source: doc/userguide/userguide.xml@ f4b626a

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since f4b626a was f4b626a, checked in by Frederik Heber <heber@…>, 10 years ago

Added AverageMoleculeForceAction for measuring average force acting on a molecule.

  • Property mode set to 100644
File size: 119.4 KB
Line 
1<?xml version="1.0" encoding="UTF-8"?>
2<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN"
3 "http://www.oasis-open.org/docbook/xml/4.5/docbookx.dtd" [
4<!ENTITY molecuilder_logo SYSTEM "pictures/molecuilder_logo.png" NDATA PNG>
5<!ENTITY dialog_box SYSTEM "pictures/dialog_box.png" NDATA PNG>
6<!ENTITY dialog_add-atom_tooltip SYSTEM "pictures/dialog_add-atom_tooltip.png" NDATA PNG>
7<!ENTITY dialog_complex SYSTEM "pictures/dialog_complex.png" NDATA PNG>
8<!ENTITY dialog_exit SYSTEM "pictures/dialog_exit.png" NDATA PNG>
9<!ENTITY example_basic_view SYSTEM "pictures/example_basic_view.png" NDATA PNG>
10]>
11<book version="5.0" xmlns="http://docbook.org/ns/docbook"
12 xmlns:xlink="http://www.w3.org/1999/xlink"
13 xmlns:xi="http://www.w3.org/2001/XInclude"
14 xmlns:svg="http://www.w3.org/2000/svg"
15 xmlns:m="http://www.w3.org/1998/Math/MathML"
16 xmlns:html="http://www.w3.org/1999/xhtml"
17 xmlns:db="http://docbook.org/ns/docbook">
18 <info>
19 <title>MoleCuilder - a Molecule Builder</title>
20
21 <author>
22 <personname><firstname>Frederik</firstname><surname>Heber</surname></personname>
23
24 <affiliation>
25 <orgname>heber@ins.uni-bonn.de</orgname>
26 </affiliation>
27 </author>
28
29 <pubdate>07/03/14</pubdate>
30 </info>
31
32 <chapter>
33 <title>Introduction</title>
34
35 <figure>
36 <title>MoleCuilder logo depicting a tesselated buckyball and a benzene
37 molecule</title>
38
39 <mediaobject>
40 <imageobject>
41 <imagedata entityref="molecuilder_logo" scalefit="1" width="100%"/>
42 </imageobject>
43 </mediaobject>
44 </figure>
45
46 <section xml:id='whatis'>
47 <title xml:id='whatis.title'>What is MoleCuilder?</title>
48
49 <para>In Short,<command> MoleCuilder</command> is a concatenation of
50 molecule and builder.</para>
51
52 <para>In more words, molecular dynamics simulations are frequently
53 employed to simulate material behavior under stress, chemical reactions
54 such as of cementitious materials, or folding pathways and docking
55 procedures of bio proteins. Even if the computational load, due to the
56 large number of atoms, is very demanding, nonetheless they may serve as
57 a starting point, e.g. extracting parameters for a coarser model.
58 However, what is on the other hand the starting point of molecular
59 dynamics simulations? It is the coordinate and element of each atom
60 combined with potential functions that model the interactions.</para>
61
62 <para>MoleCuilder allows to fully construct such a starting point:
63 letting the user construct atomic and molecular geometries by a simple
64 point&amp;click approach, a CAD-pendant on the nanoscale. Creating
65 suitable empirical potentials by fitting parameters to ab-initio
66 calculations within hours. Specific emphasis is placed on a
67 simple-to-use interface, allowing for the quick-and-dirty building of
68 molecular systems, and on scriptability. Eventually, not a single, but
69 many, related molecular systems have to be created.</para>
70
71 <section xml:id='installation'>
72 <title xml:id='installation.title'>Installation requirements</title>
73
74 <para>For installations requirements and instructions we refer to the
75 internal documentation of MoleCuilder, created via doxgen from the
76 source code.</para>
77 </section>
78
79 <section xml:id='license'>
80 <title xml:id='license.title'>License</title>
81
82 <para>As long as no other license statement is given, MoleCuilder is
83 free for user under the GNU Public License (GPL) Version 2 (see
84 <uri>www.gnu.de/documents/gpl-2.0.de.html</uri>).</para>
85 </section>
86
87 <section xml:id='disclaimer'>
88 <title xml:id='disclaimer.title'>Disclaimer</title>
89
90 <para>We quote section 11 from the GPLv2 license:</para>
91
92 <remark>Because the program is licensed free of charge, there is not
93 warranty for the program, to the extent permitted by applicable law.
