| 1 | /** \file excor.c
 | 
|---|
| 2 |  * Exchange correlation energy.
 | 
|---|
| 3 |  * 
 | 
|---|
| 4 |  * The Exchange correlation energy is calculated via a local spin-density-approximation in
 | 
|---|
| 5 |  * a parametrized manner. It is the sum of the exchange and the correlation, per electron
 | 
|---|
| 6 |  * (thus, (discretely) integrated over the density). 
 | 
|---|
| 7 |  * Due to the parametrization there is a huge number of functions evaluating small
 | 
|---|
| 8 |  * expressions or auxiliary variables with its first and second derivatives
 | 
|---|
| 9 |  * Calcf(), CalcDf(), CalcD2f() and CalcZeta(), CalcDZeta(), CalcD2Zeta(),
 | 
|---|
| 10 |  * which then help to evaluate the energy CalcECr(), CalcEXrUP(), in the summing
 | 
|---|
| 11 |  * CalcSECr(), CalcSEXr(), potential CalcVCr(), CalcVXrUP(), in its summation 
 | 
|---|
| 12 |  * CalcSVCr(), CalcSVXr()
 | 
|---|
| 13 |  * and derivatives CalcVVCr(), CalcVVXrUP(), in its summation CalcSVVCr(), CalcSVVXr().
 | 
|---|
| 14 |  * All these are needed by the super functions evaluating exchange correlatiob
 | 
|---|
| 15 |  * potential CalculateXCPotentialNoRT(), exchange correlation energy without RiemannTensor
 | 
|---|
| 16 |  * CalculateXCEnergyNoRT() and with RiemannTensor CalculateXCEnergyUseRT(),
 | 
|---|
| 17 |  * and the second derivative CalculateXCddEddt0NoRT() (needed for conjugate gradient).
 | 
|---|
| 18 |  * During initilization the ExCor structure's entries is set to
 | 
|---|
| 19 |  * these fixed parameters InitExchangeCorrelationEnergy().
 | 
|---|
| 20 |  * 
 | 
|---|
| 21 |  * 
 | 
|---|
| 22 |   Project: ParallelCarParrinello
 | 
|---|
| 23 |   \author Jan Hamaekers
 | 
|---|
| 24 |  \date 2000
 | 
|---|
| 25 | 
 | 
|---|
| 26 |   File: excor.c
 | 
|---|
| 27 |   $Id: excor.c,v 1.47 2007-03-29 13:37:25 foo Exp $
 | 
|---|
| 28 | */
 | 
|---|
| 29 | 
 | 
|---|
| 30 | #include <stdlib.h>
 | 
|---|
| 31 | #include <stdio.h>
 | 
|---|
| 32 | #include <stddef.h>
 | 
|---|
| 33 | #include <math.h>
 | 
|---|
| 34 | 
 | 
|---|
| 35 | #include "data.h"
 | 
|---|
| 36 | #include "mymath.h"
 | 
|---|
| 37 | #include "run.h"
 | 
|---|
| 38 | #include "myfft.h"
 | 
|---|
| 39 | #include "errors.h"
 | 
|---|
| 40 | #include "excor.h"
 | 
|---|
| 41 | #include "helpers.h"
 | 
|---|
| 42 | 
 | 
|---|
| 43 | /** Calculate Wigner-Seitz-Radius \f$r_s\f$
 | 
|---|
| 44 |  * \param *EC ExCor exchange correlation structure
 | 
|---|
| 45 |  * \param p electron density
 | 
|---|
| 46 |  * \return \f$(\frac{3}{4\pi \cdot p})^{1/3}   \qquad (2.30)\f$
 | 
|---|
| 47 |  */
 | 
|---|
| 48 | #ifdef HAVE_INLINE
 | 
|---|
| 49 | inline double Calcrs(struct ExCor *EC, double p) {
 | 
|---|
| 50 | #else
 | 
|---|
| 51 | double Calcrs(struct ExCor *EC, double p) {
 | 
|---|
| 52 | #endif
 | 
|---|
| 53 |   if (fabs(p) < EC->epsilon0) return(0);
 | 
|---|
| 54 |   //return (pow(3./(4.*PI*p),1./3.));
 | 
|---|
| 55 |   return (cbrt(3./(4.*PI*p)));
 | 
|---|
| 56 | }
 | 
|---|
| 57 | 
 | 
|---|
| 58 | /** Calculates exchange potential \f$V_{x}\f$.
 | 
|---|
| 59 |  * \f[
 | 
|---|
| 60 |  *    V_{x} = {\cal E}_{x} + \Bigr ( \frac{d{\cal E}_{x}}{dn} \Bigl )_{n=n(r_s)} n(r_s) \qquad (2.32)
 | 
|---|
| 61 |  * \f]
 | 
|---|
| 62 |  * \param *EC ExCor exchange correlation structure
 | 
|---|
| 63 |  * \param rs Wigner-Seitz-Radius \f$r_s \f$, see Calcrs()
 | 
|---|
| 64 |  * \return \f$-\frac{1}{2} (\frac{6}{\pi})^{2/3} \cdot \frac{1}{rs}\f$
 | 
|---|
| 65 |  * \note The formula from CalcEXrUP() was used for the derivation.
 | 
|---|
| 66 |  */
 | 
|---|
| 67 | #ifdef HAVE_INLINE
 | 
|---|
| 68 | inline static double CalcVXrUP(struct ExCor *EC, double rs) {
 | 
|---|
| 69 | #else
 | 
|---|
| 70 | static double CalcVXrUP(struct ExCor *EC, double rs) {
 | 
|---|
| 71 | #endif
 | 
|---|
| 72 |   if (fabs(rs) < EC->epsilon0) return(0); 
 | 
|---|
| 73 |   return(-0.5*EC->fac6PI23/rs); // formula checked (16.5.06)
 | 
|---|
| 74 | }
 | 
|---|
| 75 | 
 | 
|---|
| 76 | /** Calculates first derivative of exchange potential \f$\frac{\delta V_{x}}{\delta n}\f$.
 | 
|---|
| 77 |  * \param *EC ExCor exchange correlation structure
 | 
|---|
| 78 |  * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs()
 | 
|---|
| 79 |  * \return \f$-\frac{2}{9\pi} (6\pi^2)^2/3 \cdot (rs)^2\f$
 | 
|---|
| 80 |  * \sa CalcVXrUP()
 | 
|---|
| 81 |  */
 | 
|---|
| 82 | #ifdef HAVE_INLINE
 | 
|---|
| 83 | inline static double CalcVVXrUP(struct ExCor *EC, double rs) {
 | 
|---|
| 84 | #else
 | 
|---|
| 85 | static double CalcVVXrUP(struct ExCor *EC, double rs) {
 | 
|---|
| 86 | #endif
 | 
|---|
| 87 |   return (-2./(9*PI)*EC->fac6PIPI23*rs*rs); // formula checked (16.5.06)
 | 
|---|
| 88 | }
 | 
|---|
| 89 | 
 | 
|---|
| 90 | /** Calculates second derivative of exchange potential \f$\frac{\delta^2 V_{x}}{\delta n^2}\f$.
 | 
|---|
| 91 |  * \param *EC ExCor exchange correlation structure
 | 
|---|
| 92 |  * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs()
 | 
|---|
| 93 |  * \return \f$\frac{16}{81} (6\pi^2)^{2/3} \cdot (rs)^5\f$
 | 
|---|
| 94 |  * \sa CalcVXrUP(), CalcVVXrUP()
 | 
|---|
| 95 |  */
 | 
|---|
| 96 | #ifdef HAVE_INLINE
 | 
|---|
| 97 | inline static double CalcVVVXrUP(struct ExCor *EC, double rs) {
 | 
|---|
| 98 | #else
 | 
|---|
| 99 | static double CalcVVVXrUP(struct ExCor *EC, double rs) {
 | 
|---|
| 100 | #endif
 | 
|---|
| 101 |   return (16./81.*EC->fac6PIPI23*rs*rs*rs*rs*rs); // formula checked (16.5.06)
 | 
|---|
| 102 | }
 | 
|---|
| 103 | 
 | 
|---|
| 104 | /** Calculates exchange energy over density for homogeneous charge within given Wigner-Seitz-Radius, \f${\cal E}_x\f$.
 | 
|---|
| 105 |  * The formula specified on the return statement is derived if into
 | 
|---|
| 106 |  * \f[ \forall 0 \geq \zeta \geq 1: \quad 
 | 
|---|
| 107 |  *      E_x = {\cal E}_x n = -\frac{3}{8} \Bigr (\frac{3(n_{up}+n_{down})}{\pi} \Bigl)^{1/3} 
 | 
|---|
| 108 |  *        \bigr[ (1+\zeta)^{4/3}+ (1-\zeta)^{4/3} \bigl ] \cdot (n_{up}+n_{down}) \qquad (2.52)
 | 
|---|
| 109 |  * \f] 
 | 
|---|
| 110 |  * the definition of spin polarisation \f$\frac{n_{up} - n_{down}}{n_{up} + n_{down}}\f$
 | 
|---|
| 111 |  * is inserted and the expression evaluated.
 | 
|---|
| 112 |  * \param *EC ExCor exchange correlation structure
 | 
|---|
| 113 |  * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs()
 | 
|---|
| 114 |  * \param zeta spin polarisation \f$\zeta\f$, see CalcZeta()
 | 
|---|
| 115 |  * \return \f$-\frac{3}{8} (\frac{3}{2\pi})^{2/3} \Bigl [ (1+\zeta)^{\frac{4}{3}} + (1-\zeta)^{\frac{4}{3}}\Bigr] \cdot \frac{1}{rs}\f$
 | 
|---|
| 116 |  */
 | 
|---|
| 117 | #ifdef HAVE_INLINE
 | 
|---|
| 118 | inline double CalcEXr(struct ExCor *EC, double rs, double zeta) {
 | 
|---|
| 119 | #else
 | 
|---|
| 120 | double CalcEXr(struct ExCor *EC, double rs, double zeta) {
 | 
|---|
| 121 | #endif
 | 
|---|
| 122 |   if (fabs(rs) < EC->epsilon0) return(0);
 | 
|---|
| 123 |   //return (-3./8.*pow(3./(2.*PI),2./3.)/rs *(pow(1.+zeta,4./3.)+pow(1.-zeta,4./3.)));  // formula checked
 | 
|---|
| 124 |   return (-3./8.*cbrt((3./(2.*PI))*(3./(2.*PI)))/rs *((1.+zeta)*cbrt(1.+zeta)+(1.-zeta)*cbrt(1.-zeta)));
 | 
|---|
| 125 | }
 | 
|---|
| 126 | 
 | 
|---|
| 127 | /** Calculates exchange energy over density for homogeneous charge within given Wigner-Seitz-Radius, \f${\cal E}_x\f$.
 | 
|---|
| 128 |  * The formula specified on the return statement is derived if into
 | 
|---|
| 129 |  * \f[ \forall 0 \geq \zeta \geq 1: \quad 
 | 
|---|
| 130 |  *      E_x = {\cal E}_x n = -\frac{3}{8} \Bigr (\frac{3(n_{up}+n_{down})}{\pi} \Bigl)^{1/3} 
 | 
|---|
| 131 |  *        \bigr[ (1+\zeta)^{4/3}+ (1-\zeta)^{4/3} \bigl ] \cdot (n_{up}+n_{down}) \qquad (2.52)
 | 
|---|
| 132 |  * \f] 
 | 
|---|
| 133 |  * the definition of spin polarisation \f$\frac{n_{up} - n_{down}}{n_{up} + n_{down}}\f$
 | 
|---|
| 134 |  * is inserted and the expression evaluated.
 | 
|---|
| 135 |  * \param *EC ExCor exchange correlation structure
 | 
|---|
| 136 |  * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs()
 | 
|---|
| 137 |  * \return \f$-\frac{3}{8} (\frac{6}{\pi})^{2/3} \cdot \frac{1}{rs}\f$
 | 
|---|
| 138 |  */
 | 
|---|
| 139 | #ifdef HAVE_INLINE
 | 
|---|
| 140 | inline static double CalcEXrUP(struct ExCor *EC, double rs) {
 | 
|---|
| 141 | #else
 | 
|---|
| 142 | static double CalcEXrUP(struct ExCor *EC, double rs) {
 | 
|---|
| 143 | #endif
 | 
|---|
| 144 |   if (fabs(rs) < EC->epsilon0) return(0); 
 | 
|---|
| 145 |   return (-3./8.*EC->fac6PI23/rs);  // formula checked
 | 
|---|
| 146 | }
 | 
|---|
| 147 | 
 | 
|---|
| 148 | /** Calculates correlation energy \f${\cal E}_c\f$ per electron for un-/polarised case.
