1 | /** \file excor.c
|
---|
2 | * Exchange correlation energy.
|
---|
3 | *
|
---|
4 | * The Exchange correlation energy is calculated via a local spin-density-approximation in
|
---|
5 | * a parametrized manner. It is the sum of the exchange and the correlation, per electron
|
---|
6 | * (thus, (discretely) integrated over the density).
|
---|
7 | * Due to the parametrization there is a huge number of functions evaluating small
|
---|
8 | * expressions or auxiliary variables with its first and second derivatives
|
---|
9 | * Calcf(), CalcDf(), CalcD2f() and CalcZeta(), CalcDZeta(), CalcD2Zeta(),
|
---|
10 | * which then help to evaluate the energy CalcECr(), CalcEXrUP(), in the summing
|
---|
11 | * CalcSECr(), CalcSEXr(), potential CalcVCr(), CalcVXrUP(), in its summation
|
---|
12 | * CalcSVCr(), CalcSVXr()
|
---|
13 | * and derivatives CalcVVCr(), CalcVVXrUP(), in its summation CalcSVVCr(), CalcSVVXr().
|
---|
14 | * All these are needed by the super functions evaluating exchange correlatiob
|
---|
15 | * potential CalculateXCPotentialNoRT(), exchange correlation energy without RiemannTensor
|
---|
16 | * CalculateXCEnergyNoRT() and with RiemannTensor CalculateXCEnergyUseRT(),
|
---|
17 | * and the second derivative CalculateXCddEddt0NoRT() (needed for conjugate gradient).
|
---|
18 | * During initilization the ExCor structure's entries is set to
|
---|
19 | * these fixed parameters InitExchangeCorrelationEnergy().
|
---|
20 | *
|
---|
21 | *
|
---|
22 | Project: ParallelCarParrinello
|
---|
23 | \author Jan Hamaekers
|
---|
24 | \date 2000
|
---|
25 |
|
---|
26 | File: excor.c
|
---|
27 | $Id: excor.c,v 1.47 2007-03-29 13:37:25 foo Exp $
|
---|
28 | */
|
---|
29 |
|
---|
30 | #include <stdlib.h>
|
---|
31 | #include <stdio.h>
|
---|
32 | #include <stddef.h>
|
---|
33 | #include <math.h>
|
---|
34 |
|
---|
35 | #include "data.h"
|
---|
36 | #include "mymath.h"
|
---|
37 | #include "run.h"
|
---|
38 | #include "myfft.h"
|
---|
39 | #include "errors.h"
|
---|
40 | #include "excor.h"
|
---|
41 | #include "helpers.h"
|
---|
42 |
|
---|
43 | /** Calculate Wigner-Seitz-Radius \f$r_s\f$
|
---|
44 | * \param *EC ExCor exchange correlation structure
|
---|
45 | * \param p electron density
|
---|
46 | * \return \f$(\frac{3}{4\pi \cdot p})^{1/3} \qquad (2.30)\f$
|
---|
47 | */
|
---|
48 | #ifdef HAVE_INLINE
|
---|
49 | inline double Calcrs(struct ExCor *EC, double p) {
|
---|
50 | #else
|
---|
51 | double Calcrs(struct ExCor *EC, double p) {
|
---|
52 | #endif
|
---|
53 | if (fabs(p) < EC->epsilon0) return(0);
|
---|
54 | //return (pow(3./(4.*PI*p),1./3.));
|
---|
55 | return (cbrt(3./(4.*PI*p)));
|
---|
56 | }
|
---|
57 |
|
---|
58 | /** Calculates exchange potential \f$V_{x}\f$.
|
---|
59 | * \f[
|
---|
60 | * V_{x} = {\cal E}_{x} + \Bigr ( \frac{d{\cal E}_{x}}{dn} \Bigl )_{n=n(r_s)} n(r_s) \qquad (2.32)
|
---|
61 | * \f]
|
---|
62 | * \param *EC ExCor exchange correlation structure
|
---|
63 | * \param rs Wigner-Seitz-Radius \f$r_s \f$, see Calcrs()
|
---|
64 | * \return \f$-\frac{1}{2} (\frac{6}{\pi})^{2/3} \cdot \frac{1}{rs}\f$
|
---|
65 | * \note The formula from CalcEXrUP() was used for the derivation.
|
---|
66 | */
|
---|
67 | #ifdef HAVE_INLINE
|
---|
68 | inline static double CalcVXrUP(struct ExCor *EC, double rs) {
|
---|
69 | #else
|
---|
70 | static double CalcVXrUP(struct ExCor *EC, double rs) {
|
---|
71 | #endif
|
---|
72 | if (fabs(rs) < EC->epsilon0) return(0);
|
---|
73 | return(-0.5*EC->fac6PI23/rs); // formula checked (16.5.06)
|
---|
74 | }
|
---|
75 |
|
---|
76 | /** Calculates first derivative of exchange potential \f$\frac{\delta V_{x}}{\delta n}\f$.
|
---|
77 | * \param *EC ExCor exchange correlation structure
|
---|
78 | * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs()
|
---|
79 | * \return \f$-\frac{2}{9\pi} (6\pi^2)^2/3 \cdot (rs)^2\f$
|
---|
80 | * \sa CalcVXrUP()
|
---|
81 | */
|
---|
82 | #ifdef HAVE_INLINE
|
---|
83 | inline static double CalcVVXrUP(struct ExCor *EC, double rs) {
|
---|
84 | #else
|
---|
85 | static double CalcVVXrUP(struct ExCor *EC, double rs) {
|
---|
86 | #endif
|
---|
87 | return (-2./(9*PI)*EC->fac6PIPI23*rs*rs); // formula checked (16.5.06)
|
---|
88 | }
|
---|
89 |
|
---|
90 | /** Calculates second derivative of exchange potential \f$\frac{\delta^2 V_{x}}{\delta n^2}\f$.
|
---|
91 | * \param *EC ExCor exchange correlation structure
|
---|
92 | * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs()
|
---|
93 | * \return \f$\frac{16}{81} (6\pi^2)^{2/3} \cdot (rs)^5\f$
|
---|
94 | * \sa CalcVXrUP(), CalcVVXrUP()
|
---|
95 | */
|
---|
96 | #ifdef HAVE_INLINE
|
---|
97 | inline static double CalcVVVXrUP(struct ExCor *EC, double rs) {
|
---|
98 | #else
|
---|
99 | static double CalcVVVXrUP(struct ExCor *EC, double rs) {
|
---|
100 | #endif
|
---|
101 | return (16./81.*EC->fac6PIPI23*rs*rs*rs*rs*rs); // formula checked (16.5.06)
|
---|
102 | }
|
---|
103 |
|
---|
104 | /** Calculates exchange energy over density for homogeneous charge within given Wigner-Seitz-Radius, \f${\cal E}_x\f$.
|
---|
105 | * The formula specified on the return statement is derived if into
|
---|
106 | * \f[ \forall 0 \geq \zeta \geq 1: \quad
|
---|
107 | * E_x = {\cal E}_x n = -\frac{3}{8} \Bigr (\frac{3(n_{up}+n_{down})}{\pi} \Bigl)^{1/3}
|
---|
108 | * \bigr[ (1+\zeta)^{4/3}+ (1-\zeta)^{4/3} \bigl ] \cdot (n_{up}+n_{down}) \qquad (2.52)
|
---|
109 | * \f]
|
---|
110 | * the definition of spin polarisation \f$\frac{n_{up} - n_{down}}{n_{up} + n_{down}}\f$
|
---|
111 | * is inserted and the expression evaluated.
|
---|
112 | * \param *EC ExCor exchange correlation structure
|
---|
113 | * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs()
|
---|
114 | * \param zeta spin polarisation \f$\zeta\f$, see CalcZeta()
|
---|
115 | * \return \f$-\frac{3}{8} (\frac{3}{2\pi})^{2/3} \Bigl [ (1+\zeta)^{\frac{4}{3}} + (1-\zeta)^{\frac{4}{3}}\Bigr] \cdot \frac{1}{rs}\f$
|
---|
116 | */
|
---|
117 | #ifdef HAVE_INLINE
|
---|
118 | inline double CalcEXr(struct ExCor *EC, double rs, double zeta) {
|
---|
119 | #else
|
---|
120 | double CalcEXr(struct ExCor *EC, double rs, double zeta) {
|
---|
121 | #endif
|
---|
122 | if (fabs(rs) < EC->epsilon0) return(0);
|
---|
123 | //return (-3./8.*pow(3./(2.*PI),2./3.)/rs *(pow(1.+zeta,4./3.)+pow(1.-zeta,4./3.))); // formula checked
|
---|
124 | return (-3./8.*cbrt((3./(2.*PI))*(3./(2.*PI)))/rs *((1.+zeta)*cbrt(1.+zeta)+(1.-zeta)*cbrt(1.-zeta)));
|
---|
125 | }
|
---|
126 |
|
---|
127 | /** Calculates exchange energy over density for homogeneous charge within given Wigner-Seitz-Radius, \f${\cal E}_x\f$.
|
---|
128 | * The formula specified on the return statement is derived if into
|
---|
129 | * \f[ \forall 0 \geq \zeta \geq 1: \quad
|
---|
130 | * E_x = {\cal E}_x n = -\frac{3}{8} \Bigr (\frac{3(n_{up}+n_{down})}{\pi} \Bigl)^{1/3}
|
---|
131 | * \bigr[ (1+\zeta)^{4/3}+ (1-\zeta)^{4/3} \bigl ] \cdot (n_{up}+n_{down}) \qquad (2.52)
|
---|
132 | * \f]
|
---|
133 | * the definition of spin polarisation \f$\frac{n_{up} - n_{down}}{n_{up} + n_{down}}\f$
|
---|
134 | * is inserted and the expression evaluated.
|
---|
135 | * \param *EC ExCor exchange correlation structure
|
---|
136 | * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs()
|
---|
137 | * \return \f$-\frac{3}{8} (\frac{6}{\pi})^{2/3} \cdot \frac{1}{rs}\f$
|
---|
138 | */
|
---|
139 | #ifdef HAVE_INLINE
|
---|
140 | inline static double CalcEXrUP(struct ExCor *EC, double rs) {
|
---|
141 | #else
|
---|
142 | static double CalcEXrUP(struct ExCor *EC, double rs) {
|
---|
143 | #endif
|
---|
144 | if (fabs(rs) < EC->epsilon0) return(0);
|
---|
145 | return (-3./8.*EC->fac6PI23/rs); // formula checked
|
---|
146 | }
|
---|
147 |
|
---|
148 | /** Calculates correlation energy \f${\cal E}_c\f$ per electron for un-/polarised case.
