (d=0; d <NDIM; d++) {
|
---|
562 | while (sR[d] < 0) {
|
---|
563 | sR[d] += 1.0;
|
---|
564 | sRold[d] += 1.0;
|
---|
565 | sRoldold[d] += 1.0;
|
---|
566 | }
|
---|
567 | while (sR[d] >= 1.0) {
|
---|
568 | sR[d] -= 1.0;
|
---|
569 | sRold[d] -= 1.0;
|
---|
570 | sRoldold[d] -= 1.0;
|
---|
571 | }
|
---|
572 | }
|
---|
573 | RMat33Vec3(R, P->Lat.RealBasis, sR);
|
---|
574 | RMat33Vec3(R_old, P->Lat.RealBasis, sRold);
|
---|
575 | RMat33Vec3(R_old_old, P->Lat.RealBasis, sRoldold);
|
---|
576 | }
|
---|
577 | }
|
---|
578 | }
|
---|
579 | }
|
---|
580 |
|
---|
581 | /** Changes ion's velocity according to acting force.
|
---|
582 | * IonType::U is changed by the weighted force of actual step and last one
|
---|
583 | * according to Newton.
|
---|
584 | * \param *P Problem at hand
|
---|
585 | * \sa UpdateIonsR
|
---|
586 | * \sa CalculateIonForce
|
---|
587 | * \warning R is not changed here.
|
---|
588 | */
|
---|
589 | void UpdateIonsU(struct Problem *P)
|
---|
590 | {
|
---|
591 | struct Ions *I = &P->Ion;
|
---|
592 | int is, ia, d;
|
---|
593 | double *FIon, *FIon_old, *U;
|
---|
594 | double IonMass, a;
|
---|
595 | const int delta_t = P->R.delta_t;
|
---|
596 | for (is=0; is < I->Max_Types; is++) {
|
---|
597 | IonMass = I->I[is].IonMass;
|
---|
598 | if (IonMass < MYEPSILON) fprintf(stderr,"UpdateIonsU: IonMass = %lg",IonMass);
|
---|
599 | a = delta_t*0.5/IonMass; // (F+F_old)/2m = a and thus: v = (F+F_old)/2m * t = (F + F_old) * a
|
---|
600 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
|
---|
601 | FIon = &I->I[is].FIon[NDIM*ia];
|
---|
602 | FIon_old = &I->I[is].FIon_old[NDIM*ia];
|
---|
603 | U = &I->I[is].U[NDIM*ia];
|
---|
604 | if (I->I[is].IMT[ia] == MoveIon)
|
---|
605 | for (d=0; d<NDIM; d++) {
|
---|
606 | U[d] += a * (FIon[d]+FIon_old[d]);
|
---|
607 | }
|
---|
608 | }
|
---|
609 | }
|
---|
610 | }
|
---|
611 |
|
---|
612 | /** CG process to optimise structure.
