| [a0bcf1] | 1 | /** \file excor.c | 
|---|
|  | 2 | * Exchange correlation energy. | 
|---|
|  | 3 | * | 
|---|
|  | 4 | * The Exchange correlation energy is calculated via a local spin-density-approximation in | 
|---|
|  | 5 | * a parametrized manner. It is the sum of the exchange and the correlation, per electron | 
|---|
|  | 6 | * (thus, (discretely) integrated over the density). | 
|---|
|  | 7 | * Due to the parametrization there is a huge number of functions evaluating small | 
|---|
|  | 8 | * expressions or auxiliary variables with its first and second derivatives | 
|---|
|  | 9 | * Calcf(), CalcDf(), CalcD2f() and CalcZeta(), CalcDZeta(), CalcD2Zeta(), | 
|---|
|  | 10 | * which then help to evaluate the energy CalcECr(), CalcEXrUP(), in the summing | 
|---|
|  | 11 | * CalcSECr(), CalcSEXr(), potential CalcVCr(), CalcVXrUP(), in its summation | 
|---|
|  | 12 | * CalcSVCr(), CalcSVXr() | 
|---|
|  | 13 | * and derivatives CalcVVCr(), CalcVVXrUP(), in its summation CalcSVVCr(), CalcSVVXr(). | 
|---|
|  | 14 | * All these are needed by the super functions evaluating exchange correlatiob | 
|---|
|  | 15 | * potential CalculateXCPotentialNoRT(), exchange correlation energy without RiemannTensor | 
|---|
|  | 16 | * CalculateXCEnergyNoRT() and with RiemannTensor CalculateXCEnergyUseRT(), | 
|---|
|  | 17 | * and the second derivative CalculateXCddEddt0NoRT() (needed for conjugate gradient). | 
|---|
|  | 18 | * During initilization the ExCor structure's entries is set to | 
|---|
|  | 19 | * these fixed parameters InitExchangeCorrelationEnergy(). | 
|---|
|  | 20 | * | 
|---|
|  | 21 | * | 
|---|
|  | 22 | Project: ParallelCarParrinello | 
|---|
|  | 23 | \author Jan Hamaekers | 
|---|
|  | 24 | \date 2000 | 
|---|
|  | 25 |  | 
|---|
|  | 26 | File: excor.c | 
|---|
|  | 27 | $Id: excor.c,v 1.47 2007-03-29 13:37:25 foo Exp $ | 
|---|
|  | 28 | */ | 
|---|
|  | 29 |  | 
|---|
|  | 30 | #include <stdlib.h> | 
|---|
|  | 31 | #include <stdio.h> | 
|---|
|  | 32 | #include <stddef.h> | 
|---|
|  | 33 | #include <math.h> | 
|---|
|  | 34 |  | 
|---|
|  | 35 | #include "data.h" | 
|---|
|  | 36 | #include "mymath.h" | 
|---|
|  | 37 | #include "run.h" | 
|---|
|  | 38 | #include "myfft.h" | 
|---|
|  | 39 | #include "errors.h" | 
|---|
|  | 40 | #include "excor.h" | 
|---|
|  | 41 | #include "helpers.h" | 
|---|
|  | 42 |  | 
|---|
|  | 43 | /** Calculate Wigner-Seitz-Radius \f$r_s\f$ | 
|---|
|  | 44 | * \param *EC ExCor exchange correlation structure | 
|---|
|  | 45 | * \param p electron density | 
|---|
|  | 46 | * \return \f$(\frac{3}{4\pi \cdot p})^{1/3}   \qquad (2.30)\f$ | 
|---|
|  | 47 | */ | 
|---|
|  | 48 | #ifdef HAVE_INLINE | 
|---|
|  | 49 | inline double Calcrs(struct ExCor *EC, double p) { | 
|---|
|  | 50 | #else | 
|---|
|  | 51 | double Calcrs(struct ExCor *EC, double p) { | 
|---|
|  | 52 | #endif | 
|---|
|  | 53 | if (fabs(p) < EC->epsilon0) return(0); | 
|---|
|  | 54 | //return (pow(3./(4.*PI*p),1./3.)); | 
|---|
|  | 55 | return (cbrt(3./(4.*PI*p))); | 
|---|
|  | 56 | } | 
|---|
|  | 57 |  | 
|---|
|  | 58 | /** Calculates exchange potential \f$V_{x}\f$. | 
|---|
|  | 59 | * \f[ | 
|---|
|  | 60 | *    V_{x} = {\cal E}_{x} + \Bigr ( \frac{d{\cal E}_{x}}{dn} \Bigl )_{n=n(r_s)} n(r_s) \qquad (2.32) | 
|---|
|  | 61 | * \f] | 
|---|
|  | 62 | * \param *EC ExCor exchange correlation structure | 
|---|
|  | 63 | * \param rs Wigner-Seitz-Radius \f$r_s \f$, see Calcrs() | 
|---|
|  | 64 | * \return \f$-\frac{1}{2} (\frac{6}{\pi})^{2/3} \cdot \frac{1}{rs}\f$ | 
|---|
|  | 65 | * \note The formula from CalcEXrUP() was used for the derivation. | 
|---|
|  | 66 | */ | 
|---|
|  | 67 | #ifdef HAVE_INLINE | 
|---|
|  | 68 | inline static double CalcVXrUP(struct ExCor *EC, double rs) { | 
|---|
|  | 69 | #else | 
|---|
|  | 70 | static double CalcVXrUP(struct ExCor *EC, double rs) { | 
|---|
|  | 71 | #endif | 
|---|
|  | 72 | if (fabs(rs) < EC->epsilon0) return(0); | 
|---|
|  | 73 | return(-0.5*EC->fac6PI23/rs); // formula checked (16.5.06) | 
|---|
|  | 74 | } | 
|---|
|  | 75 |  | 
|---|
|  | 76 | /** Calculates first derivative of exchange potential \f$\frac{\delta V_{x}}{\delta n}\f$. | 
|---|
|  | 77 | * \param *EC ExCor exchange correlation structure | 
|---|
|  | 78 | * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs() | 
|---|
|  | 79 | * \return \f$-\frac{2}{9\pi} (6\pi^2)^2/3 \cdot (rs)^2\f$ | 
|---|
|  | 80 | * \sa CalcVXrUP() | 
|---|
|  | 81 | */ | 
|---|
|  | 82 | #ifdef HAVE_INLINE | 
|---|
|  | 83 | inline static double CalcVVXrUP(struct ExCor *EC, double rs) { | 
|---|
|  | 84 | #else | 
|---|
|  | 85 | static double CalcVVXrUP(struct ExCor *EC, double rs) { | 
|---|
|  | 86 | #endif | 
|---|
|  | 87 | return (-2./(9*PI)*EC->fac6PIPI23*rs*rs); // formula checked (16.5.06) | 
|---|
|  | 88 | } | 
|---|
|  | 89 |  | 
|---|
|  | 90 | /** Calculates second derivative of exchange potential \f$\frac{\delta^2 V_{x}}{\delta n^2}\f$. | 
|---|
|  | 91 | * \param *EC ExCor exchange correlation structure | 
|---|
|  | 92 | * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs() | 
|---|
|  | 93 | * \return \f$\frac{16}{81} (6\pi^2)^{2/3} \cdot (rs)^5\f$ | 
|---|
|  | 94 | * \sa CalcVXrUP(), CalcVVXrUP() | 
|---|
|  | 95 | */ | 
|---|
|  | 96 | #ifdef HAVE_INLINE | 
|---|
|  | 97 | inline static double CalcVVVXrUP(struct ExCor *EC, double rs) { | 
|---|
|  | 98 | #else | 
|---|
|  | 99 | static double CalcVVVXrUP(struct ExCor *EC, double rs) { | 
|---|
|  | 100 | #endif | 
|---|
|  | 101 | return (16./81.*EC->fac6PIPI23*rs*rs*rs*rs*rs); // formula checked (16.5.06) | 
|---|
|  | 102 | } | 
|---|
|  | 103 |  | 
|---|
|  | 104 | /** Calculates exchange energy over density for homogeneous charge within given Wigner-Seitz-Radius, \f${\cal E}_x\f$. | 
|---|
|  | 105 | * The formula specified on the return statement is derived if into | 
|---|
|  | 106 | * \f[ \forall 0 \geq \zeta \geq 1: \quad | 
|---|
|  | 107 | *      E_x = {\cal E}_x n = -\frac{3}{8} \Bigr (\frac{3(n_{up}+n_{down})}{\pi} \Bigl)^{1/3} | 
|---|
|  | 108 | *        \bigr[ (1+\zeta)^{4/3}+ (1-\zeta)^{4/3} \bigl ] \cdot (n_{up}+n_{down}) \qquad (2.52) | 
|---|
|  | 109 | * \f] | 
|---|
|  | 110 | * the definition of spin polarisation \f$\frac{n_{up} - n_{down}}{n_{up} + n_{down}}\f$ | 
|---|
|  | 111 | * is inserted and the expression evaluated. | 
|---|
|  | 112 | * \param *EC ExCor exchange correlation structure | 
|---|
|  | 113 | * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs() | 
|---|
|  | 114 | * \param zeta spin polarisation \f$\zeta\f$, see CalcZeta() | 
|---|
|  | 115 | * \return \f$-\frac{3}{8} (\frac{3}{2\pi})^{2/3} \Bigl [ (1+\zeta)^{\frac{4}{3}} + (1-\zeta)^{\frac{4}{3}}\Bigr] \cdot \frac{1}{rs}\f$ | 
|---|
|  | 116 | */ | 
|---|
|  | 117 | #ifdef HAVE_INLINE | 
|---|
|  | 118 | inline double CalcEXr(struct ExCor *EC, double rs, double zeta) { | 
|---|
|  | 119 | #else | 
|---|
|  | 120 | double CalcEXr(struct ExCor *EC, double rs, double zeta) { | 
|---|
|  | 121 | #endif | 
|---|
|  | 122 | if (fabs(rs) < EC->epsilon0) return(0); | 
|---|
|  | 123 | //return (-3./8.*pow(3./(2.*PI),2./3.)/rs *(pow(1.+zeta,4./3.)+pow(1.-zeta,4./3.)));  // formula checked | 
|---|
|  | 124 | return (-3./8.*cbrt((3./(2.*PI))*(3./(2.*PI)))/rs *((1.+zeta)*cbrt(1.+zeta)+(1.-zeta)*cbrt(1.-zeta))); | 
|---|
|  | 125 | } | 
|---|
|  | 126 |  | 
|---|
|  | 127 | /** Calculates exchange energy over density for homogeneous charge within given Wigner-Seitz-Radius, \f${\cal E}_x\f$. | 
|---|
|  | 128 | * The formula specified on the return statement is derived if into | 
|---|
|  | 129 | * \f[ \forall 0 \geq \zeta \geq 1: \quad | 
|---|
|  | 130 | *      E_x = {\cal E}_x n = -\frac{3}{8} \Bigr (\frac{3(n_{up}+n_{down})}{\pi} \Bigl)^{1/3} | 
|---|
|  | 131 | *        \bigr[ (1+\zeta)^{4/3}+ (1-\zeta)^{4/3} \bigl ] \cdot (n_{up}+n_{down}) \qquad (2.52) | 
|---|
|  | 132 | * \f] | 
|---|
|  | 133 | * the definition of spin polarisation \f$\frac{n_{up} - n_{down}}{n_{up} + n_{down}}\f$ | 
|---|
|  | 134 | * is inserted and the expression evaluated. | 
|---|
|  | 135 | * \param *EC ExCor exchange correlation structure | 
|---|
|  | 136 | * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs() | 
|---|
|  | 137 | * \return \f$-\frac{3}{8} (\frac{6}{\pi})^{2/3} \cdot \frac{1}{rs}\f$ | 