|
---|
149 | * Formula derived from Monte-Carlo-simulations by Ceperley and Adler [CA80],
|
---|
150 | * parametrized by Perdew and Zunger [PZ81] for the polarised (\f$\zeta = 1\f$) or
|
---|
151 | * unpolarised (\f$\zeta = 0\f$) case.
|
---|
152 | * \param *EC ExCor exchange correlation structure
|
---|
153 | * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs()
|
---|
154 | * \param up UnPolarised: whether it's the polarised or unpolarised case
|
---|
155 | * \return In the unpolarised case: <br>
|
---|
156 | * \f$r_s\f$>=1: \f$\gamma_{up} (1+\beta_{1,up}\sqrt{r_s}+\beta_{2,up}r_s)^{-1} = -0.1423\cdot(1+1.0529\sqrt{r_s}+0.3334r_s)^{-1} \qquad (2.31a)\f$<br>
|
---|
157 | * \f$r_s\f$<1: \f$-0.0480+0.0311\ln(r_s)-0.0116r_s+0.0020r_s\ln(r_s) \qquad (2.31b)\f$<br>
|
---|
158 | * In the polarised case: <br>
|
---|
159 | * \f$r_s\f$>=1: \f$-0.0843\cdot(1+1.3981\sqrt{r_s}+0.2611r_s)^{-1}\f$<br>
|
---|
160 | * \f$r_s\f$<1: \f$-0.0269+0.01555\ln(r_s)-0.0048r_s+0.0007r_s\ln(r_s)\f$<br>
|
---|
161 | */
|
---|
162 | #ifdef HAVE_INLINE
|
---|
163 | inline double CalcECr(struct ExCor *EC, double rs, enum UnPolarised up) {
|
---|
164 | #else
|
---|
165 | double CalcECr(struct ExCor *EC, double rs, enum UnPolarised up) {
|
---|
166 | #endif
|
---|
167 | double lrs;
|
---|
168 | double res=0;
|
---|
169 | if (rs >= 1) {
|
---|
170 | res= (EC->gamma[up]/(1.+EC->beta_1[up]*sqrt(rs)+EC->beta_2[up]*rs));
|
---|
171 | return (res);
|
---|
172 | }
|
---|
173 | if (rs <= EC->epsilon0) {
|
---|
174 | res = 0;
|
---|
175 | return(res);
|
---|
176 | }
|
---|
177 | lrs = log(rs);
|
---|
178 | res = (EC->A[up]*lrs+EC->B[up]+EC->C[up]*rs*lrs+EC->D[up]*rs);
|
---|
179 | return (res);
|
---|
180 | }
|
---|
181 |
|
---|
182 | /** Calculates correlation potential \f$V_{c}\f$.
|
---|
183 | * \f[
|
---|
184 | * V_{c} = {\cal E}_{c} + \Bigr ( \frac{d{\cal E}_{c}}{dn} \Bigl )_{n=n(r)} n(r) \qquad (2.32)
|
---|
185 | * \f]
|
---|
186 | * \param *EC ExCor exchange correlation structure
|
---|
187 | * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs()
|
---|
188 | * \param up UnPolarised
|
---|
189 | * \return in the un-/polarised case: <br>
|
---|
190 | * \f$r_s\f$>=1: \f$\frac{{\cal E}_c}{1+\beta_1[up]\sqrt{r_s}+\beta_2[up]r_s} \cdot (1+\frac{7}{6}\beta_1[up]\sqrt{r_s} + \frac{4}{3}\beta_2[up]r_s)\f$<br>
|
---|
191 | * \f$r_s\f$=0: 0 <br>
|
---|
192 | * else: \f$A[up]\cdot\log(rs) + (B[up] - \frac{1}{3} A[up]) + \frac{2}{3} C[up]\cdot rs \log(rs)+ \frac{1}{3} (2 D[up]-C[up]) \cdot rs\f$
|
---|
193 | */
|
---|
194 | #ifdef HAVE_INLINE
|
---|
195 | inline static double CalcVCr(struct ExCor *EC, double rs, enum UnPolarised up) {
|
---|
196 | #else
|
---|
197 | static double CalcVCr(struct ExCor *EC, double rs, enum UnPolarised up) {
|
---|
198 | #endif
|
---|
199 | double srs,lrs;
|
---|
200 | if (rs >= 1) {
|
---|
201 | srs = sqrt(rs);
|
---|
202 | return ((EC->gamma[up]/(1.+EC->beta_1[up]*srs+EC->beta_2[up]*rs))*(1.+(7./6.)*EC->beta_1[up]*srs+(4./3.)*EC->beta_2[up]*rs)/(1.+EC->beta_1[up]*srs+EC->beta_2[up]*rs)); // formula checked (15.5.06)
|
---|
203 | }
|
---|
204 | if (rs <= EC->epsilon0) return (0);
|
---|
205 | lrs = log(rs);
|
---|
206 | return (EC->A[up]*lrs+(EC->B[up]-(1./3.)*EC->A[up])+(2./3.)*EC->C[up]*rs*lrs+(1./3.)*(2.*EC->D[up]-EC->C[up])*rs); // formula checked (15.5.06)
|
---|
207 | }
|
---|
208 |
|
---|
209 | /** Calculates first derivative of correlation potential \f$\frac{\delta V_{c}}{\delta n}\f$.
|
---|
210 | * \f[
|
---|
211 | * \frac{\delta V_{c}}{\delta n} = \frac{\delta^2 {\cal E}_{c}}{\delta n^2}
|
---|
212 | * \f]
|
---|
213 | * \param *EC ExCor exchange correlation structure
|
---|
214 | * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs()
|
---|
215 | * \param up UnPolarised
|
---|
216 | * \return In the un-/polarised case: <br>
|
---|
217 | * \f$r_s\f$>=1: \f$\frac{{\cal E}_c[up] \pi}{27\cdot(1+\beta_1[up]\sqrt{r_s}+\beta_2[up]r_s)} \Bigr ( 5\beta_1[up]r_s^{7/2} + 8\beta_2[up]r_s^4
|
---|
218 | * + \frac{1}{1+\beta_1[up]\sqrt{r_s}+\beta_2[up]r_s} (8\beta_1[up]\beta_2[up]r_s^{9/2} + 2\beta_1^2[up]r_s^4 + 8\beta_2^2[up]r_s^5) \Bigl)\f$<br>
|
---|
219 | * \f$r_s\f$< 1: \f$-\frac{4\pi r_s^3}{9} \bigr (A[up] + \frac{r_s}{3} \cdot(C[up]+2C[up]\log(r_s)+2D[up]) \bigl)\f$<br>
|
---|
220 | * \sa CalcVCr()
|
---|
221 | */
|
---|
222 | #ifdef HAVE_INLINE
|
---|
223 | inline static double CalcVVCr(struct ExCor *EC, double rs, enum UnPolarised up) {
|
---|
224 | #else
|
---|
225 | static double CalcVVCr(struct ExCor *EC, double rs, enum UnPolarised up) {
|
---|
226 | #endif
|
---|
227 | double eps,deps;
|
---|
228 | if (rs <= EC->epsilon0) return (0);
|
---|
229 | if (rs >= 1) {
|
---|
230 | deps = 1.+EC->beta_1[up]*sqrt(rs)+EC->beta_2[up]*rs;
|
---|
231 | eps = EC->gamma[up]/deps;
|
---|
232 | //return (eps*PI/(27.*deps)*(8.*EC->beta_2[up]*rs*rs*rs*rs+5.*EC->beta_1[up]*pow(rs,7./2.)+(1./deps)*(8.*EC->beta_1[up]*EC->beta_2[up]*pow(rs,9./2.)+2.*EC->beta_1[up]*EC->beta_1[up]*rs*rs*rs*rs+8.*EC->beta_2[up]*EC->beta_2[up]*rs*rs*rs*rs*rs)));
|
---|
233 | //return (eps*PI/(27.*deps*deps)*(8.*EC->beta_2[up]*rs*rs*rs*rs+5.*EC->beta_1[up]*pow(rs,7./2.)+21.*EC->beta_1[up]*EC->beta_2[up]*pow(rs,9./2.)+7.*EC->beta_1[up]*EC->beta_1[up]*rs*rs*rs*rs+16.*EC->beta_2[up]*EC->beta_2[up]*rs*rs*rs*rs*rs)); //formula checked (15.05.06)
|
---|
234 | return (eps*PI/(27.*deps*deps)*(8.*EC->beta_2[up]*rs*rs*rs*rs+5.*EC->beta_1[up]*(sqrt(rs)*rs*rs*rs)+21.*EC->beta_1[up]*EC->beta_2[up]*(sqrt(rs)*rs*rs*rs*rs)+7.*EC->beta_1[up]*EC->beta_1[up]*rs*rs*rs*rs+16.*EC->beta_2[up]*EC->beta_2[up]*rs*rs*rs*rs*rs)); //formula checked (15.05.06)
|
---|
235 | }
|
---|
236 | return (-4.*PI*rs*rs*rs/9.*(EC->A[up]+rs/3.*(EC->C[up]+2.*EC->C[up]*log(rs)+2.*EC->D[up]))); //formula checked (23.05.06)
|
---|
237 | }
|
---|
238 |
|
---|
239 | /** Calculates second derivative of correlation potential \f$\frac{\delta^2 V_{c}}{\delta n^2}\f$.