94 Except when otherwise stated in writing in the copyright holders
95 and/or other parties provide the program "as is" without warranty of
96 any kind, either expressed or implied. Including, but not limited to,
97 the implied warranties of merchantability and fitness for a particular
98 purpose. The entire risk as to the quality and performance of the
99 program is with you. Should the program prove defective, you assume
100 the cost of all necessary servicing, repair, or correction.</remark>
101 </section>
102
103 <section xml:id='feedback'>
104 <title xml:id='feedback.title'>Feedback</title>
105
106 <para>If you encounter any bugs, errors, or would like to submit
107 feature request, please use the email address provided at the very
108 beginning of this user guide. The author is especially thankful for
109 any description of all related events prior to occurrence of the
110 error, saved "session scripts" (see below) and auxiliary files. Please
111 mind sensible space restrictions of email attachments.</para>
112 </section>
113
114 <section xml:id='notation'>
115 <title xml:id='notation.title'>Notation</title>
116
117 <para>We briefly explain a few specific wordings associated with the
118 program:</para>
119
120 <itemizedlist>
121 <listitem>
122 <para><emphasis>Action</emphasis> is a command that allows for
123 undoing and redoing, i.e. a single atomic procedure for
124 manipulating the molecular system.</para>
125 </listitem>
126
127 <listitem>
128 <para>Selection refers to a subsets from the set of instances of a
129 particular type, e.g. atoms.</para>
130 </listitem>
131
132 <listitem>
133 <para>Shape means a specific region of the domain that can be
134 described in the way of constructive geometry, i.e. as the
135 intersection, negation, and combination of primitives such as
136 spheres or cylinders.</para>
137 </listitem>
138 </itemizedlist>
139 </section>
140
141 <section xml:id='completeness'>
142 <title xml:id='completeness.title'>Completeness</title>
143
144 <para>This documentation takes quite some effort to write. Hence, the
145 described features and especially the actions herein are settled with
146 respect to their functionality, while newer features or actions are
147 probably missing. This should be a clear sign to you that these are
148 probably not safe to use yet. If you nonetheless require them and thus
149 should acquire some familiarity with the code itself. This suggests
150 changing to the developer documentation which is maintained along with
151 the source code with <productname>doxygen</productname>.</para>
152 </section>
153 </section>
154 </chapter>
155
156 <chapter>
157 <title>Features</title>
158
159 <para>Basically, <command>MoleCuilder</command> parses geometries from
160 files, manipulates them and stores them again in files. The manipulation
161 can be done either via a command-line interface or via the graphical user
162 interface.</para>
163
164 <section xml:id='concepts'>
165 <title xml:id='concepts.title'>Concepts</title>
166
167 <para>In general, we divide the molecular systems into three different
168 components or scales.</para>
169
170 <orderedlist>
171 <listitem>
172 <para>Atoms</para>
173
174 <para>Atoms are the undividable objects of the molecular systems.
175 They have an element <quote>Z</quote> and three coordinates
176 <quote>(x,y,z)</quote>.</para>
177 </listitem>
178
179 <listitem>
180 <para>Molecules</para>
181
182 <para>Molecules are bound conglomeration of atoms. They contain a
183 number of atoms and a specific center in the domain such that its
184 atoms are placed relative to this center. Also, they may have a
185 bounding box, i.e. a subdomain that contains all of the atoms in the
186 molecule.</para>
187
188 <para>Note that the molecular structure of the system, i.e. the
189 bonding graph, is determined by MoleCuilder and used to dissect the
190 system into distinct molecules automatically.</para>
191 </listitem>
192
193 <listitem>
194 <para>Clusters</para>
195
196 <para>Clusters are unbound conglomeration of atoms. Clusters serves
197 as groups of atoms for specific operations that would be to
198 restricted if they worked on just molecules.</para>
199 </listitem>
200
201 <listitem>
202 <para>Domain</para>
203
204 <para>The domain refers to the simulation domain. It is
205 parallelepiped in <inlineequation>
206 <m:math display="inline">
207 <m:mi>\mathbb{R}^3</m:mi>
208 </m:math>
209 </inlineequation>where either periodic, wrapped, or open boundary
210 conditions apply. The domain contains all atoms, i.e. the box
211 containing all atoms.</para>
212 </listitem>
213 </orderedlist>
214 </section>
215
216 <section xml:id='interfaces'>
217 <title xml:id='interfaces.title'>Interfaces</title>
218
219 <para>MoleCuilder has four different interfaces: Command-line, text
220 menu, graphical user interface, and python interface.</para>
221
222 <orderedlist>
223 <listitem>
224 <para>Command-Line</para>
225
226 <para>The command-line interface allows to use MoleCuilder
227 non-interactively via a terminal session. The program is executed by
228 expanding the shell command with a number of commands including all
229 required options that are executed one after the other. After
230 execution of the last command, the program quits. The command-line
231 interface usually works on a specific file that is given as input,
232 manipulated, analysed, ... via the sequence of commands and
233 eventually all changes are stored in the this file. Hence, the input
234 file acts as the state of the starting configuration that is
235 modified via MoleCuilder.</para>
236 </listitem>
237
238 <listitem>
239 <para>Text menu</para>
240
241 <para>The text-menu is similar to the command-line interface with
242 the exception that it allows for interactive sessions. Commands are
243 chosen from a text menu and executed directly after selection by the
244 user.</para>
245 </listitem>
246
247 <listitem>
248 <para>Graphical interface</para>
249
250 <para>The graphical interface is based on Qt. It features a full
251 graphical representation of the simulation domain with atoms and
252 their bonds. It allows manipulation in point&amp;click fashion.
