[a0bcf1] | 1 | /** \file ions.c
|
---|
| 2 | * Ionic Force, speed, coordinate and energy calculation.
|
---|
| 3 | * Herein are all the routines for the molecular dynamics calculations such as
|
---|
| 4 | * reading of configuration files IonsInitRead() and
|
---|
| 5 | * free'ing RemoveIonsRead(),
|
---|
| 6 | * summing up forces CalculateIonForce(),
|
---|
| 7 | * correcting for temperature CorrectVelocities(),
|
---|
| 8 | * or for fixation center of balance CorrectForces(),
|
---|
| 9 | * outputting them to file OutputIonForce(),
|
---|
| 10 | * calculating kinetic CalculateEnergyIonsU(), ewald CalculateEwald() energies,
|
---|
| 11 | * moving ion UpdateIonsR() (position) UpdateIonsU() (speed),
|
---|
| 12 | * scaling to match some temperature ScaleTemp()
|
---|
| 13 | * are gathered.
|
---|
| 14 | * Finally, needed for structure optimization GetOuterStop() evaluates the stop
|
---|
| 15 | * condition of a minimal mean force acting on each ion.
|
---|
| 16 | *
|
---|
| 17 | Project: ParallelCarParrinello
|
---|
| 18 | \author Jan Hamaekers
|
---|
| 19 | \date 2000
|
---|
| 20 |
|
---|
| 21 | File: ions.c
|
---|
| 22 | $Id: ions.c,v 1.34 2007/02/05 16:15:27 foo Exp $
|
---|
| 23 | */
|
---|
| 24 |
|
---|
| 25 | #include <stdlib.h>
|
---|
| 26 | #include <stdio.h>
|
---|
| 27 | #include <stddef.h>
|
---|
| 28 | #include <math.h>
|
---|
| 29 | #include <string.h>
|
---|
| 30 | #include <unistd.h>
|
---|
| 31 | #include "mymath.h"
|
---|
| 32 |
|
---|
| 33 |
|
---|
| 34 | // use double precision fft when we have it
|
---|
| 35 | #ifdef HAVE_CONFIG_H
|
---|
| 36 | #include <config.h>
|
---|
| 37 | #endif
|
---|
| 38 |
|
---|
| 39 | #ifdef HAVE_DFFTW_H
|
---|
| 40 | #include "dfftw.h"
|
---|
| 41 | #else
|
---|
| 42 | #include "fftw.h"
|
---|
| 43 | #endif
|
---|
| 44 |
|
---|
| 45 | #include "data.h"
|
---|
| 46 | #include "errors.h"
|
---|
| 47 | #include "helpers.h"
|
---|
| 48 | #include "mymath.h"
|
---|
| 49 | #include "ions.h"
|
---|
| 50 | #include "init.h"
|
---|
| 51 |
|
---|
| 52 | /** Readin of the ion section of parameter file.
|
---|
| 53 | * Among others the following paramaters are read from file:
|
---|
| 54 | * Ions::MaxTypes, IonType::Max_IonsOfType, IonType::Z, IonType::R,
|
---|
| 55 | * IonType:IMT, ...
|
---|
| 56 | * \param P Problem at hand (containing Ions and Lattice structures)
|
---|
| 57 | * \param *source file pointer
|
---|
| 58 | */
|
---|
| 59 | void IonsInitRead(struct Problem *P, FILE *source) {
|
---|
| 60 | struct Ions *I = &P->Ion;
|
---|
| 61 | struct Lattice *L = &P->Lat;
|
---|
| 62 | //struct RunStruct *Run = &P->R;
|
---|
| 63 | int i,it,j,BorAng,IMT,d,me,k;
|
---|
| 64 | int relative; // whether read-in coordinate are relative (1) or absolute
|
---|
| 65 | double R[NDIM];
|
---|
| 66 | double Bohr = BOHRRADIUS; /* Angstroem */
|
---|
| 67 |
|
---|
| 68 | I->Max_TotalIons = 0;
|
---|
| 69 | I->TotalZval = 0;
|
---|
| 70 | MPI_Comm_rank(MPI_COMM_WORLD, &me);
|
---|
| 71 | ParseForParameter(P->Call.out[ReadOut],source,"RCut", 0, 1, 1, double_type, &I->R_cut, critical);
|
---|
| 72 | ParseForParameter(P->Call.out[ReadOut],source,"IsAngstroem", 0, 1, 1, int_type, &BorAng, critical);
|
---|
| 73 | if (!BorAng) Bohr = 1.0;
|
---|
| 74 | ParseForParameter(P->Call.out[ReadOut],source,"MaxTypes", 0, 1, 1, int_type, &I->Max_Types, critical);
|
---|
| 75 | I->I = (struct IonType *) Malloc(sizeof(struct IonType)*I->Max_Types, "IonsInitRead: IonType");
|
---|
| 76 | if (!ParseForParameter(P->Call.out[ReadOut],source,"RelativeCoord", 0, 1, 1, int_type, &relative, optional))
|
---|
| 77 | relative = 0;
|
---|
| 78 | if (!ParseForParameter(P->Call.out[ReadOut],source,"StructOpt", 0, 1, 1, int_type, &I->StructOpt, optional))
|
---|
| 79 | I->StructOpt = 0;
|
---|
| 80 |
|
---|
| 81 | /* Ions Data */
|
---|
| 82 | I->RLatticeVec = NULL;
|
---|
| 83 | I->TotalMass = 0;
|
---|
| 84 | char *free_name, *name;
|
---|
| 85 | name = free_name = Malloc(255*sizeof(char),"IonsInitRead: Name");
|
---|
| 86 | for (i=0; i < I->Max_Types; i++) {
|
---|
| 87 | sprintf(name,"Ion_Type%i",i+1);
|
---|
| 88 | I->I[i].corecorr = NotCoreCorrected;
|
---|
| 89 | I->I[i].Name = MallocString(255, "IonsInitRead: Name");
|
---|
| 90 | I->I[i].Symbol = MallocString(255, "IonsInitRead: Symbol");
|
---|
| 91 | ParseForParameter(P->Call.out[ReadOut],source, name, 0, 1, 1, int_type, &I->I[i].Max_IonsOfType, critical);
|
---|