 | 
|---|
| 149 |  * Formula derived from Monte-Carlo-simulations by Ceperley and Adler [CA80],
 | 
|---|
| 150 |  * parametrized by Perdew and Zunger [PZ81] for the polarised (\f$\zeta = 1\f$) or
 | 
|---|
| 151 |  * unpolarised (\f$\zeta = 0\f$) case.
 | 
|---|
| 152 |  * \param *EC ExCor exchange correlation structure
 | 
|---|
| 153 |  * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs()
 | 
|---|
| 154 |  * \param up UnPolarised: whether it's the polarised or unpolarised case
 | 
|---|
| 155 |  * \return In the unpolarised case: <br>
 | 
|---|
| 156 |  *         \f$r_s\f$>=1: \f$\gamma_{up} (1+\beta_{1,up}\sqrt{r_s}+\beta_{2,up}r_s)^{-1} = -0.1423\cdot(1+1.0529\sqrt{r_s}+0.3334r_s)^{-1} \qquad (2.31a)\f$<br>
 | 
|---|
| 157 |  *         \f$r_s\f$<1:  \f$-0.0480+0.0311\ln(r_s)-0.0116r_s+0.0020r_s\ln(r_s) \qquad (2.31b)\f$<br>
 | 
|---|
| 158 |  *         In the polarised case: <br>
 | 
|---|
| 159 |  *         \f$r_s\f$>=1: \f$-0.0843\cdot(1+1.3981\sqrt{r_s}+0.2611r_s)^{-1}\f$<br>
 | 
|---|
| 160 |  *         \f$r_s\f$<1:  \f$-0.0269+0.01555\ln(r_s)-0.0048r_s+0.0007r_s\ln(r_s)\f$<br>
 | 
|---|
| 161 |  */
 | 
|---|
| 162 | #ifdef HAVE_INLINE
 | 
|---|
| 163 | inline double CalcECr(struct ExCor *EC, double rs, enum UnPolarised up) {
 | 
|---|
| 164 | #else
 | 
|---|
| 165 | double CalcECr(struct ExCor *EC, double rs, enum UnPolarised up) {
 | 
|---|
| 166 | #endif
 | 
|---|
| 167 |   double lrs;
 | 
|---|
| 168 |   double res=0;
 | 
|---|
| 169 |   if (rs >= 1) {
 | 
|---|
| 170 |     res= (EC->gamma[up]/(1.+EC->beta_1[up]*sqrt(rs)+EC->beta_2[up]*rs));
 | 
|---|
| 171 |     return (res);
 | 
|---|
| 172 |   }
 | 
|---|
| 173 |   if (rs <= EC->epsilon0) {
 | 
|---|
| 174 |     res = 0;
 | 
|---|
| 175 |     return(res);
 | 
|---|
| 176 |   }
 | 
|---|
| 177 |   lrs = log(rs);
 | 
|---|
| 178 |   res = (EC->A[up]*lrs+EC->B[up]+EC->C[up]*rs*lrs+EC->D[up]*rs);
 | 
|---|
| 179 |   return (res);
 | 
|---|
| 180 | }
 | 
|---|
| 181 | 
 | 
|---|
| 182 | /** Calculates correlation potential \f$V_{c}\f$.
 | 
|---|
| 183 |  * \f[
 | 
|---|
| 184 |  *    V_{c} = {\cal E}_{c} + \Bigr ( \frac{d{\cal E}_{c}}{dn} \Bigl )_{n=n(r)} n(r) \qquad (2.32)
 | 
|---|
| 185 |  * \f]
 | 
|---|
| 186 |  * \param *EC ExCor exchange correlation structure
 | 
|---|
| 187 |  * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs()
 | 
|---|
| 188 |  * \param up UnPolarised
 | 
|---|
| 189 |  * \return in the un-/polarised case: <br>
 | 
|---|
| 190 |  *         \f$r_s\f$>=1: \f$\frac{{\cal E}_c}{1+\beta_1[up]\sqrt{r_s}+\beta_2[up]r_s} \cdot (1+\frac{7}{6}\beta_1[up]\sqrt{r_s} + \frac{4}{3}\beta_2[up]r_s)\f$<br>
 | 
|---|
| 191 |  *         \f$r_s\f$=0: 0 <br>
 | 
|---|
| 192 |  *         else:  \f$A[up]\cdot\log(rs) + (B[up] - \frac{1}{3} A[up]) + \frac{2}{3} C[up]\cdot rs \log(rs)+ \frac{1}{3} (2 D[up]-C[up]) \cdot rs\f$
 | 
|---|
| 193 |  */
 | 
|---|
| 194 | #ifdef HAVE_INLINE
 | 
|---|
| 195 | inline static double CalcVCr(struct ExCor *EC, double rs, enum UnPolarised up) {
 | 
|---|
| 196 | #else
 | 
|---|
| 197 | static double CalcVCr(struct ExCor *EC, double rs, enum UnPolarised up) {
 | 
|---|
| 198 | #endif
 | 
|---|
| 199 |   double srs,lrs;
 | 
|---|
| 200 |   if (rs >= 1) {
 | 
|---|
| 201 |     srs = sqrt(rs);
 | 
|---|
| 202 |     return ((EC->gamma[up]/(1.+EC->beta_1[up]*srs+EC->beta_2[up]*rs))*(1.+(7./6.)*EC->beta_1[up]*srs+(4./3.)*EC->beta_2[up]*rs)/(1.+EC->beta_1[up]*srs+EC->beta_2[up]*rs)); // formula checked  (15.5.06)
 | 
|---|
| 203 |   }
 | 
|---|
| 204 |   if (rs <= EC->epsilon0) return (0);
 | 
|---|
| 205 |   lrs = log(rs);
 | 
|---|
| 206 |   return (EC->A[up]*lrs+(EC->B[up]-(1./3.)*EC->A[up])+(2./3.)*EC->C[up]*rs*lrs+(1./3.)*(2.*EC->D[up]-EC->C[up])*rs); // formula checked  (15.5.06)
 | 
|---|
| 207 | }
 | 
|---|
| 208 | 
 | 
|---|
| 209 | /** Calculates first derivative of correlation potential \f$\frac{\delta V_{c}}{\delta n}\f$.
 | 
|---|
| 210 |  * \f[
 | 
|---|
| 211 |  *  \frac{\delta V_{c}}{\delta n} = \frac{\delta^2 {\cal E}_{c}}{\delta n^2}
 | 
|---|
| 212 |  * \f]
 | 
|---|
| 213 |  * \param *EC ExCor exchange correlation structure
 | 
|---|
| 214 |  * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs()
 | 
|---|
| 215 |  * \param up UnPolarised
 | 
|---|
| 216 |  * \return In the un-/polarised case: <br>
 | 
|---|
| 217 |  *        \f$r_s\f$>=1: \f$\frac{{\cal E}_c[up] \pi}{27\cdot(1+\beta_1[up]\sqrt{r_s}+\beta_2[up]r_s)} \Bigr ( 5\beta_1[up]r_s^{7/2} + 8\beta_2[up]r_s^4
 | 
|---|
| 218 |  *            + \frac{1}{1+\beta_1[up]\sqrt{r_s}+\beta_2[up]r_s} (8\beta_1[up]\beta_2[up]r_s^{9/2} + 2\beta_1^2[up]r_s^4 + 8\beta_2^2[up]r_s^5) \Bigl)\f$<br>
 | 
|---|
| 219 |  *        \f$r_s\f$< 1: \f$-\frac{4\pi r_s^3}{9} \bigr (A[up] + \frac{r_s}{3} \cdot(C[up]+2C[up]\log(r_s)+2D[up]) \bigl)\f$<br>
 | 
|---|
| 220 |  * \sa CalcVCr()
 | 
|---|
| 221 |  */
 | 
|---|
| 222 | #ifdef HAVE_INLINE
 | 
|---|
| 223 | inline static double CalcVVCr(struct ExCor *EC, double rs, enum UnPolarised up) {
 | 
|---|
| 224 | #else
 | 
|---|
| 225 | static double CalcVVCr(struct ExCor *EC, double rs, enum UnPolarised up) {
 | 
|---|
| 226 | #endif
 | 
|---|
| 227 |   double eps,deps;
 | 
|---|
| 228 |   if (rs <= EC->epsilon0) return (0);
 | 
|---|
| 229 |   if (rs >= 1) {
 | 
|---|
| 230 |     deps = 1.+EC->beta_1[up]*sqrt(rs)+EC->beta_2[up]*rs;
 | 
|---|
| 231 |     eps = EC->gamma[up]/deps;
 | 
|---|
| 232 |     //return (eps*PI/(27.*deps)*(8.*EC->beta_2[up]*rs*rs*rs*rs+5.*EC->beta_1[up]*pow(rs,7./2.)+(1./deps)*(8.*EC->beta_1[up]*EC->beta_2[up]*pow(rs,9./2.)+2.*EC->beta_1[up]*EC->beta_1[up]*rs*rs*rs*rs+8.*EC->beta_2[up]*EC->beta_2[up]*rs*rs*rs*rs*rs)));
 | 
|---|
| 233 |     //return (eps*PI/(27.*deps*deps)*(8.*EC->beta_2[up]*rs*rs*rs*rs+5.*EC->beta_1[up]*pow(rs,7./2.)+21.*EC->beta_1[up]*EC->beta_2[up]*pow(rs,9./2.)+7.*EC->beta_1[up]*EC->beta_1[up]*rs*rs*rs*rs+16.*EC->beta_2[up]*EC->beta_2[up]*rs*rs*rs*rs*rs)); //formula checked (15.05.06)
 | 
|---|
| 234 |     return (eps*PI/(27.*deps*deps)*(8.*EC->beta_2[up]*rs*rs*rs*rs+5.*EC->beta_1[up]*(sqrt(rs)*rs*rs*rs)+21.*EC->beta_1[up]*EC->beta_2[up]*(sqrt(rs)*rs*rs*rs*rs)+7.*EC->beta_1[up]*EC->beta_1[up]*rs*rs*rs*rs+16.*EC->beta_2[up]*EC->beta_2[up]*rs*rs*rs*rs*rs)); //formula checked (15.05.06)
 | 
|---|
| 235 |   }
 | 
|---|
| 236 |   return (-4.*PI*rs*rs*rs/9.*(EC->A[up]+rs/3.*(EC->C[up]+2.*EC->C[up]*log(rs)+2.*EC->D[up]))); //formula checked (23.05.06)
 | 
|---|
| 237 | }
 | 
|---|
| 238 | 
 | 
|---|
| 239 | /** Calculates second derivative of correlation potential \f$\frac{\delta^2 V_{c}}{\delta n^2}\f$.