253 Commands are selected from pull-down menus and dialogs are used to
254 query the user for all required parameters to such a command.</para>
255 </listitem>
256
257 <listitem>
258 <para>Python interface</para>
259
260 <para>The last interface is accessible only within the python
261 programming language. MoleCuilder can be loaded as a module and its
262 commands can be executed with either the python interpreter
263 interactively or via python scripts non-interactively. Note that
264 this allows auxiliary calculations to be performed in pythons whose
265 results may be used as parameters in subsequent commands.</para>
266 </listitem>
267 </orderedlist>
268 </section>
269
270 <section xml:id='fileformats'>
271 <title xml:id='fileformats.title'>Known File formats</title>
272
273 <para>We briefly the file formats MoleCuilder can parse and
274 store.</para>
275
276 <itemizedlist>
277 <listitem>
278 <para>XYZ, <filename>.xyz</filename> (simplest of all formats,
279 line-wise element and three coordinates with two line header, number
280 of lines and a comment line)</para>
281 </listitem>
282
283 <listitem>
284 <para><link xlink:href="http://www.mpqc.org/"><productname>MPQC
285 </productname></link>, <filename>.in</filename></para>
286 </listitem>
287
288 <listitem>
289 <para><link xlink:href="http://www.pdb.org/">PDB</link>, <filename>
290 .pdb</filename></para>
291 </listitem>
292
293 <listitem>
294 <para><productname>ESPACK</productname>, <filename>.conf</filename>
295 (electronic structure package by Institute for Numerical Simulation,
296 University of Bonn, code not in circulation)</para>
297 </listitem>
298
299 <listitem>
300 <para><link xlink:href="http://www.psicode.org/"><productname>PSI4
301 </productname></link>, <filename>.psi</filename></para>
302 </listitem>
303
304 <listitem>
305 <para><link xlink:href="http://www.tremolo-x.org/"><productname>
306 TREMOLO</productname></link>, <filename>.data</filename></para>
307 </listitem>
308
309 <listitem>
310 <para>XML, <filename>.xml</filename> (XML as read by
311 <link xlink:href="http://www.scafacos.org/">ScaFaCoS</link>
312 project)</para>
313 </listitem>
314 </itemizedlist>
315
316 <para>These are identified via their suffixes and can be converted from
317 one into another (with loss of all data not in the intersection of
318 stored properties of the two involved file formats).</para>
319 </section>
320 </chapter>
321
322 <chapter>
323 <title>Interfaces</title>
324
325 <para>In this chapter, we explain the intention and use of the four
326 interfaces.</para>
327
328 <para>We give the most extensive explanation of the command-line
329 interface, all subsequent interfaces are explained in highlighting their
330 differences with respect to the command-line interface. This is because
331 the command-line lends itself very well to representation in this textual
332 user guide. Although some images of the graphical interface are given
333 below, they would blow the size of the guide out of proportion.</para>
334
335 <para>In any case, you should make yourself familiar with at least one of
336 the interactive (text menu, GUI) and one of the non-interactive
337 (command-line, python) interfaces to use MoleCuilder to is full potential:
338 The interactive interface gives you the immediate feedback in constructing
339 "synthesis" (build) chains (of commands) for constructing your specific
340 molecular system in the computer. The non-interactive interface lends
341 itself to quick creation of related systems that differ only by specific
342 parameters you have modified in the script (command-line can be used in
343 shell scripts, python itself is a scripted language). Also, the
344 non-interactive interfaces are used for storing sessions which helps you
345 in documentation your experiments and lateron understanding of what has
346 been done.</para>
347
348 <section xml:id='command-line-interface'>
349 <title xml:id='command-line-interface.title'>Command-line interface</title>
350
351 <para>The command-line interface reads options and commands from the
352 command line and executes them sequentially. This may be for example:
353 Open an empty file, add 2 hydrogen atoms and add 1 oxygen atom, choose a
354 simulation box, fill the box with this given "filler" molecule, save the
355 file. This enables the use of MoleCuilder in simple script-files to
356 create a whole range of geometries that only differ in a few parameters
357 automatically.</para>
358
359 <para>Traditionally, <command>MoleCuilder</command> operates on a single
360 configuration file - the state - which may also store additional
361 information depending on the chosen file format such as parameters for
362 ab-initio computations. An example for the above procedure is given
363 below:</para>
364
365 <programlisting>
366 ./molecuilder \
367 -i sample.xyz \
368 --add-atom H \
369 --domain-position "0.,0.,0." \
370 ...
371 </programlisting>
372
373 <para>The first argument is the executable itself. Second, there is a
374 slew of arguments -- one per line split with a backslash telling the
375 shell that the line still continues -- consisting of the input action and
376 an arbitrarily named file <filename>sample.xyz</filename>, which may be
377 empty and whose file format is chosen by the given extension. The third
378 is the add-atom action following by an option that gives the position in
379 the domain where to add the "H"ydrogen atom. An action is always
380 introduced via a double hyphen and its full name (containing just
381 non-capital letters and hyphens) or a single hyphen and a single letter
382 for its shortform, e.g. -a for adding an atom to the system. It is
383 followed by a fixed number of options. Most of these have default values
384 and in this do not have to be specified. If not enough options are given
385 or invalid values have been entered, an error message is printed stating
386 the name of the first missing or invalid option value.</para>
387
388 <note>
389 <para>Note that not all action have shortforms and it is best practice
390 to have the full action name instead of its shortform to make the
391 command-line understable to you in years to come.</para>
392 </note>
393
394 <section xml:id='preliminaries'>
395 <title xml:id='preliminaries.title'>Preliminaries</title>
396
397 <para>Some preliminary remarks are in order which we have gathered
398 here on how these actions work in general.</para>
399
400 <para>Below we first delve into some details about secondary structure
401 such as selections, shapes, and randomization required to specify