|---|
|  | 138 | */ | 
|---|
|  | 139 | #ifdef HAVE_INLINE | 
|---|
|  | 140 | inline static double CalcEXrUP(struct ExCor *EC, double rs) { | 
|---|
|  | 141 | #else | 
|---|
|  | 142 | static double CalcEXrUP(struct ExCor *EC, double rs) { | 
|---|
|  | 143 | #endif | 
|---|
|  | 144 | if (fabs(rs) < EC->epsilon0) return(0); | 
|---|
|  | 145 | return (-3./8.*EC->fac6PI23/rs);  // formula checked | 
|---|
|  | 146 | } | 
|---|
|  | 147 |  | 
|---|
|  | 148 | /** Calculates correlation energy \f${\cal E}_c\f$ per electron for un-/polarised case. | 
|---|
|  | 149 | * Formula derived from Monte-Carlo-simulations by Ceperley and Adler [CA80], | 
|---|
|  | 150 | * parametrized by Perdew and Zunger [PZ81] for the polarised (\f$\zeta = 1\f$) or | 
|---|
|  | 151 | * unpolarised (\f$\zeta = 0\f$) case. | 
|---|
|  | 152 | * \param *EC ExCor exchange correlation structure | 
|---|
|  | 153 | * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs() | 
|---|
|  | 154 | * \param up UnPolarised: whether it's the polarised or unpolarised case | 
|---|
|  | 155 | * \return In the unpolarised case: <br> | 
|---|
|  | 156 | *         \f$r_s\f$>=1: \f$\gamma_{up} (1+\beta_{1,up}\sqrt{r_s}+\beta_{2,up}r_s)^{-1} = -0.1423\cdot(1+1.0529\sqrt{r_s}+0.3334r_s)^{-1} \qquad (2.31a)\f$<br> | 
|---|
|  | 157 | *         \f$r_s\f$<1:  \f$-0.0480+0.0311\ln(r_s)-0.0116r_s+0.0020r_s\ln(r_s) \qquad (2.31b)\f$<br> | 
|---|
|  | 158 | *         In the polarised case: <br> | 
|---|
|  | 159 | *         \f$r_s\f$>=1: \f$-0.0843\cdot(1+1.3981\sqrt{r_s}+0.2611r_s)^{-1}\f$<br> | 
|---|
|  | 160 | *         \f$r_s\f$<1:  \f$-0.0269+0.01555\ln(r_s)-0.0048r_s+0.0007r_s\ln(r_s)\f$<br> | 
|---|
|  | 161 | */ | 
|---|
|  | 162 | #ifdef HAVE_INLINE | 
|---|
|  | 163 | inline double CalcECr(struct ExCor *EC, double rs, enum UnPolarised up) { | 
|---|
|  | 164 | #else | 
|---|
|  | 165 | double CalcECr(struct ExCor *EC, double rs, enum UnPolarised up) { | 
|---|
|  | 166 | #endif | 
|---|
|  | 167 | double lrs; | 
|---|
|  | 168 | double res=0; | 
|---|
|  | 169 | if (rs >= 1) { | 
|---|
|  | 170 | res= (EC->gamma[up]/(1.+EC->beta_1[up]*sqrt(rs)+EC->beta_2[up]*rs)); | 
|---|
|  | 171 | return (res); | 
|---|
|  | 172 | } | 
|---|
|  | 173 | if (rs <= EC->epsilon0) { | 
|---|
|  | 174 | res = 0; | 
|---|
|  | 175 | return(res); | 
|---|
|  | 176 | } | 
|---|
|  | 177 | lrs = log(rs); | 
|---|
|  | 178 | res = (EC->A[up]*lrs+EC->B[up]+EC->C[up]*rs*lrs+EC->D[up]*rs); | 
|---|
|  | 179 | return (res); | 
|---|
|  | 180 | } | 
|---|
|  | 181 |  | 
|---|
|  | 182 | /** Calculates correlation potential \f$V_{c}\f$. | 
|---|
|  | 183 | * \f[ | 
|---|
|  | 184 | *    V_{c} = {\cal E}_{c} + \Bigr ( \frac{d{\cal E}_{c}}{dn} \Bigl )_{n=n(r)} n(r) \qquad (2.32) | 
|---|
|  | 185 | * \f] | 
|---|
|  | 186 | * \param *EC ExCor exchange correlation structure | 
|---|
|  | 187 | * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs() | 
|---|
|  | 188 | * \param up UnPolarised | 
|---|
|  | 189 | * \return in the un-/polarised case: <br> | 
|---|
|  | 190 | *         \f$r_s\f$>=1: \f$\frac{{\cal E}_c}{1+\beta_1[up]\sqrt{r_s}+\beta_2[up]r_s} \cdot (1+\frac{7}{6}\beta_1[up]\sqrt{r_s} + \frac{4}{3}\beta_2[up]r_s)\f$<br> | 
|---|
|  | 191 | *         \f$r_s\f$=0: 0 <br> | 
|---|
|  | 192 | *         else:  \f$A[up]\cdot\log(rs) + (B[up] - \frac{1}{3} A[up]) + \frac{2}{3} C[up]\cdot rs \log(rs)+ \frac{1}{3} (2 D[up]-C[up]) \cdot rs\f$ | 
|---|
|  | 193 | */ | 
|---|
|  | 194 | #ifdef HAVE_INLINE | 
|---|
|  | 195 | inline static double CalcVCr(struct ExCor *EC, double rs, enum UnPolarised up) { | 
|---|
|  | 196 | #else | 
|---|
|  | 197 | static double CalcVCr(struct ExCor *EC, double rs, enum UnPolarised up) { | 
|---|
|  | 198 | #endif | 
|---|
|  | 199 | double srs,lrs; | 
|---|
|  | 200 | if (rs >= 1) { | 
|---|
|  | 201 | srs = sqrt(rs); | 
|---|
|  | 202 | return ((EC->gamma[up]/(1.+EC->beta_1[up]*srs+EC->beta_2[up]*rs))*(1.+(7./6.)*EC->beta_1[up]*srs+(4./3.)*EC->beta_2[up]*rs)/(1.+EC->beta_1[up]*srs+EC->beta_2[up]*rs)); // formula checked  (15.5.06) | 
|---|
|  | 203 | } | 
|---|
|  | 204 | if (rs <= EC->epsilon0) return (0); | 
|---|
|  | 205 | lrs = log(rs); | 
|---|
|  | 206 | return (EC->A[up]*lrs+(EC->B[up]-(1./3.)*EC->A[up])+(2./3.)*EC->C[up]*rs*lrs+(1./3.)*(2.*EC->D[up]-EC->C[up])*rs); // formula checked  (15.5.06) | 
|---|
|  | 207 | } | 
|---|
|  | 208 |  | 
|---|
|  | 209 | /** Calculates first derivative of correlation potential \f$\frac{\delta V_{c}}{\delta n}\f$. | 
|---|
|  | 210 | * \f[ | 
|---|
|  | 211 | *  \frac{\delta V_{c}}{\delta n} = \frac{\delta^2 {\cal E}_{c}}{\delta n^2} | 
|---|
|  | 212 | * \f] | 
|---|
|  | 213 | * \param *EC ExCor exchange correlation structure | 
|---|
|  | 214 | * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs() | 
|---|
|  | 215 | * \param up UnPolarised | 
|---|
|  | 216 | * \return In the un-/polarised case: <br> | 
|---|
|  | 217 | *        \f$r_s\f$>=1: \f$\frac{{\cal E}_c[up] \pi}{27\cdot(1+\beta_1[up]\sqrt{r_s}+\beta_2[up]r_s)} \Bigr ( 5\beta_1[up]r_s^{7/2} + 8\beta_2[up]r_s^4 | 
|---|
|  | 218 | *            + \frac{1}{1+\beta_1[up]\sqrt{r_s}+\beta_2[up]r_s} (8\beta_1[up]\beta_2[up]r_s^{9/2} + 2\beta_1^2[up]r_s^4 + 8\beta_2^2[up]r_s^5) \Bigl)\f$<br> | 
|---|
|  | 219 | *        \f$r_s\f$< 1: \f$-\frac{4\pi r_s^3}{9} \bigr (A[up] + \frac{r_s}{3} \cdot(C[up]+2C[up]\log(r_s)+2D[up]) \bigl)\f$<br> | 
|---|
|  | 220 | * \sa CalcVCr() | 
|---|
|  | 221 | */ | 
|---|
|  | 222 | #ifdef HAVE_INLINE | 
|---|
|  | 223 | inline static double CalcVVCr(struct ExCor *EC, double rs, enum UnPolarised up) { | 
|---|
|  | 224 | #else | 
|---|
|  | 225 | static double CalcVVCr(struct ExCor *EC, double rs, enum UnPolarised up) { | 
|---|
|  | 226 | #endif | 
|---|
|  | 227 | double eps,deps; | 
|---|
|  | 228 | if (rs <= EC->epsilon0) return (0); | 
|---|
|  | 229 | if (rs >= 1) { | 
|---|
|  | 230 | deps = 1.+EC->beta_1[up]*sqrt(rs)+EC->beta_2[up]*rs; | 
|---|
|  | 231 | eps = EC->gamma[up]/deps; | 
|---|
|  | 232 | //return (eps*PI/(27.*deps)*(8.*EC->beta_2[up]*rs*rs*rs*rs+5.*EC->beta_1[up]*pow(rs,7./2.)+(1./deps)*(8.*EC->beta_1[up]*EC->beta_2[up]*pow(rs,9./2.)+2.*EC->beta_1[up]*EC->beta_1[up]*rs*rs*rs*rs+8.*EC->beta_2[up]*EC->beta_2[up]*rs*rs*rs*rs*rs))); | 
|---|
|  | 233 | //return (eps*PI/(27.*deps*deps)*(8.*EC->beta_2[up]*rs*rs*rs*rs+5.*EC->beta_1[up]*pow(rs,7./2.)+21.*EC->beta_1[up]*EC->beta_2[up]*pow(rs,9./2.)+7.*EC->beta_1[up]*EC->beta_1[up]*rs*rs*rs*rs+16.*EC->beta_2[up]*EC->beta_2[up]*rs*rs*rs*rs*rs)); //formula checked (15.05.06) | 
|---|
|  | 234 | return (eps*PI/(27.*deps*deps)*(8.*EC->beta_2[up]*rs*rs*rs*rs+5.*EC->beta_1[up]*(sqrt(rs)*rs*rs*rs)+21.*EC->beta_1[up]*EC->beta_2[up]*(sqrt(rs)*rs*rs*rs*rs)+7.*EC->beta_1[up]*EC->beta_1[up]*rs*rs*rs*rs+16.*EC->beta_2[up]*EC->beta_2[up]*rs*rs*rs*rs*rs)); //formula checked (15.05.06) | 
|---|
|  | 235 | } | 
|---|
|  | 236 | return (-4.*PI*rs*rs*rs/9.*(EC->A[up]+rs/3.*(EC->C[up]+2.*EC->C[up]*log(rs)+2.*EC->D[up]))); //formula checked (23.05.06) | 
|---|
|  | 237 | } | 
|---|
|  | 238 |  | 
|---|
|  | 239 | /** Calculates second derivative of correlation potential \f$\frac{\delta^2 V_{c}}{\delta n^2}\f$. | 
|---|
|  | 240 | * \f[ | 
|---|
|  | 241 | *  \frac{\delta^2 V_{c}}{\delta n^2} = \frac{\delta^3 {\cal E}_{c}}{\delta n^3} | 
|---|
|  | 242 | * \f] | 
|---|
|  | 243 | * \param *EC ExCor exchange correlation structure | 
|---|
|  | 244 | * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs() | 
|---|
|  | 245 | * \param up UnPolarised | 
|---|
|  | 246 | * \return In the un-/polarised case: <br> | 
|---|
|  | 247 | *        \f$r_s\f$>=1: \f$-\frac{2\pi^2 {\cal E}_c[up]}{243\cdot(1+\beta_1[up]\sqrt{r_s}+\beta_2[up]r_s)^4} | 
|---|
|  | 248 | *            \Bigr ( 35\beta_1[up]r_s^{13/2} + r_s^7(64\beta_2[up]+76\beta_1^2[up]) | 
|---|
|  | 249 | *              + r_s^{15/2} (35\beta^3_1[up]+243\beta_1[up]\beta_2[up]) | 
|---|
|  | 250 | *              + r_s^8 (176\beta^2_2[up]+140\beta^2_1[up]\beta_2[up]) | 
|---|
|  | 251 | *              + r_s^{17/2} (175\beta_1[up]\beta^2_2[up]) | 
|---|
|  | 252 | *              + r_s^9 (64\beta^3_2[up]) | 
|---|
|  | 253 | *            \Bigl)\f$<br> | 
|---|
|  | 254 | *        \f$r_s\f$< 1: \f$\frac{16\pi^2 r_s^6}{243} \bigr (9A[up] + r_s\cdot(6C[up]+8C[up]\log(r_s)+8D[up]) \bigl)\f$<br> | 