 | 
|---|
| 240 |  * \f[
 | 
|---|
| 241 |  *  \frac{\delta^2 V_{c}}{\delta n^2} = \frac{\delta^3 {\cal E}_{c}}{\delta n^3}
 | 
|---|
| 242 |  * \f]
 | 
|---|
| 243 |  * \param *EC ExCor exchange correlation structure
 | 
|---|
| 244 |  * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs()
 | 
|---|
| 245 |  * \param up UnPolarised
 | 
|---|
| 246 |  * \return In the un-/polarised case: <br>
 | 
|---|
| 247 |  *        \f$r_s\f$>=1: \f$-\frac{2\pi^2 {\cal E}_c[up]}{243\cdot(1+\beta_1[up]\sqrt{r_s}+\beta_2[up]r_s)^4} 
 | 
|---|
| 248 |  *            \Bigr ( 35\beta_1[up]r_s^{13/2} + r_s^7(64\beta_2[up]+76\beta_1^2[up])
 | 
|---|
| 249 |  *              + r_s^{15/2} (35\beta^3_1[up]+243\beta_1[up]\beta_2[up])
 | 
|---|
| 250 |  *              + r_s^8 (176\beta^2_2[up]+140\beta^2_1[up]\beta_2[up])
 | 
|---|
| 251 |  *              + r_s^{17/2} (175\beta_1[up]\beta^2_2[up])
 | 
|---|
| 252 |  *              + r_s^9 (64\beta^3_2[up])      
 | 
|---|
| 253 |  *            \Bigl)\f$<br>
 | 
|---|
| 254 |  *        \f$r_s\f$< 1: \f$\frac{16\pi^2 r_s^6}{243} \bigr (9A[up] + r_s\cdot(6C[up]+8C[up]\log(r_s)+8D[up]) \bigl)\f$<br>
 | 
|---|
| 255 |  * \sa CalcVCr()
 | 
|---|
| 256 |  */
 | 
|---|
| 257 | #ifdef HAVE_INLINE
 | 
|---|
| 258 | inline static double CalcVVVCr(struct ExCor *EC, double rs, enum UnPolarised up) {
 | 
|---|
| 259 | #else
 | 
|---|
| 260 | static double CalcVVVCr(struct ExCor *EC, double rs, enum UnPolarised up) {
 | 
|---|
| 261 | #endif
 | 
|---|
| 262 |   double eps,deps;
 | 
|---|
| 263 |   double beta11,beta12,beta13,beta21,beta22,beta23;
 | 
|---|
| 264 |   if (rs <= EC->epsilon0) return (0);
 | 
|---|
| 265 |   if (rs >= 1) {
 | 
|---|
| 266 |     deps = 1.+EC->beta_1[up]*sqrt(rs)+EC->beta_2[up]*rs;
 | 
|---|
| 267 |     eps=EC->gamma[up]/deps;
 | 
|---|
| 268 |     beta11 = EC->beta_1[up];
 | 
|---|
| 269 |     beta12 = beta11*EC->beta_1[up];
 | 
|---|
| 270 |     beta13 = beta12*EC->beta_1[up];
 | 
|---|
| 271 |     beta21 = EC->beta_2[up];
 | 
|---|
| 272 |     beta22 = beta21*EC->beta_2[up];
 | 
|---|
| 273 |     beta23 = beta22*EC->beta_2[up];
 | 
|---|
| 274 | //    return (-2.*eps*PI*PI/(243.*deps*deps*deps)*(
 | 
|---|
| 275 | //            pow(rs,13./2.) * (35.*beta11)
 | 
|---|
| 276 | //          + pow(rs,7.) * (64.*beta21 + 76.*beta12)
 | 
|---|
| 277 | //          + pow(rs,15./2.) * (35.*beta13 + 234.*beta11*beta21)
 | 
|---|
| 278 | //          + pow(rs,8.) * (176.*beta22 + 140.*beta12*beta21)
 | 
|---|
| 279 | //          + pow(rs,17./2.) * (175.*beta11*beta22)
 | 
|---|
| 280 | //          + pow(rs,9.) * (64.*beta23) ));
 | 
|---|
| 281 |     return (-2.*eps*PI*PI/(243.*deps*deps*deps)*(
 | 
|---|
| 282 |             rs*rs*rs*rs*rs*rs*(
 | 
|---|
| 283 |             sqrt(rs) *((35.*beta11)  // fractial ones
 | 
|---|
| 284 |           + rs *((35.*beta13 + 234.*beta11*beta21)
 | 
|---|
| 285 |           + rs * (175.*beta11*beta22))
 | 
|---|
| 286 |             )
 | 
|---|
| 287 |           + rs * ((64.*beta21 + 76.*beta12) // integer ones
 | 
|---|
| 288 |           + rs * ((176.*beta22 + 140.*beta12*beta21)
 | 
|---|
| 289 |           + rs * ((64.*beta23) ))))));
 | 
|---|
| 290 |   }
 | 
|---|
| 291 |   //return (16.*PI*PI*pow(rs,6)/243. * (9.*EC->A[up] + rs*(8.*EC->C[up]*log(rs) + 6.*EC->C[up] + 8.*EC->D[up])));
 | 
|---|
| 292 |   return (16.*PI*PI*rs*rs*rs*rs*rs*rs/243. * (9.*EC->A[up] + rs*(8.*EC->C[up]*log(rs) + 6.*EC->C[up] + 8.*EC->D[up])));
 | 
|---|
| 293 | }
 | 
|---|
| 294 | 
 | 
|---|
| 295 | /** Calculates spin polarisation \f$\zeta\f$
 | 
|---|
| 296 |  * \param *EC ExCor exchange correlation structure
 | 
|---|
| 297 |  * \param pUp SpinUp electron density
 | 
|---|
| 298 |  * \param pDown SpinDown electron density
 | 
|---|
| 299 |  * \return \f$\frac{pUp - pDown}{pUp + pDown}\f$
 | 
|---|
| 300 |  * \note zeta is never less than ExCor::epsilon0
 | 
|---|
| 301 |  */
 | 
|---|
| 302 | #ifdef HAVE_INLINE
 | 
|---|
| 303 | inline double CalcZeta(struct ExCor *EC, double pUp, double pDown) {
 | 
|---|
| 304 | #else
 | 
|---|
| 305 | double CalcZeta(struct ExCor *EC, double pUp, double pDown) {
 | 
|---|
| 306 | #endif
 | 
|---|
| 307 |   if (fabs(pUp+pDown) < EC->epsilon0) return(0);
 | 
|---|
| 308 |   return ((pUp - pDown)/(pUp + pDown));
 | 
|---|
| 309 | }
 | 
|---|
| 310 | 
 | 
|---|
| 311 | /** Calculates derivative \f$\frac{\delta \zeta}{\delta p}\f$
 | 
|---|
| 312 |  * \param *EC ExCor exchange correlation structure
 | 
|---|
| 313 |  * \param ST SpinType
 | 
|---|
| 314 |  * \param pUp SpinUp density
 | 
|---|
| 315 |  * \param pDown SpinDown density
 | 
|---|
| 316 |  * \return p is pUp or pDown: \f$\pm 2 \frac{p}{ (pUp+pDown)^2 }\f$
 | 
|---|
| 317 |  * \sa CalcZeta()
 | 
|---|
| 318 |  */
 | 
|---|
| 319 | #ifdef HAVE_INLINE
 | 
|---|
| 320 | inline static double CalcDzeta(struct ExCor *EC, enum SpinType ST, double pUp, double pDown) {
 | 
|---|
| 321 | #else
 | 
|---|
| 322 | static double CalcDzeta(struct ExCor *EC, enum SpinType ST, double pUp, double pDown) {
 | 
|---|
| 323 | #endif
 | 
|---|
| 324 |   double res = 0;
 | 
|---|
| 325 |   if (fabs(pUp+pDown) < EC->epsilon0) return(0);
 | 
|---|
| 326 |   //EC = EC;
 | 
|---|
| 327 |   switch(ST) {
 | 
|---|
| 328 |   case SpinUp:
 | 
|---|
| 329 |     res = 2.*pDown/(pUp+pDown)/(pUp+pDown); // formula checked
 | 
|---|
| 330 |     break;
 | 
|---|
| 331 |   case SpinDown:
 | 
|---|
| 332 |     res = -2.*pUp/(pUp+pDown)/(pUp+pDown); // formula checked
 | 
|---|
| 333 |     break;
 | 
|---|
| 334 |   case SpinDouble:
 | 
|---|
| 335 |     res = 0;
 | 
|---|
| 336 |     break;
 | 
|---|
| 337 |   }
 | 
|---|
| 338 |   return (res);
 | 
|---|
| 339 | }
 | 
|---|
| 340 | 
 | 
|---|
| 341 | /** Calculates second derivative \f$\frac{\delta^2 \zeta}{\delta p^2}\f$
 | 
|---|
| 342 |  * \param *EC ExCor exchange correlation structure
 | 
|---|
| 343 |  * \param ST SpinType
 | 
|---|
| 344 |  * \param pUp SpinUp density
 | 
|---|
| 345 |  * \param pDown SpinDown density
 | 
|---|
| 346 |  * \return p is pUp or pDown: \f$\pm 4 \frac{p}{ (pUp+pDown)^3 }\f$
 | 
|---|
| 347 |  * \sa CalcZeta(), CalcDZeta()
 | 
|---|
| 348 |  */
 | 
|---|
| 349 | #ifdef HAVE_INLINE
 | 
|---|
| 350 | inline static double CalcD2zeta(struct ExCor *EC, enum SpinType ST, double pUp, double pDown) {
 | 
|---|
| 351 | #else
 | 
|---|
| 352 | static double CalcD2zeta(struct ExCor *EC, enum SpinType ST, double pUp, double pDown) {
 | 
|---|
| 353 | #endif
 | 
|---|
| 354 |   double res = 0;
 | 
|---|
| 355 |   if (fabs(pUp+pDown) < EC->epsilon0) return(0);
 | 
|---|
| 356 |   //EC = EC;
 | 
|---|
| 357 |   switch(ST) {
 | 
|---|
| 358 |   case SpinUp:
 | 
|---|
| 359 |     res = -4.*pDown/(pUp+pDown)/(pUp+pDown)/(pUp+pDown);
 | 
|---|
| 360 |     break;
 | 
|---|
| 361 |   case SpinDown:
 | 
|---|
| 362 |     res = 4.*pUp/(pUp+pDown)/(pUp+pDown)/(pUp+pDown);
 | 
|---|
| 363 |     break;
 | 
|---|
| 364 |   case SpinDouble:
 | 
|---|
| 365 |     res = 0;
 | 
|---|
| 366 |     break;
 | 
|---|
| 367 |   }
 | 
|---|
| 368 |   return (res);
 | 
|---|
| 369 | }
 | 
|---|
| 370 | 
 | 
|---|
| 371 | /** Calculates third derivative \f$\frac{\delta^3 \zeta}{\delta p^3}\f$
 | 
|---|
| 372 |  * \param *EC ExCor exchange correlation structure
 | 
|---|
| 373 |  * \param ST SpinType
 | 
|---|
| 374 |  * \param pUp SpinUp density
 | 
|---|
| 375 |  * \param pDown SpinDown density
 | 
|---|
| 376 |  * \return p is pUp or pDown: \f$\pm -12 \frac{p}{ (pUp+pDown)^4 }\f$
 | 
|---|
| 377 |  * \sa CalcZeta(), CalcDZeta(), CalcD2Zeta()
 | 
|---|
| 378 |  */
 | 
|---|
| 379 | #ifdef HAVE_INLINE
 | 
|---|
| 380 | inline static double CalcD3zeta(struct ExCor *EC, enum SpinType ST, double pUp, double pDown) {
 | 
|---|
| 381 | #else
 | 
|---|
| 382 | static double CalcD3zeta(struct ExCor *EC, enum SpinType ST, double pUp, double pDown) {
 | 
|---|
| 383 | #endif
 | 
|---|
| 384 |   double res = 0;
 | 
|---|
| 385 |   if (fabs(pUp+pDown) < EC->epsilon0) return(0);
 | 
|---|
| 386 |   //EC = EC;
 | 
|---|
| 387 |   switch(ST) {
 | 
|---|
| 388 |   case SpinUp:
 | 
|---|
| 389 |     res = +12.*pDown/(pUp+pDown)/(pUp+pDown)/(pUp+pDown)/(pUp+pDown);
 | 
|---|
| 390 |     break;
 | 
|---|
| 391 |   case SpinDown:
 | 
|---|
| 392 |     res = -12.*pUp/(pUp+pDown)/(pUp+pDown)/(pUp+pDown)/(pUp+pDown);
 | 
|---|
| 393 |     break;
 | 
|---|
| 394 |   case SpinDouble:
 | 
|---|
| 395 |     res = 0;
 | 
|---|
| 396 |     break;
 | 
|---|
| 397 |   }
 | 
|---|
| 398 |   return (res);
 | 
|---|
| 399 | }
 | 
|---|
| 400 | 
 | 
|---|
| 401 | /** Calculates auxiliary factor \f$f(\zeta)\f$.
 | 
|---|
| 402 |  * This auxiliary factor is needed in the parametrized evaluation of the
 | 
|---|
| 403 |  * full spin-polarised correlation energy \f${\cal E}_c\f$ (see section 2.3.6)
 | 
|---|
| 404 |  * \param *EC ExCor exchange correlation structure
 | 
|---|
| 405 |  * \param zeta spin polarisation \f$\zeta\f$, see CalcZeta()
 | 
|---|
| 406 |  * \return \f$\frac{(1+\zeta)^{4/3} + (1-\zeta)^{4/3} - 2} {2^{4/3}-2}\f$
 | 
|---|
| 407 |  */
 | 
|---|
| 408 | #ifdef HAVE_INLINE
 | 
|---|
| 409 | inline static double Calcf(struct ExCor *EC, double zeta) {
 | 
|---|
| 410 | #else
 | 
|---|
| 411 | static double Calcf(struct ExCor *EC, double zeta) {
 | 
|---|
| 412 | #endif
 | 
|---|
| 413 |   double res =0;
 | 
|---|
| 414 |   EC = EC;
 | 
|---|
| 415 |   if (fabs(zeta) < EC->epsilon0) return(0.); // unpolarised case
 | 
|---|
| 416 |   //res = ((pow(1.+zeta,4./3.)+pow(1.-zeta,4./3.)-2.)/(EC->fac243-2.));
 | 
|---|
| 417 |   res = ((cbrt(1.+zeta)*(1.+zeta)+cbrt(1.-zeta)*(1.-zeta)-2.)/(EC->fac243-2.));
 | 
|---|
| 418 |   return (res);
 | 
|---|
| 419 | }
 | 
|---|
| 420 | 
 | 
|---|
| 421 | /** Calculates the derivative \f$\frac{\delta f}{\delta \zeta}\f$.