|
---|
240 | * \f[
|
---|
241 | * \frac{\delta^2 V_{c}}{\delta n^2} = \frac{\delta^3 {\cal E}_{c}}{\delta n^3}
|
---|
242 | * \f]
|
---|
243 | * \param *EC ExCor exchange correlation structure
|
---|
244 | * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs()
|
---|
245 | * \param up UnPolarised
|
---|
246 | * \return In the un-/polarised case: <br>
|
---|
247 | * \f$r_s\f$>=1: \f$-\frac{2\pi^2 {\cal E}_c[up]}{243\cdot(1+\beta_1[up]\sqrt{r_s}+\beta_2[up]r_s)^4}
|
---|
248 | * \Bigr ( 35\beta_1[up]r_s^{13/2} + r_s^7(64\beta_2[up]+76\beta_1^2[up])
|
---|
249 | * + r_s^{15/2} (35\beta^3_1[up]+243\beta_1[up]\beta_2[up])
|
---|
250 | * + r_s^8 (176\beta^2_2[up]+140\beta^2_1[up]\beta_2[up])
|
---|
251 | * + r_s^{17/2} (175\beta_1[up]\beta^2_2[up])
|
---|
252 | * + r_s^9 (64\beta^3_2[up])
|
---|
253 | * \Bigl)\f$<br>
|
---|
254 | * \f$r_s\f$< 1: \f$\frac{16\pi^2 r_s^6}{243} \bigr (9A[up] + r_s\cdot(6C[up]+8C[up]\log(r_s)+8D[up]) \bigl)\f$<br>
|
---|
255 | * \sa CalcVCr()
|
---|
256 | */
|
---|
257 | #ifdef HAVE_INLINE
|
---|
258 | inline static double CalcVVVCr(struct ExCor *EC, double rs, enum UnPolarised up) {
|
---|
259 | #else
|
---|
260 | static double CalcVVVCr(struct ExCor *EC, double rs, enum UnPolarised up) {
|
---|
261 | #endif
|
---|
262 | double eps,deps;
|
---|
263 | double beta11,beta12,beta13,beta21,beta22,beta23;
|
---|
264 | if (rs <= EC->epsilon0) return (0);
|
---|
265 | if (rs >= 1) {
|
---|
266 | deps = 1.+EC->beta_1[up]*sqrt(rs)+EC->beta_2[up]*rs;
|
---|
267 | eps=EC->gamma[up]/deps;
|
---|
268 | beta11 = EC->beta_1[up];
|
---|
269 | beta12 = beta11*EC->beta_1[up];
|
---|
270 | beta13 = beta12*EC->beta_1[up];
|
---|
271 | beta21 = EC->beta_2[up];
|
---|
272 | beta22 = beta21*EC->beta_2[up];
|
---|
273 | beta23 = beta22*EC->beta_2[up];
|
---|
274 | // return (-2.*eps*PI*PI/(243.*deps*deps*deps)*(
|
---|
275 | // pow(rs,13./2.) * (35.*beta11)
|
---|
276 | // + pow(rs,7.) * (64.*beta21 + 76.*beta12)
|
---|
277 | // + pow(rs,15./2.) * (35.*beta13 + 234.*beta11*beta21)
|
---|
278 | // + pow(rs,8.) * (176.*beta22 + 140.*beta12*beta21)
|
---|
279 | // + pow(rs,17./2.) * (175.*beta11*beta22)
|
---|
280 | // + pow(rs,9.) * (64.*beta23) ));
|
---|
281 | return (-2.*eps*PI*PI/(243.*deps*deps*deps)*(
|
---|
282 | rs*rs*rs*rs*rs*rs*(
|
---|
283 | sqrt(rs) *((35.*beta11) // fractial ones
|
---|
284 | + rs *((35.*beta13 + 234.*beta11*beta21)
|
---|
285 | + rs * (175.*beta11*beta22))
|
---|
286 | )
|
---|
287 | + rs * ((64.*beta21 + 76.*beta12) // integer ones
|
---|
288 | + rs * ((176.*beta22 + 140.*beta12*beta21)
|
---|
289 | + rs * ((64.*beta23) ))))));
|
---|
290 | }
|
---|
291 | //return (16.*PI*PI*pow(rs,6)/243. * (9.*EC->A[up] + rs*(8.*EC->C[up]*log(rs) + 6.*EC->C[up] + 8.*EC->D[up])));
|
---|
292 | return (16.*PI*PI*rs*rs*rs*rs*rs*rs/243. * (9.*EC->A[up] + rs*(8.*EC->C[up]*log(rs) + 6.*EC->C[up] + 8.*EC->D[up])));
|
---|
293 | }
|
---|
294 |
|
---|
295 | /** Calculates spin polarisation \f$\zeta\f$
|
---|
296 | * \param *EC ExCor exchange correlation structure
|
---|
297 | * \param pUp SpinUp electron density
|
---|
298 | * \param pDown SpinDown electron density
|
---|
299 | * \return \f$\frac{pUp - pDown}{pUp + pDown}\f$
|
---|
300 | * \note zeta is never less than ExCor::epsilon0
|
---|
301 | */
|
---|
302 | #ifdef HAVE_INLINE
|
---|
303 | inline double CalcZeta(struct ExCor *EC, double pUp, double pDown) {
|
---|
304 | #else
|
---|
305 | double CalcZeta(struct ExCor *EC, double pUp, double pDown) {
|
---|
306 | #endif
|
---|
307 | if (fabs(pUp+pDown) < EC->epsilon0) return(0);
|
---|
308 | return ((pUp - pDown)/(pUp + pDown));
|
---|
309 | }
|
---|
310 |
|
---|
311 | /** Calculates derivative \f$\frac{\delta \zeta}{\delta p}\f$
|
---|
312 | * \param *EC ExCor exchange correlation structure
|
---|
313 | * \param ST SpinType
|
---|
314 | * \param pUp SpinUp density
|
---|
315 | * \param pDown SpinDown density
|
---|
316 | * \return p is pUp or pDown: \f$\pm 2 \frac{p}{ (pUp+pDown)^2 }\f$
|
---|
317 | * \sa CalcZeta()
|
---|
318 | */
|
---|
319 | #ifdef HAVE_INLINE
|
---|
320 | inline static double CalcDzeta(struct ExCor *EC, enum SpinType ST, double pUp, double pDown) {
|
---|
321 | #else
|
---|
322 | static double CalcDzeta(struct ExCor *EC, enum SpinType ST, double pUp, double pDown) {
|
---|
323 | #endif
|
---|
324 | double res = 0;
|
---|
325 | if (fabs(pUp+pDown) < EC->epsilon0) return(0);
|
---|
326 | //EC = EC;
|
---|
327 | switch(ST) {
|
---|
328 | case SpinUp:
|
---|
329 | res = 2.*pDown/(pUp+pDown)/(pUp+pDown); // formula checked
|
---|
330 | break;
|
---|
331 | case SpinDown:
|
---|
332 | res = -2.*pUp/(pUp+pDown)/(pUp+pDown); // formula checked
|
---|
333 | break;
|
---|
334 | case SpinDouble:
|
---|
335 | res = 0;
|
---|
336 | break;
|
---|
337 | }
|
---|
338 | return (res);
|
---|
339 | }
|
---|
340 |
|
---|
341 | /** Calculates second derivative \f$\frac{\delta^2 \zeta}{\delta p^2}\f$
|
---|
342 | * \param *EC ExCor exchange correlation structure
|
---|
343 | * \param ST SpinType
|
---|
344 | * \param pUp SpinUp density
|
---|
345 | * \param pDown SpinDown density
|
---|
346 | * \return p is pUp or pDown: \f$\pm 4 \frac{p}{ (pUp+pDown)^3 }\f$
|
---|
347 | * \sa CalcZeta(), CalcDZeta()
|
---|
348 | */
|
---|
349 | #ifdef HAVE_INLINE
|
---|
350 | inline static double CalcD2zeta(struct ExCor *EC, enum SpinType ST, double pUp, double pDown) {
|
---|
351 | #else
|
---|
352 | static double CalcD2zeta(struct ExCor *EC, enum SpinType ST, double pUp, double pDown) {
|
---|
353 | #endif
|
---|
354 | double res = 0;
|
---|
355 | if (fabs(pUp+pDown) < EC->epsilon0) return(0);
|
---|
356 | //EC = EC;
|
---|
357 | switch(ST) {
|
---|
358 | case SpinUp:
|
---|
359 | res = -4.*pDown/(pUp+pDown)/(pUp+pDown)/(pUp+pDown);
|
---|
360 | break;
|
---|
361 | case SpinDown:
|
---|
362 | res = 4.*pUp/(pUp+pDown)/(pUp+pDown)/(pUp+pDown);
|
---|
363 | break;
|
---|
364 | case SpinDouble:
|
---|
365 | res = 0;
|
---|
366 | break;
|
---|
367 | }
|
---|
368 | return (res);
|
---|
369 | }
|
---|
370 |
|
---|
371 | /** Calculates third derivative \f$\frac{\delta^3 \zeta}{\delta p^3}\f$
|
---|
372 | * \param *EC ExCor exchange correlation structure
|
---|
373 | * \param ST SpinType
|
---|
374 | * \param pUp SpinUp density
|
---|
375 | * \param pDown SpinDown density
|
---|
376 | * \return p is pUp or pDown: \f$\pm -12 \frac{p}{ (pUp+pDown)^4 }\f$
|
---|
377 | * \sa CalcZeta(), CalcDZeta(), CalcD2Zeta()
|
---|
378 | */
|
---|
379 | #ifdef HAVE_INLINE
|
---|
380 | inline static double CalcD3zeta(struct ExCor *EC, enum SpinType ST, double pUp, double pDown) {
|
---|
381 | #else
|
---|
382 | static double CalcD3zeta(struct ExCor *EC, enum SpinType ST, double pUp, double pDown) {
|
---|
383 | #endif
|
---|
384 | double res = 0;
|
---|
385 | if (fabs(pUp+pDown) < EC->epsilon0) return(0);
|
---|
386 | //EC = EC;
|
---|
387 | switch(ST) {
|
---|
388 | case SpinUp:
|
---|
389 | res = +12.*pDown/(pUp+pDown)/(pUp+pDown)/(pUp+pDown)/(pUp+pDown);
|
---|
390 | break;
|
---|
391 | case SpinDown:
|
---|
392 | res = -12.*pUp/(pUp+pDown)/(pUp+pDown)/(pUp+pDown)/(pUp+pDown);
|
---|
393 | break;
|
---|
394 | case SpinDouble:
|
---|
395 | res = 0;
|
---|
396 | break;
|
---|
397 | }
|
---|
398 | return (res);
|
---|
399 | }
|
---|
400 |
|
---|
401 | /** Calculates auxiliary factor \f$f(\zeta)\f$.