|---|
|  | 255 | * \sa CalcVCr() | 
|---|
|  | 256 | */ | 
|---|
|  | 257 | #ifdef HAVE_INLINE | 
|---|
|  | 258 | inline static double CalcVVVCr(struct ExCor *EC, double rs, enum UnPolarised up) { | 
|---|
|  | 259 | #else | 
|---|
|  | 260 | static double CalcVVVCr(struct ExCor *EC, double rs, enum UnPolarised up) { | 
|---|
|  | 261 | #endif | 
|---|
|  | 262 | double eps,deps; | 
|---|
|  | 263 | double beta11,beta12,beta13,beta21,beta22,beta23; | 
|---|
|  | 264 | if (rs <= EC->epsilon0) return (0); | 
|---|
|  | 265 | if (rs >= 1) { | 
|---|
|  | 266 | deps = 1.+EC->beta_1[up]*sqrt(rs)+EC->beta_2[up]*rs; | 
|---|
|  | 267 | eps=EC->gamma[up]/deps; | 
|---|
|  | 268 | beta11 = EC->beta_1[up]; | 
|---|
|  | 269 | beta12 = beta11*EC->beta_1[up]; | 
|---|
|  | 270 | beta13 = beta12*EC->beta_1[up]; | 
|---|
|  | 271 | beta21 = EC->beta_2[up]; | 
|---|
|  | 272 | beta22 = beta21*EC->beta_2[up]; | 
|---|
|  | 273 | beta23 = beta22*EC->beta_2[up]; | 
|---|
|  | 274 | //    return (-2.*eps*PI*PI/(243.*deps*deps*deps)*( | 
|---|
|  | 275 | //            pow(rs,13./2.) * (35.*beta11) | 
|---|
|  | 276 | //          + pow(rs,7.) * (64.*beta21 + 76.*beta12) | 
|---|
|  | 277 | //          + pow(rs,15./2.) * (35.*beta13 + 234.*beta11*beta21) | 
|---|
|  | 278 | //          + pow(rs,8.) * (176.*beta22 + 140.*beta12*beta21) | 
|---|
|  | 279 | //          + pow(rs,17./2.) * (175.*beta11*beta22) | 
|---|
|  | 280 | //          + pow(rs,9.) * (64.*beta23) )); | 
|---|
|  | 281 | return (-2.*eps*PI*PI/(243.*deps*deps*deps)*( | 
|---|
|  | 282 | rs*rs*rs*rs*rs*rs*( | 
|---|
|  | 283 | sqrt(rs) *((35.*beta11)  // fractial ones | 
|---|
|  | 284 | + rs *((35.*beta13 + 234.*beta11*beta21) | 
|---|
|  | 285 | + rs * (175.*beta11*beta22)) | 
|---|
|  | 286 | ) | 
|---|
|  | 287 | + rs * ((64.*beta21 + 76.*beta12) // integer ones | 
|---|
|  | 288 | + rs * ((176.*beta22 + 140.*beta12*beta21) | 
|---|
|  | 289 | + rs * ((64.*beta23) )))))); | 
|---|
|  | 290 | } | 
|---|
|  | 291 | //return (16.*PI*PI*pow(rs,6)/243. * (9.*EC->A[up] + rs*(8.*EC->C[up]*log(rs) + 6.*EC->C[up] + 8.*EC->D[up]))); | 
|---|
|  | 292 | return (16.*PI*PI*rs*rs*rs*rs*rs*rs/243. * (9.*EC->A[up] + rs*(8.*EC->C[up]*log(rs) + 6.*EC->C[up] + 8.*EC->D[up]))); | 
|---|
|  | 293 | } | 
|---|
|  | 294 |  | 
|---|
|  | 295 | /** Calculates spin polarisation \f$\zeta\f$ | 
|---|
|  | 296 | * \param *EC ExCor exchange correlation structure | 
|---|
|  | 297 | * \param pUp SpinUp electron density | 
|---|
|  | 298 | * \param pDown SpinDown electron density | 
|---|
|  | 299 | * \return \f$\frac{pUp - pDown}{pUp + pDown}\f$ | 
|---|
|  | 300 | * \note zeta is never less than ExCor::epsilon0 | 
|---|
|  | 301 | */ | 
|---|
|  | 302 | #ifdef HAVE_INLINE | 
|---|
|  | 303 | inline double CalcZeta(struct ExCor *EC, double pUp, double pDown) { | 
|---|
|  | 304 | #else | 
|---|
|  | 305 | double CalcZeta(struct ExCor *EC, double pUp, double pDown) { | 
|---|
|  | 306 | #endif | 
|---|
|  | 307 | if (fabs(pUp+pDown) < EC->epsilon0) return(0); | 
|---|
|  | 308 | return ((pUp - pDown)/(pUp + pDown)); | 
|---|
|  | 309 | } | 
|---|
|  | 310 |  | 
|---|
|  | 311 | /** Calculates derivative \f$\frac{\delta \zeta}{\delta p}\f$ | 
|---|
|  | 312 | * \param *EC ExCor exchange correlation structure | 
|---|
|  | 313 | * \param ST SpinType | 
|---|
|  | 314 | * \param pUp SpinUp density | 
|---|
|  | 315 | * \param pDown SpinDown density | 
|---|
|  | 316 | * \return p is pUp or pDown: \f$\pm 2 \frac{p}{ (pUp+pDown)^2 }\f$ | 
|---|
|  | 317 | * \sa CalcZeta() | 
|---|
|  | 318 | */ | 
|---|
|  | 319 | #ifdef HAVE_INLINE | 
|---|
|  | 320 | inline static double CalcDzeta(struct ExCor *EC, enum SpinType ST, double pUp, double pDown) { | 
|---|
|  | 321 | #else | 
|---|
|  | 322 | static double CalcDzeta(struct ExCor *EC, enum SpinType ST, double pUp, double pDown) { | 
|---|
|  | 323 | #endif | 
|---|
|  | 324 | double res = 0; | 
|---|
|  | 325 | if (fabs(pUp+pDown) < EC->epsilon0) return(0); | 
|---|
|  | 326 | //EC = EC; | 
|---|
|  | 327 | switch(ST) { | 
|---|
|  | 328 | case SpinUp: | 
|---|
|  | 329 | res = 2.*pDown/(pUp+pDown)/(pUp+pDown); // formula checked | 
|---|
|  | 330 | break; | 
|---|
|  | 331 | case SpinDown: | 
|---|
|  | 332 | res = -2.*pUp/(pUp+pDown)/(pUp+pDown); // formula checked | 
|---|
|  | 333 | break; | 
|---|
|  | 334 | case SpinDouble: | 
|---|
|  | 335 | res = 0; | 
|---|
|  | 336 | break; | 
|---|
|  | 337 | } | 
|---|
|  | 338 | return (res); | 
|---|
|  | 339 | } | 
|---|
|  | 340 |  | 
|---|
|  | 341 | /** Calculates second derivative \f$\frac{\delta^2 \zeta}{\delta p^2}\f$ | 
|---|
|  | 342 | * \param *EC ExCor exchange correlation structure | 
|---|
|  | 343 | * \param ST SpinType | 
|---|
|  | 344 | * \param pUp SpinUp density | 
|---|
|  | 345 | * \param pDown SpinDown density | 
|---|
|  | 346 | * \return p is pUp or pDown: \f$\pm 4 \frac{p}{ (pUp+pDown)^3 }\f$ | 
|---|
|  | 347 | * \sa CalcZeta(), CalcDZeta() | 
|---|
|  | 348 | */ | 
|---|
|  | 349 | #ifdef HAVE_INLINE | 
|---|
|  | 350 | inline static double CalcD2zeta(struct ExCor *EC, enum SpinType ST, double pUp, double pDown) { | 
|---|
|  | 351 | #else | 
|---|
|  | 352 | static double CalcD2zeta(struct ExCor *EC, enum SpinType ST, double pUp, double pDown) { | 
|---|
|  | 353 | #endif | 
|---|
|  | 354 | double res = 0; | 
|---|
|  | 355 | if (fabs(pUp+pDown) < EC->epsilon0) return(0); | 
|---|
|  | 356 | //EC = EC; | 
|---|
|  | 357 | switch(ST) { | 
|---|
|  | 358 | case SpinUp: | 
|---|
|  | 359 | res = -4.*pDown/(pUp+pDown)/(pUp+pDown)/(pUp+pDown); | 
|---|
|  | 360 | break; | 
|---|
|  | 361 | case SpinDown: | 
|---|
|  | 362 | res = 4.*pUp/(pUp+pDown)/(pUp+pDown)/(pUp+pDown); | 
|---|
|  | 363 | break; | 
|---|
|  | 364 | case SpinDouble: | 
|---|
|  | 365 | res = 0; | 
|---|
|  | 366 | break; | 
|---|
|  | 367 | } | 
|---|
|  | 368 | return (res); | 
|---|
|  | 369 | } | 
|---|
|  | 370 |  | 
|---|
|  | 371 | /** Calculates third derivative \f$\frac{\delta^3 \zeta}{\delta p^3}\f$ | 
|---|
|  | 372 | * \param *EC ExCor exchange correlation structure | 
|---|
|  | 373 | * \param ST SpinType | 
|---|
|  | 374 | * \param pUp SpinUp density | 
|---|
|  | 375 | * \param pDown SpinDown density | 
|---|
|  | 376 | * \return p is pUp or pDown: \f$\pm -12 \frac{p}{ (pUp+pDown)^4 }\f$ | 
|---|
|  | 377 | * \sa CalcZeta(), CalcDZeta(), CalcD2Zeta() | 
|---|
|  | 378 | */ | 
|---|
|  | 379 | #ifdef HAVE_INLINE | 
|---|
|  | 380 | inline static double CalcD3zeta(struct ExCor *EC, enum SpinType ST, double pUp, double pDown) { | 
|---|
|  | 381 | #else | 
|---|
|  | 382 | static double CalcD3zeta(struct ExCor *EC, enum SpinType ST, double pUp, double pDown) { | 
|---|
|  | 383 | #endif | 
|---|
|  | 384 | double res = 0; | 
|---|
|  | 385 | if (fabs(pUp+pDown) < EC->epsilon0) return(0); | 
|---|
|  | 386 | //EC = EC; | 
|---|
|  | 387 | switch(ST) { | 
|---|
|  | 388 | case SpinUp: | 
|---|
|  | 389 | res = +12.*pDown/(pUp+pDown)/(pUp+pDown)/(pUp+pDown)/(pUp+pDown); | 
|---|
|  | 390 | break; | 
|---|
|  | 391 | case SpinDown: | 
|---|
|  | 392 | res = -12.*pUp/(pUp+pDown)/(pUp+pDown)/(pUp+pDown)/(pUp+pDown); | 
|---|
|  | 393 | break; | 
|---|
|  | 394 | case SpinDouble: | 
|---|
|  | 395 | res = 0; | 
|---|
|  | 396 | break; | 
|---|
|  | 397 | } | 
|---|
|  | 398 | return (res); | 
|---|
|  | 399 | } | 
|---|
|  | 400 |  | 
|---|
|  | 401 | /** Calculates auxiliary factor \f$f(\zeta)\f$. | 
|---|
|  | 402 | * This auxiliary factor is needed in the parametrized evaluation of the | 
|---|
|  | 403 | * full spin-polarised correlation energy \f${\cal E}_c\f$ (see section 2.3.6) | 
|---|
|  | 404 | * \param *EC ExCor exchange correlation structure | 
|---|
|  | 405 | * \param zeta spin polarisation \f$\zeta\f$, see CalcZeta() | 
|---|
|  | 406 | * \return \f$\frac{(1+\zeta)^{4/3} + (1-\zeta)^{4/3} - 2} {2^{4/3}-2}\f$ | 
|---|
|  | 407 | */ | 
|---|
|  | 408 | #ifdef HAVE_INLINE | 
|---|
|  | 409 | inline static double Calcf(struct ExCor *EC, double zeta) { | 
|---|
|  | 410 | #else | 
|---|
|  | 411 | static double Calcf(struct ExCor *EC, double zeta) { | 
|---|
|  | 412 | #endif | 
|---|
|  | 413 | double res =0; | 
|---|
|  | 414 | EC = EC; | 
|---|