 | 
|---|
| 422 |  * \param *EC ExCor exchange correlation structure
 | 
|---|
| 423 |  * \param zeta spin polarisation \f$\zeta\f$, see CalcZeta()
 | 
|---|
| 424 |  * \return \f$\frac{4}{3} \frac{(\zeta+1)^{1/3} - (1-\zeta)^{1/3}} {2^{4/3}-2}\f$
 | 
|---|
| 425 |  * \sa Calcf()
 | 
|---|
| 426 |  */
 | 
|---|
| 427 | #ifdef HAVE_INLINE
 | 
|---|
| 428 | inline static double CalcDf(struct ExCor *EC, double zeta) {
 | 
|---|
| 429 | #else
 | 
|---|
| 430 | static double CalcDf(struct ExCor *EC, double zeta) {
 | 
|---|
| 431 | #endif
 | 
|---|
| 432 |   if (fabs(zeta) < EC->epsilon0) return(0.); // unpolarised case
 | 
|---|
| 433 |   //return((4./3.)*(pow(zeta+1.,1./3.)-pow(1.-zeta,1./3.))/(EC->fac243-2.)); // formula checked (16.5.06)
 | 
|---|
| 434 |   return((4./3.)*(cbrt(zeta+1.)-cbrt(1.-zeta))/(EC->fac243-2.)); // formula checked (16.5.06)
 | 
|---|
| 435 | }
 | 
|---|
| 436 | 
 | 
|---|
| 437 | /** Calculates second derivative \f$\frac{\delta^2 f}{\delta \zeta^2}\f$.
 | 
|---|
| 438 |  * \param *EC ExCor exchange correlation structure
 | 
|---|
| 439 |  * \param zeta spin polarisation \f$\zeta\f$, see CalcZeta()
 | 
|---|
| 440 |  * \return \f$\frac{4}{9} \frac{(\zeta+1)^{-2/3}-(1-\zeta)^{-2/3} }{2^{4/3}-2}\f$
 | 
|---|
| 441 |  * \sa Calcf(), CalcDf()
 | 
|---|
| 442 |  */
 | 
|---|
| 443 | #ifdef HAVE_INLINE
 | 
|---|
| 444 | inline static double CalcD2f(struct ExCor *EC, double zeta) {
 | 
|---|
| 445 | #else
 | 
|---|
| 446 | static double CalcD2f(struct ExCor *EC, double zeta) {
 | 
|---|
| 447 | #endif
 | 
|---|
| 448 |   if (fabs(zeta) < EC->epsilon0) return(0.); // unpolarised case
 | 
|---|
| 449 |   if (1.-fabs(zeta) < EC->epsilon0) return (0.);  // second derivative not defined for these cases (which are needed!) 
 | 
|---|
| 450 |   //if (1-fabs(zeta) < EC->epsilon0) { fprintf(stderr,"CalcD2f: zeta = %lg\n",zeta); return(0); }
 | 
|---|
| 451 |   //return((4./9.)*(pow(zeta+1.,-2./3.)+pow(1.-zeta,-2./3.))/(EC->fac243-2.));  // formula checked (16.5.06)
 | 
|---|
| 452 |   return((4./9.)*(1./cbrt((zeta+1.)*(zeta+1.))+1./cbrt((1.-zeta)*(1.-zeta)))/(EC->fac243-2.));  // formula checked (16.5.06)
 | 
|---|
| 453 | }
 | 
|---|
| 454 | 
 | 
|---|
| 455 | /** Calculates third derivative \f$\frac{\delta^3 f}{\delta \zeta^3}\f$.
 | 
|---|
| 456 |  * \param *EC ExCor exchange correlation structure
 | 
|---|
| 457 |  * \param zeta spin polarisation \f$\zeta\f$, see CalcZeta()
 | 
|---|
| 458 |  * \return \f$\frac{8}{27} \frac{-(\zeta+1)^{-5/3}+(1-\zeta)^{-5/3} }{2^{4/3}-2}\f$
 | 
|---|
| 459 |  * \sa Calcf(), CalcDf()
 | 
|---|
| 460 |  */
 | 
|---|
| 461 | #ifdef HAVE_INLINE
 | 
|---|
| 462 | inline static double CalcD3f(struct ExCor *EC, double zeta) {
 | 
|---|
| 463 | #else
 | 
|---|
| 464 | static double CalcD3f(struct ExCor *EC, double zeta) {
 | 
|---|
| 465 | #endif
 | 
|---|
| 466 |   if (fabs(zeta) < EC->epsilon0) return(0.); // unpolarised case
 | 
|---|
| 467 |   //if (1-fabs(zeta) < EC->epsilon0) return (0.);  // second derivative not defined for these cases (which are needed!) 
 | 
|---|
| 468 |   if (1-fabs(zeta) < EC->epsilon0) { fprintf(stderr,"CalcD2f: zeta = %lg\n",zeta); return(0.); }
 | 
|---|
| 469 |   //return((-8./27.)*(pow(zeta+1.,-5./3.)-pow(1.-zeta,-5./3.))/(EC->fac243-2.));  // formula checked (16.5.06)
 | 
|---|
| 470 |   return((-8./27.)*(1/((zeta+1)*cbrt((zeta+1.)*(zeta+1.)))-1/((zeta+1)*cbrt((1.-zeta)*(1.-zeta))))/(EC->fac243-2.));  // formula checked (16.5.06)
 | 
|---|
| 471 | }
 | 
|---|
| 472 |   
 | 
|---|
| 473 | /** Calculates correlation energy with free spin-polarisation \f$E_c (n,\zeta)\f$.
 | 
|---|
| 474 |  * \param *EC exchange correlation structure
 | 
|---|
| 475 |  * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs()
 | 
|---|
| 476 |  * \param zeta spin polarisation \f$\zeta\f$, see CalcZeta()
 | 
|---|
| 477 |  * \param p electron density \f$n\f$
 | 
|---|
| 478 |  * \return \f$0 \leq \zeta \leq 1:\quad E_c (n,\zeta) = {\cal E}_c (n,\zeta)\cdot n = \bigr ({\cal E}_c(n,0) + [{\cal E}_c(n,1) - {\cal E}_c(n,0)] f(\zeta)\bigl ) \cdot n \qquad (2.3.6)\f$
 | 
|---|
| 479 |  * \sa CalcECr()
 | 
|---|
| 480 |  */
 | 
|---|
| 481 | #ifdef HAVE_INLINE
 | 
|---|
| 482 | inline double CalcSECr(struct ExCor *EC, double rs, double zeta, double p) {
 | 
|---|
| 483 | #else
 | 
|---|
| 484 | double CalcSECr(struct ExCor *EC, double rs, double zeta, double p) {
 | 
|---|
| 485 | #endif
 | 
|---|
| 486 |   double res =0;
 | 
|---|
| 487 |   double unpol, pol;
 | 
|---|
| 488 |   unpol = CalcECr(EC,rs,unpolarised); 
 | 
|---|
| 489 |   pol = CalcECr(EC,rs,polarised); 
 | 
|---|
| 490 |   res = (unpol+Calcf(EC,zeta)*(pol-unpol))*p;
 | 
|---|
| 491 |   return (res);
 | 
|---|
| 492 | }
 | 
|---|
| 493 | 
 | 
|---|
| 494 | /** Calculates SpinType-dependently correlation potential with free spin-polarisation \f$V_c (n,\zeta)\f$.
 | 
|---|
| 495 |  * \f[
 | 
|---|
| 496 |  *  V_c = {\cal E}_c + \frac{\delta{\ E}_c}{\delta n}n = V_c(n,0) + [V_c(n,1)-V_c(n,0)]f(\zeta) 
 | 
|---|
| 497 |  *      + [{\cal E}_c(n,1)-{\cal E}_c(N,0)]\frac{\delta f(\zeta)}{\delta \zeta}\frac{\delta\zeta}{\delta n}
 | 
|---|
| 498 |  * \f]
 | 
|---|
| 499 |  * \param *EC ExCor exchange correlation structure
 | 
|---|
| 500 |  * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs()
 | 
|---|
| 501 |  * \param zeta spin polarisation \f$\zeta\f$, see CalcZeta()
 | 
|---|
| 502 |  * \param ST SpinType
 | 
|---|
| 503 |  * \return \f$V_c(n,0) + [V_c(n,1)-V_c(n,0)]f(\zeta) + [{\cal E}_c(n,1)-{\cal E}_c(N,0)](\pm1-\zeta)\frac{\delta f(\zeta)}{\delta \zeta}\f$
 | 
|---|
| 504 |  */
 | 
|---|
| 505 | #ifdef HAVE_INLINE
 | 
|---|
| 506 | inline static double CalcSVCr(struct ExCor *EC, double rs, double zeta, enum SpinType ST) {
 | 
|---|
| 507 | #else
 | 
|---|
| 508 | static double CalcSVCr(struct ExCor *EC, double rs, double zeta, enum SpinType ST) {
 | 
|---|
| 509 | #endif
 | 
|---|
| 510 |   double res = 0;
 | 
|---|
| 511 |   double VCR_unpol = CalcVCr(EC,rs,unpolarised);
 | 
|---|
| 512 |   switch (ST) {
 | 
|---|
| 513 |   case SpinUp:
 | 
|---|
| 514 |     res = VCR_unpol + Calcf(EC,zeta)*(CalcVCr(EC,rs,polarised)-VCR_unpol) + (CalcECr(EC,rs,polarised)-CalcECr(EC,rs,unpolarised))*(1.-zeta)*CalcDf(EC,zeta); // formula checked (15.5.06)
 | 
|---|
| 515 |     break;
 | 
|---|
| 516 |   case SpinDown:
 | 
|---|
| 517 |     res = VCR_unpol + Calcf(EC,zeta)*(CalcVCr(EC,rs,polarised)-VCR_unpol) + (CalcECr(EC,rs,polarised)-CalcECr(EC,rs,unpolarised))*(-1.-zeta)*CalcDf(EC,zeta); // formula checked (15.5.06)
 | 
|---|
| 518 |     break;
 | 
|---|
| 519 |   case SpinDouble:
 | 
|---|
| 520 |     res = VCR_unpol; /*EC->fac1213**/
 | 
|---|
| 521 |     break;
 | 
|---|
| 522 |   }
 | 
|---|
| 523 |   return (res);
 | 
|---|
| 524 | }
 | 
|---|
| 525 | 
 | 
|---|
| 526 | /** Calculates complete exchange energy \f$E_x (n)\f$.
 | 
|---|
| 527 |  * \param *EC exchange correlation structure
 | 
|---|
| 528 |  * \param rsUp Wigner-Seitz-Radius \f$r_s\f$ for pUp
 | 
|---|
| 529 |  * \param rsDown Wigner-Seitz-Radius \f$r_s\f$ for pDown
 | 
|---|
| 530 |  * \param pUp SpinUp electron density
 | 
|---|
| 531 |  * \param pDown SpinDown electron density
 | 
|---|
| 532 |  * \return \f$E_x = {\cal E}_x \cdot n\f$
 | 
|---|
| 533 |  * \sa CalcEXrUP(), CalculateXCEnergyNoRT()
 | 
|---|
| 534 |  */
 | 
|---|
| 535 | #ifdef HAVE_INLINE
 | 
|---|
| 536 | inline double CalcSEXr(struct ExCor *EC, double rsUp, double rsDown, double pUp, double pDown) {
 | 
|---|
| 537 | #else
 | 
|---|
| 538 | double CalcSEXr(struct ExCor *EC, double rsUp, double rsDown, double pUp, double pDown) {
 | 
|---|
| 539 | #endif
 | 
|---|
| 540 |   return(CalcEXrUP(EC,rsUp)*pUp+CalcEXrUP(EC,rsDown)*pDown);
 | 
|---|
| 541 | }
 | 
|---|
| 542 | 
 | 
|---|
| 543 | /** Calculates SpinType-dependently exchange potential \f$V_x (n)\f$.