| 92 | ParseForParameter(P->Call.out[ReadOut],source, name, 0, 2, 1, int_type, &I->I[i].Z, critical);
|
---|
| 93 | ParseForParameter(P->Call.out[ReadOut],source, name, 0, 3, 1, double_type, &I->I[i].rgauss, critical);
|
---|
| 94 | ParseForParameter(P->Call.out[ReadOut],source, name, 0, 4, 1, int_type, &I->I[i].l_max, critical);
|
---|
| 95 | ParseForParameter(P->Call.out[ReadOut],source, name, 0, 5, 1, int_type, &I->I[i].l_loc, critical);
|
---|
| 96 | ParseForParameter(P->Call.out[ReadOut],source, name, 0, 6, 1, double_type, &I->I[i].IonMass, critical);
|
---|
| 97 | if(!ParseForParameter(P->Call.out[ReadOut],source, name, 0, 7, 1, string_type, &I->I[i].Name[0], optional))
|
---|
| 98 | sprintf(&I->I[i].Name[0],"type%i",i);
|
---|
| 99 | if(!ParseForParameter(P->Call.out[ReadOut],source, name, 0, 8, 1, string_type, &I->I[i].Symbol[0], optional))
|
---|
| 100 | sprintf(&I->I[i].Symbol[0],"t%i",i);
|
---|
| 101 | if (P->Call.out[ReadOut]) fprintf(stderr,"(%i) Element name: %s, symbol: %s\n",P->Par.me, I->I[i].Name, I->I[i].Symbol);
|
---|
| 102 | I->I[i].sigma = (double **) Malloc(sizeof(double *) * I->I[i].Max_IonsOfType, "IonsInitRead: sigma");
|
---|
| 103 | I->I[i].sigma_rezi = (double **) Malloc(sizeof(double *) * I->I[i].Max_IonsOfType, "IonsInitRead: sigma_rezi");
|
---|
| 104 | I->I[i].sigma_PAS = (double **) Malloc(sizeof(double *) * I->I[i].Max_IonsOfType, "IonsInitRead: sigma_PAS");
|
---|
| 105 | I->I[i].sigma_rezi_PAS = (double **) Malloc(sizeof(double *) * I->I[i].Max_IonsOfType, "IonsInitRead: sigma_rezi_PAS");
|
---|
| 106 | for (it=0;it<I->I[i].Max_IonsOfType;it++) {
|
---|
| 107 | I->I[i].sigma[it] = (double *) Malloc(sizeof(double) * NDIM*NDIM, "IonsInitRead: sigma");
|
---|
| 108 | I->I[i].sigma_rezi[it] = (double *) Malloc(sizeof(double) * NDIM*NDIM, "IonsInitRead: sigma_rezi");
|
---|
| 109 | I->I[i].sigma_PAS[it] = (double *) Malloc(sizeof(double) * NDIM, "IonsInitRead: sigma_PAS");
|
---|
| 110 | I->I[i].sigma_rezi_PAS[it] = (double *) Malloc(sizeof(double) * NDIM, "IonsInitRead: sigma_rezi_PAS");
|
---|
| 111 | }
|
---|
| 112 | //I->I[i].IonFac = I->I[i].IonMass;
|
---|
| 113 | I->I[i].IonFac = 1/I->I[i].IonMass;
|
---|
| 114 | I->TotalMass += I->I[i].Max_IonsOfType*I->I[i].IonMass;
|
---|
| 115 | I->I[i].ZFactor = -I->I[i].Z*4.*PI;
|
---|
| 116 | I->I[i].alpha = (double *) Malloc(sizeof(double) * I->I[i].Max_IonsOfType, "IonsInitRead: alpha");
|
---|
| 117 | I->I[i].R = (double *) Malloc(sizeof(double) * NDIM * I->I[i].Max_IonsOfType, "IonsInitRead: R");
|
---|
| 118 | I->I[i].R_old = (double *) Malloc(sizeof(double) *NDIM* I->I[i].Max_IonsOfType, "IonsInitRead: R_old");
|
---|
| 119 | I->I[i].R_old_old = (double *) Malloc(sizeof(double) *NDIM* I->I[i].Max_IonsOfType, "IonsInitRead: R_old_old");
|
---|
| 120 | I->I[i].FIon = (double *) Malloc(sizeof(double) * NDIM * I->I[i].Max_IonsOfType, "IonsInitRead: FIon");
|
---|
| 121 | I->I[i].FIon_old = (double *) Malloc(sizeof(double) * NDIM * I->I[i].Max_IonsOfType, "IonsInitRead: FIon_old");
|
---|
| 122 | SetArrayToDouble0(I->I[i].FIon_old, NDIM*I->I[i].Max_IonsOfType);
|
---|
| 123 | I->I[i].SearchDir = Malloc(sizeof(double) * NDIM * I->I[i].Max_IonsOfType, "IonsInitRead: SearchDir");
|
---|
| 124 | I->I[i].GammaA = Malloc(sizeof(double) * I->I[i].Max_IonsOfType, "IonsInitRead: GammaA");
|
---|
| 125 | SetArrayToDouble0(I->I[i].GammaA, I->I[i].Max_IonsOfType);
|
---|
| 126 | I->I[i].U = (double *) Malloc(sizeof(double) *NDIM* I->I[i].Max_IonsOfType, "IonsInitRead: U");
|
---|
| 127 | SetArrayToDouble0(I->I[i].U, NDIM*I->I[i].Max_IonsOfType);
|
---|
| 128 | I->I[i].SFactor = NULL;
|
---|
| 129 | I->I[i].IMT = (enum IonMoveType *) Malloc(sizeof(enum IonMoveType) * I->I[i].Max_IonsOfType, "IonsInitRead: IMT");
|
---|
| 130 | I->I[i].FIonL = (double *) Malloc(sizeof(double) * NDIM * I->I[i].Max_IonsOfType, "IonsInitRead: FIonL");
|
---|
| 131 | I->I[i].FIonNL = (double *) Malloc(sizeof(double) * NDIM * I->I[i].Max_IonsOfType, "IonsInitRead: FIonNL");
|
---|
| 132 | I->I[i].FEwald = (double *) Malloc(sizeof(double) * NDIM * I->I[i].Max_IonsOfType, "IonsInitRead: FEwald");
|
---|
| 133 | I->I[i].alpha = (double *) Malloc(sizeof(double) * I->I[i].Max_IonsOfType, "IonsInitRead: alpha");
|
---|
| 134 | for (j=0; j < I->I[i].Max_IonsOfType; j++) {
|
---|
| 135 | I->I[i].alpha[j] = 2.;
|
---|
| 136 | sprintf(name,"Ion_Type%i_%i",i+1,j+1);
|
---|
| 137 | ParseForParameter(P->Call.out[ReadOut],source, name, 0, 1, 1, double_type, &R[0], critical);
|
---|