|  | 415 | if (fabs(zeta) < EC->epsilon0) return(0.); // unpolarised case | 
|---|
|  | 416 | //res = ((pow(1.+zeta,4./3.)+pow(1.-zeta,4./3.)-2.)/(EC->fac243-2.)); | 
|---|
|  | 417 | res = ((cbrt(1.+zeta)*(1.+zeta)+cbrt(1.-zeta)*(1.-zeta)-2.)/(EC->fac243-2.)); | 
|---|
|  | 418 | return (res); | 
|---|
|  | 419 | } | 
|---|
|  | 420 |  | 
|---|
|  | 421 | /** Calculates the derivative \f$\frac{\delta f}{\delta \zeta}\f$. | 
|---|
|  | 422 | * \param *EC ExCor exchange correlation structure | 
|---|
|  | 423 | * \param zeta spin polarisation \f$\zeta\f$, see CalcZeta() | 
|---|
|  | 424 | * \return \f$\frac{4}{3} \frac{(\zeta+1)^{1/3} - (1-\zeta)^{1/3}} {2^{4/3}-2}\f$ | 
|---|
|  | 425 | * \sa Calcf() | 
|---|
|  | 426 | */ | 
|---|
|  | 427 | #ifdef HAVE_INLINE | 
|---|
|  | 428 | inline static double CalcDf(struct ExCor *EC, double zeta) { | 
|---|
|  | 429 | #else | 
|---|
|  | 430 | static double CalcDf(struct ExCor *EC, double zeta) { | 
|---|
|  | 431 | #endif | 
|---|
|  | 432 | if (fabs(zeta) < EC->epsilon0) return(0.); // unpolarised case | 
|---|
|  | 433 | //return((4./3.)*(pow(zeta+1.,1./3.)-pow(1.-zeta,1./3.))/(EC->fac243-2.)); // formula checked (16.5.06) | 
|---|
|  | 434 | return((4./3.)*(cbrt(zeta+1.)-cbrt(1.-zeta))/(EC->fac243-2.)); // formula checked (16.5.06) | 
|---|
|  | 435 | } | 
|---|
|  | 436 |  | 
|---|
|  | 437 | /** Calculates second derivative \f$\frac{\delta^2 f}{\delta \zeta^2}\f$. | 
|---|
|  | 438 | * \param *EC ExCor exchange correlation structure | 
|---|
|  | 439 | * \param zeta spin polarisation \f$\zeta\f$, see CalcZeta() | 
|---|
|  | 440 | * \return \f$\frac{4}{9} \frac{(\zeta+1)^{-2/3}-(1-\zeta)^{-2/3} }{2^{4/3}-2}\f$ | 
|---|
|  | 441 | * \sa Calcf(), CalcDf() | 
|---|
|  | 442 | */ | 
|---|
|  | 443 | #ifdef HAVE_INLINE | 
|---|
|  | 444 | inline static double CalcD2f(struct ExCor *EC, double zeta) { | 
|---|
|  | 445 | #else | 
|---|
|  | 446 | static double CalcD2f(struct ExCor *EC, double zeta) { | 
|---|
|  | 447 | #endif | 
|---|
|  | 448 | if (fabs(zeta) < EC->epsilon0) return(0.); // unpolarised case | 
|---|
|  | 449 | if (1.-fabs(zeta) < EC->epsilon0) return (0.);  // second derivative not defined for these cases (which are needed!) | 
|---|
|  | 450 | //if (1-fabs(zeta) < EC->epsilon0) { fprintf(stderr,"CalcD2f: zeta = %lg\n",zeta); return(0); } | 
|---|
|  | 451 | //return((4./9.)*(pow(zeta+1.,-2./3.)+pow(1.-zeta,-2./3.))/(EC->fac243-2.));  // formula checked (16.5.06) | 
|---|
| [f2ce71c] | 452 | return((4./9.)*(1./cbrt((zeta+1.)*(zeta+1.))+1./cbrt((1.-zeta)*(1.-zeta)))/(EC->fac243-2.));  // formula checked (16.5.06) | 
|---|
| [a0bcf1] | 453 | } | 
|---|
|  | 454 |  | 
|---|
|  | 455 | /** Calculates third derivative \f$\frac{\delta^3 f}{\delta \zeta^3}\f$. | 
|---|
|  | 456 | * \param *EC ExCor exchange correlation structure | 
|---|
|  | 457 | * \param zeta spin polarisation \f$\zeta\f$, see CalcZeta() | 
|---|
|  | 458 | * \return \f$\frac{8}{27} \frac{-(\zeta+1)^{-5/3}+(1-\zeta)^{-5/3} }{2^{4/3}-2}\f$ | 
|---|
|  | 459 | * \sa Calcf(), CalcDf() | 
|---|
|  | 460 | */ | 
|---|
|  | 461 | #ifdef HAVE_INLINE | 
|---|
|  | 462 | inline static double CalcD3f(struct ExCor *EC, double zeta) { | 
|---|
|  | 463 | #else | 
|---|
|  | 464 | static double CalcD3f(struct ExCor *EC, double zeta) { | 
|---|
|  | 465 | #endif | 
|---|
|  | 466 | if (fabs(zeta) < EC->epsilon0) return(0.); // unpolarised case | 
|---|
|  | 467 | //if (1-fabs(zeta) < EC->epsilon0) return (0.);  // second derivative not defined for these cases (which are needed!) | 
|---|
|  | 468 | if (1-fabs(zeta) < EC->epsilon0) { fprintf(stderr,"CalcD2f: zeta = %lg\n",zeta); return(0.); } | 
|---|
|  | 469 | //return((-8./27.)*(pow(zeta+1.,-5./3.)-pow(1.-zeta,-5./3.))/(EC->fac243-2.));  // formula checked (16.5.06) | 
|---|
|  | 470 | return((-8./27.)*(1/((zeta+1)*cbrt((zeta+1.)*(zeta+1.)))-1/((zeta+1)*cbrt((1.-zeta)*(1.-zeta))))/(EC->fac243-2.));  // formula checked (16.5.06) | 
|---|
|  | 471 | } | 
|---|
|  | 472 |  | 
|---|
|  | 473 | /** Calculates correlation energy with free spin-polarisation \f$E_c (n,\zeta)\f$. | 
|---|
|  | 474 | * \param *EC exchange correlation structure | 
|---|
|  | 475 | * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs() | 
|---|
|  | 476 | * \param zeta spin polarisation \f$\zeta\f$, see CalcZeta() | 
|---|
|  | 477 | * \param p electron density \f$n\f$ | 
|---|
|  | 478 | * \return \f$0 \leq \zeta \leq 1:\quad E_c (n,\zeta) = {\cal E}_c (n,\zeta)\cdot n = \bigr ({\cal E}_c(n,0) + [{\cal E}_c(n,1) - {\cal E}_c(n,0)] f(\zeta)\bigl ) \cdot n \qquad (2.3.6)\f$ | 
|---|
|  | 479 | * \sa CalcECr() | 
|---|
|  | 480 | */ | 
|---|
|  | 481 | #ifdef HAVE_INLINE | 
|---|
|  | 482 | inline double CalcSECr(struct ExCor *EC, double rs, double zeta, double p) { | 
|---|
|  | 483 | #else | 
|---|
|  | 484 | double CalcSECr(struct ExCor *EC, double rs, double zeta, double p) { | 
|---|
|  | 485 | #endif | 
|---|
|  | 486 | double res =0; | 
|---|
|  | 487 | double unpol, pol; | 
|---|
|  | 488 | unpol = CalcECr(EC,rs,unpolarised); | 
|---|
|  | 489 | pol = CalcECr(EC,rs,polarised); | 
|---|
|  | 490 | res = (unpol+Calcf(EC,zeta)*(pol-unpol))*p; | 
|---|
|  | 491 | return (res); | 
|---|
|  | 492 | } | 
|---|
|  | 493 |  | 
|---|
|  | 494 | /** Calculates SpinType-dependently correlation potential with free spin-polarisation \f$V_c (n,\zeta)\f$. | 
|---|
|  | 495 | * \f[ | 
|---|
|  | 496 | *  V_c = {\cal E}_c + \frac{\delta{\ E}_c}{\delta n}n = V_c(n,0) + [V_c(n,1)-V_c(n,0)]f(\zeta) | 
|---|
|  | 497 | *      + [{\cal E}_c(n,1)-{\cal E}_c(N,0)]\frac{\delta f(\zeta)}{\delta \zeta}\frac{\delta\zeta}{\delta n} | 
|---|
|  | 498 | * \f] | 
|---|
|  | 499 | * \param *EC ExCor exchange correlation structure | 
|---|
|  | 500 | * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs() | 
|---|
|  | 501 | * \param zeta spin polarisation \f$\zeta\f$, see CalcZeta() | 
|---|
|  | 502 | * \param ST SpinType | 
|---|
|  | 503 | * \return \f$V_c(n,0) + [V_c(n,1)-V_c(n,0)]f(\zeta) + [{\cal E}_c(n,1)-{\cal E}_c(N,0)](\pm1-\zeta)\frac{\delta f(\zeta)}{\delta \zeta}\f$ | 
|---|
|  | 504 | */ | 
|---|
|  | 505 | #ifdef HAVE_INLINE | 
|---|
|  | 506 | inline static double CalcSVCr(struct ExCor *EC, double rs, double zeta, enum SpinType ST) { | 
|---|
|  | 507 | #else | 
|---|
|  | 508 | static double CalcSVCr(struct ExCor *EC, double rs, double zeta, enum SpinType ST) { | 
|---|
|  | 509 | #endif | 
|---|
|  | 510 | double res = 0; | 
|---|
|  | 511 | double VCR_unpol = CalcVCr(EC,rs,unpolarised); | 
|---|
|  | 512 | switch (ST) { | 
|---|
|  | 513 | case SpinUp: | 
|---|
|  | 514 | res = VCR_unpol + Calcf(EC,zeta)*(CalcVCr(EC,rs,polarised)-VCR_unpol) + (CalcECr(EC,rs,polarised)-CalcECr(EC,rs,unpolarised))*(1.-zeta)*CalcDf(EC,zeta); // formula checked (15.5.06) | 
|---|
|  | 515 | break; | 
|---|
|  | 516 | case SpinDown: | 
|---|
|  | 517 | res = VCR_unpol + Calcf(EC,zeta)*(CalcVCr(EC,rs,polarised)-VCR_unpol) + (CalcECr(EC,rs,polarised)-CalcECr(EC,rs,unpolarised))*(-1.-zeta)*CalcDf(EC,zeta); // formula checked (15.5.06) | 
|---|
|  | 518 | break; | 
|---|
|  | 519 | case SpinDouble: | 
|---|
| [6c8ee7] | 520 | res = VCR_unpol; /*EC->fac1213**/ | 
|---|
| [a0bcf1] | 521 | break; | 
|---|
|  | 522 | } | 
|---|
|  | 523 | return (res); | 
|---|
|  | 524 | } | 
|---|
|  | 525 |  | 
|---|
|  | 526 | /** Calculates complete exchange energy \f$E_x (n)\f$. | 
|---|
|  | 527 | * \param *EC exchange correlation structure | 
|---|
|  | 528 | * \param rsUp Wigner-Seitz-Radius \f$r_s\f$ for pUp | 
|---|
|  | 529 | * \param rsDown Wigner-Seitz-Radius \f$r_s\f$ for pDown | 
|---|
|  | 530 | * \param pUp SpinUp electron density | 
|---|
|  | 531 | * \param pDown SpinDown electron density | 
|---|
|  | 532 | * \return \f$E_x = {\cal E}_x \cdot n\f$ | 
|---|
|  | 533 | * \sa CalcEXrUP(), CalculateXCEnergyNoRT() | 
|---|
|  | 534 | */ | 
|---|
|  | 535 | #ifdef HAVE_INLINE | 
|---|
|  | 536 | inline double CalcSEXr(struct ExCor *EC, double rsUp, double rsDown, double pUp, double pDown) { | 
|---|
|  | 537 | #else | 
|---|
|  | 538 | double CalcSEXr(struct ExCor *EC, double rsUp, double rsDown, double pUp, double pDown) { | 
|---|
|  | 539 | #endif | 
|---|
|  | 540 | return(CalcEXrUP(EC,rsUp)*pUp+CalcEXrUP(EC,rsDown)*pDown); | 
|---|
|  | 541 | } | 