 | 
|---|
| 544 |  * Essentially, just CalcVXrUP() is called, even in SpinDouble case
 | 
|---|
| 545 |  * \param *EC ExCor exchange correlation structure
 | 
|---|
| 546 |  * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs()
 | 
|---|
| 547 |  * \param ST SpinType
 | 
|---|
| 548 |  * \return CalcVXrUP()
 | 
|---|
| 549 |  */
 | 
|---|
| 550 | #ifdef HAVE_INLINE
 | 
|---|
| 551 | inline static double CalcSVXr(struct ExCor *EC, double rs, enum SpinType ST) {
 | 
|---|
| 552 | #else
 | 
|---|
| 553 | static double CalcSVXr(struct ExCor *EC, double rs, enum SpinType ST) {
 | 
|---|
| 554 | #endif
 | 
|---|
| 555 |   double res = 0;
 | 
|---|
| 556 |   switch (ST) {
 | 
|---|
| 557 |   case SpinUp:
 | 
|---|
| 558 |   case SpinDown:
 | 
|---|
| 559 |     res = CalcVXrUP(EC,rs);
 | 
|---|
| 560 |     break;
 | 
|---|
| 561 |   case SpinDouble:
 | 
|---|
| 562 |     res = EC->fac1213*CalcVXrUP(EC,rs);
 | 
|---|
| 563 |     break;
 | 
|---|
| 564 |   }
 | 
|---|
| 565 |   return (res);
 | 
|---|
| 566 | }
 | 
|---|
| 567 | 
 | 
|---|
| 568 | /** Calculates SpinType-dependently derivative of exchange potential \f$\frac{\delta V_x}{\delta n}\f$.
 | 
|---|
| 569 |  * Essentially, just CalcVVXrUP() is called, even in SpinDouble case 
 | 
|---|
| 570 |  * \param *EC ExCor exchange correlation structure
 | 
|---|
| 571 |  * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs()
 | 
|---|
| 572 |  * \param ST SpinType
 | 
|---|
| 573 |  * \return CalcVVXrUP()
 | 
|---|
| 574 |  */
 | 
|---|
| 575 | #ifdef HAVE_INLINE
 | 
|---|
| 576 | inline double CalcSVVXr(struct ExCor *EC, double rs, enum SpinType ST) {
 | 
|---|
| 577 | #else
 | 
|---|
| 578 | double CalcSVVXr(struct ExCor *EC, double rs, enum SpinType ST) {
 | 
|---|
| 579 | #endif
 | 
|---|
| 580 |   double res = 0;
 | 
|---|
| 581 |   switch (ST) {
 | 
|---|
| 582 |   case SpinUp:
 | 
|---|
| 583 |   case SpinDown:
 | 
|---|
| 584 |     res = CalcVVXrUP(EC,rs);
 | 
|---|
| 585 |     break;
 | 
|---|
| 586 |   case SpinDouble:
 | 
|---|
| 587 |     res = EC->fac1213*CalcVVXrUP(EC,rs);
 | 
|---|
| 588 |     break;
 | 
|---|
| 589 |   }
 | 
|---|
| 590 |   return (res);
 | 
|---|
| 591 | }
 | 
|---|
| 592 | 
 | 
|---|
| 593 | /** Calculates SpinType-dependently second derivative of exchange potential \f$\frac{\delta^2 V_x}{\delta n^2}\f$.
 | 
|---|
| 594 |  * Essentially, just CalcVVVXrUP() is called, even in SpinDouble case 
 | 
|---|
| 595 |  * \param *EC ExCor exchange correlation structure
 | 
|---|
| 596 |  * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs()
 | 
|---|
| 597 |  * \param ST SpinType
 | 
|---|
| 598 |  * \return CalcVVVXrUP()
 | 
|---|
| 599 |  */
 | 
|---|
| 600 | #ifdef HAVE_INLINE
 | 
|---|
| 601 | inline double CalcSVVVXr(struct ExCor *EC, double rs, enum SpinType ST) {
 | 
|---|
| 602 | #else
 | 
|---|
| 603 | double CalcSVVVXr(struct ExCor *EC, double rs, enum SpinType ST) {
 | 
|---|
| 604 | #endif
 | 
|---|
| 605 |   double res = 0;
 | 
|---|
| 606 |   switch (ST) {
 | 
|---|
| 607 |   case SpinUp:
 | 
|---|
| 608 |   case SpinDown:
 | 
|---|
| 609 |     res = CalcVVVXrUP(EC,rs);
 | 
|---|
| 610 |     break;
 | 
|---|
| 611 |   case SpinDouble:
 | 
|---|
| 612 |     res = EC->fac1213*CalcVVVXrUP(EC,rs);
 | 
|---|
| 613 |     break;
 | 
|---|
| 614 |   }
 | 
|---|
| 615 |   return (res);
 | 
|---|
| 616 | }
 | 
|---|
| 617 | 
 | 
|---|
| 618 | /** Calculates SpinType-dependently first derivative of correlation potential with free spin-polarisation \f$\frac{\delta V_c}{\delta n} (n,\zeta)\f$.
 | 
|---|
| 619 |  * \param *EC ExCor exchange correlation structure
 | 
|---|
| 620 |  * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs()
 | 
|---|
| 621 |  * \param zeta spin polarisation \f$\zeta\f$, see CalcZeta()
 | 
|---|
| 622 |  * \param ST SpinType
 | 
|---|
| 623 |  * \param pUp SpinUp density
 | 
|---|
| 624 |  * \param pDown SpinDown density
 | 
|---|
| 625 |  * \return \f$\frac{\delta V_c}{\delta n} (n,0) + f(\zeta) \bigr ( \frac{\delta V_c}{\delta n} (n,1) - \frac{\delta V_c}{\delta n} (n,0)\bigl )
 | 
|---|
| 626 |  *  + 2 \cdot \frac{\delta f}{\delta \zeta} \frac{\delta \zeta}{\delta n} \bigr ( V_c (n,1) - V_c (n,0)\bigl ) + \ldots\f$<br>
 | 
|---|
| 627 |  *  \f$\ldots + ({\cal E}_c (n,1) - {\cal E}_c (n,0) ) n (\frac{\delta^2 \zeta}{\delta n^2}\frac{\delta f}{\delta \zeta} + \bigr(\frac{\delta \zeta}{\delta n}\bigl)^2
 | 
|---|
| 628 |  * \frac{\delta f}{\delta \zeta})\f$
 | 
|---|
| 629 |  * \sa CalcSVCr()
 | 
|---|
| 630 |  */
 | 
|---|
| 631 | #ifdef HAVE_INLINE
 | 
|---|
| 632 | inline double CalcSVVCr(struct ExCor *EC, double rs, double zeta, enum SpinType ST, double pUp, double pDown) {
 | 
|---|
| 633 | #else
 | 
|---|
| 634 | double CalcSVVCr(struct ExCor *EC, double rs, double zeta, enum SpinType ST, double pUp, double pDown) {
 | 
|---|
| 635 | #endif
 | 
|---|
| 636 |   double res = 0;
 | 
|---|
| 637 |   double VVCR_pol, VVCR_unpol, VCR_pol, VCR_unpol, ECr_pol, ECr_unpol, f, Df, D2f, DZeta, D2Zeta;
 | 
|---|
| 638 |   switch (ST) {
 | 
|---|
| 639 |   case SpinUp:
 | 
|---|
| 640 |   case SpinDown:
 | 
|---|
| 641 |     // store some function calls for faster and easierly understandable operation
 | 
|---|
| 642 |     VVCR_unpol = CalcVVCr(EC,rs,unpolarised);
 | 
|---|
| 643 |     VVCR_pol = CalcVVCr(EC,rs,polarised);
 | 
|---|
| 644 |     ECr_pol = CalcECr(EC,rs,polarised);
 | 
|---|
| 645 |     ECr_unpol = CalcECr(EC,rs,unpolarised);
 | 
|---|
| 646 |     f = Calcf(EC,zeta);
 | 
|---|
| 647 |     Df = CalcDf(EC,zeta);
 | 
|---|
| 648 |     D2Zeta = CalcD2zeta(EC,ST,pUp,pDown);
 | 
|---|
| 649 |     if (CalcDzeta(EC,ST,pUp,pDown) != 0.0) {
 | 
|---|
| 650 |       VCR_unpol = CalcVCr(EC,rs,unpolarised);
 | 
|---|
| 651 |       VCR_pol = CalcVCr(EC,rs,polarised);
 | 
|---|
| 652 |       D2f = CalcD2f(EC,zeta);
 | 
|---|
| 653 |       DZeta = CalcDzeta(EC,ST,pUp,pDown);
 | 
|---|
| 654 |       res = VVCR_unpol + f*(VVCR_pol-VVCR_unpol) + 2.*DZeta*Df*(VCR_pol-VCR_unpol) + (ECr_pol-ECr_unpol)*(pUp+pDown)*(D2Zeta*Df + DZeta*DZeta*D2f); //formula checked (15.5.06)
 | 
|---|
| 655 |     } else {
 | 
|---|
| 656 |       res = VVCR_unpol + f*(VVCR_pol-VVCR_unpol) + (ECr_pol-ECr_unpol)*(pUp+pDown)*(D2Zeta*Df);  //formula checked (15.5.06)
 | 
|---|
| 657 |     }
 | 
|---|
| 658 |     break;
 | 
|---|
| 659 |   case SpinDouble:
 | 
|---|
| 660 |     res = CalcVVCr(EC,rs,unpolarised);
 | 
|---|
| 661 |     break;
 | 
|---|
| 662 |   }
 | 
|---|
| 663 |   return (res);
 | 
|---|
| 664 | }
 | 
|---|
| 665 | 
 | 
|---|
| 666 | /** Calculates SpinType-dependently second derivative of correlation potential with free spin-polarisation \f$\frac{\delta V_c}{\delta n} (n,\zeta)\f$.