402 subsets of atoms and molecules you wish to manipulate. Then, we have
403 ordered the subsequent details on the manipulation depending on the
404 scale they act upon - single atoms, multiple atoms organised as
405 molecules, and all atoms organised by their containing domain.</para>
406
407 <para>In the following we will always give a command to illustrate the
408 procedure but just the necessary parts, i.e. "..." implies to prepend
409 it with the executable and input command for a specific configuration
410 file, for storing the manipulated state of the molecular system. Note
411 that</para>
412
413 <programlisting>./molecuilder --help</programlisting>
414
415 <para>will always give you a list of all available actions and also a
416 brief explanation on how to properly enter values of a specific type,
417 e.g. an element, a vector, or a list of numbers. Details to a specific
418 action can be requested when its full name is known, e.g. for
419 "add-atom",</para>
420
421 <programlisting>./molecuilder --help --actionname add-atom</programlisting>
422
423 <para>which fills you in on each option to the action: its full name,
424 its expected type, and a possibly present default value, and a brief
425 description of the option.</para>
426
427 <para>An Action can be undone and redone, e.g. undo adding an atom as
428 follows,</para>
429
430 <programlisting>... --add-atom H --domain-position "0,0,0" --undo</programlisting>
431
432 <para>and redo as follows</para>
433
434 <programlisting>... --add-atom H --domain-position "0,0,0" --undo --redo</programlisting>
435
436 <para>With the non-interactive interfaces this may seem rather
437 superfluous but it comes in very handy in the interactive ones. Also
438 this tells you that actions are placed in a queue, i.e. a history,
439 that undo and redo manipulate.</para>
440 </section>
441
442 <section xml:id='fileparsers'>
443 <title xml:id='fileparsers.title'>File parsers</title>
444
445 <para>We have already given a list of all known file formats, see
446 <link linkend="fileformats">File formats</link>. Next, we explain how these
447 file formats are picked and manipulated.</para>
448
449 <section xml:id='fileparsers.parsing'>
450 <title xml:id='fileparsers.parsing.title'>Parsing files</title>
451
452 <para>We already discussed that the command-line interface works
453 state-based and hence you should supply it with a file to work
454 on.</para>
455
456 <programlisting>... --input water.data</programlisting>
457
458 <para>This will load all information, especially atoms with their
459 element and position, from the file <filename>water.data</filename>
460 into the state. All changes will eventually be stored to this file,
461 or to files with the prefix <filename>water</filename> and suffixes
462 of desired file formats, e.g. <filename>water.in</filename> if you
463 specified <productname>MPQC</productname>.</para>
464
465 <programlisting>... --load morewater.xyz</programlisting>
466
467 <para>This will load another file <filename>water.xyz</filename>,
468 however changes will still be written to files prefixed with
469 <filename>water</filename>. Note that now already two state files
470 will stored, <filename>water.data</filename> and
471 <filename>water.xyz</filename> as these two different file formats
472 have been used.</para>
473 </section>
474
475 <section xml:id='fileparsers.set-output'>
476 <title xml:id='fileparsers.set-output.tile'>Adding output file
477 formats</title>
478
479 <para>We already know that loading a file also picks a file format
480 by its suffix. We may add further file formats to which the state of
481 the molecular system on program exit.</para>
482
483 <programlisting>... --set-output mpqc tremolo</programlisting>
484
485 <para>This will store the final state of the molecular systems as
486 <productname>MPQC</productname> and as
487 <productname>TREMOLO</productname> configuration file.</para>
488 </section>
489
490 <section xml:id='fileparsers.output-as'>
491 <title xml:id='fileparsers.output-as.title'>Output the current
492 molecular system</title>
493
494 <para>This will store the current World, i.e. all its atoms, to a
495 given file, where the output format is determined from the file
496 suffix.</para>
497
498 <programlisting>... --output-as world.xyz</programlisting>
499 </section>
500
501 <section xml:id='fileparsers.save-selected-molecules'>
502 <title xml:id='fileparsers.save-selected-molecules.title'>Output
503 the current molecular system</title>
504
505 <para>This will store all atoms contained in the currently selected
506 molecules to file. This is different to "store-saturated-fragment"
507 as it will not saturate dangling bonds because only whole molecules,
508 i.e. whose bond graph is connected, will be stored.</para>
509
510 <programlisting>... --save-selected-molecules waters.pdb
511 </programlisting>
512 </section>
513
514 <section xml:id='fileparsers.bond-file'>
515 <title xml:id='fileparsers.bond-file.title'>Load extra bond
516 information</title>
517
518 <para>For some parsers bond information is stored not with the atoms
519 coordinates but in an extra file. This action parses such a file.</para>
520
521 <programlisting>... --bond-file water.dbond
522 </programlisting>
523 </section>
524 </section>
525
526 <section xml:id='selections'>
527 <title xml:id='selections.title'>Selections and unselections</title>
528
529 <para>In order to tell MoleCuilder on what subset of atoms a specific
530 Action is to be performed, there are <emphasis>selection
531 actions</emphasis>. Note that a selection per se does not change
532 anything in the state of the molecular system in any way.</para>
533
534 <para>Selections either work on atoms, on molecules, or on shapes
535 (this we explain lateron). A given selection is maintained from the
536 execution of the selection action to the end of program or until
537 modified by another selection applied on the same type (atom,
538 molecule, shape).</para>
539
540 <para>We only give a brief list on the kind of selections per type,
541 each action is executed either as follows, exemplified by selecting
542 all atoms.</para>
543
544 <programlisting>.... --select-all-atoms</programlisting>
545
546 <para>or, exemplified by unselecting the last molecule,</para>
547
548 <programlisting>... --unselect-molecule-by-order -1</programlisting>
549
550 <itemizedlist>
551 <listitem>
552 <para>Atoms</para>
553
554 <itemizedlist>
555 <listitem>
556 <para>All</para>
557 <programlisting>
558 ... --select-all-atoms