|---|
|  | 542 |  | 
|---|
|  | 543 | /** Calculates SpinType-dependently exchange potential \f$V_x (n)\f$. | 
|---|
|  | 544 | * Essentially, just CalcVXrUP() is called, even in SpinDouble case | 
|---|
|  | 545 | * \param *EC ExCor exchange correlation structure | 
|---|
|  | 546 | * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs() | 
|---|
|  | 547 | * \param ST SpinType | 
|---|
|  | 548 | * \return CalcVXrUP() | 
|---|
|  | 549 | */ | 
|---|
|  | 550 | #ifdef HAVE_INLINE | 
|---|
|  | 551 | inline static double CalcSVXr(struct ExCor *EC, double rs, enum SpinType ST) { | 
|---|
|  | 552 | #else | 
|---|
|  | 553 | static double CalcSVXr(struct ExCor *EC, double rs, enum SpinType ST) { | 
|---|
|  | 554 | #endif | 
|---|
|  | 555 | double res = 0; | 
|---|
|  | 556 | switch (ST) { | 
|---|
|  | 557 | case SpinUp: | 
|---|
|  | 558 | case SpinDown: | 
|---|
|  | 559 | res = CalcVXrUP(EC,rs); | 
|---|
|  | 560 | break; | 
|---|
|  | 561 | case SpinDouble: | 
|---|
|  | 562 | res = EC->fac1213*CalcVXrUP(EC,rs); | 
|---|
|  | 563 | break; | 
|---|
|  | 564 | } | 
|---|
|  | 565 | return (res); | 
|---|
|  | 566 | } | 
|---|
|  | 567 |  | 
|---|
|  | 568 | /** Calculates SpinType-dependently derivative of exchange potential \f$\frac{\delta V_x}{\delta n}\f$. | 
|---|
|  | 569 | * Essentially, just CalcVVXrUP() is called, even in SpinDouble case | 
|---|
|  | 570 | * \param *EC ExCor exchange correlation structure | 
|---|
|  | 571 | * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs() | 
|---|
|  | 572 | * \param ST SpinType | 
|---|
|  | 573 | * \return CalcVVXrUP() | 
|---|
|  | 574 | */ | 
|---|
|  | 575 | #ifdef HAVE_INLINE | 
|---|
|  | 576 | inline double CalcSVVXr(struct ExCor *EC, double rs, enum SpinType ST) { | 
|---|
|  | 577 | #else | 
|---|
|  | 578 | double CalcSVVXr(struct ExCor *EC, double rs, enum SpinType ST) { | 
|---|
|  | 579 | #endif | 
|---|
|  | 580 | double res = 0; | 
|---|
|  | 581 | switch (ST) { | 
|---|
|  | 582 | case SpinUp: | 
|---|
|  | 583 | case SpinDown: | 
|---|
|  | 584 | res = CalcVVXrUP(EC,rs); | 
|---|
|  | 585 | break; | 
|---|
|  | 586 | case SpinDouble: | 
|---|
|  | 587 | res = EC->fac1213*CalcVVXrUP(EC,rs); | 
|---|
|  | 588 | break; | 
|---|
|  | 589 | } | 
|---|
|  | 590 | return (res); | 
|---|
|  | 591 | } | 
|---|
|  | 592 |  | 
|---|
|  | 593 | /** Calculates SpinType-dependently second derivative of exchange potential \f$\frac{\delta^2 V_x}{\delta n^2}\f$. | 
|---|
|  | 594 | * Essentially, just CalcVVVXrUP() is called, even in SpinDouble case | 
|---|
|  | 595 | * \param *EC ExCor exchange correlation structure | 
|---|
|  | 596 | * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs() | 
|---|
|  | 597 | * \param ST SpinType | 
|---|
|  | 598 | * \return CalcVVVXrUP() | 
|---|
|  | 599 | */ | 
|---|
|  | 600 | #ifdef HAVE_INLINE | 
|---|
|  | 601 | inline double CalcSVVVXr(struct ExCor *EC, double rs, enum SpinType ST) { | 
|---|
|  | 602 | #else | 
|---|
|  | 603 | double CalcSVVVXr(struct ExCor *EC, double rs, enum SpinType ST) { | 
|---|
|  | 604 | #endif | 
|---|
|  | 605 | double res = 0; | 
|---|
|  | 606 | switch (ST) { | 
|---|
|  | 607 | case SpinUp: | 
|---|
|  | 608 | case SpinDown: | 
|---|
|  | 609 | res = CalcVVVXrUP(EC,rs); | 
|---|
|  | 610 | break; | 
|---|
|  | 611 | case SpinDouble: | 
|---|
|  | 612 | res = EC->fac1213*CalcVVVXrUP(EC,rs); | 
|---|
|  | 613 | break; | 
|---|
|  | 614 | } | 
|---|
|  | 615 | return (res); | 
|---|
|  | 616 | } | 
|---|
|  | 617 |  | 
|---|
|  | 618 | /** Calculates SpinType-dependently first derivative of correlation potential with free spin-polarisation \f$\frac{\delta V_c}{\delta n} (n,\zeta)\f$. | 
|---|
|  | 619 | * \param *EC ExCor exchange correlation structure | 
|---|
|  | 620 | * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs() | 
|---|
|  | 621 | * \param zeta spin polarisation \f$\zeta\f$, see CalcZeta() | 
|---|
|  | 622 | * \param ST SpinType | 
|---|
|  | 623 | * \param pUp SpinUp density | 
|---|
|  | 624 | * \param pDown SpinDown density | 
|---|
|  | 625 | * \return \f$\frac{\delta V_c}{\delta n} (n,0) + f(\zeta) \bigr ( \frac{\delta V_c}{\delta n} (n,1) - \frac{\delta V_c}{\delta n} (n,0)\bigl ) | 
|---|
|  | 626 | *  + 2 \cdot \frac{\delta f}{\delta \zeta} \frac{\delta \zeta}{\delta n} \bigr ( V_c (n,1) - V_c (n,0)\bigl ) + \ldots\f$<br> | 
|---|
|  | 627 | *  \f$\ldots + ({\cal E}_c (n,1) - {\cal E}_c (n,0) ) n (\frac{\delta^2 \zeta}{\delta n^2}\frac{\delta f}{\delta \zeta} + \bigr(\frac{\delta \zeta}{\delta n}\bigl)^2 | 
|---|
|  | 628 | * \frac{\delta f}{\delta \zeta})\f$ | 
|---|
|  | 629 | * \sa CalcSVCr() | 
|---|
|  | 630 | */ | 
|---|
|  | 631 | #ifdef HAVE_INLINE | 
|---|
|  | 632 | inline double CalcSVVCr(struct ExCor *EC, double rs, double zeta, enum SpinType ST, double pUp, double pDown) { | 
|---|
|  | 633 | #else | 
|---|
|  | 634 | double CalcSVVCr(struct ExCor *EC, double rs, double zeta, enum SpinType ST, double pUp, double pDown) { | 
|---|
|  | 635 | #endif | 
|---|
|  | 636 | double res = 0; | 
|---|
|  | 637 | double VVCR_pol, VVCR_unpol, VCR_pol, VCR_unpol, ECr_pol, ECr_unpol, f, Df, D2f, DZeta, D2Zeta; | 
|---|
|  | 638 | switch (ST) { | 
|---|
|  | 639 | case SpinUp: | 
|---|
|  | 640 | case SpinDown: | 
|---|
|  | 641 | // store some function calls for faster and easierly understandable operation | 
|---|
|  | 642 | VVCR_unpol = CalcVVCr(EC,rs,unpolarised); | 
|---|
|  | 643 | VVCR_pol = CalcVVCr(EC,rs,polarised); | 
|---|
|  | 644 | ECr_pol = CalcECr(EC,rs,polarised); | 
|---|
|  | 645 | ECr_unpol = CalcECr(EC,rs,unpolarised); | 
|---|
|  | 646 | f = Calcf(EC,zeta); | 
|---|
|  | 647 | Df = CalcDf(EC,zeta); | 
|---|
|  | 648 | D2Zeta = CalcD2zeta(EC,ST,pUp,pDown); | 
|---|
|  | 649 | if (CalcDzeta(EC,ST,pUp,pDown) != 0.0) { | 
|---|
|  | 650 | VCR_unpol = CalcVCr(EC,rs,unpolarised); | 
|---|
|  | 651 | VCR_pol = CalcVCr(EC,rs,polarised); | 
|---|
|  | 652 | D2f = CalcD2f(EC,zeta); | 
|---|
|  | 653 | DZeta = CalcDzeta(EC,ST,pUp,pDown); | 
|---|
|  | 654 | res = VVCR_unpol + f*(VVCR_pol-VVCR_unpol) + 2.*DZeta*Df*(VCR_pol-VCR_unpol) + (ECr_pol-ECr_unpol)*(pUp+pDown)*(D2Zeta*Df + DZeta*DZeta*D2f); //formula checked (15.5.06) | 
|---|
|  | 655 | } else { | 
|---|
|  | 656 | res = VVCR_unpol + f*(VVCR_pol-VVCR_unpol) + (ECr_pol-ECr_unpol)*(pUp+pDown)*(D2Zeta*Df);  //formula checked (15.5.06) | 
|---|
|  | 657 | } | 
|---|
|  | 658 | break; | 
|---|
|  | 659 | case SpinDouble: | 
|---|
|  | 660 | res = CalcVVCr(EC,rs,unpolarised); | 
|---|
|  | 661 | break; | 
|---|
|  | 662 | } | 
|---|
|  | 663 | return (res); | 
|---|
|  | 664 | } | 
|---|
|  | 665 |  | 
|---|
|  | 666 | /** Calculates SpinType-dependently second derivative of correlation potential with free spin-polarisation \f$\frac{\delta V_c}{\delta n} (n,\zeta)\f$. | 
|---|
|  | 667 | * \param *EC ExCor exchange correlation structure | 
|---|
|  | 668 | * \param rs Wigner-Seitz-Radius \f$r_s\f$, see Calcrs() | 
|---|
|  | 669 | * \param zeta spin polarisation \f$\zeta\f$, see CalcZeta() | 
|---|
|  | 670 | * \param ST SpinType | 
|---|
|  | 671 | * \param pUp SpinUp density | 
|---|
|  | 672 | * \param pDown SpinDown density | 
|---|
|  | 673 | * \return \f$\frac{\delta^2 V_c}{\delta n^2} (n,0) + f(\zeta) \bigr ( \frac{\delta^2 V_c}{\delta n^2} (n,1) - \frac{\delta^2 V_c}{\delta n^2} (n,0)\bigl ) | 
|---|
|  | 674 | *  + 3 \cdot \frac{\delta f}{\delta \zeta} \frac{\delta \zeta}{\delta n} \bigr ( \frac{\delta V_c}{\delta n} (n,1) - \frac{\delta V_c}{\delta n} (n,0) \bigl ) + \ldots\f$<br> | 
|---|
|  | 675 | *  \f$\ldots + 3 \cdot (\frac{\delta^2 f}{\delta \zeta^2} (\frac{\delta \zeta}{\delta n})^2 + \frac{\delta f}{\delta \zeta} \frac{\delta^2 \zeta}{\delta n^2} ) \bigr ( V_c (n,1) - V_c (n,0)\bigl ) + | 
|---|
|  | 676 | *  + ({\cal E}_c (n,1) - {\cal E}_c (n,0) ) n \bigr (\frac{\delta^3 \zeta}{\delta n^3}(\frac{\delta f}{\delta \zeta})^3 + 3\cdot \frac{\delta^2 f}{\delta \zeta^2}\frac{\delta \zeta}{\delta n}\frac{\delta^2 \zeta}{\delta n^2} + \frac{\delta f}{\delta \zeta}\frac{\delta^3 \zeta}{\delta n^3}\bigl)^2\f$ | 
|---|
|  | 677 | * \sa CalcSVCr(), CalcSVVCr() | 
|---|
|  | 678 | */ | 
|---|
|  | 679 | #ifdef HAVE_INLINE | 
|---|
|  | 680 | inline double CalcSVVVCr(struct ExCor *EC, double rs, double zeta, enum SpinType ST, double pUp, double pDown) { | 