| 138 | ParseForParameter(P->Call.out[ReadOut],source, name, 0, 2, 1, double_type, &R[1], critical);
|
---|
| 139 | ParseForParameter(P->Call.out[ReadOut],source, name, 0, 3, 1, double_type, &R[2], critical);
|
---|
| 140 | ParseForParameter(P->Call.out[ReadOut],source, name, 0, 4, 1, int_type, &IMT, critical);
|
---|
| 141 | // change if coordinates were relative
|
---|
| 142 | if (relative) {
|
---|
| 143 | //fprintf(stderr,"(%i)Ion coordinates are relative %i ... \n",P->Par.me, relative);
|
---|
| 144 | RMat33Vec3(&I->I[i].R[0+NDIM*j], L->RealBasis, R); // multiply with real basis
|
---|
| 145 | } else {
|
---|
| 146 | for (k=0;k<NDIM;k++) // and copy to old vector
|
---|
| 147 | I->I[i].R[k+NDIM*j] = R[k];
|
---|
| 148 | }
|
---|
| 149 | if (IMT < 0 || IMT >= MaxIonMoveType) {
|
---|
| 150 | fprintf(stderr,"Bad Ion MoveType set to MoveIon for Ion (%i,%i)\n",i,j);
|
---|
| 151 | IMT = 0;
|
---|
| 152 | }
|
---|
| 153 |
|
---|
| 154 | if ((P->Call.out[ReadOut])) { // rotate coordinates
|
---|
| 155 | fprintf(stderr,"(%i) coordinates of Ion %i: (x,y,z) = (",P->Par.me,j);
|
---|
| 156 | for(k=0;k<NDIM;k++) {
|
---|
| 157 | fprintf(stderr,"%lg ",I->I[i].R[k+NDIM*j]);
|
---|
| 158 | if (k != NDIM-1) fprintf(stderr,", ");
|
---|
| 159 | else fprintf(stderr,")\n");
|
---|
| 160 | }
|
---|
| 161 | }
|
---|
| 162 |
|
---|
| 163 | I->I[i].IMT[j] = (enum IonMoveType)IMT;
|
---|
| 164 | SM(&I->I[i].R[NDIM*j], 1./Bohr, NDIM);
|
---|
| 165 | RMat33Vec3(R, L->InvBasis, &I->I[i].R[NDIM*j]);
|
---|
| 166 | for (d=0; d <NDIM; d++) {
|
---|
| 167 | while (R[d] < 0)
|
---|
| 168 | R[d] += 1.0;
|
---|
| 169 | while (R[d] >= 1.0)
|
---|
| 170 | R[d] -= 1.0;
|
---|
| 171 | }
|
---|
| 172 | RMat33Vec3(&I->I[i].R[NDIM*j], L->RealBasis, R);
|
---|
| 173 | for (d=0; d <NDIM; d++) {
|
---|
| 174 | I->I[i].R_old_old[d+NDIM*j] = I->I[i].R_old[d+NDIM*j] = I->I[i].R[d+NDIM*j];
|
---|
| 175 | }
|
---|
| 176 | I->Max_TotalIons++;
|
---|
| 177 | }
|
---|
| 178 | }
|
---|
| 179 | Free(free_name);
|
---|
| 180 | I->Max_Max_IonsOfType = 0;
|
---|
| 181 | for (i=0; i < I->Max_Types; i++)
|
---|
| 182 | I->Max_Max_IonsOfType = MAX(I->Max_Max_IonsOfType, I->I[i].Max_IonsOfType);
|
---|
| 183 | I->FTemp = (double *) Malloc(sizeof(double) * NDIM * I->Max_Max_IonsOfType, "IonsInitRead:");
|
---|
| 184 | }
|
---|
| 185 |
|
---|
| 186 | /** Calculated Ewald force.
|
---|
| 187 | * \f[
|
---|
| 188 | * E_{K-K} = \frac{1}{2} \sum_L \sum_{K=\{(I_s,I_a,J_s,J_a)|R_{I_s,I_a} - R_{J_s,J_a} - L\neq 0\}} \frac{Z_{I_s} Z_{J_s}} {|R_{I_s,I_a} - R_{J_s,J_a} - L|}
|
---|
| 189 | * \textnormal{erfc} \Bigl ( \frac{|R_{I_s,I_a} - R_{J_s,J_a} - L|} {\sqrt{r_{I_s}^{Gauss}+r_{J_s}^{Gauss}}}\Bigr )
|
---|
| 190 | * \qquad (4.10)
|
---|
| 191 | * \f]
|
---|
| 192 | * Calculates the core-to-core force between the ions of all super cells.
|
---|
| 193 | * In order for this series to converge there must be a certain summation
|
---|
| 194 | * applied, which is the ewald summation and which is nothing else but to move
|
---|
| 195 | * in a circular motion from the current cell to the outside up to Ions::R_cut.
|
---|
| 196 | * \param *P Problem at hand
|
---|
| 197 | * \param first additional calculation beforehand if != 0
|
---|
| 198 | */
|
---|
| 199 | void CalculateEwald(struct Problem *P, int first)
|
---|
| 200 | {
|
---|
| 201 | int r,is,is1,is2,ia1,ia2,ir,ir2,i,j,k,ActualVec,MaxVec,MaxCell,Is_Neighb_Cell,LocalActualVec;
|
---|
| 202 | int MaxPar=P->Par.procs, ParMe=P->Par.me, MaxLocalVec, StartVec;
|
---|
| 203 | double rcut2,r2,erre2,addesr,addpre,arg,fac,gkl,esr,fxx,repand;
|
---|
| 204 | double R1[3];
|
---|
| 205 | double R2[3];
|
---|
| 206 | double R3[3];
|
---|
| 207 | double t[3];
|
---|
| 208 | struct Lattice *L = &P->Lat;
|
---|
| 209 | struct PseudoPot *PP = &P->PP;
|
---|
| 210 | struct Ions *I = &P->Ion;
|
---|
| 211 | if (I->R_cut != 0.0) {
|
---|
| 212 | if (first) {
|
---|
| 213 | SpeedMeasure(P, InitSimTime, StopTimeDo);
|
---|
| 214 | rcut2 = I->R_cut*I->R_cut;
|
---|
| 215 | ActualVec =0;
|
---|
| 216 | MaxCell = (int)5.*I->R_cut/pow(L->Volume,1./3.);
|
---|
| 217 | if (MaxCell < 2) MaxCell = 2;
|
---|
| 218 | for (i = -MaxCell; i <= MaxCell; i++) {
|
---|
| 219 | for (j = -MaxCell; j <= MaxCell; j++) {
|
---|
| 220 | for (k = -MaxCell; k <= MaxCell; k++) {
|
---|
| 221 | r2 = 0.0;
|
---|
| 222 | for (ir=0; ir <3; ir++) {
|
---|
| 223 | t[ir] = i*L->RealBasis[0*NDIM+ir]+j*L->RealBasis[1*NDIM+ir]+k*L->RealBasis[2*NDIM+ir];