559 </programlisting>
560 </listitem>
561
562 <listitem>
563 <para>None</para>
564 <programlisting>
565 ... --unselect-all-atoms
566 </programlisting>
567 <programlisting>
568 ... --clear-atom-selection
569 </programlisting>
570 </listitem>
571
572 <listitem>
573 <para>Invert selection</para>
574 <programlisting>
575 ... --invert-atoms
576 </programlisting>
577 </listitem>
578
579 <listitem>
580 <para>By Element (all hydrogen atoms, all sulphur atoms,
581 ...)</para>
582 <programlisting>
583 ... --select-atom-by-element 1
584 </programlisting>
585 <programlisting>
586 ... --unselect-atom-by-element 1
587 </programlisting>
588 </listitem>
589
590 <listitem>
591 <para>By Id (atom with id 76)</para>
592 <programlisting>
593 ... --select-atom-by-id 76
594 </programlisting>
595 <programlisting>
596 ... --unselect-atom-by-id 76
597 </programlisting>
598 </listitem>
599
600 <listitem>
601 <para>By Order (the first (1), the second, ... the last
602 created(-1), the last but one)</para>
603 <programlisting>
604 ... --select-atom-by-order 1
605 </programlisting>
606 <programlisting>
607 ... --unselect-atom-by-order -2
608 </programlisting>
609 </listitem>
610
611 <listitem>
612 <para>By Shape (specific region of the domain)</para>
613 <programlisting>
614 ... --select-atom-inside-volume
615 </programlisting>
616 <programlisting>
617 ... --unselect-atoms-inside-volume
618 </programlisting>
619 </listitem>
620
621 <listitem>
622 <para>By Molecule (all atoms belonging to currently selected
623 molecules)</para>
624 <programlisting>
625 ... --select-molecules-atoms
626 </programlisting>
627 <programlisting>
628 ... --unselect-molecules-atoms
629 </programlisting>
630 </listitem>
631 </itemizedlist>
632 </listitem>
633
634 <listitem>
635 <para>Molecules</para>
636
637 <itemizedlist>
638 <listitem>
639 <para>All</para>
640 <programlisting>
641 ... --select-all-molecules
642 </programlisting>
643 </listitem>
644
645 <listitem>
646 <para>None</para>
647 <programlisting>
648 ... --unselect-all-molecules
649 </programlisting>
650 <programlisting>
651 ... --clear-molecule-selection
652 </programlisting>
653 </listitem>
654
655 <listitem>
656 <para>Invert selection</para>
657 <programlisting>
658 ... --invert-molecules
659 </programlisting>
660 </listitem>
661
662 <listitem>
663 <para>By Id (molecule with id 4)</para>
664 <programlisting>
665 ... --select-molecule-by-id 2
666 </programlisting>
667 <programlisting>
668 ... --unselect-molecule-by-id 2
669 </programlisting>
670 </listitem>
671
672 <listitem>
673 <para>By Order (first created molecule, second created
674 molecule, ...)</para>
675 <programlisting>
676 ... --select-molecule-by-order 2
677 </programlisting>
678 <programlisting>
679 ... --unselect-molecule-by-order -2
680 </programlisting>
681 </listitem>
682
683 <listitem>
684 <para>By Formula (molecule with H2O as formula)</para>
685 <programlisting>
686 ... --select-molecules-by-formula "H2O"
687 </programlisting>
688 <programlisting>
689 ... --unselect-molecules-by-formula "H2O"
690 </programlisting>
691 </listitem>
692
693 <listitem>
694 <para>By Name (molecule named "water4")</para>
695 <programlisting>
696 ... --select-molecules-by-name "water4"
697 </programlisting>
698 <programlisting>
699 ... --unselect-molecules-by-name "water4"
700 </programlisting>
701 </listitem>
702
703 <listitem>
704 <para>By Atom (all molecules for which at least one atom is
705 currently selected)</para>
706 <programlisting>
707 ... --select-atoms-molecules
708 </programlisting>
709 <programlisting>
710 ... --unselect-atoms-molecules
711 </programlisting>
712 </listitem>
713 </itemizedlist>
714 </listitem>
715
716 <listitem>
717 <para>Shapes</para>
718
719 <itemizedlist>
720 <listitem>
721 <para>All</para>
722 <programlisting>
723 ... --select-all-shapes
724 </programlisting>
725 </listitem>
726
727 <listitem>
728 <para>None</para>
729 <programlisting>
730 ... --unselect-all-shapes
731 </programlisting>
732 </listitem>
733
734 <listitem>
735 <para>By Name (shape name "sphere1")</para>
736 <programlisting>
737 ... --select-shape-by-name "sphere1"
738 </programlisting>
739 <programlisting>
740 ... --unselect-shape-by-name "sphere1"
741 </programlisting>
742 </listitem>
743 </itemizedlist>
744 </listitem>
745
746 </itemizedlist>
747
748 <remark>Note that an unselected instance (e.g. an atom) remains
749 unselected upon further unselection and vice versa with
750 selection.</remark>
751
752 <para>These above selections work then in conjunction with other
753 actions and make them very powerful, e.g. you can remove all atoms
754 inside a sphere by a selecting the spherical shape and subsequently
755 selecting all atoms inside the shape and then removing them.</para>
756 </section>
757
758 <section xml:id='shapes'>
759 <title xml:id='shapes.title'>Shapes</title>
760
761 <para>Shapes are specific regions of the domain. There are just a few
762 so-called <emphasis>primitive</emphasis> shapes such as cuboid,
763 sphere, cylinder, the whole domain, none of it. However, these can be
764 combined via boolean operations such as and, or, and not. This
765 approach is called <emphasis>constructive geometry</emphasis>. E.g. by
766 combining a sphere with the negated (not) of a smaller sphere, we
767 obtain a spherical surface of specific thickness.</para>
768
769 <section xml:id='shapes.create-shape'>
770 <title xml:id='shapes.create-shape.title'>Creating shapes</title>
771
772 <para>Primitive shapes can be created as follows,</para>
773
774 <programlisting>
775 ... --create-shape \
776 --shape-type sphere \
777 --shape-name "sphere1" \
778 --stretch "2,2,2" \
779 --translation "5,5,5"
780 </programlisting>
781
782 <para>This will create a sphere of radius 2 (initial radius is 1)
783 with name "sphere1" that is centered at (5,5,5). Other primitives at
784 cuboid and cylinder, where a rotation can be specified as
785 follows.</para>
786
787 <programlisting>
788 ... --create-shape \
789 --shape-type cuboid \
790 --shape-name "box" \
791 --stretch "1,2,2" \
792 --translation "5,5,5" \
793 --angle-x "90"
794 </programlisting>
795 </section>
796
797 <section xml:id='shapes.combine-shapes'>
798 <title xml:id='shapes.combine-shapes.title'>Combining shapes</title>
799
800 <para>Any two shapes can be combined by boolean operations as follows</para>
801
802 <programlisting>
803 ... --combine-shapes \
804 --shape-name "combinedshape" \
805 --shape-op "AND" \
806 </programlisting>
807
808 <para>This will combine two currently selected shapes vis the "AND" operation