 | 
|---|
| 667 |  * \param *EC ExCor exchange correlation structure
 | 
|---|
| 668 |  * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs()
 | 
|---|
| 669 |  * \param zeta spin polarisation \f$\zeta\f$, see CalcZeta()
 | 
|---|
| 670 |  * \param ST SpinType
 | 
|---|
| 671 |  * \param pUp SpinUp density
 | 
|---|
| 672 |  * \param pDown SpinDown density
 | 
|---|
| 673 |  * \return \f$\frac{\delta^2 V_c}{\delta n^2} (n,0) + f(\zeta) \bigr ( \frac{\delta^2 V_c}{\delta n^2} (n,1) - \frac{\delta^2 V_c}{\delta n^2} (n,0)\bigl )
 | 
|---|
| 674 |  *  + 3 \cdot \frac{\delta f}{\delta \zeta} \frac{\delta \zeta}{\delta n} \bigr ( \frac{\delta V_c}{\delta n} (n,1) - \frac{\delta V_c}{\delta n} (n,0) \bigl ) + \ldots\f$<br>
 | 
|---|
| 675 |  *  \f$\ldots + 3 \cdot (\frac{\delta^2 f}{\delta \zeta^2} (\frac{\delta \zeta}{\delta n})^2 + \frac{\delta f}{\delta \zeta} \frac{\delta^2 \zeta}{\delta n^2} ) \bigr ( V_c (n,1) - V_c (n,0)\bigl ) +
 | 
|---|
| 676 |  *  + ({\cal E}_c (n,1) - {\cal E}_c (n,0) ) n \bigr (\frac{\delta^3 \zeta}{\delta n^3}(\frac{\delta f}{\delta \zeta})^3 + 3\cdot \frac{\delta^2 f}{\delta \zeta^2}\frac{\delta \zeta}{\delta n}\frac{\delta^2 \zeta}{\delta n^2} + \frac{\delta f}{\delta \zeta}\frac{\delta^3 \zeta}{\delta n^3}\bigl)^2\f$
 | 
|---|
| 677 |  * \sa CalcSVCr(), CalcSVVCr()
 | 
|---|
| 678 |  */
 | 
|---|
| 679 | #ifdef HAVE_INLINE
 | 
|---|
| 680 | inline double CalcSVVVCr(struct ExCor *EC, double rs, double zeta, enum SpinType ST, double pUp, double pDown) {
 | 
|---|
| 681 | #else
 | 
|---|
| 682 | double CalcSVVVCr(struct ExCor *EC, double rs, double zeta, enum SpinType ST, double pUp, double pDown) {
 | 
|---|
| 683 | #endif
 | 
|---|
| 684 |   double res = 0;
 | 
|---|
| 685 |   double VVVCR_pol, VVVCR_unpol, VVCR_pol, VVCR_unpol, VCR_pol, VCR_unpol, ECr_pol, ECr_unpol, f, Df, D2f, D3f, DZeta, D2Zeta, D3Zeta;
 | 
|---|
| 686 |   switch (ST) {
 | 
|---|
| 687 |   case SpinUp:
 | 
|---|
| 688 |   case SpinDown:
 | 
|---|
| 689 |     // store some function calls for faster and easierly understandable operation
 | 
|---|
| 690 |     VVVCR_unpol = CalcVVVCr(EC,rs,unpolarised);
 | 
|---|
| 691 |     VVVCR_pol = CalcVVVCr(EC,rs,polarised);
 | 
|---|
| 692 |     VCR_unpol = CalcVCr(EC,rs,unpolarised);
 | 
|---|
| 693 |     VCR_pol = CalcVCr(EC,rs,polarised);
 | 
|---|
| 694 |     ECr_pol = CalcECr(EC,rs,polarised);
 | 
|---|
| 695 |     ECr_unpol = CalcECr(EC,rs,unpolarised);
 | 
|---|
| 696 |     f = Calcf(EC,zeta);
 | 
|---|
| 697 |     Df = CalcDf(EC,zeta);
 | 
|---|
| 698 |     D2Zeta = CalcD2zeta(EC,ST,pUp,pDown);
 | 
|---|
| 699 |     D3Zeta = CalcD3zeta(EC,ST,pUp,pDown);
 | 
|---|
| 700 |     if (CalcDzeta(EC,ST,pUp,pDown) != 0.0) {
 | 
|---|
| 701 |       VVCR_unpol = CalcVVCr(EC,rs,unpolarised);
 | 
|---|
| 702 |       VVCR_pol = CalcVVCr(EC,rs,polarised);
 | 
|---|
| 703 |       D2f = CalcD2f(EC,zeta);
 | 
|---|
| 704 |       D3f = CalcD3f(EC,zeta);
 | 
|---|
| 705 |       DZeta = CalcDzeta(EC,ST,pUp,pDown);
 | 
|---|
| 706 |       res = VVVCR_unpol + f*(VVVCR_pol-VVVCR_unpol) + 3.*DZeta*Df*(VVCR_pol-VVCR_unpol) + 3.*(DZeta*DZeta*D2f + Df*D2Zeta)*(VCR_pol-VCR_unpol) + (ECr_pol-ECr_unpol)*(pUp+pDown)*(D3Zeta*Df + 3*D2f*DZeta*D2Zeta + DZeta*DZeta*DZeta*D3f); //formula checked (16.5.06)
 | 
|---|
| 707 |     } else {
 | 
|---|
| 708 |       res = VVVCR_unpol + f*(VVVCR_pol-VVVCR_unpol) + 3.*Df*D2Zeta*(VCR_pol-VCR_unpol) + (ECr_pol-ECr_unpol)*(pUp+pDown)*(D3Zeta*Df);  //formula checked (16.5.06)
 | 
|---|
| 709 |     }
 | 
|---|
| 710 |     break;
 | 
|---|
| 711 |   case SpinDouble:
 | 
|---|
| 712 |     res = CalcVVVCr(EC,rs,unpolarised);
 | 
|---|
| 713 |     break;
 | 
|---|
| 714 |   }
 | 
|---|
| 715 |   return (res);
 | 
|---|
| 716 | }
 | 
|---|
| 717 | 
 | 
|---|
| 718 | /** SpinType-dependent calculation of exchange and correlation energy with free spin-polarisation without riemann tensor.
 | 
|---|
| 719 |  * Discretely does the integration of \f${\cal E}_{xc} (n,\zeta) \cdot n\f$ on
 | 
|---|
| 720 |  * the radial mesh of the respective real densities.<br>
 | 
|---|
| 721 |  * Takes either whole density or separated for each SpinType and calls
 | 
|---|
| 722 |  * Calcrs(), then summing each CalcSEXr() for each Density::LocalSizeR 
 | 
|---|
| 723 |  * and times factor RunStruct::XCEnergyFactor / LatticeLevel::MaxN
 | 
|---|
| 724 |  * \param *P Problem at hand
 | 
|---|
| 725 |  */
 | 
|---|
| 726 | void CalculateXCEnergyNoRT(struct Problem *P)
 | 
|---|
| 727 | {
 | 
|---|
| 728 |   struct Lattice *Lat = &P->Lat;
 | 
|---|
| 729 |   struct Energy *E = Lat->E;
 | 
|---|
| 730 |   struct PseudoPot *PP = &P->PP;
 | 
|---|
| 731 |   struct RunStruct *R = &P->R;
 | 
|---|
| 732 |   struct LatticeLevel *Lev0 = R->Lev0;
 | 
|---|
| 733 |   struct Psis *Psi = &Lat->Psi;
 | 
|---|
| 734 |   struct Density *Dens = Lev0->Dens;
 | 
|---|
| 735 |   struct ExCor *EC = &P->ExCo;
 | 
|---|
| 736 |   double SumEc = 0;
 | 
|---|
| 737 |   //double SumEx_GC = 0.; // Gradient correction part according to Becke '92
 | 
|---|
| 738 |   double rs, p = 0.0, pUp = 0.0, pDown = 0.0, zeta, rsUp, rsDown, SumEx=0.0;
 | 
|---|
| 739 |   double Factor = R->XCEnergyFactor/Lev0->MaxN;
 | 
|---|
| 740 |   //double Dp, DpUp, DpDown;
 | 
|---|
| 741 |   int i;
 | 
|---|
| 742 |   
 | 
|---|
| 743 |   for (i = 0; i < Dens->LocalSizeR; i++) {  // for each node in radial mesh
 | 
|---|
| 744 |     // put (corecorrected) densities in p, pUp, pDown  
 | 
|---|
| 745 |     p = Dens->DensityArray[TotalDensity][i];
 | 
|---|
| 746 |     //Dp = DensityGradient(Dens->DensityArray[TotalDensity], i, Lev0, Lat);
 | 
|---|
| 747 |     if (R->CurrentMin > UnOccupied)
 | 
|---|
| 748 |     if (PP->corecorr == CoreCorrected)
 | 
|---|
| 749 |       p += Dens->DensityArray[CoreWaveDensity][i];
 | 
|---|
| 750 |     switch (Psi->PsiST) {
 | 
|---|
| 751 |     default:
 | 
|---|
| 752 |     case SpinDouble:
 | 
|---|
| 753 |       pUp = 0.5*p; 
 | 
|---|
| 754 |       pDown = 0.5*p;
 | 
|---|
| 755 |       //DpUp = 0.5*Dp; 
 | 
|---|
| 756 |       //DpDown = 0.5*Dp;
 | 
|---|
| 757 |       break;
 | 
|---|
| 758 |     case SpinUp:  
 | 
|---|
| 759 |     case SpinDown:
 | 
|---|
| 760 |       pUp = Dens->DensityArray[TotalUpDensity][i];
 | 
|---|
| 761 |       pDown = Dens->DensityArray[TotalDownDensity][i];
 | 
|---|
| 762 |       //DpUp = DensityGradient(Dens->DensityArray[TotalUpDensity], i, Lev0, Lat);
 | 
|---|
| 763 |       //DpDown = DensityGradient(Dens->DensityArray[TotalDownDensity], i, Lev0, Lat);
 | 
|---|
| 764 |       if (PP->corecorr == CoreCorrected) {
 | 
|---|
| 765 |                                 pUp += 0.5*Dens->DensityArray[CoreWaveDensity][i];
 | 
|---|
| 766 |                                 pDown += 0.5*Dens->DensityArray[CoreWaveDensity][i];
 | 
|---|
| 767 |       }
 | 
|---|
| 768 |       break;
 | 
|---|
| 769 |     }
 | 
|---|
| 770 |     // set all to zero if one of them is negative
 | 
|---|
| 771 |     if ((p < 0) || (pUp < 0) || (pDown < 0)) {
 | 
|---|
| 772 |       /*fprintf(stderr,"index %i pc %g p %g\n",i,Dens->DensityArray[CoreWaveDensity][i],p);*/
 | 
|---|
| 773 |       p = 0.0; 
 | 
|---|
| 774 |       pUp = 0.0;
 | 
|---|
| 775 |       pDown = 0.0;
 | 
|---|
| 776 |     }
 | 
|---|
| 777 |     // Calculation with the densities and summation
 | 
|---|
| 778 |     rs = Calcrs(EC,p);
 | 
|---|
| 779 |     rsUp = Calcrs(EC,pUp);
 | 
|---|
| 780 |     rsDown = Calcrs(EC,pDown);
 | 
|---|
| 781 |     SumEx += CalcSEXr(EC, rsUp, rsDown, pUp, pDown);
 | 
|---|
| 782 |     zeta = CalcZeta(EC,pUp,pDown);
 | 
|---|
| 783 |     SumEc += CalcSECr(EC, rs, zeta, p);
 | 
|---|
| 784 |     //SumEx_GC += CalcSE_GC(EC, pUp, DpUp);
 | 
|---|
| 785 |     //SumEx_GC += CalcSE_GC(EC, pDown, DpDown);
 | 
|---|
| 786 |   }
 | 
|---|
| 787 |   E->AllLocalDensityEnergy[CorrelationEnergy] = Factor*SumEc;
 | 
|---|
| 788 |   E->AllLocalDensityEnergy[ExchangeEnergy] = Factor*(SumEx); // - SumEx_GC);
 | 
|---|
| 789 | }
 | 
|---|
| 790 | 
 | 
|---|
| 791 | /** Returns \f$y = \sinh^{-1}(x)\f$.
 | 
|---|
| 792 |  * Recall that \f$ x = sinh (y) =  \frac{\exp(y)-\exp(-y)}{2}\f$. Then, solve the in \f$\exp(y)\f$ quadratic
 | 
|---|
| 793 |  * equation: \f$\exp(2y) - 1 - 2x\exp(y) = 0\f$ by pq-formula.
 | 
|---|
| 794 |  * \param arg argument \f$x\f$
 | 
|---|
| 795 |  * \return \f$\sinh^{-1}(x) = \ln(x+\sqrt{x^2+1})\f$
 | 
|---|
| 796 |  */
 | 
|---|
| 797 | inline static double sinh_inverse(double arg)
 | 
|---|
| 798 | {
 | 
|---|
| 799 |   return log(arg+sqrt(arg*arg+1));
 | 
|---|
| 800 | }
 | 
|---|
| 801 | 
 | 
|---|
| 802 | /** Gradient correction according to Becke '92.
 | 
|---|
| 803 |  * \param EC ExCor structure
 | 
|---|
| 804 |  * \param p \f$\rho\f$ local density
 | 
|---|
| 805 |  * \param Dp \f$|\nabla \rho|\f$ local magnitude of density gradient
 | 
|---|
| 806 |  * \return \f$b \rho^{4/3} \frac{x^2}{(1+6bx \sinh^-1 x}\f$ with \f$x = \frac{|\nabla \rho|}{\rho^{4/3}}\f$
 | 
|---|
| 807 |  */
 | 
|---|
| 808 | double CalcSE_GC(struct ExCor *EC, double p, double Dp)
 | 
|---|
| 809 | {
 | 
|---|
| 810 |   double res = 0.;
 | 
|---|
| 811 |   double b = 0.0042;  // in atomic units, empirical constant fitted to noble gas atoms
 | 
|---|
| 812 |   double x = Dp/pow(p, 4./3.);
 | 
|---|
| 813 |   res = b * pow(p, 4./3.) * x/(1+6.*b*x*sinh_inverse(x));
 | 
|---|
| 814 |   
 | 
|---|
| 815 |   return res;
 | 
|---|
| 816 | }
 | 
|---|
| 817 | 
 | 
|---|
| 818 | /** Evaluates magnitude of gradient by simple 3-star.
 | 
|---|
| 819 |  * \param *density density array
 | 
|---|
| 820 |  * \param i current node
 | 
|---|
| 821 |  * \param *Lev LatticeLevel structure for number of nodes per axis
 | 
|---|
| 822 |  * \param *Lat Lattice structure for axis lengths
 | 
|---|
| 823 |  * \return \f$|\nabla\rho|\f$
 | 
|---|
| 824 |  */
 | 
|---|
| 825 | double DensityGradient(fftw_real *density, int i, struct LatticeLevel *Lev, struct Lattice *Lat)
 | 
|---|
| 826 | {
 | 
|---|
| 827 |   double res=0., right_diff, left_diff;
 | 
|---|
| 828 |   int neighbour[NDIM], nodes[NDIM];
 | 
|---|
| 829 |   nodes[0] = Lev->Plan0.plan->local_nx;
 | 
|---|
| 830 |   nodes[1] = Lev->Plan0.plan->N[1];
 | 
|---|
| 831 |   nodes[2] = Lev->Plan0.plan->N[2];  
 | 
|---|
| 832 |   neighbour[0] = Lev->Plan0.plan->N[1] * Lev->Plan0.plan->N[2];
 | 
|---|
| 833 |   neighbour[1] = Lev->Plan0.plan->N[2];
 | 
|---|
| 834 |   neighbour[2] = 1.;
 | 
|---|
| 835 |   int k, l, nr, i_check = i;
 | 
|---|
| 836 |   double h;
 | 
|---|
| 837 | 
 | 
|---|
| 838 |   //iS = n[2] + N[2]*(n[1] + N[1]*n0);  // howto access the array ...