|
---|
| 224 | r2 = t[ir]*t[ir];
|
---|
| 225 | }
|
---|
| 226 | Is_Neighb_Cell = ((abs(i)<=1) && (abs(j)<=1) && (abs(k)<=1));
|
---|
| 227 | if ((r2 <= rcut2) || Is_Neighb_Cell) {
|
---|
| 228 | ActualVec++;
|
---|
| 229 | }
|
---|
| 230 | }
|
---|
| 231 | }
|
---|
| 232 | }
|
---|
| 233 | MaxVec = ActualVec;
|
---|
| 234 | I->MaxVec = ActualVec;
|
---|
| 235 | MaxLocalVec = MaxVec / MaxPar;
|
---|
| 236 | StartVec = ParMe*MaxLocalVec;
|
---|
| 237 | r = MaxVec % MaxPar;
|
---|
| 238 | if (ParMe >= r) {
|
---|
| 239 | StartVec += r;
|
---|
| 240 | } else {
|
---|
| 241 | StartVec += ParMe;
|
---|
| 242 | MaxLocalVec++;
|
---|
| 243 | }
|
---|
| 244 | I->MaxLocalVec = MaxLocalVec;
|
---|
| 245 | LocalActualVec = ActualVec = 0;
|
---|
| 246 | I->RLatticeVec = (double *)
|
---|
| 247 | Realloc(I->RLatticeVec, sizeof(double)*NDIM*MaxLocalVec, "CalculateEwald:");
|
---|
| 248 | for (i = -MaxCell; i <= MaxCell; i++) {
|
---|
| 249 | for (j = -MaxCell; j <= MaxCell; j++) {
|
---|
| 250 | for (k = -MaxCell; k <= MaxCell; k++) {
|
---|
| 251 | r2 = 0.0;
|
---|
| 252 | for (ir=0; ir <3; ir++) {
|
---|
| 253 | t[ir] = i*L->RealBasis[0*NDIM+ir]+j*L->RealBasis[1*NDIM+ir]+k*L->RealBasis[2*NDIM+ir];
|
---|
| 254 | r2 = t[ir]*t[ir];
|
---|
| 255 | }
|
---|
| 256 | Is_Neighb_Cell = ((abs(i)<=1) && (abs(j)<=1) && (abs(k)<=1));
|
---|
| 257 | if ((r2 <= rcut2) || Is_Neighb_Cell) {
|
---|
| 258 | if (ActualVec >= StartVec && ActualVec < StartVec+MaxLocalVec) {
|
---|
| 259 | I->RLatticeVec[0+NDIM*LocalActualVec] = t[0];
|
---|
| 260 | I->RLatticeVec[1+NDIM*LocalActualVec] = t[1];
|
---|
| 261 | I->RLatticeVec[2+NDIM*LocalActualVec] = t[2];
|
---|
| 262 | LocalActualVec++;
|
---|
| 263 | }
|
---|
| 264 | ActualVec++;
|
---|
| 265 | }
|
---|
| 266 | }
|
---|
| 267 | }
|
---|
| 268 | }
|
---|
| 269 | SpeedMeasure(P, InitSimTime, StartTimeDo);
|
---|
| 270 | }
|
---|
| 271 | SpeedMeasure(P, EwaldTime, StartTimeDo);
|
---|
| 272 | esr = 0.0;
|
---|
| 273 | for (is1=0;is1 < I->Max_Types; is1++)
|
---|
| 274 | for (ia1=0;ia1 < I->I[is1].Max_IonsOfType; ia1++)
|
---|
| 275 | for (i=0; i< NDIM; i++)
|
---|
| 276 | I->FTemp[i+NDIM*(ia1)] = 0;
|
---|
| 277 | for (is1=0;is1 < I->Max_Types; is1++) {
|
---|
| 278 | for (ia1=0;ia1 < I->I[is1].Max_IonsOfType; ia1++) {
|
---|
| 279 | for (i=0;i<3;i++) {
|
---|
| 280 | R1[i]=I->I[is1].R[i+NDIM*ia1];
|
---|
| 281 | }
|
---|
| 282 | for (ir2=0;ir2<I->MaxLocalVec;ir2++) {
|
---|
| 283 | for (is2=0;is2 < I->Max_Types; is2++) {
|
---|
| 284 | gkl=1./sqrt(I->I[is1].rgauss*I->I[is1].rgauss + I->I[is2].rgauss*I->I[is2].rgauss);
|
---|
| 285 | for (ia2=0;ia2<I->I[is2].Max_IonsOfType; ia2++) {
|
---|
| 286 | for (i=0;i<3;i++) {
|
---|
| 287 | R2[i]=I->RLatticeVec[i+NDIM*ir2]+I->I[is2].R[i+NDIM*ia2];
|
---|
| 288 | }
|
---|
| 289 | erre2=0.0;
|
---|
| 290 | for (i=0;i<3;i++) {
|
---|
| 291 | R3[i] = R1[i]-R2[i];
|
---|
| 292 | erre2+=R3[i]*R3[i];
|
---|
| 293 | }
|
---|
| 294 | if (erre2 > MYEPSILON) {
|
---|
| 295 | arg=sqrt(erre2);
|
---|
| 296 | fac=PP->zval[is1]*PP->zval[is2]/arg*0.5;
|
---|
| 297 |
|
---|
| 298 | arg *= gkl;
|
---|
| 299 | addesr = derf(arg);
|
---|
| 300 | addesr = (1.0-addesr)*fac;
|
---|
| 301 | esr += addesr;
|
---|
| 302 | addpre=exp(-arg*arg)*gkl;
|
---|
| 303 | addpre=PP->fac1sqrtPI*PP->zval[is1]*PP->zval[is2]*addpre;
|
---|
| 304 | repand=(addesr+addpre)/erre2;
|
---|
| 305 | for (i=0;i<3;i++) {
|
---|
| 306 | fxx=repand*R3[i];
|
---|
| 307 | /*fprintf(stderr,"%i %i %i %i %i %g\n",is1+1,ia1+1,is2+1,ia2+1,i+1,fxx);*/
|
---|
| 308 | I->FTemp[i+NDIM*(ia1)] += fxx;
|
---|
| 309 | I->FTemp[i+NDIM*(ia2)] -= fxx;
|
---|
| 310 | }
|
---|
| 311 | }
|
---|
| 312 | }
|
---|
| 313 | }
|
---|
| 314 | }
|
---|
| 315 | }
|
---|
| 316 | }
|
---|
| 317 | } else {
|
---|
| 318 | esr = 0.0;
|
---|
| 319 | for (is1=0;is1 < I->Max_Types; is1++)
|
---|
| 320 | for (ia1=0;ia1 < I->I[is1].Max_IonsOfType; ia1++)
|
---|
| 321 | for (i=0; i< NDIM; i++)
|
---|
| 322 | I->FTemp[i+NDIM*(ia1)] = 0.;
|
---|
| 323 | }
|
---|
| 324 | SpeedMeasure(P, EwaldTime, StopTimeDo);
|
---|
| 325 | for (is=0;is < I->Max_Types; is++) {
|
---|
| 326 | MPI_Allreduce (I->FTemp , I->I[is].FEwald, NDIM*I->I[is].Max_IonsOfType, MPI_DOUBLE, MPI_SUM, P->Par.comm);
|
---|
| 327 | }
|
---|
| 328 | MPI_Allreduce ( &esr, &L->E->AllTotalIonsEnergy[EwaldEnergy], 1, MPI_DOUBLE, MPI_SUM, P->Par.comm);
|
---|
| 329 | }
|
---|
| 330 |
|
---|
| 331 | /** Sum up all forces acting on Ions.