|---|
|  | 681 | #else | 
|---|
|  | 682 | double CalcSVVVCr(struct ExCor *EC, double rs, double zeta, enum SpinType ST, double pUp, double pDown) { | 
|---|
|  | 683 | #endif | 
|---|
|  | 684 | double res = 0; | 
|---|
|  | 685 | double VVVCR_pol, VVVCR_unpol, VVCR_pol, VVCR_unpol, VCR_pol, VCR_unpol, ECr_pol, ECr_unpol, f, Df, D2f, D3f, DZeta, D2Zeta, D3Zeta; | 
|---|
|  | 686 | switch (ST) { | 
|---|
|  | 687 | case SpinUp: | 
|---|
|  | 688 | case SpinDown: | 
|---|
|  | 689 | // store some function calls for faster and easierly understandable operation | 
|---|
|  | 690 | VVVCR_unpol = CalcVVVCr(EC,rs,unpolarised); | 
|---|
|  | 691 | VVVCR_pol = CalcVVVCr(EC,rs,polarised); | 
|---|
|  | 692 | VCR_unpol = CalcVCr(EC,rs,unpolarised); | 
|---|
|  | 693 | VCR_pol = CalcVCr(EC,rs,polarised); | 
|---|
|  | 694 | ECr_pol = CalcECr(EC,rs,polarised); | 
|---|
|  | 695 | ECr_unpol = CalcECr(EC,rs,unpolarised); | 
|---|
|  | 696 | f = Calcf(EC,zeta); | 
|---|
|  | 697 | Df = CalcDf(EC,zeta); | 
|---|
|  | 698 | D2Zeta = CalcD2zeta(EC,ST,pUp,pDown); | 
|---|
|  | 699 | D3Zeta = CalcD3zeta(EC,ST,pUp,pDown); | 
|---|
|  | 700 | if (CalcDzeta(EC,ST,pUp,pDown) != 0.0) { | 
|---|
|  | 701 | VVCR_unpol = CalcVVCr(EC,rs,unpolarised); | 
|---|
|  | 702 | VVCR_pol = CalcVVCr(EC,rs,polarised); | 
|---|
|  | 703 | D2f = CalcD2f(EC,zeta); | 
|---|
|  | 704 | D3f = CalcD3f(EC,zeta); | 
|---|
|  | 705 | DZeta = CalcDzeta(EC,ST,pUp,pDown); | 
|---|
|  | 706 | res = VVVCR_unpol + f*(VVVCR_pol-VVVCR_unpol) + 3.*DZeta*Df*(VVCR_pol-VVCR_unpol) + 3.*(DZeta*DZeta*D2f + Df*D2Zeta)*(VCR_pol-VCR_unpol) + (ECr_pol-ECr_unpol)*(pUp+pDown)*(D3Zeta*Df + 3*D2f*DZeta*D2Zeta + DZeta*DZeta*DZeta*D3f); //formula checked (16.5.06) | 
|---|
|  | 707 | } else { | 
|---|
|  | 708 | res = VVVCR_unpol + f*(VVVCR_pol-VVVCR_unpol) + 3.*Df*D2Zeta*(VCR_pol-VCR_unpol) + (ECr_pol-ECr_unpol)*(pUp+pDown)*(D3Zeta*Df);  //formula checked (16.5.06) | 
|---|
|  | 709 | } | 
|---|
|  | 710 | break; | 
|---|
|  | 711 | case SpinDouble: | 
|---|
|  | 712 | res = CalcVVVCr(EC,rs,unpolarised); | 
|---|
|  | 713 | break; | 
|---|
|  | 714 | } | 
|---|
|  | 715 | return (res); | 
|---|
|  | 716 | } | 
|---|
|  | 717 |  | 
|---|
|  | 718 | /** SpinType-dependent calculation of exchange and correlation energy with free spin-polarisation without riemann tensor. | 
|---|
|  | 719 | * Discretely does the integration of \f${\cal E}_{xc} (n,\zeta) \cdot n\f$ on | 
|---|
|  | 720 | * the radial mesh of the respective real densities.<br> | 
|---|
|  | 721 | * Takes either whole density or separated for each SpinType and calls | 
|---|
|  | 722 | * Calcrs(), then summing each CalcSEXr() for each Density::LocalSizeR | 
|---|
|  | 723 | * and times factor RunStruct::XCEnergyFactor / LatticeLevel::MaxN | 
|---|
|  | 724 | * \param *P Problem at hand | 
|---|
|  | 725 | */ | 
|---|
|  | 726 | void CalculateXCEnergyNoRT(struct Problem *P) | 
|---|
|  | 727 | { | 
|---|
|  | 728 | struct Lattice *Lat = &P->Lat; | 
|---|
|  | 729 | struct Energy *E = Lat->E; | 
|---|
|  | 730 | struct PseudoPot *PP = &P->PP; | 
|---|
|  | 731 | struct RunStruct *R = &P->R; | 
|---|
|  | 732 | struct LatticeLevel *Lev0 = R->Lev0; | 
|---|
|  | 733 | struct Psis *Psi = &Lat->Psi; | 
|---|
|  | 734 | struct Density *Dens = Lev0->Dens; | 
|---|
|  | 735 | struct ExCor *EC = &P->ExCo; | 
|---|
|  | 736 | double SumEc = 0; | 
|---|
| [6c8ee7] | 737 | //double SumEx_GC = 0.; // Gradient correction part according to Becke '92 | 
|---|
| [a0bcf1] | 738 | double rs, p = 0.0, pUp = 0.0, pDown = 0.0, zeta, rsUp, rsDown, SumEx=0.0; | 
|---|
|  | 739 | double Factor = R->XCEnergyFactor/Lev0->MaxN; | 
|---|
| [6c8ee7] | 740 | //double Dp, DpUp, DpDown; | 
|---|
| [a0bcf1] | 741 | int i; | 
|---|
|  | 742 |  | 
|---|
|  | 743 | for (i = 0; i < Dens->LocalSizeR; i++) {  // for each node in radial mesh | 
|---|
|  | 744 | // put (corecorrected) densities in p, pUp, pDown | 
|---|
|  | 745 | p = Dens->DensityArray[TotalDensity][i]; | 
|---|
| [6c8ee7] | 746 | //Dp = DensityGradient(Dens->DensityArray[TotalDensity], i, Lev0, Lat); | 
|---|
| [a0bcf1] | 747 | if (R->CurrentMin > UnOccupied) | 
|---|
|  | 748 | if (PP->corecorr == CoreCorrected) | 
|---|
|  | 749 | p += Dens->DensityArray[CoreWaveDensity][i]; | 
|---|
|  | 750 | switch (Psi->PsiST) { | 
|---|
| [6c8ee7] | 751 | default: | 
|---|
| [a0bcf1] | 752 | case SpinDouble: | 
|---|
|  | 753 | pUp = 0.5*p; | 
|---|
|  | 754 | pDown = 0.5*p; | 
|---|
| [6c8ee7] | 755 | //DpUp = 0.5*Dp; | 
|---|
|  | 756 | //DpDown = 0.5*Dp; | 
|---|
| [a0bcf1] | 757 | break; | 
|---|
|  | 758 | case SpinUp: | 
|---|
|  | 759 | case SpinDown: | 
|---|
|  | 760 | pUp = Dens->DensityArray[TotalUpDensity][i]; | 
|---|
|  | 761 | pDown = Dens->DensityArray[TotalDownDensity][i]; | 
|---|
| [6c8ee7] | 762 | //DpUp = DensityGradient(Dens->DensityArray[TotalUpDensity], i, Lev0, Lat); | 
|---|
|  | 763 | //DpDown = DensityGradient(Dens->DensityArray[TotalDownDensity], i, Lev0, Lat); | 
|---|
| [a0bcf1] | 764 | if (PP->corecorr == CoreCorrected) { | 
|---|
|  | 765 | pUp += 0.5*Dens->DensityArray[CoreWaveDensity][i]; | 
|---|
|  | 766 | pDown += 0.5*Dens->DensityArray[CoreWaveDensity][i]; | 
|---|
|  | 767 | } | 
|---|
|  | 768 | break; | 
|---|
|  | 769 | } | 
|---|
|  | 770 | // set all to zero if one of them is negative | 
|---|
|  | 771 | if ((p < 0) || (pUp < 0) || (pDown < 0)) { | 
|---|
|  | 772 | /*fprintf(stderr,"index %i pc %g p %g\n",i,Dens->DensityArray[CoreWaveDensity][i],p);*/ | 
|---|
|  | 773 | p = 0.0; | 
|---|
|  | 774 | pUp = 0.0; | 
|---|
|  | 775 | pDown = 0.0; | 
|---|
|  | 776 | } | 
|---|
|  | 777 | // Calculation with the densities and summation | 
|---|
|  | 778 | rs = Calcrs(EC,p); | 
|---|
|  | 779 | rsUp = Calcrs(EC,pUp); | 
|---|
|  | 780 | rsDown = Calcrs(EC,pDown); | 
|---|
|  | 781 | SumEx += CalcSEXr(EC, rsUp, rsDown, pUp, pDown); | 
|---|
|  | 782 | zeta = CalcZeta(EC,pUp,pDown); | 
|---|
|  | 783 | SumEc += CalcSECr(EC, rs, zeta, p); | 
|---|
| [6c8ee7] | 784 | //SumEx_GC += CalcSE_GC(EC, pUp, DpUp); | 
|---|
|  | 785 | //SumEx_GC += CalcSE_GC(EC, pDown, DpDown); | 
|---|
| [a0bcf1] | 786 | } | 
|---|
|  | 787 | E->AllLocalDensityEnergy[CorrelationEnergy] = Factor*SumEc; | 
|---|
| [6c8ee7] | 788 | E->AllLocalDensityEnergy[ExchangeEnergy] = Factor*(SumEx); // - SumEx_GC); | 
|---|
| [a0bcf1] | 789 | } | 
|---|
|  | 790 |  | 
|---|
| [b70503] | 791 | /** Returns \f$y = \sinh^{-1}(x)\f$. | 
|---|
|  | 792 | * Recall that \f$ x = sinh (y) =  \frac{\exp(y)-\exp(-y)}{2}\f$. Then, solve the in \f$\exp(y)\f$ quadratic | 
|---|
|  | 793 | * equation: \f$\exp(2y) - 1 - 2x\exp(y) = 0\f$ by pq-formula. | 
|---|
|  | 794 | * \param arg argument \f$x\f$ | 
|---|
|  | 795 | * \return \f$\sinh^{-1}(x) = \ln(x+\sqrt{x^2+1})\f$ | 
|---|
|  | 796 | */ | 
|---|
|  | 797 | inline static double sinh_inverse(double arg) | 
|---|
|  | 798 | { | 
|---|
|  | 799 | return log(arg+sqrt(arg*arg+1)); | 
|---|
|  | 800 | } | 
|---|
|  | 801 |  | 
|---|
|  | 802 | /** Gradient correction according to Becke '92. | 
|---|
|  | 803 | * \param EC ExCor structure | 
|---|
|  | 804 | * \param p \f$\rho\f$ local density | 
|---|
|  | 805 | * \param Dp \f$|\nabla \rho|\f$ local magnitude of density gradient | 
|---|
|  | 806 | * \return \f$b \rho^{4/3} \frac{x^2}{(1+6bx \sinh^-1 x}\f$ with \f$x = \frac{|\nabla \rho|}{\rho^{4/3}}\f$ | 
|---|
|  | 807 | */ | 
|---|
|  | 808 | double CalcSE_GC(struct ExCor *EC, double p, double Dp) | 
|---|
|  | 809 | { | 
|---|
|  | 810 | double res = 0.; | 
|---|
|  | 811 | double b = 0.0042;  // in atomic units, empirical constant fitted to noble gas atoms | 
|---|
|  | 812 | double x = Dp/pow(p, 4./3.); | 
|---|
|  | 813 | res = b * pow(p, 4./3.) * x/(1+6.*b*x*sinh_inverse(x)); | 
|---|
|  | 814 |  | 
|---|
|  | 815 | return res; | 
|---|
|  | 816 | } | 
|---|
|  | 817 |  | 
|---|
|  | 818 | /** Evaluates magnitude of gradient by simple 3-star. | 
|---|
|  | 819 | * \param *density density array | 
|---|
|  | 820 | * \param i current node | 
|---|
|  | 821 | * \param *Lev LatticeLevel structure for number of nodes per axis | 
|---|
|  | 822 | * \param *Lat Lattice structure for axis lengths | 
|---|
|  | 823 | * \return \f$|\nabla\rho|\f$ | 
|---|