 | 
|---|
| 839 | 
 | 
|---|
| 840 |   for (k=NDIM-1;k>=0;k--) { // for each axis
 | 
|---|
| 841 |     h = 0.;
 | 
|---|
| 842 |     for (l=0;l<NDIM;l++)
 | 
|---|
| 843 |       h += Lat->RealBasis[k*NDIM+l]/Lev->Plan0.plan->N[k];  // finite distance
 | 
|---|
| 844 |     h = sqrt(h);
 | 
|---|
| 845 |     // check which limit exists: right, left, both?
 | 
|---|
| 846 |     right_diff = 0.;
 | 
|---|
| 847 |     left_diff = 0.;
 | 
|---|
| 848 |     nr = 0; // neighbour counter
 | 
|---|
| 849 |     if (i_check % nodes[k] != nodes[k]-1) {// right neighbour?
 | 
|---|
| 850 |       right_diff = density[i] - density[i+neighbour[k]];
 | 
|---|
| 851 |       nr++;
 | 
|---|
| 852 |     }
 | 
|---|
| 853 |     if (i_check % nodes[k] != 0) { // left neighbour?
 | 
|---|
| 854 |       left_diff = density[i] - density[i-neighbour[k]];
 | 
|---|
| 855 |       nr++;
 | 
|---|
| 856 |     }
 | 
|---|
| 857 |     res += (left_diff + right_diff)/(h*nr) * (left_diff + right_diff)/(h*nr);
 | 
|---|
| 858 |     i_check /= nodes[k];  // remove axis from i_check
 | 
|---|
| 859 |   }
 | 
|---|
| 860 |   
 | 
|---|
| 861 |   return sqrt(res);
 | 
|---|
| 862 | }
 | 
|---|
| 863 | 
 | 
|---|
| 864 | /** SpinType-dependent calculation of exchange and correlation with free spin-polarisation energy with riemann tensor.
 | 
|---|
| 865 |  * Discretely does the integration of \f${\cal E}_{xc} (n,\zeta) \cdot n\f$ on
 | 
|---|
| 866 |  * the radial mesh of the respective real densities.<br>
 | 
|---|
| 867 |  * 
 | 
|---|
| 868 |  * Like CalculateXCEnergyNoRT(), only CalcSEXr() and CalcSECr() are
 | 
|---|
| 869 |  * divided by RTFactor Lattice->RT.DensityR
 | 
|---|
| 870 |  * \param *P Problem at hand
 | 
|---|
| 871 |  */
 | 
|---|
| 872 | void CalculateXCEnergyUseRT(struct Problem *P)
 | 
|---|
| 873 | {
 | 
|---|
| 874 |   struct Lattice *Lat = &P->Lat;
 | 
|---|
| 875 |   struct Energy *E = Lat->E;
 | 
|---|
| 876 |   struct PseudoPot *PP = &P->PP;
 | 
|---|
| 877 |   struct RunStruct *R = &P->R;
 | 
|---|
| 878 |   struct LatticeLevel *Lev0 = R->Lev0;
 | 
|---|
| 879 |   struct Psis *Psi = &Lat->Psi;
 | 
|---|
| 880 |   struct Density *Dens = Lev0->Dens;
 | 
|---|
| 881 |   struct ExCor *EC = &P->ExCo;
 | 
|---|
| 882 |   double SumEc = 0;
 | 
|---|
| 883 |   double rs, p = 0.0, pUp = 0.0, pDown = 0.0, zeta, rsUp, rsDown, SumEx = 0.0;
 | 
|---|
| 884 |   double Factor = R->XCEnergyFactor/Lev0->MaxN;
 | 
|---|
| 885 |   int i;
 | 
|---|
| 886 |   fftw_real *RTFactor = Lat->RT.DensityR[RTADetPreRT];
 | 
|---|
| 887 |   
 | 
|---|
| 888 |   for (i = 0; i < Dens->LocalSizeR; i++) {  // for each point of radial mesh take density p[i]
 | 
|---|
| 889 |     p = Dens->DensityArray[TotalDensity][i];
 | 
|---|
| 890 |     if (PP->corecorr == CoreCorrected)
 | 
|---|
| 891 |       p += Dens->DensityArray[CoreWaveDensity][i];
 | 
|---|
| 892 |     switch (Psi->PsiST) {
 | 
|---|
| 893 |     case SpinDouble:
 | 
|---|
| 894 |       pUp = 0.5*p; 
 | 
|---|
| 895 |       pDown = 0.5*p;
 | 
|---|
| 896 |       break;
 | 
|---|
| 897 |     case SpinUp:  
 | 
|---|
| 898 |     case SpinDown:
 | 
|---|
| 899 |       pUp = Dens->DensityArray[TotalUpDensity][i];
 | 
|---|
| 900 |       pDown = Dens->DensityArray[TotalDownDensity][i];
 | 
|---|
| 901 |       if (PP->corecorr == CoreCorrected) {
 | 
|---|
| 902 |         pUp += 0.5*Dens->DensityArray[CoreWaveDensity][i];
 | 
|---|
| 903 |           pDown += 0.5*Dens->DensityArray[CoreWaveDensity][i];
 | 
|---|
| 904 |       }
 | 
|---|
| 905 |       break;
 | 
|---|
| 906 |     default:
 | 
|---|
| 907 |       ;
 | 
|---|
| 908 |     }
 | 
|---|
| 909 |     if ((p < 0) || (pUp < 0) || (pDown < 0)) {
 | 
|---|
| 910 |       /*fprintf(stderr,"index %i pc %g p %g\n",i,Dens->DensityArray[CoreWaveDensity][i],p);*/
 | 
|---|
| 911 |       p = 0.0; 
 | 
|---|
| 912 |       pUp = 0.0;
 | 
|---|
| 913 |       pDown = 0.0;
 | 
|---|
| 914 |     }
 | 
|---|
| 915 |     // .. calculate Ec and Ex and sum them up ...
 | 
|---|
| 916 |     rs = Calcrs(EC,p);
 | 
|---|
| 917 |     rsUp = Calcrs(EC,pUp);  
 | 
|---|
| 918 |     rsDown = Calcrs(EC,pDown);
 | 
|---|
| 919 |     SumEx += CalcSEXr(EC, rsUp, rsDown, pUp, pDown)/fabs(RTFactor[i]);
 | 
|---|
| 920 |     zeta = CalcZeta(EC,pUp,pDown);
 | 
|---|
| 921 |     SumEc += CalcSECr(EC, rs, zeta, p)/fabs(RTFactor[i]);
 | 
|---|
| 922 |   }
 | 
|---|
| 923 |   // ... and factorise with discrete integration width
 | 
|---|
| 924 |   E->AllLocalDensityEnergy[CorrelationEnergy] = Factor*SumEc;
 | 
|---|
| 925 |   E->AllLocalDensityEnergy[ExchangeEnergy] = Factor*SumEx;
 | 
|---|
| 926 | }
 | 
|---|
| 927 | 
 | 
|---|
| 928 | /** Calculates SpinType-dependently exchange correlation potential with free spin-polarisation without Riemann tensor.
 | 
|---|
| 929 |  * Goes through all possible nodes, calculates the potential and stores it in \a *HGR
 | 
|---|
| 930 |  * \param *P Problem at hand
 | 
|---|
| 931 |  * \param *HGR pointer storage array for (added!) result: \f$V_c (n,\zeta)(R) + V_x (n,\zeta)(R)\f$
 | 
|---|
| 932 |  * \sa CalcSVXr(), CalcSVCr()
 | 
|---|
| 933 |  */
 | 
|---|
| 934 | void CalculateXCPotentialNoRT(struct Problem *P, fftw_real *HGR)
 | 
|---|
| 935 | {
 | 
|---|
| 936 |   struct Lattice *Lat = &P->Lat;
 | 
|---|
| 937 |   struct PseudoPot *PP = &P->PP;
 | 
|---|
| 938 |   struct RunStruct *R = &P->R;
 | 
|---|
| 939 |   struct LatticeLevel *Lev0 = R->Lev0;
 | 
|---|
| 940 |   struct LatticeLevel *LevS = R->LevS;
 | 
|---|
| 941 |   struct Psis *Psi = &Lat->Psi;
 | 
|---|
| 942 |   struct Density *Dens = Lev0->Dens;
 | 
|---|
| 943 |   struct ExCor *EC = &P->ExCo;
 | 
|---|
| 944 |   double rsX, rsC, zeta, p = 0.0, pUp = 0.0, pDown = 0.0;
 | 
|---|
| 945 |   int nx,ny,nz,i;
 | 
|---|
| 946 |   const int Nx = LevS->Plan0.plan->local_nx;
 | 
|---|
| 947 |   const int Ny = LevS->Plan0.plan->N[1];
 | 
|---|
| 948 |   const int Nz = LevS->Plan0.plan->N[2];
 | 
|---|
| 949 |   const int NUpx = LevS->NUp[0];  // factors due to density being calculated on a finer grid
 | 
|---|
| 950 |   const int NUpy = LevS->NUp[1];
 | 
|---|
| 951 |   const int NUpz = LevS->NUp[2];
 | 
|---|
| 952 |   double tmp;
 | 
|---|
| 953 |   for (nx=0;nx<Nx;nx++)  
 | 
|---|
| 954 |     for (ny=0;ny<Ny;ny++) 
 | 
|---|
| 955 |       for (nz=0;nz<Nz;nz++) {
 | 
|---|
| 956 |         i = nz*NUpz+Nz*NUpz*(ny*NUpy+Ny*NUpy*nx*NUpx);
 | 
|---|
| 957 |         p = Dens->DensityArray[TotalDensity][i];
 | 
|---|
| 958 |         //if (isnan(p)) { fprintf(stderr,"WARNGING: CalculateXCPotentialNoRT(): p_%i = NaN!\n", i); Error(SomeError, "NaN-Fehler!"); }
 | 
|---|
| 959 |         if (PP->corecorr == CoreCorrected)
 | 
|---|
| 960 |           p += Dens->DensityArray[CoreWaveDensity][i];
 | 
|---|
| 961 |         switch (Psi->PsiST) {
 | 
|---|
| 962 |         case SpinDouble:
 | 
|---|
| 963 |           pUp = 0.5*p; 
 | 
|---|
| 964 |           pDown = 0.5*p;
 | 
|---|
| 965 |           break;
 | 
|---|
| 966 |         case SpinUp:  
 | 
|---|
| 967 |         case SpinDown:
 | 
|---|
| 968 |           pUp = Dens->DensityArray[TotalUpDensity][i];
 | 
|---|
| 969 |           pDown = Dens->DensityArray[TotalDownDensity][i];
 | 
|---|
| 970 |           if (PP->corecorr == CoreCorrected) {   // additional factor due to PseudoPot'entials
 | 
|---|
| 971 |             pUp += 0.5*Dens->DensityArray[CoreWaveDensity][i];
 | 
|---|
| 972 |             pDown += 0.5*Dens->DensityArray[CoreWaveDensity][i];
 | 
|---|
| 973 |           }
 | 
|---|
| 974 |           break;
 | 
|---|
| 975 |         default:
 | 
|---|
| 976 |           ;
 | 
|---|
| 977 |         }
 | 
|---|
| 978 |         //if (isnan(pUp)) { fprintf(stderr,"WARNGING: CalculateXCPotentialNoRT(): pUp_%i = NaN!\n", i); Error(SomeError, "NaN-Fehler!"); }
 | 
|---|
| 979 |         //if (isnan(pDown)) { fprintf(stderr,"WARNGING: CalculateXCPotentialNoRT(): pDown_%i = NaN!\n", i); Error(SomeError, "NaN-Fehler!"); }
 | 
|---|
| 980 |         if ((p < 0) || (pUp < 0) || (pDown < 0)) {
 | 
|---|
| 981 |           p = 0; 
 | 
|---|
| 982 |           pUp = 0;
 | 
|---|
| 983 |           pDown = 0;
 | 
|---|
| 984 |         }
 | 
|---|
| 985 |         switch (Psi->PsiST) {
 | 
|---|
| 986 |         case SpinUp:
 | 
|---|
| 987 |           rsX = Calcrs(EC, pUp);
 | 
|---|
| 988 |           break;
 | 
|---|
| 989 |         case SpinDown:
 | 
|---|
| 990 |           rsX = Calcrs(EC, pDown);
 | 
|---|
| 991 |           break;
 | 
|---|
| 992 |         case SpinDouble:
 | 
|---|
| 993 |           //rsX = Calcrs(EC,p/2.);  // why half of it???