|
---|
| 332 | * IonType::FIon = IonType::FEwald + IonType::FIonL + IonType::FIonNL for all
|
---|
| 333 | * dimensions #NDIM and each Ion of IonType
|
---|
| 334 | * \param *P Problem at hand
|
---|
| 335 | */
|
---|
| 336 | void CalculateIonForce(struct Problem *P)
|
---|
| 337 | {
|
---|
| 338 | struct Ions *I = &P->Ion;
|
---|
| 339 | int i,j,d;
|
---|
| 340 | for (i=0; i < I->Max_Types; i++)
|
---|
| 341 | for (j=0; j < I->I[i].Max_IonsOfType; j++)
|
---|
| 342 | for (d=0; d<NDIM;d++)
|
---|
| 343 | I->I[i].FIon[d+j*NDIM] = I->I[i].FEwald[d+j*NDIM] + I->I[i].FIonL[d+j*NDIM] + I->I[i].FIonNL[d+j*NDIM];
|
---|
| 344 | }
|
---|
| 345 |
|
---|
| 346 | /** Write Forces to FileData::ForcesFile.
|
---|
| 347 | * goes through all Ions per IonType and each dimension of #NDIM and prints in one line:
|
---|
| 348 | * Position IonType::R, total force Ion IonType::FIon, local force IonType::FIonL,
|
---|
| 349 | * non-local IonType::FIonNL, ewald force IonType::FEwald
|
---|
| 350 | * \param *P Problem at hand
|
---|
| 351 | */
|
---|
| 352 | void OutputIonForce(struct Problem *P)
|
---|
| 353 | {
|
---|
| 354 | struct RunStruct *R = &P->R;
|
---|
| 355 | struct FileData *F = &P->Files;
|
---|
| 356 | struct Ions *I = &P->Ion;
|
---|
| 357 | FILE *fout = NULL;
|
---|
| 358 | int i,j;
|
---|
| 359 | if (F->MeOutMes != 1) return;
|
---|
| 360 | fout = F->ForcesFile;
|
---|
| 361 | for (i=0; i < I->Max_Types; i++)
|
---|
| 362 | for (j=0; j < I->I[i].Max_IonsOfType; j++)
|
---|
| 363 | fprintf(fout, "%i\t%i\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\n", i,j,
|
---|
| 364 | I->I[i].R[0+j*NDIM], I->I[i].R[1+j*NDIM], I->I[i].R[2+j*NDIM],
|
---|
| 365 | I->I[i].FIon[0+j*NDIM], I->I[i].FIon[1+j*NDIM], I->I[i].FIon[2+j*NDIM],
|
---|
| 366 | I->I[i].FIonL[0+j*NDIM], I->I[i].FIonL[1+j*NDIM], I->I[i].FIonL[2+j*NDIM],
|
---|
| 367 | I->I[i].FIonNL[0+j*NDIM], I->I[i].FIonNL[1+j*NDIM], I->I[i].FIonNL[2+j*NDIM],
|
---|
| 368 | I->I[i].FEwald[0+j*NDIM], I->I[i].FEwald[1+j*NDIM], I->I[i].FEwald[2+j*NDIM]);
|
---|
| 369 | fflush(fout);
|
---|
| 370 | fprintf(fout, "MeanForce:\t%e\n", R->MeanForce[0]);
|
---|
| 371 | }
|
---|
| 372 |
|
---|
| 373 | /** Frees memory IonType.
|
---|
| 374 | * All pointers from IonType and the pointer on it are free'd
|
---|
| 375 | * \param *I Ions structure to be free'd
|
---|
| 376 | * \sa IonsInitRead where memory is allocated
|
---|
| 377 | */
|
---|
| 378 | void RemoveIonsRead(struct Ions *I)
|
---|
| 379 | {
|
---|
| 380 | int i, it;
|
---|
| 381 | for (i=0; i < I->Max_Types; i++) {
|
---|
| 382 | //fprintf(stderr,"Name\n");
|
---|
| 383 | Free(I->I[i].Name);
|
---|
| 384 | //fprintf(stderr,"Abbreviation\n");
|
---|
| 385 | Free(I->I[i].Symbol);
|
---|
| 386 | for (it=0;it<I->I[i].Max_IonsOfType;it++) {
|
---|
| 387 | //fprintf(stderr,"sigma[it]\n");
|
---|
| 388 | Free(I->I[i].sigma[it]);
|
---|
| 389 | //fprintf(stderr,"sigma_rezi[it]\n");
|
---|
| 390 | Free(I->I[i].sigma_rezi[it]);
|
---|
| 391 | //fprintf(stderr,"sigma_PAS[it]\n");
|
---|
| 392 | Free(I->I[i].sigma_PAS[it]);
|
---|
| 393 | //fprintf(stderr,"sigma_rezi_PAS[it]\n");
|
---|
| 394 | Free(I->I[i].sigma_rezi_PAS[it]);
|
---|
| 395 | }
|
---|
| 396 | //fprintf(stderr,"sigma\n");
|
---|
| 397 | Free(I->I[i].sigma);
|
---|
| 398 | //fprintf(stderr,"sigma_rezi\n");
|
---|
| 399 | Free(I->I[i].sigma_rezi);
|
---|
| 400 | //fprintf(stderr,"sigma_PAS\n");
|
---|
| 401 | Free(I->I[i].sigma_PAS);
|
---|
| 402 | //fprintf(stderr,"sigma_rezi_PAS\n");
|
---|
| 403 | Free(I->I[i].sigma_rezi_PAS);
|
---|
| 404 | //fprintf(stderr,"R\n");
|
---|
| 405 | Free(I->I[i].R);
|
---|
| 406 | //fprintf(stderr,"R_old\n");
|
---|
| 407 | Free(I->I[i].R_old);
|
---|
| 408 | //fprintf(stderr,"R_old_old\n");
|
---|
| 409 | Free(I->I[i].R_old_old);
|
---|
| 410 | //fprintf(stderr,"FIon\n");
|
---|
| 411 | Free(I->I[i].FIon);
|
---|
| 412 | //fprintf(stderr,"FIon_old\n");
|
---|
| 413 | Free(I->I[i].FIon_old);
|
---|
| 414 | //fprintf(stderr,"SearchDir\n");
|
---|
| 415 | Free(I->I[i].SearchDir);
|
---|
| 416 | //fprintf(stderr,"GammaA\n");
|
---|
| 417 | Free(I->I[i].GammaA);
|
---|
| 418 | //fprintf(stderr,"FIonL\n");
|
---|
| 419 | Free(I->I[i].FIonL);
|
---|
| 420 | //fprintf(stderr,"FIonNL\n");
|
---|
| 421 | Free(I->I[i].FIonNL);
|
---|
| 422 | //fprintf(stderr,"U\n");
|
---|
| 423 | Free(I->I[i].U);
|
---|
| 424 | //fprintf(stderr,"SFactor\n");
|
---|
| 425 | Free(I->I[i].SFactor);
|
---|
| 426 | //fprintf(stderr,"IMT\n");
|
---|
| 427 | Free(I->I[i].IMT);
|
---|
| 428 | //fprintf(stderr,"FEwald\n");
|
---|
| 429 | Free(I->I[i].FEwald);
|
---|
| 430 | Free(I->I[i].alpha);
|
---|
| 431 | }
|
---|
| 432 | //fprintf(stderr,"RLatticeVec\n");
|
---|
| 433 | if (I->R_cut == 0.0)
|
---|
| 434 | Free(I->RLatticeVec);
|
---|
| 435 | //fprintf(stderr,"FTemp\n");
|
---|
| 436 | Free(I->FTemp);
|
---|
| 437 | //fprintf(stderr,"I\n");
|
---|
| 438 | Free(I->I);
|
---|
| 439 | }
|
---|
| 440 |
|
---|
| 441 | /** Shifts center of gravity of ion forces IonType::FIon.