|
---|
402 | * This auxiliary factor is needed in the parametrized evaluation of the
|
---|
403 | * full spin-polarised correlation energy \f${\cal E}_c\f$ (see section 2.3.6)
|
---|
404 | * \param *EC ExCor exchange correlation structure
|
---|
405 | * \param zeta spin polarisation \f$\zeta\f$, see CalcZeta()
|
---|
406 | * \return \f$\frac{(1+\zeta)^{4/3} + (1-\zeta)^{4/3} - 2} {2^{4/3}-2}\f$
|
---|
407 | */
|
---|
408 | #ifdef HAVE_INLINE
|
---|
409 | inline static double Calcf(struct ExCor *EC, double zeta) {
|
---|
410 | #else
|
---|
411 | static double Calcf(struct ExCor *EC, double zeta) {
|
---|
412 | #endif
|
---|
413 | double res =0;
|
---|
414 | EC = EC;
|
---|
415 | if (fabs(zeta) < EC->epsilon0) return(0.); // unpolarised case
|
---|
416 | //res = ((pow(1.+zeta,4./3.)+pow(1.-zeta,4./3.)-2.)/(EC->fac243-2.));
|
---|
417 | res = ((cbrt(1.+zeta)*(1.+zeta)+cbrt(1.-zeta)*(1.-zeta)-2.)/(EC->fac243-2.));
|
---|
418 | return (res);
|
---|
419 | }
|
---|
420 |
|
---|
421 | /** Calculates the derivative \f$\frac{\delta f}{\delta \zeta}\f$.
|
---|
422 | * \param *EC ExCor exchange correlation structure
|
---|
423 | * \param zeta spin polarisation \f$\zeta\f$, see CalcZeta()
|
---|
424 | * \return \f$\frac{4}{3} \frac{(\zeta+1)^{1/3} - (1-\zeta)^{1/3}} {2^{4/3}-2}\f$
|
---|
425 | * \sa Calcf()
|
---|
426 | */
|
---|
427 | #ifdef HAVE_INLINE
|
---|
428 | inline static double CalcDf(struct ExCor *EC, double zeta) {
|
---|
429 | #else
|
---|
430 | static double CalcDf(struct ExCor *EC, double zeta) {
|
---|
431 | #endif
|
---|
432 | if (fabs(zeta) < EC->epsilon0) return(0.); // unpolarised case
|
---|
433 | //return((4./3.)*(pow(zeta+1.,1./3.)-pow(1.-zeta,1./3.))/(EC->fac243-2.)); // formula checked (16.5.06)
|
---|
434 | return((4./3.)*(cbrt(zeta+1.)-cbrt(1.-zeta))/(EC->fac243-2.)); // formula checked (16.5.06)
|
---|
435 | }
|
---|
436 |
|
---|
437 | /** Calculates second derivative \f$\frac{\delta^2 f}{\delta \zeta^2}\f$.
|
---|
438 | * \param *EC ExCor exchange correlation structure
|
---|
439 | * \param zeta spin polarisation \f$\zeta\f$, see CalcZeta()
|
---|
440 | * \return \f$\frac{4}{9} \frac{(\zeta+1)^{-2/3}-(1-\zeta)^{-2/3} }{2^{4/3}-2}\f$
|
---|
441 | * \sa Calcf(), CalcDf()
|
---|
442 | */
|
---|
443 | #ifdef HAVE_INLINE
|
---|
444 | inline static double CalcD2f(struct ExCor *EC, double zeta) {
|
---|
445 | #else
|
---|
446 | static double CalcD2f(struct ExCor *EC, double zeta) {
|
---|
447 | #endif
|
---|
448 | if (fabs(zeta) < EC->epsilon0) return(0.); // unpolarised case
|
---|
449 | if (1.-fabs(zeta) < EC->epsilon0) return (0.); // second derivative not defined for these cases (which are needed!)
|
---|
450 | //if (1-fabs(zeta) < EC->epsilon0) { fprintf(stderr,"CalcD2f: zeta = %lg\n",zeta); return(0); }
|
---|
451 | //return((4./9.)*(pow(zeta+1.,-2./3.)+pow(1.-zeta,-2./3.))/(EC->fac243-2.)); // formula checked (16.5.06)
|
---|
452 | return((4./9.)*(1./cbrt((zeta+1.)*(zeta+1.))+1./cbrt((1.-zeta)*(1.-zeta)))/(EC->fac243-2.)); // formula checked (16.5.06)
|
---|
453 | }
|
---|
454 |
|
---|
455 | /** Calculates third derivative \f$\frac{\delta^3 f}{\delta \zeta^3}\f$.
|
---|
456 | * \param *EC ExCor exchange correlation structure
|
---|
457 | * \param zeta spin polarisation \f$\zeta\f$, see CalcZeta()
|
---|
458 | * \return \f$\frac{8}{27} \frac{-(\zeta+1)^{-5/3}+(1-\zeta)^{-5/3} }{2^{4/3}-2}\f$
|
---|
459 | * \sa Calcf(), CalcDf()
|
---|
460 | */
|
---|
461 | #ifdef HAVE_INLINE
|
---|
462 | inline static double CalcD3f(struct ExCor *EC, double zeta) {
|
---|
463 | #else
|
---|
464 | static double CalcD3f(struct ExCor *EC, double zeta) {
|
---|
465 | #endif
|
---|
466 | if (fabs(zeta) < EC->epsilon0) return(0.); // unpolarised case
|
---|
467 | //if (1-fabs(zeta) < EC->epsilon0) return (0.); // second derivative not defined for these cases (which are needed!)
|
---|
468 | if (1-fabs(zeta) < EC->epsilon0) { fprintf(stderr,"CalcD2f: zeta = %lg\n",zeta); return(0.); }
|
---|
469 | //return((-8./27.)*(pow(zeta+1.,-5./3.)-pow(1.-zeta,-5./3.))/(EC->fac243-2.)); // formula checked (16.5.06)
|
---|
470 | return((-8./27.)*(1/((zeta+1)*cbrt((zeta+1.)*(zeta+1.)))-1/((zeta+1)*cbrt((1.-zeta)*(1.-zeta))))/(EC->fac243-2.)); // formula checked (16.5.06)
|
---|
471 | }
|
---|
472 |
|
---|
473 | /** Calculates correlation energy with free spin-polarisation \f$E_c (n,\zeta)\f$.
|
---|
474 | * \param *EC exchange correlation structure
|
---|
475 | * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs()
|
---|
476 | * \param zeta spin polarisation \f$\zeta\f$, see CalcZeta()
|
---|
477 | * \param p electron density \f$n\f$
|
---|
478 | * \return \f$0 \leq \zeta \leq 1:\quad E_c (n,\zeta) = {\cal E}_c (n,\zeta)\cdot n = \bigr ({\cal E}_c(n,0) + [{\cal E}_c(n,1) - {\cal E}_c(n,0)] f(\zeta)\bigl ) \cdot n \qquad (2.3.6)\f$
|
---|
479 | * \sa CalcECr()
|
---|
480 | */
|
---|
481 | #ifdef HAVE_INLINE
|
---|
482 | inline double CalcSECr(struct ExCor *EC, double rs, double zeta, double p) {
|
---|
483 | #else
|
---|
484 | double CalcSECr(struct ExCor *EC, double rs, double zeta, double p) {
|
---|
485 | #endif
|
---|
486 | double res =0;
|
---|
487 | double unpol, pol;
|
---|
488 | unpol = CalcECr(EC,rs,unpolarised);
|
---|
489 | pol = CalcECr(EC,rs,polarised);
|
---|
490 | res = (unpol+Calcf(EC,zeta)*(pol-unpol))*p;
|
---|
491 | return (res);
|
---|
492 | }
|
---|
493 |
|
---|
494 | /** Calculates SpinType-dependently correlation potential with free spin-polarisation \f$V_c (n,\zeta)\f$.
|
---|
495 | * \f[
|
---|
496 | * V_c = {\cal E}_c + \frac{\delta{\ E}_c}{\delta n}n = V_c(n,0) + [V_c(n,1)-V_c(n,0)]f(\zeta)
|
---|
497 | * + [{\cal E}_c(n,1)-{\cal E}_c(N,0)]\frac{\delta f(\zeta)}{\delta \zeta}\frac{\delta\zeta}{\delta n}
|
---|
498 | * \f]
|
---|
499 | * \param *EC ExCor exchange correlation structure
|
---|
500 | * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs()
|
---|
501 | * \param zeta spin polarisation \f$\zeta\f$, see CalcZeta()
|
---|
502 | * \param ST SpinType
|
---|
503 | * \return \f$V_c(n,0) + [V_c(n,1)-V_c(n,0)]f(\zeta) + [{\cal E}_c(n,1)-{\cal E}_c(N,0)](\pm1-\zeta)\frac{\delta f(\zeta)}{\delta \zeta}\f$
|
---|
504 | */
|
---|
505 | #ifdef HAVE_INLINE
|
---|
506 | inline static double CalcSVCr(struct ExCor *EC, double rs, double zeta, enum SpinType ST) {
|
---|
507 | #else
|
---|
508 | static double CalcSVCr(struct ExCor *EC, double rs, double zeta, enum SpinType ST) {
|
---|
509 | #endif
|
---|
510 | double res = 0;
|
---|
511 | double VCR_unpol = CalcVCr(EC,rs,unpolarised);
|
---|
512 | switch (ST) {
|
---|
513 | case SpinUp:
|
---|
514 | res = VCR_unpol + Calcf(EC,zeta)*(CalcVCr(EC,rs,polarised)-VCR_unpol) + (CalcECr(EC,rs,polarised)-CalcECr(EC,rs,unpolarised))*(1.-zeta)*CalcDf(EC,zeta); // formula checked (15.5.06)
|
---|
515 | break;
|
---|
516 | case SpinDown:
|
---|
517 | res = VCR_unpol + Calcf(EC,zeta)*(CalcVCr(EC,rs,polarised)-VCR_unpol) + (CalcECr(EC,rs,polarised)-CalcECr(EC,rs,unpolarised))*(-1.-zeta)*CalcDf(EC,zeta); // formula checked (15.5.06)
|
---|
518 | break;
|
---|
519 | case SpinDouble:
|
---|
520 | res = VCR_unpol; /*EC->fac1213**/
|
---|
521 | break;
|
---|
522 | }
|
---|
523 | return (res);
|
---|
524 | }
|
---|
525 |
|
---|
526 | /** Calculates complete exchange energy \f$E_x (n)\f$.