|  | 824 | */ | 
|---|
|  | 825 | double DensityGradient(fftw_real *density, int i, struct LatticeLevel *Lev, struct Lattice *Lat) | 
|---|
|  | 826 | { | 
|---|
|  | 827 | double res=0., right_diff, left_diff; | 
|---|
|  | 828 | int neighbour[NDIM], nodes[NDIM]; | 
|---|
|  | 829 | nodes[0] = Lev->Plan0.plan->local_nx; | 
|---|
|  | 830 | nodes[1] = Lev->Plan0.plan->N[1]; | 
|---|
|  | 831 | nodes[2] = Lev->Plan0.plan->N[2]; | 
|---|
|  | 832 | neighbour[0] = Lev->Plan0.plan->N[1] * Lev->Plan0.plan->N[2]; | 
|---|
|  | 833 | neighbour[1] = Lev->Plan0.plan->N[2]; | 
|---|
|  | 834 | neighbour[2] = 1.; | 
|---|
|  | 835 | int k, l, nr, i_check = i; | 
|---|
|  | 836 | double h; | 
|---|
|  | 837 |  | 
|---|
|  | 838 | //iS = n[2] + N[2]*(n[1] + N[1]*n0);  // howto access the array ... | 
|---|
|  | 839 |  | 
|---|
|  | 840 | for (k=NDIM-1;k>=0;k--) { // for each axis | 
|---|
|  | 841 | h = 0.; | 
|---|
|  | 842 | for (l=0;l<NDIM;l++) | 
|---|
|  | 843 | h += Lat->RealBasis[k*NDIM+l]/Lev->Plan0.plan->N[k];  // finite distance | 
|---|
|  | 844 | h = sqrt(h); | 
|---|
|  | 845 | // check which limit exists: right, left, both? | 
|---|
|  | 846 | right_diff = 0.; | 
|---|
|  | 847 | left_diff = 0.; | 
|---|
|  | 848 | nr = 0; // neighbour counter | 
|---|
|  | 849 | if (i_check % nodes[k] != nodes[k]-1) {// right neighbour? | 
|---|
|  | 850 | right_diff = density[i] - density[i+neighbour[k]]; | 
|---|
|  | 851 | nr++; | 
|---|
|  | 852 | } | 
|---|
|  | 853 | if (i_check % nodes[k] != 0) { // left neighbour? | 
|---|
|  | 854 | left_diff = density[i] - density[i-neighbour[k]]; | 
|---|
|  | 855 | nr++; | 
|---|
|  | 856 | } | 
|---|
|  | 857 | res += (left_diff + right_diff)/(h*nr) * (left_diff + right_diff)/(h*nr); | 
|---|
|  | 858 | i_check /= nodes[k];  // remove axis from i_check | 
|---|
|  | 859 | } | 
|---|
|  | 860 |  | 
|---|
|  | 861 | return sqrt(res); | 
|---|
|  | 862 | } | 
|---|
|  | 863 |  | 
|---|
| [a0bcf1] | 864 | /** SpinType-dependent calculation of exchange and correlation with free spin-polarisation energy with riemann tensor. | 
|---|
|  | 865 | * Discretely does the integration of \f${\cal E}_{xc} (n,\zeta) \cdot n\f$ on | 
|---|
|  | 866 | * the radial mesh of the respective real densities.<br> | 
|---|
|  | 867 | * | 
|---|
|  | 868 | * Like CalculateXCEnergyNoRT(), only CalcSEXr() and CalcSECr() are | 
|---|
|  | 869 | * divided by RTFactor Lattice->RT.DensityR | 
|---|
|  | 870 | * \param *P Problem at hand | 
|---|
|  | 871 | */ | 
|---|
|  | 872 | void CalculateXCEnergyUseRT(struct Problem *P) | 
|---|
|  | 873 | { | 
|---|
|  | 874 | struct Lattice *Lat = &P->Lat; | 
|---|
|  | 875 | struct Energy *E = Lat->E; | 
|---|
|  | 876 | struct PseudoPot *PP = &P->PP; | 
|---|
|  | 877 | struct RunStruct *R = &P->R; | 
|---|
|  | 878 | struct LatticeLevel *Lev0 = R->Lev0; | 
|---|
|  | 879 | struct Psis *Psi = &Lat->Psi; | 
|---|
|  | 880 | struct Density *Dens = Lev0->Dens; | 
|---|
|  | 881 | struct ExCor *EC = &P->ExCo; | 
|---|
|  | 882 | double SumEc = 0; | 
|---|
|  | 883 | double rs, p = 0.0, pUp = 0.0, pDown = 0.0, zeta, rsUp, rsDown, SumEx = 0.0; | 
|---|
|  | 884 | double Factor = R->XCEnergyFactor/Lev0->MaxN; | 
|---|
|  | 885 | int i; | 
|---|
|  | 886 | fftw_real *RTFactor = Lat->RT.DensityR[RTADetPreRT]; | 
|---|
|  | 887 |  | 
|---|
|  | 888 | for (i = 0; i < Dens->LocalSizeR; i++) {  // for each point of radial mesh take density p[i] | 
|---|
|  | 889 | p = Dens->DensityArray[TotalDensity][i]; | 
|---|
|  | 890 | if (PP->corecorr == CoreCorrected) | 
|---|
|  | 891 | p += Dens->DensityArray[CoreWaveDensity][i]; | 
|---|
|  | 892 | switch (Psi->PsiST) { | 
|---|
|  | 893 | case SpinDouble: | 
|---|
|  | 894 | pUp = 0.5*p; | 
|---|
|  | 895 | pDown = 0.5*p; | 
|---|
|  | 896 | break; | 
|---|
|  | 897 | case SpinUp: | 
|---|
|  | 898 | case SpinDown: | 
|---|
|  | 899 | pUp = Dens->DensityArray[TotalUpDensity][i]; | 
|---|
|  | 900 | pDown = Dens->DensityArray[TotalDownDensity][i]; | 
|---|
|  | 901 | if (PP->corecorr == CoreCorrected) { | 
|---|
|  | 902 | pUp += 0.5*Dens->DensityArray[CoreWaveDensity][i]; | 
|---|
|  | 903 | pDown += 0.5*Dens->DensityArray[CoreWaveDensity][i]; | 
|---|
|  | 904 | } | 
|---|
|  | 905 | break; | 
|---|
|  | 906 | default: | 
|---|
|  | 907 | ; | 
|---|
|  | 908 | } | 
|---|
|  | 909 | if ((p < 0) || (pUp < 0) || (pDown < 0)) { | 
|---|
|  | 910 | /*fprintf(stderr,"index %i pc %g p %g\n",i,Dens->DensityArray[CoreWaveDensity][i],p);*/ | 
|---|
|  | 911 | p = 0.0; | 
|---|
|  | 912 | pUp = 0.0; | 
|---|
|  | 913 | pDown = 0.0; | 
|---|
|  | 914 | } | 
|---|
|  | 915 | // .. calculate Ec and Ex and sum them up ... | 
|---|
|  | 916 | rs = Calcrs(EC,p); | 
|---|
|  | 917 | rsUp = Calcrs(EC,pUp); | 
|---|
|  | 918 | rsDown = Calcrs(EC,pDown); | 
|---|
|  | 919 | SumEx += CalcSEXr(EC, rsUp, rsDown, pUp, pDown)/fabs(RTFactor[i]); | 
|---|
|  | 920 | zeta = CalcZeta(EC,pUp,pDown); | 
|---|
|  | 921 | SumEc += CalcSECr(EC, rs, zeta, p)/fabs(RTFactor[i]); | 
|---|
|  | 922 | } | 
|---|
|  | 923 | // ... and factorise with discrete integration width | 
|---|
|  | 924 | E->AllLocalDensityEnergy[CorrelationEnergy] = Factor*SumEc; | 
|---|
|  | 925 | E->AllLocalDensityEnergy[ExchangeEnergy] = Factor*SumEx; | 
|---|
|  | 926 | } | 
|---|
|  | 927 |  | 
|---|
|  | 928 | /** Calculates SpinType-dependently exchange correlation potential with free spin-polarisation without Riemann tensor. | 
|---|
|  | 929 | * Goes through all possible nodes, calculates the potential and stores it in \a *HGR | 
|---|
|  | 930 | * \param *P Problem at hand | 
|---|
|  | 931 | * \param *HGR pointer storage array for (added!) result: \f$V_c (n,\zeta)(R) + V_x (n,\zeta)(R)\f$ | 
|---|
|  | 932 | * \sa CalcSVXr(), CalcSVCr() | 
|---|
|  | 933 | */ | 
|---|
|  | 934 | void CalculateXCPotentialNoRT(struct Problem *P, fftw_real *HGR) | 
|---|
|  | 935 | { | 
|---|
|  | 936 | struct Lattice *Lat = &P->Lat; | 
|---|
|  | 937 | struct PseudoPot *PP = &P->PP; | 
|---|
|  | 938 | struct RunStruct *R = &P->R; | 
|---|
|  | 939 | struct LatticeLevel *Lev0 = R->Lev0; | 
|---|
|  | 940 | struct LatticeLevel *LevS = R->LevS; | 
|---|
|  | 941 | struct Psis *Psi = &Lat->Psi; | 
|---|
|  | 942 | struct Density *Dens = Lev0->Dens; | 
|---|
|  | 943 | struct ExCor *EC = &P->ExCo; | 
|---|
|  | 944 | double rsX, rsC, zeta, p = 0.0, pUp = 0.0, pDown = 0.0; | 
|---|
|  | 945 | int nx,ny,nz,i; | 
|---|
|  | 946 | const int Nx = LevS->Plan0.plan->local_nx; | 
|---|
|  | 947 | const int Ny = LevS->Plan0.plan->N[1]; | 
|---|
|  | 948 | const int Nz = LevS->Plan0.plan->N[2]; | 
|---|
|  | 949 | const int NUpx = LevS->NUp[0];  // factors due to density being calculated on a finer grid | 
|---|
|  | 950 | const int NUpy = LevS->NUp[1]; | 
|---|
|  | 951 | const int NUpz = LevS->NUp[2]; | 
|---|
|  | 952 | double tmp; | 
|---|
|  | 953 | for (nx=0;nx<Nx;nx++) | 
|---|
|  | 954 | for (ny=0;ny<Ny;ny++) | 
|---|
|  | 955 | for (nz=0;nz<Nz;nz++) { | 
|---|
|  | 956 | i = nz*NUpz+Nz*NUpz*(ny*NUpy+Ny*NUpy*nx*NUpx); | 
|---|
|  | 957 | p = Dens->DensityArray[TotalDensity][i]; | 
|---|
| [f7754e] | 958 | //if (isnan(p)) { fprintf(stderr,"WARNGING: CalculateXCPotentialNoRT(): p_%i = NaN!\n", i); Error(SomeError, "NaN-Fehler!"); } | 
|---|
| [a0bcf1] | 959 | if (PP->corecorr == CoreCorrected) | 
|---|
|  | 960 | p += Dens->DensityArray[CoreWaveDensity][i]; | 
|---|
|  | 961 | switch (Psi->PsiST) { | 
|---|
|  | 962 | case SpinDouble: | 
|---|
|  | 963 | pUp = 0.5*p; | 
|---|
|  | 964 | pDown = 0.5*p; | 
|---|
|  | 965 | break; | 
|---|
|  | 966 | case SpinUp: | 
|---|
|  | 967 | case SpinDown: | 
|---|
|  | 968 | pUp = Dens->DensityArray[TotalUpDensity][i]; | 
|---|
|  | 969 | pDown = Dens->DensityArray[TotalDownDensity][i]; | 
|---|
|  | 970 | if (PP->corecorr == CoreCorrected) {   // additional factor due to PseudoPot'entials | 
|---|
|  | 971 | pUp += 0.5*Dens->DensityArray[CoreWaveDensity][i]; | 
|---|
|  | 972 | pDown += 0.5*Dens->DensityArray[CoreWaveDensity][i]; | 
|---|
|  | 973 | } | 
|---|
|  | 974 | break; | 
|---|
|  | 975 | default: | 
|---|
|  | 976 | ; | 
|---|
|  | 977 | } | 
|---|
| [f7754e] | 978 | //if (isnan(pUp)) { fprintf(stderr,"WARNGING: CalculateXCPotentialNoRT(): pUp_%i = NaN!\n", i); Error(SomeError, "NaN-Fehler!"); } | 
|---|