|
---|
| 442 | * First sums up all forces of movable ions to a "force temperature",
|
---|
| 443 | * then reduces each force by this temp, so that all in all
|
---|
| 444 | * the net force is 0.
|
---|
| 445 | * \param *P Problem at hand
|
---|
| 446 | * \sa CorrectVelocity
|
---|
| 447 | * \note why is FTemp not divided by number of ions: is probably correct, but this
|
---|
| 448 | * function was not really meaningful from the beginning.
|
---|
| 449 | */
|
---|
| 450 | void CorrectForces(struct Problem *P)
|
---|
| 451 | {
|
---|
| 452 | struct Ions *I = &P->Ion;
|
---|
| 453 | double *FIon;
|
---|
| 454 | double FTemp[NDIM];
|
---|
| 455 | int is, ia, d;
|
---|
| 456 | for (d=0; d<NDIM; d++)
|
---|
| 457 | FTemp[d] = 0;
|
---|
| 458 | for (is=0; is < I->Max_Types; is++) { // calculate force temperature for each type ...
|
---|
| 459 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) { // .. and each ion of this type ...
|
---|
| 460 | FIon = &I->I[is].FIon[NDIM*ia];
|
---|
| 461 | if (I->I[is].IMT[ia] == MoveIon) { // .. if it's movable
|
---|
| 462 | for (d=0; d<NDIM; d++)
|
---|
| 463 | FTemp[d] += FIon[d];
|
---|
| 464 | }
|
---|
| 465 | }
|
---|
| 466 | }
|
---|
| 467 | for (is=0; is < I->Max_Types; is++) { // and then reduce each by this value
|
---|
| 468 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
|
---|
| 469 | FIon = &I->I[is].FIon[NDIM*ia];
|
---|
| 470 | if (I->I[is].IMT[ia] == MoveIon) {
|
---|
| 471 | for (d=0; d<NDIM; d++)
|
---|
| 472 | FIon[d] -= FTemp[d]; // (?) why not -= FTemp[d]/I->Max_TotalIons
|
---|
| 473 | }
|
---|
| 474 | }
|
---|
| 475 | }
|
---|
| 476 | }
|
---|
| 477 |
|
---|
| 478 |
|
---|
| 479 | /** Shifts center of gravity of ion velocities (rather momentums).
|
---|
| 480 | * First sums up ion speed U times their IonMass (summed up for each
|
---|
| 481 | * dimension), then reduces the velocity by temp per Ions::TotalMass (so here
|
---|
| 482 | * total number of Ions is included)
|
---|
| 483 | * \param *P Problem at hand
|
---|
| 484 | * \sa CorrectForces
|
---|
| 485 | */
|
---|
| 486 | void CorrectVelocity(struct Problem *P)
|
---|
| 487 | {
|
---|
| 488 | struct Ions *I = &P->Ion;
|
---|
| 489 | double *U;
|
---|
| 490 | double UTemp[NDIM];
|
---|
| 491 | int is, ia, d;
|
---|
| 492 | for (d=0; d<NDIM; d++)
|
---|
| 493 | UTemp[d] = 0;
|
---|
| 494 | for (is=0; is < I->Max_Types; is++) { // all types ...
|
---|
| 495 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) { // ... all ions per type ...
|
---|
| 496 | U = &I->I[is].U[NDIM*ia];
|
---|
| 497 | if (I->I[is].IMT[ia] == MoveIon) { // ... if it's movable
|
---|
| 498 | for (d=0; d<NDIM; d++)
|
---|
| 499 | UTemp[d] += I->I[is].IonMass*U[d];
|
---|
| 500 | }
|
---|
| 501 | }
|
---|
| 502 | }
|
---|
| 503 | for (is=0; is < I->Max_Types; is++) {
|
---|
| 504 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
|
---|
| 505 | U = &I->I[is].U[NDIM*ia];
|
---|
| 506 | if (I->I[is].IMT[ia] == MoveIon) {
|
---|
| 507 | for (d=0; d<NDIM; d++)
|
---|
| 508 | U[d] -= UTemp[d]/I->TotalMass; // shift by mean velocity over mass and number of ions
|
---|
| 509 | }
|
---|
| 510 | }
|
---|
| 511 | }
|
---|
| 512 | }
|
---|
| 513 |
|
---|
| 514 | /** Moves ions according to calculated force.
|
---|
| 515 | * Goes through each type of IonType and each ion therein, takes mass and
|
---|
| 516 | * Newton to move each ion to new coordinates IonType::R, while remembering the last
|
---|
| 517 | * two coordinates and the last force of the ion. Coordinates R are being
|
---|
| 518 | * transformed to inverted base, shifted by +-1.0 and back-transformed to
|
---|
| 519 | * real base.
|
---|
| 520 | * \param *P Problem at hand
|
---|
| 521 | * \sa CalculateIonForce
|
---|
| 522 | * \sa UpdateIonsU
|
---|
| 523 | * \warning U is not changed here, only used to move the ion.
|
---|
| 524 | */
|
---|
| 525 | void UpdateIonsR(struct Problem *P)
|
---|
| 526 | {
|
---|
| 527 | struct Ions *I = &P->Ion;
|
---|
| 528 | int is, ia, d;
|
---|
| 529 | double *R, *R_old, *R_old_old, *FIon, *FIon_old, *U, *FIonL, *FIonNL, *FEwald;
|
---|
| 530 | double IonMass, a;
|
---|
| 531 | double sR[NDIM], sRold[NDIM], sRoldold[NDIM];
|
---|
| 532 | const int delta_t = P->R.delta_t;
|
---|
| 533 | for (is=0; is < I->Max_Types; is++) { // go through all types ...