|
---|
527 | * \param *EC exchange correlation structure
|
---|
528 | * \param rsUp Wigner-Seitz-Radius \f$r_s\f$ for pUp
|
---|
529 | * \param rsDown Wigner-Seitz-Radius \f$r_s\f$ for pDown
|
---|
530 | * \param pUp SpinUp electron density
|
---|
531 | * \param pDown SpinDown electron density
|
---|
532 | * \return \f$E_x = {\cal E}_x \cdot n\f$
|
---|
533 | * \sa CalcEXrUP(), CalculateXCEnergyNoRT()
|
---|
534 | */
|
---|
535 | #ifdef HAVE_INLINE
|
---|
536 | inline double CalcSEXr(struct ExCor *EC, double rsUp, double rsDown, double pUp, double pDown) {
|
---|
537 | #else
|
---|
538 | double CalcSEXr(struct ExCor *EC, double rsUp, double rsDown, double pUp, double pDown) {
|
---|
539 | #endif
|
---|
540 | return(CalcEXrUP(EC,rsUp)*pUp+CalcEXrUP(EC,rsDown)*pDown);
|
---|
541 | }
|
---|
542 |
|
---|
543 | /** Calculates SpinType-dependently exchange potential \f$V_x (n)\f$.
|
---|
544 | * Essentially, just CalcVXrUP() is called, even in SpinDouble case
|
---|
545 | * \param *EC ExCor exchange correlation structure
|
---|
546 | * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs()
|
---|
547 | * \param ST SpinType
|
---|
548 | * \return CalcVXrUP()
|
---|
549 | */
|
---|
550 | #ifdef HAVE_INLINE
|
---|
551 | inline static double CalcSVXr(struct ExCor *EC, double rs, enum SpinType ST) {
|
---|
552 | #else
|
---|
553 | static double CalcSVXr(struct ExCor *EC, double rs, enum SpinType ST) {
|
---|
554 | #endif
|
---|
555 | double res = 0;
|
---|
556 | switch (ST) {
|
---|
557 | case SpinUp:
|
---|
558 | case SpinDown:
|
---|
559 | res = CalcVXrUP(EC,rs);
|
---|
560 | break;
|
---|
561 | case SpinDouble:
|
---|
562 | res = EC->fac1213*CalcVXrUP(EC,rs);
|
---|
563 | break;
|
---|
564 | }
|
---|
565 | return (res);
|
---|
566 | }
|
---|
567 |
|
---|
568 | /** Calculates SpinType-dependently derivative of exchange potential \f$\frac{\delta V_x}{\delta n}\f$.
|
---|
569 | * Essentially, just CalcVVXrUP() is called, even in SpinDouble case
|
---|
570 | * \param *EC ExCor exchange correlation structure
|
---|
571 | * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs()
|
---|
572 | * \param ST SpinType
|
---|
573 | * \return CalcVVXrUP()
|
---|
574 | */
|
---|
575 | #ifdef HAVE_INLINE
|
---|
576 | inline double CalcSVVXr(struct ExCor *EC, double rs, enum SpinType ST) {
|
---|
577 | #else
|
---|
578 | double CalcSVVXr(struct ExCor *EC, double rs, enum SpinType ST) {
|
---|
579 | #endif
|
---|
580 | double res = 0;
|
---|
581 | switch (ST) {
|
---|
582 | case SpinUp:
|
---|
583 | case SpinDown:
|
---|
584 | res = CalcVVXrUP(EC,rs);
|
---|
585 | break;
|
---|
586 | case SpinDouble:
|
---|
587 | res = EC->fac1213*CalcVVXrUP(EC,rs);
|
---|
588 | break;
|
---|
589 | }
|
---|
590 | return (res);
|
---|
591 | }
|
---|
592 |
|
---|
593 | /** Calculates SpinType-dependently second derivative of exchange potential \f$\frac{\delta^2 V_x}{\delta n^2}\f$.
|
---|
594 | * Essentially, just CalcVVVXrUP() is called, even in SpinDouble case
|
---|
595 | * \param *EC ExCor exchange correlation structure
|
---|
596 | * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs()
|
---|
597 | * \param ST SpinType
|
---|
598 | * \return CalcVVVXrUP()
|
---|
599 | */
|
---|
600 | #ifdef HAVE_INLINE
|
---|
601 | inline double CalcSVVVXr(struct ExCor *EC, double rs, enum SpinType ST) {
|
---|
602 | #else
|
---|
603 | double CalcSVVVXr(struct ExCor *EC, double rs, enum SpinType ST) {
|
---|
604 | #endif
|
---|
605 | double res = 0;
|
---|
606 | switch (ST) {
|
---|
607 | case SpinUp:
|
---|
608 | case SpinDown:
|
---|
609 | res = CalcVVVXrUP(EC,rs);
|
---|
610 | break;
|
---|
611 | case SpinDouble:
|
---|
612 | res = EC->fac1213*CalcVVVXrUP(EC,rs);
|
---|
613 | break;
|
---|
614 | }
|
---|
615 | return (res);
|
---|
616 | }
|
---|
617 |
|
---|
618 | /** Calculates SpinType-dependently first derivative of correlation potential with free spin-polarisation \f$\frac{\delta V_c}{\delta n} (n,\zeta)\f$.
|
---|
619 | * \param *EC ExCor exchange correlation structure
|
---|
620 | * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs()
|
---|
621 | * \param zeta spin polarisation \f$\zeta\f$, see CalcZeta()
|
---|
622 | * \param ST SpinType
|
---|
623 | * \param pUp SpinUp density
|
---|
624 | * \param pDown SpinDown density
|
---|
625 | * \return \f$\frac{\delta V_c}{\delta n} (n,0) + f(\zeta) \bigr ( \frac{\delta V_c}{\delta n} (n,1) - \frac{\delta V_c}{\delta n} (n,0)\bigl )
|
---|
626 | * + 2 \cdot \frac{\delta f}{\delta \zeta} \frac{\delta \zeta}{\delta n} \bigr ( V_c (n,1) - V_c (n,0)\bigl ) + \ldots\f$<br>
|
---|
627 | * \f$\ldots + ({\cal E}_c (n,1) - {\cal E}_c (n,0) ) n (\frac{\delta^2 \zeta}{\delta n^2}\frac{\delta f}{\delta \zeta} + \bigr(\frac{\delta \zeta}{\delta n}\bigl)^2
|
---|
628 | * \frac{\delta f}{\delta \zeta})\f$
|
---|
629 | * \sa CalcSVCr()
|
---|
630 | */
|
---|
631 | #ifdef HAVE_INLINE
|
---|
632 | inline double CalcSVVCr(struct ExCor *EC, double rs, double zeta, enum SpinType ST, double pUp, double pDown) {
|
---|
633 | #else
|
---|
634 | double CalcSVVCr(struct ExCor *EC, double rs, double zeta, enum SpinType ST, double pUp, double pDown) {
|
---|
635 | #endif
|
---|
636 | double res = 0;
|
---|
637 | double VVCR_pol, VVCR_unpol, VCR_pol, VCR_unpol, ECr_pol, ECr_unpol, f, Df, D2f, DZeta, D2Zeta;
|
---|
638 | switch (ST) {
|
---|
639 | case SpinUp:
|
---|
640 | case SpinDown:
|
---|
641 | // store some function calls for faster and easierly understandable operation
|
---|
642 | VVCR_unpol = CalcVVCr(EC,rs,unpolarised);
|
---|
643 | VVCR_pol = CalcVVCr(EC,rs,polarised);
|
---|
644 | ECr_pol = CalcECr(EC,rs,polarised);
|
---|
645 | ECr_unpol = CalcECr(EC,rs,unpolarised);
|
---|
646 | f = Calcf(EC,zeta);
|
---|
647 | Df = CalcDf(EC,zeta);
|
---|
648 | D2Zeta = CalcD2zeta(EC,ST,pUp,pDown);
|
---|
649 | if (CalcDzeta(EC,ST,pUp,pDown) != 0.0) {
|
---|
650 | VCR_unpol = CalcVCr(EC,rs,unpolarised);
|
---|
651 | VCR_pol = CalcVCr(EC,rs,polarised);
|
---|
652 | D2f = CalcD2f(EC,zeta);
|
---|
653 | DZeta = CalcDzeta(EC,ST,pUp,pDown);
|
---|
654 | res = VVCR_unpol + f*(VVCR_pol-VVCR_unpol) + 2.*DZeta*Df*(VCR_pol-VCR_unpol) + (ECr_pol-ECr_unpol)*(pUp+pDown)*(D2Zeta*Df + DZeta*DZeta*D2f); //formula checked (15.5.06)
|
---|
655 | } else {
|
---|
656 | res = VVCR_unpol + f*(VVCR_pol-VVCR_unpol) + (ECr_pol-ECr_unpol)*(pUp+pDown)*(D2Zeta*Df); //formula checked (15.5.06)
|
---|
657 | }
|
---|
658 | break;
|
---|
659 | case SpinDouble:
|
---|
660 | res = CalcVVCr(EC,rs,unpolarised);
|
---|
661 | break;
|
---|
662 | }
|
---|
663 | return (res);
|
---|
664 | }
|
---|
665 |
|
---|
666 | /** Calculates SpinType-dependently second derivative of correlation potential with free spin-polarisation \f$\frac{\delta V_c}{\delta n} (n,\zeta)\f$.