809 and create a new shape called "combinedshape". Note that the two old shapes
810 are still present after this operation. We briefly explain each operation:
811 </para>
812 <itemizedlist>
813 <listitem>
814 <para><emphasis>AND</emphasis> combines two currently selected shapes
815 into a new shape that only consists of the volume where shapes overlap.</para>
816 </listitem>
817 <listitem>
818 <para><emphasis>OR</emphasis> combines two currently selected shapes
819 into a new shape that consists of all the volume where that either shape
820 occupies.</para>
821 </listitem>
822 <listitem>
823 <para><emphasis>NOT</emphasis> creates the inverse to a currently selected
824 single shape that contains the volume with respect to the simulation domain
825 that the present one does not.</para>
826 </listitem>
827 </itemizedlist>
828 </section>
829
830 <section xml:id='shapes.remove-shape'>
831 <title xml:id='shapes.remove-shape.title'>Removing shapes</title>
832
833 <para>Removing a shape is as simple as removing an atom.</para>
834
835 <programlisting>... --remove-shape </programlisting>
836
837 <para>This removes the currently selected shapes.</para>
838 </section>
839
840 <section xml:id='shapes.manipulation'>
841 <title xml:id='shapes.manipulation.title'>Manipulating shapes</title>
842
843 <para>Shapes can be stretched, scaled, rotated, and translated to
844 modify primitives or combined primitive shapes. As you have seen
845 this manipulation could have occurred already at creation but also
846 later on. We just the list examples of the various manipulations
847 below, each works on the currently selected shapes.</para>
848
849 <programlisting>
850 ... --stretch-shapes "1,1,2" \
851 --stretch-center "5,5,5"
852 </programlisting>
853
854 <para>This stretches the shapes relative to the center at (5,5,5)
855 (default is origin) by a factor of 2 in the z direction.</para>
856
857 <programlisting>
858 ... --rotate-shapes \
859 --center "10,2,2" \
860 --angle-x 90 \
861 --angle-y 0 \
862 --angle-z 0
863 </programlisting>
864
865 <para>This way all selected shapes are rotated by 90 degrees around
866 the x axis with respect to the center at (10,2,2).</para>
867
868 <programlisting>... --translate-shapes "5,0,0" </programlisting>
869
870 <para>This translates all selected shapes by 5 along the x
871 axis.</para>
872 </section>
873 </section>
874
875 <section xml:id='randomization'>
876 <title xml:id='randomization.title'>Randomization</title>
877
878 <para>Some operations require randomness as input, e.g. when filling a
879 domain with molecules these may be randomly translated and rotated.
880 Random values are obtained by a random number generator that consists
881 of two parts: engine and distribution. The engine yields a uniform set
882 of random numbers in a specific interval, the distribution modifies
883 them, e.g. to become gaussian.</para>
884
885 <para>There are several Actions to modify the specific engine and
886 distribution and their parameters. One example usage is that with the
887 aforementioned filling of the domain molecules are rotated randomly.
888 If you specify a random number generator that randomly just spills out
889 values 0,1,2,3, then the randomness is just the orientation of the
890 molecule with respect to a specific axis: x,y,z. (rotation is at most
891 360 degrees and 0,1,2,3 act as divisor, hence rotation angle is always
892 a multiple of 90 degrees).</para>
893
894 <programlisting>
895 ... --set-random-number-distribution "uniform_int" \
896 --random-number-distribution-parameters "p=1"
897 </programlisting>
898
899 <para>This changes the distribution to "uniform_int", i.e. integer
900 numbers distributed uniformly.</para>
901
902 <programlisting>
903 ... --set-random-number-engine "mt19937" \
904 --random-numner-engine-parameters "seed=10"
905 </programlisting>
906
907 <para>Specifying the seed allows you to obtain the same sequence of
908 random numbers for testing purposes.</para>
909 </section>
910
911 <section xml:id='atoms'>
912 <title xml:id='atoms.title'>Manipulate atoms</title>
913
914 <para>Here, we explain in detail how to add, remove atoms, change its
915 element type, scale the bond in between or measure the bond length or
916 angle.</para>
917
918 <section xml:id='atoms.add-atom'>
919 <title xml:id='atoms.add-atom.title'>Adding atoms</title>
920
921 <para>Adding an atom to the domain requires the element of the atom
922 and its coordinates as follows,</para>
923
924 <programlisting>
925 ... --add-atom O \
926 --domain-position "2.,3.,2.35"
927 </programlisting>
928
929 <para>where the element is given via its chemical symbol and the
930 vector gives the position within the domain</para>
931 </section>
932
933 <section xml:id='atoms.remove-atom'>
934 <title xml:id='atoms.remove-atom.title'>Removing atoms</title>
935
936 <para>Removing atom(s) does not need any option and operates on the
937 currently selected ones.</para>
938
939 <programlisting>... --remove-atom</programlisting>
940 </section>
941
942 <section xml:id='atoms.translate-atom'>
943 <title xml:id='atoms.translate-atom.title'>Translating atoms</title>
944
945 <para>In order to translate the current selected subset of atoms you
946 specify a translation vector.</para>
947
948 <programlisting>
949 ... --translate-atoms "-1,0,0" \
950 --periodic 0
951 </programlisting>
952
953 <para>This translate all atoms by "-1" along the x axis and does not
954 mind the boundary conditions, i.e. might shift atoms outside of the
955 domain.</para>
956 </section>
957
958 <section xml:id='atoms.change-element'>
959 <title xml:id='atoms.change-element.title'>Changing an atoms element
960 </title>
961
962 <para>You can easily turn lead or silver into gold, by selecting the
963 silver atom and calling the change element action.</para>
964
965 <programlisting>... --change-element Au</programlisting>
966 </section>
967 </section>
968
969 <section xml:id='bond'>
970 <title xml:id='bond.title'>Bond-related manipulation</title>
971
972 <para>Atoms can also be manipulated with respect to the bonds.
973 <remark>Note that with bonds we always mean covalent bonds.</remark>
974 First, we explain how to modify the bond structure itself, then we go
975 in the details of using the bond information to change bond distance
976 and angles.</para>
977
978 <section xml:id='bond.create-adjacency'>
979 <title xml:id='bond.create-adjacency.title'>Creating a bond graph
980 </title>
981
982 <para>In case you have loaded a configuration file with no bond
983 information, e.g. XYZ, it is necessary to create the bond graph.