|
---|
| 534 | IonMass = I->I[is].IonMass;
|
---|
| 535 | if (IonMass < MYEPSILON) fprintf(stderr,"UpdateIonsR: IonMass = %lg",IonMass);
|
---|
| 536 | a = delta_t*0.5/IonMass; // F/m = a and thus: s = 0.5 * F/m * t^2 + v * t =: t * (F * a + v)
|
---|
| 537 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) { // .. and each ion of the type
|
---|
| 538 | FIon = &I->I[is].FIon[NDIM*ia];
|
---|
| 539 | FIonL = &I->I[is].FIonL[NDIM*ia];
|
---|
| 540 | FIonNL = &I->I[is].FIonNL[NDIM*ia];
|
---|
| 541 | FEwald = &I->I[is].FEwald[NDIM*ia];
|
---|
| 542 | FIon_old = &I->I[is].FIon_old[NDIM*ia];
|
---|
| 543 | U = &I->I[is].U[NDIM*ia];
|
---|
| 544 | R = &I->I[is].R[NDIM*ia];
|
---|
| 545 | R_old = &I->I[is].R_old[NDIM*ia];
|
---|
| 546 | R_old_old = &I->I[is].R_old_old[NDIM*ia];
|
---|
| 547 | if (I->I[is].IMT[ia] == MoveIon) {
|
---|
| 548 | for (d=0; d<NDIM; d++) {
|
---|
| 549 | R_old_old[d] = R_old[d]; // shift old values
|
---|
| 550 | R_old[d] = R[d];
|
---|
| 551 | R[d] += delta_t*(U[d]+a*FIon[d]); // F = m * a and s = 0.5 * a * t^2
|
---|
| 552 | FIon_old[d] = FIon[d]; // store old force
|
---|
| 553 | FIon[d] = 0; // zero all as a sign that's been moved
|
---|
| 554 | FIonL[d] = 0;
|
---|
| 555 | FIonNL[d] = 0;
|
---|
| 556 | FEwald[d] = 0;
|
---|
| 557 | }
|
---|
| 558 | RMat33Vec3(sR, P->Lat.InvBasis, R);
|
---|
| 559 | RMat33Vec3(sRold, P->Lat.InvBasis, R_old);
|
---|
| 560 | RMat33Vec3(sRoldold, P->Lat.InvBasis, R_old_old);
|
---|
| 561 | for (d=0; d <NDIM; d++) {
|
---|
| 562 | while (sR[d] < 0) {
|
---|
| 563 | sR[d] += 1.0;
|
---|
| 564 | sRold[d] += 1.0;
|
---|
| 565 | sRoldold[d] += 1.0;
|
---|
| 566 | }
|
---|
| 567 | while (sR[d] >= 1.0) {
|
---|
| 568 | sR[d] -= 1.0;
|
---|
| 569 | sRold[d] -= 1.0;
|
---|
| 570 | sRoldold[d] -= 1.0;
|
---|
| 571 | }
|
---|
| 572 | }
|
---|
| 573 | RMat33Vec3(R, P->Lat.RealBasis, sR);
|
---|
| 574 | RMat33Vec3(R_old, P->Lat.RealBasis, sRold);
|
---|
| 575 | RMat33Vec3(R_old_old, P->Lat.RealBasis, sRoldold);
|
---|
| 576 | }
|
---|
| 577 | }
|
---|
| 578 | }
|
---|
| 579 | }
|
---|
| 580 |
|
---|
| 581 | /** Changes ion's velocity according to acting force.
|
---|
| 582 | * IonType::U is changed by the weighted force of actual step and last one
|
---|
| 583 | * according to Newton.
|
---|
| 584 | * \param *P Problem at hand
|
---|
| 585 | * \sa UpdateIonsR
|
---|
| 586 | * \sa CalculateIonForce
|
---|
| 587 | * \warning R is not changed here.
|
---|
| 588 | */
|
---|
| 589 | void UpdateIonsU(struct Problem *P)
|
---|
| 590 | {
|
---|
| 591 | struct Ions *I = &P->Ion;
|
---|
| 592 | int is, ia, d;
|
---|
| 593 | double *FIon, *FIon_old, *U;
|
---|
| 594 | double IonMass, a;
|
---|
| 595 | const int delta_t = P->R.delta_t;
|
---|
| 596 | for (is=0; is < I->Max_Types; is++) {
|
---|
| 597 | IonMass = I->I[is].IonMass;
|
---|
| 598 | if (IonMass < MYEPSILON) fprintf(stderr,"UpdateIonsU: IonMass = %lg",IonMass);
|
---|
| 599 | a = delta_t*0.5/IonMass; // (F+F_old)/2m = a and thus: v = (F+F_old)/2m * t = (F + F_old) * a
|
---|
| 600 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
|
---|
| 601 | FIon = &I->I[is].FIon[NDIM*ia];
|
---|
| 602 | FIon_old = &I->I[is].FIon_old[NDIM*ia];
|
---|
| 603 | U = &I->I[is].U[NDIM*ia];
|
---|
| 604 | if (I->I[is].IMT[ia] == MoveIon)
|
---|
| 605 | for (d=0; d<NDIM; d++) {
|
---|
| 606 | U[d] += a * (FIon[d]+FIon_old[d]);
|
---|
| 607 | }
|
---|
| 608 | }
|
---|
| 609 | }
|
---|
| 610 | }
|
---|
| 611 |
|
---|
| 612 | /** CG process to optimise structure.
|
---|
| 613 | * \param *P Problem at hand
|
---|
| 614 | */
|
---|
| 615 | void UpdateIons(struct Problem *P)
|
---|
| 616 | {
|
---|
| 617 | struct Ions *I = &P->Ion;
|
---|
| 618 | int is, ia, d;
|
---|
| 619 | double *R, *R_old, *R_old_old, *FIon, *S, *GammaA;
|
---|
| 620 | double IonFac, GammaB; //, GammaT;
|
---|
| 621 | double FNorm, StepNorm;
|
---|
| 622 | for (is=0; is < I->Max_Types; is++) {
|
---|
| 623 | IonFac = I->I[is].IonFac;
|
---|
| 624 | GammaA = I->I[is].GammaA;
|
---|
| 625 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
|
---|
| 626 | FIon = &I->I[is].FIon[NDIM*ia];
|
---|
| 627 | S = &I->I[is].SearchDir[NDIM*ia];
|
---|
| 628 | GammaB = GammaA[ia];
|
---|
| 629 | GammaA[ia] = RSP3(FIon,S);
|
---|
| 630 | FNorm = sqrt(RSP3(FIon,FIon));
|
---|
| 631 | StepNorm = log(1.+IonFac*FNorm); // Fix Hack
|
---|
| 632 | if (FNorm != 0)
|
---|
| 633 | StepNorm /= sqrt(RSP3(FIon,FIon));
|
---|
| 634 | else
|
---|
| 635 | StepNorm = 0;
|
---|
| 636 | //if (GammaB != 0.0) {
|
---|
| 637 | // GammaT = GammaA[ia]/GammaB;
|
---|
| 638 | // for (d=0; d>NDIM; d++)
|
---|
| 639 | // S[d] = FIon[d]+GammaT*S[d];
|
---|
| 640 | // } else {
|
---|
| 641 | for (d=0; d<NDIM; d++)
|
---|
| 642 | S[d] = StepNorm*FIon[d];
|
---|
| 643 | // }
|
---|
| 644 | R = &I->I[is].R[NDIM*ia];
|
---|
| 645 | R_old = &I->I[is].R_old[NDIM*ia];
|
---|
| 646 | R_old_old = &I->I[is].R_old_old[NDIM*ia];
|
---|
| 647 | if (I->I[is].IMT[ia] == MoveIon)
|
---|
| 648 | for (d=0; d<NDIM; d++) {
|
---|
| 649 | R_old_old[d] = R_old[d];
|
---|
| 650 | R_old[d] = R[d];
|
---|
| 651 | R[d] += S[d]; // FixHack*IonFac;
|
---|
| 652 | }
|
---|
| 653 | }
|
---|
| 654 | }
|
---|
| 655 | }
|
---|
| 656 |
|
---|
| 657 | /** Print coordinates of all ions to stdout.