|
---|
667 | * \param *EC ExCor exchange correlation structure
|
---|
668 | * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs()
|
---|
669 | * \param zeta spin polarisation \f$\zeta\f$, see CalcZeta()
|
---|
670 | * \param ST SpinType
|
---|
671 | * \param pUp SpinUp density
|
---|
672 | * \param pDown SpinDown density
|
---|
673 | * \return \f$\frac{\delta^2 V_c}{\delta n^2} (n,0) + f(\zeta) \bigr ( \frac{\delta^2 V_c}{\delta n^2} (n,1) - \frac{\delta^2 V_c}{\delta n^2} (n,0)\bigl )
|
---|
674 | * + 3 \cdot \frac{\delta f}{\delta \zeta} \frac{\delta \zeta}{\delta n} \bigr ( \frac{\delta V_c}{\delta n} (n,1) - \frac{\delta V_c}{\delta n} (n,0) \bigl ) + \ldots\f$<br>
|
---|
675 | * \f$\ldots + 3 \cdot (\frac{\delta^2 f}{\delta \zeta^2} (\frac{\delta \zeta}{\delta n})^2 + \frac{\delta f}{\delta \zeta} \frac{\delta^2 \zeta}{\delta n^2} ) \bigr ( V_c (n,1) - V_c (n,0)\bigl ) +
|
---|
676 | * + ({\cal E}_c (n,1) - {\cal E}_c (n,0) ) n \bigr (\frac{\delta^3 \zeta}{\delta n^3}(\frac{\delta f}{\delta \zeta})^3 + 3\cdot \frac{\delta^2 f}{\delta \zeta^2}\frac{\delta \zeta}{\delta n}\frac{\delta^2 \zeta}{\delta n^2} + \frac{\delta f}{\delta \zeta}\frac{\delta^3 \zeta}{\delta n^3}\bigl)^2\f$
|
---|
677 | * \sa CalcSVCr(), CalcSVVCr()
|
---|
678 | */
|
---|
679 | #ifdef HAVE_INLINE
|
---|
680 | inline double CalcSVVVCr(struct ExCor *EC, double rs, double zeta, enum SpinType ST, double pUp, double pDown) {
|
---|
681 | #else
|
---|
682 | double CalcSVVVCr(struct ExCor *EC, double rs, double zeta, enum SpinType ST, double pUp, double pDown) {
|
---|
683 | #endif
|
---|
684 | double res = 0;
|
---|
685 | double VVVCR_pol, VVVCR_unpol, VVCR_pol, VVCR_unpol, VCR_pol, VCR_unpol, ECr_pol, ECr_unpol, f, Df, D2f, D3f, DZeta, D2Zeta, D3Zeta;
|
---|
686 | switch (ST) {
|
---|
687 | case SpinUp:
|
---|
688 | case SpinDown:
|
---|
689 | // store some function calls for faster and easierly understandable operation
|
---|
690 | VVVCR_unpol = CalcVVVCr(EC,rs,unpolarised);
|
---|
691 | VVVCR_pol = CalcVVVCr(EC,rs,polarised);
|
---|
692 | VCR_unpol = CalcVCr(EC,rs,unpolarised);
|
---|
693 | VCR_pol = CalcVCr(EC,rs,polarised);
|
---|
694 | ECr_pol = CalcECr(EC,rs,polarised);
|
---|
695 | ECr_unpol = CalcECr(EC,rs,unpolarised);
|
---|
696 | f = Calcf(EC,zeta);
|
---|
697 | Df = CalcDf(EC,zeta);
|
---|
698 | D2Zeta = CalcD2zeta(EC,ST,pUp,pDown);
|
---|
699 | D3Zeta = CalcD3zeta(EC,ST,pUp,pDown);
|
---|
700 | if (CalcDzeta(EC,ST,pUp,pDown) != 0.0) {
|
---|
701 | VVCR_unpol = CalcVVCr(EC,rs,unpolarised);
|
---|
702 | VVCR_pol = CalcVVCr(EC,rs,polarised);
|
---|
703 | D2f = CalcD2f(EC,zeta);
|
---|
704 | D3f = CalcD3f(EC,zeta);
|
---|
705 | DZeta = CalcDzeta(EC,ST,pUp,pDown);
|
---|
706 | res = VVVCR_unpol + f*(VVVCR_pol-VVVCR_unpol) + 3.*DZeta*Df*(VVCR_pol-VVCR_unpol) + 3.*(DZeta*DZeta*D2f + Df*D2Zeta)*(VCR_pol-VCR_unpol) + (ECr_pol-ECr_unpol)*(pUp+pDown)*(D3Zeta*Df + 3*D2f*DZeta*D2Zeta + DZeta*DZeta*DZeta*D3f); //formula checked (16.5.06)
|
---|
707 | } else {
|
---|
708 | res = VVVCR_unpol + f*(VVVCR_pol-VVVCR_unpol) + 3.*Df*D2Zeta*(VCR_pol-VCR_unpol) + (ECr_pol-ECr_unpol)*(pUp+pDown)*(D3Zeta*Df); //formula checked (16.5.06)
|
---|
709 | }
|
---|
710 | break;
|
---|
711 | case SpinDouble:
|
---|
712 | res = CalcVVVCr(EC,rs,unpolarised);
|
---|
713 | break;
|
---|
714 | }
|
---|
715 | return (res);
|
---|
716 | }
|
---|
717 |
|
---|
718 | /** SpinType-dependent calculation of exchange and correlation energy with free spin-polarisation without riemann tensor.
|
---|
719 | * Discretely does the integration of \f${\cal E}_{xc} (n,\zeta) \cdot n\f$ on
|
---|
720 | * the radial mesh of the respective real densities.<br>
|
---|
721 | * Takes either whole density or separated for each SpinType and calls
|
---|
722 | * Calcrs(), then summing each CalcSEXr() for each Density::LocalSizeR
|
---|
723 | * and times factor RunStruct::XCEnergyFactor / LatticeLevel::MaxN
|
---|
724 | * \param *P Problem at hand
|
---|
725 | */
|
---|
726 | void CalculateXCEnergyNoRT(struct Problem *P)
|
---|
727 | {
|
---|
728 | struct Lattice *Lat = &P->Lat;
|
---|
729 | struct Energy *E = Lat->E;
|
---|
730 | struct PseudoPot *PP = &P->PP;
|
---|
731 | struct RunStruct *R = &P->R;
|
---|
732 | struct LatticeLevel *Lev0 = R->Lev0;
|
---|
733 | struct Psis *Psi = &Lat->Psi;
|
---|
734 | struct Density *Dens = Lev0->Dens;
|
---|
735 | struct ExCor *EC = &P->ExCo;
|
---|
736 | double SumEc = 0;
|
---|
737 | //double SumEx_GC = 0.; // Gradient correction part according to Becke '92
|
---|
738 | double rs, p = 0.0, pUp = 0.0, pDown = 0.0, zeta, rsUp, rsDown, SumEx=0.0;
|
---|
739 | double Factor = R->XCEnergyFactor/Lev0->MaxN;
|
---|
740 | //double Dp, DpUp, DpDown;
|
---|
741 | int i;
|
---|
742 |
|
---|
743 | for (i = 0; i < Dens->LocalSizeR; i++) { // for each node in radial mesh
|
---|
744 | // put (corecorrected) densities in p, pUp, pDown
|
---|
745 | p = Dens->DensityArray[TotalDensity][i];
|
---|
746 | //Dp = DensityGradient(Dens->DensityArray[TotalDensity], i, Lev0, Lat);
|
---|
747 | if (R->CurrentMin > UnOccupied)
|
---|
748 | if (PP->corecorr == CoreCorrected)
|
---|
749 | p += Dens->DensityArray[CoreWaveDensity][i];
|
---|
750 | switch (Psi->PsiST) {
|
---|
751 | default:
|
---|
752 | case SpinDouble:
|
---|
753 | pUp = 0.5*p;
|
---|
754 | pDown = 0.5*p;
|
---|
755 | //DpUp = 0.5*Dp;
|
---|
756 | //DpDown = 0.5*Dp;
|
---|
757 | break;
|
---|
758 | case SpinUp:
|
---|
759 | case SpinDown:
|
---|
760 | pUp = Dens->DensityArray[TotalUpDensity][i];
|
---|
761 | pDown = Dens->DensityArray[TotalDownDensity][i];
|
---|
762 | //DpUp = DensityGradient(Dens->DensityArray[TotalUpDensity], i, Lev0, Lat);
|
---|
763 | //DpDown = DensityGradient(Dens->DensityArray[TotalDownDensity], i, Lev0, Lat);
|
---|
764 | if (PP->corecorr == CoreCorrected) {
|
---|
765 | pUp += 0.5*Dens->DensityArray[CoreWaveDensity][i];
|
---|
766 | pDown += 0.5*Dens->DensityArray[CoreWaveDensity][i];
|
---|
767 | }
|
---|
768 | break;
|
---|
769 | }
|
---|
770 | // set all to zero if one of them is negative
|
---|
771 | if ((p < 0) || (pUp < 0) || (pDown < 0)) {
|
---|
772 | /*fprintf(stderr,"index %i pc %g p %g\n",i,Dens->DensityArray[CoreWaveDensity][i],p);*/
|
---|
773 | p = 0.0;
|
---|
774 | pUp = 0.0;
|
---|
775 | pDown = 0.0;
|
---|
776 | }
|
---|
777 | // Calculation with the densities and summation
|
---|
778 | rs = Calcrs(EC,p);
|
---|
779 | rsUp = Calcrs(EC,pUp);
|
---|
780 | rsDown = Calcrs(EC,pDown);
|
---|
781 | SumEx += CalcSEXr(EC, rsUp, rsDown, pUp, pDown);
|
---|
782 | zeta = CalcZeta(EC,pUp,pDown);
|
---|
783 | SumEc += CalcSECr(EC, rs, zeta, p);
|
---|
784 | //SumEx_GC += CalcSE_GC(EC, pUp, DpUp);
|
---|
785 | //SumEx_GC += CalcSE_GC(EC, pDown, DpDown);
|
---|
786 | }
|
---|
787 | E->AllLocalDensityEnergy[CorrelationEnergy] = Factor*SumEc;
|
---|
788 | E->AllLocalDensityEnergy[ExchangeEnergy] = Factor*(SumEx); // - SumEx_GC);
|
---|
789 | }
|
---|
790 |
|
---|
791 | /** Returns \f$y = \sinh^{-1}(x)\f$.
|
---|
792 | * Recall that \f$ x = sinh (y) = \frac{\exp(y)-\exp(-y)}{2}\f$. Then, solve the in \f$\exp(y)\f$ quadratic
|
---|
793 | * equation: \f$\exp(2y) - 1 - 2x\exp(y) = 0\f$ by pq-formula.
|
---|
794 | * \param arg argument \f$x\f$
|
---|
795 | * \return \f$\sinh^{-1}(x) = \ln(x+\sqrt{x^2+1})\f$
|
---|
796 | */
|
---|
797 | inline static double sinh_inverse(double arg)
|
---|
798 | {
|
---|
799 | return log(arg+sqrt(arg*arg+1));
|
---|
800 | }
|
---|
801 |
|
---|
802 | /** Gradient correction according to Becke '92.
|
---|
803 | * \param EC ExCor structure
|
---|
804 | * \param p \f$\rho\f$ local density
|
---|
805 | * \param Dp \f$|\nabla \rho|\f$ local magnitude of density gradient
|
---|
806 | * \return \f$b \rho^{4/3} \frac{x^2}{(1+6bx \sinh^-1 x}\f$ with \f$x = \frac{|\nabla \rho|}{\rho^{4/3}}\f$
|
---|
807 | */
|
---|
808 | double CalcSE_GC(struct ExCor *EC, double p, double Dp)
|
---|
809 | {
|
---|
810 | double res = 0.;
|
---|
811 | double b = 0.0042; // in atomic units, empirical constant fitted to noble gas atoms
|
---|
812 | double x = Dp/pow(p, 4./3.);
|
---|
813 | res = b * pow(p, 4./3.) * x/(1+6.*b*x*sinh_inverse(x));
|
---|
814 |
|
---|
815 | return res;
|
---|
816 | }
|
---|
817 |
|
---|
818 | /** Evaluates magnitude of gradient by simple 3-star.