|  | 979 | //if (isnan(pDown)) { fprintf(stderr,"WARNGING: CalculateXCPotentialNoRT(): pDown_%i = NaN!\n", i); Error(SomeError, "NaN-Fehler!"); } | 
|---|
| [a0bcf1] | 980 | if ((p < 0) || (pUp < 0) || (pDown < 0)) { | 
|---|
|  | 981 | p = 0; | 
|---|
|  | 982 | pUp = 0; | 
|---|
|  | 983 | pDown = 0; | 
|---|
|  | 984 | } | 
|---|
|  | 985 | switch (Psi->PsiST) { | 
|---|
|  | 986 | case SpinUp: | 
|---|
|  | 987 | rsX = Calcrs(EC, pUp); | 
|---|
|  | 988 | break; | 
|---|
|  | 989 | case SpinDown: | 
|---|
|  | 990 | rsX = Calcrs(EC, pDown); | 
|---|
|  | 991 | break; | 
|---|
|  | 992 | case SpinDouble: | 
|---|
|  | 993 | //rsX = Calcrs(EC,p/2.);  // why half of it??? | 
|---|
|  | 994 | rsX = Calcrs(EC, p); | 
|---|
|  | 995 | break; | 
|---|
|  | 996 | default: | 
|---|
|  | 997 | rsX = 0.0; | 
|---|
|  | 998 | } | 
|---|
|  | 999 | rsC = Calcrs(EC,p); | 
|---|
|  | 1000 | zeta = CalcZeta(EC,pUp,pDown); | 
|---|
| [f7754e] | 1001 | //if (isnan(rsC)) { fprintf(stderr,"WARNGING: CalculateXCPotentialNoRT(): rsC%i = NaN!\n", i); Error(SomeError, "NaN-Fehler!"); } | 
|---|
|  | 1002 | //if (isnan(zeta)) { fprintf(stderr,"WARNGING: CalculateXCPotentialNoRT(): zeta%i = NaN!\n", i); Error(SomeError, "NaN-Fehler!"); } | 
|---|
| [a0bcf1] | 1003 | switch (R->CurrentMin) { | 
|---|
|  | 1004 | case UnOccupied:  // here epsilon appears instead of the potential in the integrand due to different variation | 
|---|
| [f7754e] | 1005 | tmp = CalcSEXr(EC,Calcrs(EC, pUp),Calcrs(EC, pDown),pUp,pDown);     // \todo ../p was here before test! | 
|---|
|  | 1006 | //if (isnan(tmp)) { fprintf(stderr,"WARNGING: CalculateXCPotentialNoRT(): tmp_%i = NaN!\n", i); Error(SomeError, "NaN-Fehler!"); } | 
|---|
| [a0bcf1] | 1007 | tmp += CalcSECr(EC, rsX,zeta, 1); | 
|---|
| [f7754e] | 1008 | //if (isnan(tmp)) { fprintf(stderr,"WARNGING: CalculateXCPotentialNoRT(): tmp_%i += NaN!\n", i); Error(SomeError, "NaN-Fehler!"); } | 
|---|
| [a0bcf1] | 1009 | break; | 
|---|
|  | 1010 | default: | 
|---|
|  | 1011 | tmp = CalcSVXr(EC,rsX,Psi->PsiST); | 
|---|
|  | 1012 | //if (isnan(tmp)) { fprintf(stderr,"WARNGING: CalculateXCPotentialNoRT(): tmp_%i def= NaN!\n", i); Error(SomeError, "NaN-Fehler!"); } | 
|---|
|  | 1013 | tmp += CalcSVCr(EC, rsC,zeta,Psi->PsiST); | 
|---|
|  | 1014 | //if (isnan(tmp)) { fprintf(stderr,"WARNGING: CalculateXCPotentialNoRT(): tmp_%i def+= NaN!\n", i); Error(SomeError, "NaN-Fehler!"); } | 
|---|
|  | 1015 | break; | 
|---|
|  | 1016 | } | 
|---|
|  | 1017 | //if (isnan(tmp)) { fprintf(stderr,"WARNGING: CalculateXCPotentialNoRT(): tmp_%i := NaN!\n", i); Error(SomeError, "NaN-Fehler!"); } | 
|---|
|  | 1018 | HGR[i] += tmp; | 
|---|
|  | 1019 | //if (isnan(HGR[i])) { fprintf(stderr,"WARNGING: CalculateXCPotentialNoRT(): HGR[%i] = NaN!\n", i); Error(SomeError, "NaN-Fehler!"); } | 
|---|
|  | 1020 | } | 
|---|
|  | 1021 | } | 
|---|
|  | 1022 |  | 
|---|
|  | 1023 | /** Calculates SpinType-dependently derivative of exchange correlation potential with free spin-polarisation without Riemann tensor. | 
|---|
|  | 1024 | * \f[ | 
|---|
|  | 1025 | *    A^{XC} = \sum_R \frac{\delta V^{XC}}{\delta n} \rho^2 \qquad (\textnormal{section 5.1, line search}) | 
|---|
|  | 1026 | * \f] | 
|---|
|  | 1027 | * With the density from Dens::DensityArray calculates discretely the integral over the summed | 
|---|
|  | 1028 | * derivative, SpinType is taken from Psi::PsiST. Due to the principle of the theory the wave | 
|---|
|  | 1029 | * functions themselves are not needed explicitely, see also CalculateXCEnergyNoRT() | 
|---|
|  | 1030 | * \param *P Problem at hand | 
|---|
|  | 1031 | * \param *PsiCD \f$\rho (r)\f$ | 
|---|
|  | 1032 | * \return \f$A^{XC}\f$ | 
|---|
|  | 1033 | * \sa CalcSVVXr(), CalcSVVCr() - derivatives of exchange and correlation potential | 
|---|
|  | 1034 | */ | 
|---|
|  | 1035 | double CalculateXCddEddt0NoRT(struct Problem *P, fftw_real *PsiCD) | 
|---|
|  | 1036 | { | 
|---|
|  | 1037 | struct Lattice *Lat = &P->Lat; | 
|---|
|  | 1038 | struct PseudoPot *PP = &P->PP; | 
|---|
|  | 1039 | struct RunStruct *R = &P->R; | 
|---|
|  | 1040 | struct LatticeLevel *Lev0 = R->Lev0; | 
|---|
|  | 1041 | struct Psis *Psi = &Lat->Psi; | 
|---|
|  | 1042 | struct Density *Dens = Lev0->Dens; | 
|---|
|  | 1043 | struct ExCor *EC = &P->ExCo; | 
|---|
| [f7754e] | 1044 | double SumExc = 0.; | 
|---|
| [a0bcf1] | 1045 | double rsX=0.0, rsC, p = 0.0, pUp = 0.0, pDown = 0.0, zeta; | 
|---|
|  | 1046 | double Factor = R->XCEnergyFactor/Lev0->MaxN; | 
|---|
|  | 1047 | int i; | 
|---|
|  | 1048 |  | 
|---|
|  | 1049 | for (i = 0; i < Dens->LocalSizeR; i++) { | 
|---|
|  | 1050 | p = Dens->DensityArray[TotalDensity][i]; | 
|---|
|  | 1051 | if (PP->corecorr == CoreCorrected) | 
|---|
|  | 1052 | p += Dens->DensityArray[CoreWaveDensity][i]; | 
|---|
|  | 1053 | switch (Psi->PsiST) { | 
|---|
|  | 1054 | case SpinDouble: | 
|---|
|  | 1055 | pUp = 0.5*p; | 
|---|
|  | 1056 | pDown = 0.5*p; | 
|---|
|  | 1057 | break; | 
|---|
|  | 1058 | case SpinUp: | 
|---|
|  | 1059 | case SpinDown: | 
|---|
|  | 1060 | pUp = Dens->DensityArray[TotalUpDensity][i]; | 
|---|
|  | 1061 | pDown = Dens->DensityArray[TotalDownDensity][i]; | 
|---|
|  | 1062 | if (PP->corecorr == CoreCorrected) { | 
|---|
|  | 1063 | pUp += 0.5*Dens->DensityArray[CoreWaveDensity][i]; | 
|---|
|  | 1064 | pDown += 0.5*Dens->DensityArray[CoreWaveDensity][i]; | 
|---|
|  | 1065 | } | 
|---|
|  | 1066 | break; | 
|---|
|  | 1067 | default: | 
|---|
|  | 1068 | ; | 
|---|
|  | 1069 | } | 
|---|
|  | 1070 | if ((p < 0) || (pUp < 0) || (pDown < 0)) { | 
|---|
|  | 1071 | /*fprintf(stderr,"index %i pc %g p %g\n",i,Dens->DensityArray[CoreWaveDensity][i],p);*/ | 
|---|
|  | 1072 | p = 0.0; | 
|---|
|  | 1073 | pUp = 0.0; | 
|---|
|  | 1074 | pDown = 0.0; | 
|---|
|  | 1075 | } | 
|---|
|  | 1076 | switch (Psi->PsiST) { | 
|---|
|  | 1077 | case SpinUp: | 
|---|
|  | 1078 | rsX = Calcrs(EC,pUp); | 
|---|
|  | 1079 | break; | 
|---|
|  | 1080 | case SpinDown: | 
|---|
|  | 1081 | rsX = Calcrs(EC,pDown); | 
|---|
|  | 1082 | break; | 
|---|
|  | 1083 | case SpinDouble: | 
|---|
|  | 1084 | //rsX = Calcrs(EC,p/2.);  // why half of it??? | 
|---|
|  | 1085 | rsX = Calcrs(EC,p); | 
|---|
|  | 1086 | break; | 
|---|
|  | 1087 | } | 
|---|
|  | 1088 | rsC = Calcrs(EC,p); | 
|---|
|  | 1089 | zeta = CalcZeta(EC,pUp,pDown); | 
|---|
|  | 1090 | SumExc += (CalcSVVXr(EC,rsX,Psi->PsiST) + CalcSVVCr(EC, rsC,zeta,Psi->PsiST,pUp,pDown))*PsiCD[i]*PsiCD[i]; | 
|---|
|  | 1091 | } | 
|---|
|  | 1092 | return (SumExc*Factor); | 
|---|
|  | 1093 | } | 
|---|
|  | 1094 |  | 
|---|
|  | 1095 | /** Initialises ExCor structure with parametrization values. | 
|---|
|  | 1096 | * All of the entries in the structure are set to parametrization values, see [CA80]. | 
|---|
|  | 1097 | * \param *P Problem at hand | 
|---|
|  | 1098 | * \param *EC Exchange correlation ExCor structure | 
|---|
|  | 1099 | */ | 
|---|
|  | 1100 | void InitExchangeCorrelationEnergy(struct Problem *P, struct ExCor *EC) | 
|---|
|  | 1101 | { | 
|---|
|  | 1102 | EC->gamma[unpolarised] = -0.1423; | 
|---|
|  | 1103 | EC->beta_1[unpolarised] = 1.0529; | 
|---|
|  | 1104 | EC->beta_2[unpolarised] = 0.3334; | 
|---|
|  | 1105 | EC->C[unpolarised] = 0.0020; | 
|---|
|  | 1106 | EC->D[unpolarised] = -0.0116; | 
|---|
|  | 1107 | EC->A[unpolarised] = 0.0311; | 
|---|
|  | 1108 | EC->B[unpolarised] = -0.048; | 
|---|
|  | 1109 | EC->gamma[polarised] = -0.0843; | 
|---|
|  | 1110 | EC->beta_1[polarised] = 1.3981; | 
|---|
|  | 1111 | EC->beta_2[polarised] = 0.2611; | 
|---|
|  | 1112 | EC->C[polarised] = 0.0007; | 
|---|
|  | 1113 | EC->D[polarised] = -0.0048; | 
|---|
|  | 1114 | EC->A[polarised] = 0.01555; | 
|---|
|  | 1115 | EC->B[polarised] = -0.0269; | 
|---|
|  | 1116 | EC->fac34pi = -3./(4.*PI); | 
|---|
|  | 1117 | EC->facexrs = EC->fac34pi*pow(9.*PI/4.,1./3.); | 
|---|
|  | 1118 | EC->epsilon0 = MYEPSILON; | 
|---|
|  | 1119 | EC->fac6PI23 = pow(6./PI,2./3.); | 
|---|
|  | 1120 | EC->facPI213 = pow(PI/2.,1./3.); | 
|---|
|  | 1121 | EC->fac3PI23 = pow(3.*PI,2./3.); | 
|---|
|  | 1122 | EC->fac6PIPI23 = pow(6.*PI*PI,2./3.); | 
|---|
|  | 1123 | EC->fac243 = pow(2.,4./3.); | 
|---|
|  | 1124 | EC->fac1213 = pow(1./2.,1./3.); | 
|---|
|  | 1125 | } | 
|---|