|
---|
613 | * \param *P Problem at hand
|
---|
614 | */
|
---|
615 | void UpdateIons(struct Problem *P)
|
---|
616 | {
|
---|
617 | struct Ions *I = &P->Ion;
|
---|
618 | int is, ia, d;
|
---|
619 | double *R, *R_old, *R_old_old, *FIon, *S, *GammaA;
|
---|
620 | double IonFac, GammaB; //, GammaT;
|
---|
621 | double FNorm, StepNorm;
|
---|
622 | for (is=0; is < I->Max_Types; is++) {
|
---|
623 | IonFac = I->I[is].IonFac;
|
---|
624 | GammaA = I->I[is].GammaA;
|
---|
625 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
|
---|
626 | FIon = &I->I[is].FIon[NDIM*ia];
|
---|
627 | S = &I->I[is].SearchDir[NDIM*ia];
|
---|
628 | GammaB = GammaA[ia];
|
---|
629 | GammaA[ia] = RSP3(FIon,S);
|
---|
630 | FNorm = sqrt(RSP3(FIon,FIon));
|
---|
631 | StepNorm = log(1.+IonFac*FNorm); // Fix Hack
|
---|
632 | if (FNorm != 0)
|
---|
633 | StepNorm /= sqrt(RSP3(FIon,FIon));
|
---|
634 | else
|
---|
635 | StepNorm = 0;
|
---|
636 | //if (GammaB != 0.0) {
|
---|
637 | // GammaT = GammaA[ia]/GammaB;
|
---|
638 | // for (d=0; d>NDIM; d++)
|
---|
639 | // S[d] = FIon[d]+GammaT*S[d];
|
---|
640 | // } else {
|
---|
641 | for (d=0; d<NDIM; d++)
|
---|
642 | S[d] = StepNorm*FIon[d];
|
---|
643 | // }
|
---|
644 | R = &I->I[is].R[NDIM*ia];
|
---|
645 | R_old = &I->I[is].R_old[NDIM*ia];
|
---|
646 | R_old_old = &I->I[is].R_old_old[NDIM*ia];
|
---|
647 | if (I->I[is].IMT[ia] == MoveIon)
|
---|
648 | for (d=0; d<NDIM; d++) {
|
---|
649 | R_old_old[d] = R_old[d];
|
---|
650 | R_old[d] = R[d];
|
---|
651 | R[d] += S[d]; // FixHack*IonFac;
|
---|
652 | }
|
---|
653 | }
|
---|
654 | }
|
---|
655 | }
|
---|
656 |
|
---|
657 | /** Print coordinates of all ions to stdout.
|
---|
658 | * \param *P Problem at hand
|
---|
659 | */
|
---|
660 | void OutputIonCoordinates(struct Problem *P)
|
---|
661 | {
|
---|
662 | struct Ions *I = &P->Ion;
|
---|
663 | int is, ia;
|
---|
664 | if (P->Par.me == 0) {
|
---|
665 | fprintf(stderr, "(%i) ======= Updated Ion Coordinates =========\n",P->Par.me);
|
---|
666 | for (is=0; is < I->Max_Types; is++)
|
---|
667 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++)
|
---|
668 | //fprintf(stderr, "(%i) R[%i/%i][%i/%i] = (%e,%e,%e)\n", P->Par.me, is, I->Max_Types, ia, I->I[is].Max_IonsOfType, I->I[is].R[NDIM*ia+0],I->I[is].R[NDIM*ia+1],I->I[is].R[NDIM*ia+2]);
|
---|
669 | fprintf(stderr, "Ion_Type%i_%i\t%.6f\t%.6f\t%.6f\t0\t# Atom from StructOpt\n", is+1, ia+1, I->I[is].R[NDIM*ia+0],I->I[is].R[NDIM*ia+1],I->I[is].R[NDIM*ia+2]);
|
---|
670 | fprintf(stderr, "(%i) =========================================\n",P->Par.me);
|
---|
671 | }
|
---|
672 | }
|
---|
673 |
|
---|
674 | /** Calculates kinetic energy (Ions::EKin) of movable Ions.
|
---|
675 | * Does 0.5 / IonType::IonMass * IonTye::U^2 for each Ion,
|
---|
676 | * also retrieves actual temperatur by 2/3 from just
|
---|
677 | * calculated Ions::EKin.
|
---|
678 | * \param *P Problem at hand
|
---|
679 | */
|
---|
680 | void CalculateEnergyIonsU(struct Problem *P)
|
---|
681 | {
|
---|
682 | struct Ions *I = &P->Ion;
|
---|
683 | int is, ia, d;
|
---|
684 | double *U;
|
---|
685 | double IonMass, a, ekin = 0;
|
---|
686 | for (is=0; is < I->Max_Types; is++) {
|
---|
687 | IonMass = I->I[is].IonMass;
|
---|
688 | a = 0.5*IonMass;
|
---|
689 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
|
---|
690 | U = &I->I[is].U[NDIM*ia];
|
---|
691 | if (I->I[is].IMT[ia] == MoveIon)
|
---|
692 | for (d=0; d<NDIM; d++) {
|
---|
693 | ekin += a * U[d]*U[d];
|
---|
694 | }
|
---|
695 | }
|
---|
696 | }
|
---|
697 | I->EKin = ekin;
|
---|
698 | I->ActualTemp = (2./(3.*I->Max_TotalIons)*I->EKin);
|
---|
699 | }
|
---|
700 |
|
---|
701 | /** Scales ion velocities to match temperature.