|
---|
819 | * \param *density density array
|
---|
820 | * \param i current node
|
---|
821 | * \param *Lev LatticeLevel structure for number of nodes per axis
|
---|
822 | * \param *Lat Lattice structure for axis lengths
|
---|
823 | * \return \f$|\nabla\rho|\f$
|
---|
824 | */
|
---|
825 | double DensityGradient(fftw_real *density, int i, struct LatticeLevel *Lev, struct Lattice *Lat)
|
---|
826 | {
|
---|
827 | double res=0., right_diff, left_diff;
|
---|
828 | int neighbour[NDIM], nodes[NDIM];
|
---|
829 | nodes[0] = Lev->Plan0.plan->local_nx;
|
---|
830 | nodes[1] = Lev->Plan0.plan->N[1];
|
---|
831 | nodes[2] = Lev->Plan0.plan->N[2];
|
---|
832 | neighbour[0] = Lev->Plan0.plan->N[1] * Lev->Plan0.plan->N[2];
|
---|
833 | neighbour[1] = Lev->Plan0.plan->N[2];
|
---|
834 | neighbour[2] = 1.;
|
---|
835 | int k, l, nr, i_check = i;
|
---|
836 | double h;
|
---|
837 |
|
---|
838 | //iS = n[2] + N[2]*(n[1] + N[1]*n0); // howto access the array ...
|
---|
839 |
|
---|
840 | for (k=NDIM-1;k>=0;k--) { // for each axis
|
---|
841 | h = 0.;
|
---|
842 | for (l=0;l<NDIM;l++)
|
---|
843 | h += Lat->RealBasis[k*NDIM+l]/Lev->Plan0.plan->N[k]; // finite distance
|
---|
844 | h = sqrt(h);
|
---|
845 | // check which limit exists: right, left, both?
|
---|
846 | right_diff = 0.;
|
---|
847 | left_diff = 0.;
|
---|
848 | nr = 0; // neighbour counter
|
---|
849 | if (i_check % nodes[k] != nodes[k]-1) {// right neighbour?
|
---|
850 | right_diff = density[i] - density[i+neighbour[k]];
|
---|
851 | nr++;
|
---|
852 | }
|
---|
853 | if (i_check % nodes[k] != 0) { // left neighbour?
|
---|
854 | left_diff = density[i] - density[i-neighbour[k]];
|
---|
855 | nr++;
|
---|
856 | }
|
---|
857 | res += (left_diff + right_diff)/(h*nr) * (left_diff + right_diff)/(h*nr);
|
---|
858 | i_check /= nodes[k]; // remove axis from i_check
|
---|
859 | }
|
---|
860 |
|
---|
861 | return sqrt(res);
|
---|
862 | }
|
---|
863 |
|
---|
864 | /** SpinType-dependent calculation of exchange and correlation with free spin-polarisation energy with riemann tensor.
|
---|
865 | * Discretely does the integration of \f${\cal E}_{xc} (n,\zeta) \cdot n\f$ on
|
---|
866 | * the radial mesh of the respective real densities.<br>
|
---|
867 | *
|
---|
868 | * Like CalculateXCEnergyNoRT(), only CalcSEXr() and CalcSECr() are
|
---|
869 | * divided by RTFactor Lattice->RT.DensityR
|
---|
870 | * \param *P Problem at hand
|
---|
871 | */
|
---|
872 | void CalculateXCEnergyUseRT(struct Problem *P)
|
---|
873 | {
|
---|
874 | struct Lattice *Lat = &P->Lat;
|
---|
875 | struct Energy *E = Lat->E;
|
---|
876 | struct PseudoPot *PP = &P->PP;
|
---|
877 | struct RunStruct *R = &P->R;
|
---|
878 | struct LatticeLevel *Lev0 = R->Lev0;
|
---|
879 | struct Psis *Psi = &Lat->Psi;
|
---|
880 | struct Density *Dens = Lev0->Dens;
|
---|
881 | struct ExCor *EC = &P->ExCo;
|
---|
882 | double SumEc = 0;
|
---|
883 | double rs, p = 0.0, pUp = 0.0, pDown = 0.0, zeta, rsUp, rsDown, SumEx = 0.0;
|
---|
884 | double Factor = R->XCEnergyFactor/Lev0->MaxN;
|
---|
885 | int i;
|
---|
886 | fftw_real *RTFactor = Lat->RT.DensityR[RTADetPreRT];
|
---|
887 |
|
---|
888 | for (i = 0; i < Dens->LocalSizeR; i++) { // for each point of radial mesh take density p[i]
|
---|
889 | p = Dens->DensityArray[TotalDensity][i];
|
---|
890 | if (PP->corecorr == CoreCorrected)
|
---|
891 | p += Dens->DensityArray[CoreWaveDensity][i];
|
---|
892 | switch (Psi->PsiST) {
|
---|
893 | case SpinDouble:
|
---|
894 | pUp = 0.5*p;
|
---|
895 | pDown = 0.5*p;
|
---|
896 | break;
|
---|
897 | case SpinUp:
|
---|
898 | case SpinDown:
|
---|
899 | pUp = Dens->DensityArray[TotalUpDensity][i];
|
---|
900 | pDown = Dens->DensityArray[TotalDownDensity][i];
|
---|
901 | if (PP->corecorr == CoreCorrected) {
|
---|
902 | pUp += 0.5*Dens->DensityArray[CoreWaveDensity][i];
|
---|
903 | pDown += 0.5*Dens->DensityArray[CoreWaveDensity][i];
|
---|
904 | }
|
---|
905 | break;
|
---|
906 | default:
|
---|
907 | ;
|
---|
908 | }
|
---|
909 | if ((p < 0) || (pUp < 0) || (pDown < 0)) {
|
---|
910 | /*fprintf(stderr,"index %i pc %g p %g\n",i,Dens->DensityArray[CoreWaveDensity][i],p);*/
|
---|
911 | p = 0.0;
|
---|
912 | pUp = 0.0;
|
---|
913 | pDown = 0.0;
|
---|
914 | }
|
---|
915 | // .. calculate Ec and Ex and sum them up ...
|
---|
916 | rs = Calcrs(EC,p);
|
---|
917 | rsUp = Calcrs(EC,pUp);
|
---|
918 | rsDown = Calcrs(EC,pDown);
|
---|
919 | SumEx += CalcSEXr(EC, rsUp, rsDown, pUp, pDown)/fabs(RTFactor[i]);
|
---|
920 | zeta = CalcZeta(EC,pUp,pDown);
|
---|
921 | SumEc += CalcSECr(EC, rs, zeta, p)/fabs(RTFactor[i]);
|
---|
922 | }
|
---|
923 | // ... and factorise with discrete integration width
|
---|
924 | E->AllLocalDensityEnergy[CorrelationEnergy] = Factor*SumEc;
|
---|
925 | E->AllLocalDensityEnergy[ExchangeEnergy] = Factor*SumEx;
|
---|
926 | }
|
---|
927 |
|
---|
928 | /** Calculates SpinType-dependently exchange correlation potential with free spin-polarisation without Riemann tensor.
|
---|
929 | * Goes through all possible nodes, calculates the potential and stores it in \a *HGR
|
---|
930 | * \param *P Problem at hand
|
---|
931 | * \param *HGR pointer storage array for (added!) result: \f$V_c (n,\zeta)(R) + V_x (n,\zeta)(R)\f$
|
---|
932 | * \sa CalcSVXr(), CalcSVCr()
|
---|
933 | */
|
---|
934 | void CalculateXCPotentialNoRT(struct Problem *P, fftw_real *HGR)
|
---|
935 | {
|
---|
936 | struct Lattice *Lat = &P->Lat;
|
---|
937 | struct PseudoPot *PP = &P->PP;
|
---|
938 | struct RunStruct *R = &P->R;
|
---|
939 | struct LatticeLevel *Lev0 = R->Lev0;
|
---|
940 | struct LatticeLevel *LevS = R->LevS;
|
---|
941 | struct Psis *Psi = &Lat->Psi;
|
---|
942 | struct Density *Dens = Lev0->Dens;
|
---|
943 | struct ExCor *EC = &P->ExCo;
|
---|
944 | double rsX, rsC, zeta, p = 0.0, pUp = 0.0, pDown = 0.0;
|
---|
945 | int nx,ny,nz,i;
|
---|
946 | const int Nx = LevS->Plan0.plan->local_nx;
|
---|
947 | const int Ny = LevS->Plan0.plan->N[1];
|
---|
948 | const int Nz = LevS->Plan0.plan->N[2];
|
---|
949 | const int NUpx = LevS->NUp[0]; // factors due to density being calculated on a finer grid
|
---|
950 | const int NUpy = LevS->NUp[1];
|
---|
951 | const int NUpz = LevS->NUp[2];
|
---|
952 | double tmp;
|
---|
953 | for (nx=0;nx<Nx;nx++)
|
---|
954 | for (ny=0;ny<Ny;ny++)
|
---|
955 | for (nz=0;nz<Nz;nz++) {
|
---|
956 | i = nz*NUpz+Nz*NUpz*(ny*NUpy+Ny*NUpy*nx*NUpx);
|
---|
957 | p = Dens->DensityArray[TotalDensity][i];
|
---|
958 | if (PP->corecorr == CoreCorrected)
|
---|
959 | p += Dens->DensityArray[CoreWaveDensity][i];
|
---|
960 | switch (Psi->PsiST) {
|
---|
961 | case SpinDouble:
|
---|
962 | pUp = 0.5*p;
|
---|
963 | pDown = 0.5*p;
|
---|
964 | break;
|
---|
965 | case SpinUp:
|
---|
966 | case SpinDown:
|
---|
967 | pUp = Dens->DensityArray[TotalUpDensity][i];
|
---|
968 | pDown = Dens->DensityArray[TotalDownDensity][i];
|
---|
969 | if (PP->corecorr == CoreCorrected) { // additional factor due to PseudoPot'entials
|
---|
970 | pUp += 0.5*Dens->DensityArray[CoreWaveDensity][i];
|
---|
971 | pDown += 0.5*Dens->DensityArray[CoreWaveDensity][i];
|
---|
972 | }
|
---|
973 | break;
|
---|
974 | default:
|
---|
975 | ;
|
---|
976 | }
|
---|
977 | if ((p < 0) || (pUp < 0) || (pDown < 0)) {
|
---|
978 | p = 0;
|
---|
979 | pUp = 0;
|
---|
980 | pDown = 0;
|
---|
981 | }
|
---|
982 | switch (Psi->PsiST) {
|
---|
983 | case SpinUp:
|
---|
984 | rsX = Calcrs(EC, pUp);
|
---|
985 | break;
|
---|
986 | case SpinDown:
|
---|
987 | rsX = Calcrs(EC, pDown);
|
---|
988 | break;
|
---|
989 | case SpinDouble:
|
---|
990 | //rsX = Calcrs(EC,p/2.); // why half of it???