984 This is done by a heuristic distance criterion.</para>
985
986 <programlisting>... --create-adjacency</programlisting>
987
988 <para>This uses by default a criterion based on van-der-Waals radii,
989 i.e. if we look at two atoms indexed by "a" and "b"</para>
990
991 <equation>
992 <title>V(a) + V(b) - \tau &lt; R_{ab} &lt; V(a) + V(b) +
993 \tau</title>
994
995 <m:math display="block">
996 <m:mi>where V(.) is the lookup table for the radii for a given
997 element and \tau is a threshold value, set to 0.4.</m:mi>
998 </m:math>
999 </equation>
1000
1001 <para>As a second option, you may load a file containing bond table
1002 information.</para>
1003
1004 <programlisting>... --bond-table table.dat</programlisting>
1005
1006 <para>which would parse a file <filename>table.dat</filename> for a
1007 table giving typical bond distances between elements a and b. These
1008 are used in the above criterion as <inlineequation>
1009 <m:math display="inline">
1010 <m:mi>V(a,b)</m:mi>
1011 </m:math>
1012 </inlineequation> in place of <inlineequation>
1013 <m:math display="inline">
1014 <m:mi>V(a)+V(b)</m:mi>
1015 </m:math>
1016 </inlineequation>.</para>
1017 </section>
1018
1019 <section xml:id='bond.destroy-adjacency'>
1020 <title xml:id='bond.destroy-adjacency.title'>Destroying the bond
1021 graph</title>
1022
1023 <para>The bond graph can be removed completely (and all bonds along
1024 with it).</para>
1025
1026 <programlisting>... --destroy-adjacency</programlisting>
1027 </section>
1028
1029 <section xml:id='bond.correct-bonddegree'>
1030 <title xml:id='bond.correct-bonddegree.title'>Correcting bond
1031 degrees</title>
1032
1033 <para>Typically, after loading an input file bond information, e.g.
1034 a PDB file, the bond graph is complete but we lack the weights. That
1035 is we do not know whether a bond is single, double, triple, ...
1036 This action corrects the bond degree by enforcing charge neutrality
1037 among the connected atoms.
1038 </para>
1039 <para>This action is in fact quadratically scaling in the number of
1040 atoms. Hence, for large systems this may take longer than expected.
1041 </para>
1042
1043 <programlisting>... --correct-bonddegree</programlisting>
1044 </section>
1045
1046 <section xml:id='bond.depth-first-search'>
1047 <title xml:id='bond.depth-first-search.title'>Analysing a bond
1048 graph</title>
1049
1050 <para>You can perform a depth-first search analysis that reveals
1051 cycles and other graph-related information.</para>
1052
1053 <programlisting>... --depth-first-search</programlisting>
1054 </section>
1055
1056 <section xml:id='bond.subgraph-dissection'>
1057 <title xml:id='bond.subgraph-dissection.title'>Dissecting the
1058 molecular system into molecules</title>
1059
1060 <para>The bond graph information can be used to recognize the
1061 molecule within the system. Imagine you have just loaded a PDB file
1062 containing bond information. However, initially all atoms are dumped
1063 into the same molecule. Before you can start manipulating, you need
1064 to dissect the system into individual molecules. Note that this is
1065 just structural information and does not change the state of the
1066 system.</para>
1067
1068 <programlisting>... --subgraph-dissection</programlisting>
1069
1070 <para>This analyses the bond graph and splits the single molecule up
1071 into individual (new) ones that each contain a single connected
1072 subgraph, hence the naming.</para>
1073 </section>
1074
1075 <section xml:id='bond.update-molecules'>
1076 <title xml:id='bond.update-molecules.title'>Updating molecule
1077 structure</title>
1078
1079 <para>When the bond information has changed, new molecules might
1080 have formed, this action updates all the molecules by scanning
1081 the connectedness of the bond grapf of the molecular system.
1082 </para>
1083
1084 <programlisting>... --update-molecules</programlisting>
1085 </section>
1086
1087 <section xml:id='bond.add-bond'>
1088 <title xml:id='bond.add-bond.title'>Adding a bond manually</title>
1089
1090 <para>When the automatically created adjacency or bond graph
1091 contains faulty bonds or lacks some, you can add them manually.
1092 First, you must have selected two atoms.</para>
1093
1094 <programlisting>... --add-bond</programlisting>
1095 </section>
1096
1097 <section xml:id='bond.remove-bond'>
1098 <title xml:id='bond.remove-bond.title'>Removing a bond manually
1099 </title>
1100
1101 <para>In much the same way as adding a bond, you can also remove a
1102 bond.</para>
1103
1104 <programlisting>... --remove-bond</programlisting>
1105 </section>
1106
1107 <section xml:id='bond.save-bonds'>
1108 <title xml:id='bond.save-bonds.title'>Saving bond information
1109 </title>
1110
1111 <para>Bond information can be saved to a file in <link
1112 xlink:href="http://www.molecuilder.com/"><productname>TREMOLO
1113 </productname></link>'s dbond style.</para>
1114
1115 <programlisting>... --save-bonds system.dbonds</programlisting>
1116
1117 <para>Similarly is the following Action which saves the bond
1118 information as a simple list of one atomic id per line and in
1119 the same line, separated by spaces, the ids of all atoms connected
1120 to it.</para>
1121
1122 <programlisting>... --save-adjacency system.adj</programlisting>
1123
1124 </section>
1125
1126 <section xml:id='bond.stretch-bond'>
1127 <title xml:id='bond.stretch-bond.title'>Stretching a bond</title>
1128
1129 <para>Stretching a bond actually refers to translation of the
1130 associated pair of atoms. However, this action will keep the rest of
1131 the molecule to which both atoms belong to invariant as well.</para>
1132
1133 <programlisting>... --stretch-bond 1.2</programlisting>
1134
1135 <para>This scales the original bond distance to the new bond
1136 distance 1.2, shifting the right hand side and the left hand side of
1137 the molecule accordingly.</para>
1138
1139 <warning>
1140 <para>this fails with aromatic rings (but you can always
1141 undo).</para>
1142 </warning>
1143 </section>
1144
1145 <section xml:id='bond.change-bond-angle'>
1146 <title xml:id='bond.change-bond-angle.title'>Changing a bond angle
1147 </title>
1148
1149 <para>In the same way as stretching a bond, you can change the angle
1150 in between two bonds. This works if exactly three atoms are selected
1151 and two pairs are bonded.</para>
1152
1153 <programlisting>... --change-bond-angle 90</programlisting>
1154
1155 <para>This will change the angle from its value to 90 degree by
1156 translating the two outer atoms of this triangle (the atom connected
1157 to both others is the axis of the rotation).</para>
1158 </section>
1159 </section>
1160
1161 <section xml:id='molecule'>
1162 <title xml:id='molecule.title'>Manipulate molecules</title>
1163
1164 <para>Molecules are agglomerations of atoms that are bonded. Hence,
1165 the actions working on molecules differ from those working on atoms.