 | 
|---|
| 994 |           rsX = Calcrs(EC, p);
 | 
|---|
| 995 |           break;
 | 
|---|
| 996 |         default:
 | 
|---|
| 997 |           rsX = 0.0;
 | 
|---|
| 998 |         }
 | 
|---|
| 999 |         rsC = Calcrs(EC,p);
 | 
|---|
| 1000 |         zeta = CalcZeta(EC,pUp,pDown);
 | 
|---|
| 1001 |         //if (isnan(rsC)) { fprintf(stderr,"WARNGING: CalculateXCPotentialNoRT(): rsC%i = NaN!\n", i); Error(SomeError, "NaN-Fehler!"); }
 | 
|---|
| 1002 |         //if (isnan(zeta)) { fprintf(stderr,"WARNGING: CalculateXCPotentialNoRT(): zeta%i = NaN!\n", i); Error(SomeError, "NaN-Fehler!"); }
 | 
|---|
| 1003 |         switch (R->CurrentMin) {
 | 
|---|
| 1004 |           case UnOccupied:  // here epsilon appears instead of the potential in the integrand due to different variation
 | 
|---|
| 1005 |             tmp = CalcSEXr(EC,Calcrs(EC, pUp),Calcrs(EC, pDown),pUp,pDown);     // \todo ../p was here before test!
 | 
|---|
| 1006 |             //if (isnan(tmp)) { fprintf(stderr,"WARNGING: CalculateXCPotentialNoRT(): tmp_%i = NaN!\n", i); Error(SomeError, "NaN-Fehler!"); }
 | 
|---|
| 1007 |             tmp += CalcSECr(EC, rsX,zeta, 1);  
 | 
|---|
| 1008 |             //if (isnan(tmp)) { fprintf(stderr,"WARNGING: CalculateXCPotentialNoRT(): tmp_%i += NaN!\n", i); Error(SomeError, "NaN-Fehler!"); }
 | 
|---|
| 1009 |             break;
 | 
|---|
| 1010 |           default:
 | 
|---|
| 1011 |             tmp = CalcSVXr(EC,rsX,Psi->PsiST);
 | 
|---|
| 1012 |             //if (isnan(tmp)) { fprintf(stderr,"WARNGING: CalculateXCPotentialNoRT(): tmp_%i def= NaN!\n", i); Error(SomeError, "NaN-Fehler!"); }
 | 
|---|
| 1013 |             tmp += CalcSVCr(EC, rsC,zeta,Psi->PsiST);
 | 
|---|
| 1014 |             //if (isnan(tmp)) { fprintf(stderr,"WARNGING: CalculateXCPotentialNoRT(): tmp_%i def+= NaN!\n", i); Error(SomeError, "NaN-Fehler!"); }
 | 
|---|
| 1015 |             break;
 | 
|---|
| 1016 |         }
 | 
|---|
| 1017 |         //if (isnan(tmp)) { fprintf(stderr,"WARNGING: CalculateXCPotentialNoRT(): tmp_%i := NaN!\n", i); Error(SomeError, "NaN-Fehler!"); }
 | 
|---|
| 1018 |         HGR[i] += tmp;
 | 
|---|
| 1019 |         //if (isnan(HGR[i])) { fprintf(stderr,"WARNGING: CalculateXCPotentialNoRT(): HGR[%i] = NaN!\n", i); Error(SomeError, "NaN-Fehler!"); }
 | 
|---|
| 1020 |       }
 | 
|---|
| 1021 | }
 | 
|---|
| 1022 | 
 | 
|---|
| 1023 | /** Calculates SpinType-dependently derivative of exchange correlation potential with free spin-polarisation without Riemann tensor.
 | 
|---|
| 1024 |  * \f[
 | 
|---|
| 1025 |  *    A^{XC} = \sum_R \frac{\delta V^{XC}}{\delta n} \rho^2 \qquad (\textnormal{section 5.1, line search})
 | 
|---|
| 1026 |  * \f]
 | 
|---|
| 1027 |  * With the density from Dens::DensityArray calculates discretely the integral over the summed
 | 
|---|
| 1028 |  * derivative, SpinType is taken from Psi::PsiST. Due to the principle of the theory the wave
 | 
|---|
| 1029 |  * functions themselves are not needed explicitely, see also CalculateXCEnergyNoRT()
 | 
|---|
| 1030 |  * \param *P Problem at hand
 | 
|---|
| 1031 |  * \param *PsiCD \f$\rho (r)\f$
 | 
|---|
| 1032 |  * \return \f$A^{XC}\f$
 | 
|---|
| 1033 |  * \sa CalcSVVXr(), CalcSVVCr() - derivatives of exchange and correlation potential
 | 
|---|
| 1034 |  */
 | 
|---|
| 1035 | double CalculateXCddEddt0NoRT(struct Problem *P, fftw_real *PsiCD)
 | 
|---|
| 1036 | {
 | 
|---|
| 1037 |   struct Lattice *Lat = &P->Lat;
 | 
|---|
| 1038 |   struct PseudoPot *PP = &P->PP;
 | 
|---|
| 1039 |   struct RunStruct *R = &P->R;
 | 
|---|
| 1040 |   struct LatticeLevel *Lev0 = R->Lev0;
 | 
|---|
| 1041 |   struct Psis *Psi = &Lat->Psi;
 | 
|---|
| 1042 |   struct Density *Dens = Lev0->Dens;
 | 
|---|
| 1043 |   struct ExCor *EC = &P->ExCo;
 | 
|---|
| 1044 |   double SumExc = 0.;
 | 
|---|
| 1045 |   double rsX=0.0, rsC, p = 0.0, pUp = 0.0, pDown = 0.0, zeta;
 | 
|---|
| 1046 |   double Factor = R->XCEnergyFactor/Lev0->MaxN;
 | 
|---|
| 1047 |   int i;
 | 
|---|
| 1048 |   
 | 
|---|
| 1049 |   for (i = 0; i < Dens->LocalSizeR; i++) {
 | 
|---|
| 1050 |     p = Dens->DensityArray[TotalDensity][i];
 | 
|---|
| 1051 |     if (PP->corecorr == CoreCorrected)
 | 
|---|
| 1052 |       p += Dens->DensityArray[CoreWaveDensity][i];
 | 
|---|
| 1053 |     switch (Psi->PsiST) {
 | 
|---|
| 1054 |       case SpinDouble:
 | 
|---|
| 1055 |         pUp = 0.5*p; 
 | 
|---|
| 1056 |         pDown = 0.5*p;
 | 
|---|
| 1057 |         break;
 | 
|---|
| 1058 |       case SpinUp:  
 | 
|---|
| 1059 |       case SpinDown:
 | 
|---|
| 1060 |         pUp = Dens->DensityArray[TotalUpDensity][i];
 | 
|---|
| 1061 |         pDown = Dens->DensityArray[TotalDownDensity][i];
 | 
|---|
| 1062 |         if (PP->corecorr == CoreCorrected) {
 | 
|---|
| 1063 |                 pUp += 0.5*Dens->DensityArray[CoreWaveDensity][i];
 | 
|---|
| 1064 |                 pDown += 0.5*Dens->DensityArray[CoreWaveDensity][i];
 | 
|---|
| 1065 |         }
 | 
|---|
| 1066 |       break;
 | 
|---|
| 1067 |     default:
 | 
|---|
| 1068 |       ;
 | 
|---|
| 1069 |     }
 | 
|---|
| 1070 |     if ((p < 0) || (pUp < 0) || (pDown < 0)) {
 | 
|---|
| 1071 |       /*fprintf(stderr,"index %i pc %g p %g\n",i,Dens->DensityArray[CoreWaveDensity][i],p);*/
 | 
|---|
| 1072 |       p = 0.0; 
 | 
|---|
| 1073 |       pUp = 0.0;
 | 
|---|
| 1074 |       pDown = 0.0;
 | 
|---|
| 1075 |     }
 | 
|---|
| 1076 |     switch (Psi->PsiST) {
 | 
|---|
| 1077 |     case SpinUp:
 | 
|---|
| 1078 |       rsX = Calcrs(EC,pUp);
 | 
|---|
| 1079 |       break;
 | 
|---|
| 1080 |     case SpinDown:
 | 
|---|
| 1081 |       rsX = Calcrs(EC,pDown);
 | 
|---|
| 1082 |       break;
 | 
|---|
| 1083 |     case SpinDouble:
 | 
|---|
| 1084 |       //rsX = Calcrs(EC,p/2.);  // why half of it???
 | 
|---|
| 1085 |       rsX = Calcrs(EC,p);
 | 
|---|
| 1086 |       break;
 | 
|---|
| 1087 |     }
 | 
|---|
| 1088 |     rsC = Calcrs(EC,p);
 | 
|---|
| 1089 |     zeta = CalcZeta(EC,pUp,pDown);
 | 
|---|
| 1090 |     SumExc += (CalcSVVXr(EC,rsX,Psi->PsiST) + CalcSVVCr(EC, rsC,zeta,Psi->PsiST,pUp,pDown))*PsiCD[i]*PsiCD[i];
 | 
|---|
| 1091 |   }
 | 
|---|
| 1092 |   return (SumExc*Factor);
 | 
|---|
| 1093 | }
 | 
|---|
| 1094 | 
 | 
|---|
| 1095 | /** Initialises ExCor structure with parametrization values.
 | 
|---|
| 1096 |  * All of the entries in the structure are set to parametrization values, see [CA80].
 | 
|---|
| 1097 |  * \param *P Problem at hand
 | 
|---|
| 1098 |  * \param *EC Exchange correlation ExCor structure
 | 
|---|
| 1099 |  */
 | 
|---|
| 1100 | void InitExchangeCorrelationEnergy(struct Problem *P, struct ExCor *EC) 
 | 
|---|
| 1101 | {
 | 
|---|
| 1102 |   EC->gamma[unpolarised] = -0.1423;
 | 
|---|
| 1103 |   EC->beta_1[unpolarised] = 1.0529;
 | 
|---|
| 1104 |   EC->beta_2[unpolarised] = 0.3334;
 | 
|---|
| 1105 |   EC->C[unpolarised] = 0.0020;
 | 
|---|
| 1106 |   EC->D[unpolarised] = -0.0116;
 | 
|---|
| 1107 |   EC->A[unpolarised] = 0.0311;
 | 
|---|
| 1108 |   EC->B[unpolarised] = -0.048;
 | 
|---|
| 1109 |   EC->gamma[polarised] = -0.0843;
 | 
|---|
| 1110 |   EC->beta_1[polarised] = 1.3981;
 | 
|---|
| 1111 |   EC->beta_2[polarised] = 0.2611;
 | 
|---|
| 1112 |   EC->C[polarised] = 0.0007;
 | 
|---|
| 1113 |   EC->D[polarised] = -0.0048;
 | 
|---|
| 1114 |   EC->A[polarised] = 0.01555;
 | 
|---|
| 1115 |   EC->B[polarised] = -0.0269;
 | 
|---|
| 1116 |   EC->fac34pi = -3./(4.*PI);
 | 
|---|
| 1117 |   EC->facexrs = EC->fac34pi*pow(9.*PI/4.,1./3.); 
 | 
|---|
| 1118 |   EC->epsilon0 = MYEPSILON;
 | 
|---|
| 1119 |   EC->fac6PI23 = pow(6./PI,2./3.);
 | 
|---|
| 1120 |   EC->facPI213 = pow(PI/2.,1./3.);
 | 
|---|
| 1121 |   EC->fac3PI23 = pow(3.*PI,2./3.);
 | 
|---|
| 1122 |   EC->fac6PIPI23 = pow(6.*PI*PI,2./3.);
 | 
|---|
| 1123 |   EC->fac243 = pow(2.,4./3.);
 | 
|---|
| 1124 |   EC->fac1213 = pow(1./2.,1./3.);
 | 
|---|
| 1125 | }
 | 
|---|