|
---|
991 | rsX = Calcrs(EC, p);
|
---|
992 | break;
|
---|
993 | default:
|
---|
994 | rsX = 0.0;
|
---|
995 | }
|
---|
996 | rsC = Calcrs(EC,p);
|
---|
997 | zeta = CalcZeta(EC,pUp,pDown);
|
---|
998 | switch (R->CurrentMin) {
|
---|
999 | case UnOccupied: // here epsilon appears instead of the potential in the integrand due to different variation
|
---|
1000 | tmp = CalcSEXr(EC,Calcrs(EC, pUp),Calcrs(EC, pDown),pUp,pDown)/p;
|
---|
1001 | //if (isnan(tmp)) { fprintf(stderr,"WARNGING: CalculateXCPotentialNoRT(): tmp_%i un= NaN!\n", i); Error(SomeError, "NaN-Fehler!"); }
|
---|
1002 | tmp += CalcSECr(EC, rsX,zeta, 1);
|
---|
1003 | //if (isnan(tmp)) { fprintf(stderr,"WARNGING: CalculateXCPotentialNoRT(): tmp_%i un+= NaN!\n", i); Error(SomeError, "NaN-Fehler!"); }
|
---|
1004 | break;
|
---|
1005 | default:
|
---|
1006 | tmp = CalcSVXr(EC,rsX,Psi->PsiST);
|
---|
1007 | //if (isnan(tmp)) { fprintf(stderr,"WARNGING: CalculateXCPotentialNoRT(): tmp_%i def= NaN!\n", i); Error(SomeError, "NaN-Fehler!"); }
|
---|
1008 | tmp += CalcSVCr(EC, rsC,zeta,Psi->PsiST);
|
---|
1009 | //if (isnan(tmp)) { fprintf(stderr,"WARNGING: CalculateXCPotentialNoRT(): tmp_%i def+= NaN!\n", i); Error(SomeError, "NaN-Fehler!"); }
|
---|
1010 | break;
|
---|
1011 | }
|
---|
1012 | //if (isnan(tmp)) { fprintf(stderr,"WARNGING: CalculateXCPotentialNoRT(): tmp_%i := NaN!\n", i); Error(SomeError, "NaN-Fehler!"); }
|
---|
1013 | HGR[i] += tmp;
|
---|
1014 | //if (isnan(HGR[i])) { fprintf(stderr,"WARNGING: CalculateXCPotentialNoRT(): HGR[%i] = NaN!\n", i); Error(SomeError, "NaN-Fehler!"); }
|
---|
1015 | }
|
---|
1016 | }
|
---|
1017 |
|
---|
1018 | /** Calculates SpinType-dependently derivative of exchange correlation potential with free spin-polarisation without Riemann tensor.
|
---|
1019 | * \f[
|
---|
1020 | * A^{XC} = \sum_R \frac{\delta V^{XC}}{\delta n} \rho^2 \qquad (\textnormal{section 5.1, line search})
|
---|
1021 | * \f]
|
---|
1022 | * With the density from Dens::DensityArray calculates discretely the integral over the summed
|
---|
1023 | * derivative, SpinType is taken from Psi::PsiST. Due to the principle of the theory the wave
|
---|
1024 | * functions themselves are not needed explicitely, see also CalculateXCEnergyNoRT()
|
---|
1025 | * \param *P Problem at hand
|
---|
1026 | * \param *PsiCD \f$\rho (r)\f$
|
---|
1027 | * \return \f$A^{XC}\f$
|
---|
1028 | * \sa CalcSVVXr(), CalcSVVCr() - derivatives of exchange and correlation potential
|
---|
1029 | */
|
---|
1030 | double CalculateXCddEddt0NoRT(struct Problem *P, fftw_real *PsiCD)
|
---|
1031 | {
|
---|
1032 | struct Lattice *Lat = &P->Lat;
|
---|
1033 | struct PseudoPot *PP = &P->PP;
|
---|
1034 | struct RunStruct *R = &P->R;
|
---|
1035 | struct LatticeLevel *Lev0 = R->Lev0;
|
---|
1036 | struct Psis *Psi = &Lat->Psi;
|
---|
1037 | struct Density *Dens = Lev0->Dens;
|
---|
1038 | struct ExCor *EC = &P->ExCo;
|
---|
1039 | double SumExc = 0;
|
---|
1040 | double rsX=0.0, rsC, p = 0.0, pUp = 0.0, pDown = 0.0, zeta;
|
---|
1041 | double Factor = R->XCEnergyFactor/Lev0->MaxN;
|
---|
1042 | int i;
|
---|
1043 |
|
---|
1044 | for (i = 0; i < Dens->LocalSizeR; i++) {
|
---|
1045 | p = Dens->DensityArray[TotalDensity][i];
|
---|
1046 | if (PP->corecorr == CoreCorrected)
|
---|
1047 | p += Dens->DensityArray[CoreWaveDensity][i];
|
---|
1048 | switch (Psi->PsiST) {
|
---|
1049 | case SpinDouble:
|
---|
1050 | pUp = 0.5*p;
|
---|
1051 | pDown = 0.5*p;
|
---|
1052 | break;
|
---|
1053 | case SpinUp:
|
---|
1054 | case SpinDown:
|
---|
1055 | pUp = Dens->DensityArray[TotalUpDensity][i];
|
---|
1056 | pDown = Dens->DensityArray[TotalDownDensity][i];
|
---|
1057 | if (PP->corecorr == CoreCorrected) {
|
---|
1058 | pUp += 0.5*Dens->DensityArray[CoreWaveDensity][i];
|
---|
1059 | pDown += 0.5*Dens->DensityArray[CoreWaveDensity][i];
|
---|
1060 | }
|
---|
1061 | break;
|
---|
1062 | default:
|
---|
1063 | ;
|
---|
1064 | }
|
---|
1065 | if ((p < 0) || (pUp < 0) || (pDown < 0)) {
|
---|
1066 | /*fprintf(stderr,"index %i pc %g p %g\n",i,Dens->DensityArray[CoreWaveDensity][i],p);*/
|
---|
1067 | p = 0.0;
|
---|
1068 | pUp = 0.0;
|
---|
1069 | pDown = 0.0;
|
---|
1070 | }
|
---|
1071 | switch (Psi->PsiST) {
|
---|
1072 | case SpinUp:
|
---|
1073 | rsX = Calcrs(EC,pUp);
|
---|
1074 | break;
|
---|
1075 | case SpinDown:
|
---|
1076 | rsX = Calcrs(EC,pDown);
|
---|
1077 | break;
|
---|
1078 | case SpinDouble:
|
---|
1079 | //rsX = Calcrs(EC,p/2.); // why half of it???
|
---|
1080 | rsX = Calcrs(EC,p);
|
---|
1081 | break;
|
---|
1082 | }
|
---|
1083 | rsC = Calcrs(EC,p);
|
---|
1084 | zeta = CalcZeta(EC,pUp,pDown);
|
---|
1085 | SumExc += (CalcSVVXr(EC,rsX,Psi->PsiST) + CalcSVVCr(EC, rsC,zeta,Psi->PsiST,pUp,pDown))*PsiCD[i]*PsiCD[i];
|
---|
1086 | }
|
---|
1087 | return (SumExc*Factor);
|
---|
1088 | }
|
---|
1089 |
|
---|
1090 | /** Initialises ExCor structure with parametrization values.
|
---|
1091 | * All of the entries in the structure are set to parametrization values, see [CA80].
|
---|
1092 | * \param *P Problem at hand
|
---|
1093 | * \param *EC Exchange correlation ExCor structure
|
---|
1094 | */
|
---|
1095 | void InitExchangeCorrelationEnergy(struct Problem *P, struct ExCor *EC)
|
---|
1096 | {
|
---|
1097 | EC->gamma[unpolarised] = -0.1423;
|
---|
1098 | EC->beta_1[unpolarised] = 1.0529;
|
---|
1099 | EC->beta_2[unpolarised] = 0.3334;
|
---|
1100 | EC->C[unpolarised] = 0.0020;
|
---|
1101 | EC->D[unpolarised] = -0.0116;
|
---|
1102 | EC->A[unpolarised] = 0.0311;
|
---|
1103 | EC->B[unpolarised] = -0.048;
|
---|
1104 | EC->gamma[polarised] = -0.0843;
|
---|
1105 | EC->beta_1[polarised] = 1.3981;
|
---|
1106 | EC->beta_2[polarised] = 0.2611;
|
---|
1107 | EC->C[polarised] = 0.0007;
|
---|
1108 | EC->D[polarised] = -0.0048;
|
---|
1109 | EC->A[polarised] = 0.01555;
|
---|
1110 | EC->B[polarised] = -0.0269;
|
---|
1111 | EC->fac34pi = -3./(4.*PI);
|
---|
1112 | EC->facexrs = EC->fac34pi*pow(9.*PI/4.,1./3.);
|
---|
1113 | EC->epsilon0 = MYEPSILON;
|
---|
1114 | EC->fac6PI23 = pow(6./PI,2./3.);
|
---|
1115 | EC->facPI213 = pow(PI/2.,1./3.);
|
---|
1116 | EC->fac3PI23 = pow(3.*PI,2./3.);
|
---|
1117 | EC->fac6PIPI23 = pow(6.*PI*PI,2./3.);
|
---|
1118 | EC->fac243 = pow(2.,4./3.);
|
---|
1119 | EC->fac1213 = pow(1./2.,1./3.);
|
---|
1120 | }
|
---|