|
---|
| 658 | * \param *P Problem at hand
|
---|
| 659 | */
|
---|
| 660 | void OutputIonCoordinates(struct Problem *P)
|
---|
| 661 | {
|
---|
| 662 | struct Ions *I = &P->Ion;
|
---|
| 663 | int is, ia;
|
---|
| 664 | if (P->Par.me == 0) {
|
---|
| 665 | fprintf(stderr, "(%i) ======= Updated Ion Coordinates =========\n",P->Par.me);
|
---|
| 666 | for (is=0; is < I->Max_Types; is++)
|
---|
| 667 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++)
|
---|
| 668 | //fprintf(stderr, "(%i) R[%i/%i][%i/%i] = (%e,%e,%e)\n", P->Par.me, is, I->Max_Types, ia, I->I[is].Max_IonsOfType, I->I[is].R[NDIM*ia+0],I->I[is].R[NDIM*ia+1],I->I[is].R[NDIM*ia+2]);
|
---|
| 669 | fprintf(stderr, "Ion_Type%i_%i\t%.6f\t%.6f\t%.6f\t0\t# Atom from StructOpt\n", is+1, ia+1, I->I[is].R[NDIM*ia+0],I->I[is].R[NDIM*ia+1],I->I[is].R[NDIM*ia+2]);
|
---|
| 670 | fprintf(stderr, "(%i) =========================================\n",P->Par.me);
|
---|
| 671 | }
|
---|
| 672 | }
|
---|
| 673 |
|
---|
| 674 | /** Calculates kinetic energy (Ions::EKin) of movable Ions.
|
---|
| 675 | * Does 0.5 / IonType::IonMass * IonTye::U^2 for each Ion,
|
---|
| 676 | * also retrieves actual temperatur by 2/3 from just
|
---|
| 677 | * calculated Ions::EKin.
|
---|
| 678 | * \param *P Problem at hand
|
---|
| 679 | */
|
---|
| 680 | void CalculateEnergyIonsU(struct Problem *P)
|
---|
| 681 | {
|
---|
| 682 | struct Ions *I = &P->Ion;
|
---|
| 683 | int is, ia, d;
|
---|
| 684 | double *U;
|
---|
| 685 | double IonMass, a, ekin = 0;
|
---|
| 686 | for (is=0; is < I->Max_Types; is++) {
|
---|
| 687 | IonMass = I->I[is].IonMass;
|
---|
| 688 | a = 0.5*IonMass;
|
---|
| 689 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
|
---|
| 690 | U = &I->I[is].U[NDIM*ia];
|
---|
| 691 | if (I->I[is].IMT[ia] == MoveIon)
|
---|
| 692 | for (d=0; d<NDIM; d++) {
|
---|
| 693 | ekin += a * U[d]*U[d];
|
---|
| 694 | }
|
---|
| 695 | }
|
---|
| 696 | }
|
---|
| 697 | I->EKin = ekin;
|
---|
| 698 | I->ActualTemp = (2./(3.*I->Max_TotalIons)*I->EKin);
|
---|
| 699 | }
|
---|
| 700 |
|
---|
| 701 | /** Scales ion velocities to match temperature.
|
---|
| 702 | * In order to match Ions::ActualTemp with desired RunStruct::TargetTemp
|
---|
| 703 | * each velocity in each dimension (for all types, all ions) is scaled
|
---|
| 704 | * with the ratio of these two. Ions::EKin is recalculated.
|
---|
| 705 | * \param *P Problem at hand
|
---|
| 706 | */
|
---|
| 707 | void ScaleTemp(struct Problem *P)
|
---|
| 708 | {
|
---|
| 709 | struct Ions *I = &P->Ion;
|
---|
| 710 | int is, ia, d;
|
---|
| 711 | double *U;
|
---|
| 712 | double IonMass, a, ekin = 0;
|
---|
| 713 | if (I->ActualTemp < MYEPSILON) fprintf(stderr,"ScaleTemp: I->ActualTemp = %lg",I->ActualTemp);
|
---|
| 714 | double ScaleTempFactor = sqrt(P->R.TargetTemp/I->ActualTemp);
|
---|
| 715 | for (is=0; is < I->Max_Types; is++) {
|
---|
| 716 | IonMass = I->I[is].IonMass;
|
---|
| 717 | a = 0.5*IonMass;
|
---|
| 718 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
|
---|
| 719 | U = &I->I[is].U[NDIM*ia];
|
---|
| 720 | if (I->I[is].IMT[ia] == MoveIon)
|
---|
| 721 | for (d=0; d<NDIM; d++) {
|
---|
| 722 | U[d] *= ScaleTempFactor;
|
---|
| 723 | ekin += a * U[d]*U[d];
|
---|
| 724 | }
|
---|
| 725 | }
|
---|
| 726 | }
|
---|
| 727 | I->EKin = ekin;
|
---|
| 728 | I->ActualTemp = (2./(3.*I->Max_TotalIons)*I->EKin);
|
---|
| 729 | }
|
---|
| 730 |
|
---|
| 731 | /** Calculates mean force vector as stop criteria in structure optimization.
|
---|
| 732 | * Calculates a mean force vector per ion as the usual euclidian norm over total
|
---|
| 733 | * number of ions and dimensions, being the sum of each ion force (for all type,
|
---|
| 734 | * all ions, all dims) squared.
|
---|
| 735 | * The mean force is archived in RunStruct::MeanForce and printed to screen.
|
---|
| 736 | * \param *P Problem at hand
|
---|
| 737 | */
|
---|
| 738 | void GetOuterStop(struct Problem *P)
|
---|
| 739 | {
|
---|
| 740 | struct RunStruct *R = &P->R;
|
---|
| 741 | struct Ions *I = &P->Ion;
|
---|
| 742 | int is, ia, IonNo=0, i, d;
|
---|
| 743 | double MeanForce = 0.0;
|
---|
| 744 | for (is=0; is < I->Max_Types; is++)
|
---|
| 745 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
|
---|
| 746 | IonNo++;
|
---|
| 747 | for (d=0; d <NDIM; d++)
|
---|
| 748 | MeanForce += I->I[is].FIon[d+NDIM*ia]*I->I[is].FIon[d+NDIM*ia];
|
---|
| 749 | }
|
---|
| 750 | for (i=MAXOLD-1; i > 0; i--)
|
---|
| 751 | R->MeanForce[i] = R->MeanForce[i-1];
|
---|
| 752 | MeanForce = sqrt(MeanForce/(IonNo*NDIM));
|
---|
| 753 | R->MeanForce[0] = MeanForce;
|
---|
| 754 | if (P->Call.out[LeaderOut] && (P->Par.me == 0))
|
---|
| 755 | fprintf(stderr,"MeanForce = %e\n", R->MeanForce[0]);
|
---|
| 756 | }
|
---|
| 757 |
|
---|
| 758 |
|
---|