|
---|
702 | * In order to match Ions::ActualTemp with desired RunStruct::TargetTemp
|
---|
703 | * each velocity in each dimension (for all types, all ions) is scaled
|
---|
704 | * with the ratio of these two. Ions::EKin is recalculated.
|
---|
705 | * \param *P Problem at hand
|
---|
706 | */
|
---|
707 | void ScaleTemp(struct Problem *P)
|
---|
708 | {
|
---|
709 | struct Ions *I = &P->Ion;
|
---|
710 | int is, ia, d;
|
---|
711 | double *U;
|
---|
712 | double IonMass, a, ekin = 0;
|
---|
713 | if (I->ActualTemp < MYEPSILON) fprintf(stderr,"ScaleTemp: I->ActualTemp = %lg",I->ActualTemp);
|
---|
714 | double ScaleTempFactor = sqrt(P->R.TargetTemp/I->ActualTemp);
|
---|
715 | for (is=0; is < I->Max_Types; is++) {
|
---|
716 | IonMass = I->I[is].IonMass;
|
---|
717 | a = 0.5*IonMass;
|
---|
718 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
|
---|
719 | U = &I->I[is].U[NDIM*ia];
|
---|
720 | if (I->I[is].IMT[ia] == MoveIon)
|
---|
721 | for (d=0; d<NDIM; d++) {
|
---|
722 | U[d] *= ScaleTempFactor;
|
---|
723 | ekin += a * U[d]*U[d];
|
---|
724 | }
|
---|
725 | }
|
---|
726 | }
|
---|
727 | I->EKin = ekin;
|
---|
728 | I->ActualTemp = (2./(3.*I->Max_TotalIons)*I->EKin);
|
---|
729 | }
|
---|
730 |
|
---|
731 | /** Calculates mean force vector as stop criteria in structure optimization.
|
---|
732 | * Calculates a mean force vector per ion as the usual euclidian norm over total
|
---|
733 | * number of ions and dimensions, being the sum of each ion force (for all type,
|
---|
734 | * all ions, all dims) squared.
|
---|
735 | * The mean force is archived in RunStruct::MeanForce and printed to screen.
|
---|
736 | * \param *P Problem at hand
|
---|
737 | */
|
---|
738 | void GetOuterStop(struct Problem *P)
|
---|
739 | {
|
---|
740 | struct RunStruct *R = &P->R;
|
---|
741 | struct Ions *I = &P->Ion;
|
---|
742 | int is, ia, IonNo=0, i, d;
|
---|
743 | double MeanForce = 0.0;
|
---|
744 | for (is=0; is < I->Max_Types; is++)
|
---|
745 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
|
---|
746 | IonNo++;
|
---|
747 | for (d=0; d <NDIM; d++)
|
---|
748 | MeanForce += I->I[is].FIon[d+NDIM*ia]*I->I[is].FIon[d+NDIM*ia];
|
---|
749 | }
|
---|
750 | for (i=MAXOLD-1; i > 0; i--)
|
---|
751 | R->MeanForce[i] = R->MeanForce[i-1];
|
---|
752 | MeanForce = sqrt(MeanForce/(IonNo*NDIM));
|
---|
753 | R->MeanForce[0] = MeanForce;
|
---|
754 | if (P->Call.out[LeaderOut] && (P->Par.me == 0))
|
---|
755 | fprintf(stderr,"MeanForce = %e\n", R->MeanForce[0]);
|
---|
756 | }
|
---|
757 |
|
---|
758 |
|
---|