1166 Joining two molecules can only be accomplished by adding a bond in
1167 between, and in the reverse fashion splitting a molecule by removing
1168 all bonds in between. Actions below mostly deal with copying
1169 molecules. Removing of molecules is done via selecting the molecule's
1170 atoms and removing them, which removes the atoms as well.</para>
1171
1172 <note>
1173 <para>Initially when you load a file via the input action all atoms
1174 are placed in a single molecule despite any present bond
1175 information, see <link linkend="fragmentation">Dissecting the
1176 molecular system into molecules</link></para>
1177 </note>
1178
1179 <section xml:id='molecule.copy'>
1180 <title xml:id='molecule.copy.title'>Copy molecules</title>
1181
1182 <para>A basic operation is to duplicate a molecule. This works on a
1183 single, currently selected molecule. Afterwards, we elaborate on a
1184 more complex manner of copying, filling a specific shape with
1185 molecules.</para>
1186
1187 <programlisting>
1188 ... --copy-molecule \
1189 --position "10,10,10"
1190 </programlisting>
1191
1192 <para>This action copies the selected molecule and inserts it at the
1193 position (10,10,10) in the domain with respect to the molecule's
1194 center. In effect, it copies all the atoms of the original molecule
1195 and adds new bonds in between these copied atoms such that their
1196 bond subgraphs are identical.</para>
1197 </section>
1198
1199 <section xml:id='molecule.change-molname'>
1200 <title xml:id='molecule.change-molname.title'>Change a molecules
1201 name</title>
1202
1203 <para>You can change the name of a molecule which is important for
1204 selection.</para>
1205
1206 <programlisting>... -change-molname "test</programlisting>
1207
1208 <para>This will change the name of the (only) selected molecule to
1209 "test".</para>
1210
1211 <para>Connected with this is the default name an unknown molecule
1212 gets.</para>
1213
1214 <programlisting>... --default-molname test</programlisting>
1215
1216 <para>This will change the default name of a molecule to
1217 "test".</para>
1218
1219 <note>
1220 <para>Note that a molecule loaded from file gets the filename
1221 (without suffix) as its name.</para>
1222 </note>
1223 </section>
1224
1225 <section xml:id='molecule.rotate-around-self'>
1226 <title xml:id='molecule.rotate-around-self.title'>Rotate around self
1227 </title>
1228
1229 <para>You can rotate a molecule around its own axis.</para>
1230
1231 <programlisting>
1232 ... --rotate-around-self "90" \
1233 --axis "0,0,1"
1234 </programlisting>
1235
1236 <para>This rotates the molecule around the z axis by 90 degrees as
1237 if the origin were at its center of origin.</para>
1238 </section>
1239
1240 <section xml:id='molecule.rotate-around-origin'>
1241 <title xml:id='molecule.rotate-around-origin.title'>Rotate around
1242 origin</title>
1243
1244 <para>In the same manner the molecule can be rotated around an
1245 external origin.</para>
1246
1247 <programlisting>
1248 ... --rotate-around-origin 90 \
1249 --position "0,0,1"\
1250 </programlisting>
1251
1252 <para>This rotates the molecule around an axis from the origin to
1253 the position (0,0,1), i.e. around the z axis, by 90 degrees.</para>
1254 </section>
1255
1256 <section xml:id='molecule.rotate-to-principal-axis-system'>
1257 <title xml:id='molecule.rotate-to-principal-axis-system.title'>
1258 Rotate to principal axis system</title>
1259
1260 <para>The principal axis system is given by an ellipsoid that mostly
1261 matches the molecules shape. The principal axis system can be just
1262 simply determined by</para>
1263
1264 <programlisting>... --principal-axis-system</programlisting>
1265
1266 <para>To rotate the molecule around itself to align with this system
1267 do as follows.</para>
1268
1269 <programlisting>... --rotate-to-principal-axis-system "0,0,1"
1270 </programlisting>
1271
1272 <para>This rotates the molecule in such a manner that the ellipsoids
1273 largest axis is aligned with the z axis. <remark>Note that "0,0,-1"
1274 would align anti-parallel.</remark></para>
1275 </section>
1276
1277 <section xml:id='molecule.verlet-integration'>
1278 <title xml:id='molecule.verlet-integration.title'>Perform verlet
1279 integration</title>
1280
1281 <para>Atoms not only have a position, but each instance also stores
1282 velocity and a force vector. These can be used in a velocity verlet
1283 integration step. Velocity verlet is a often employed time
1284 integration algorithm in molecular dynamics simulations.</para>
1285
1286 <programlisting>
1287 ... --verlet-integration \
1288 --deltat 0.1 \
1289 --keep-fixed-CenterOfMass 0
1290 </programlisting>
1291
1292 <para>This will integrate with a timestep of <inlineequation>
1293 <m:math display="inline">
1294 <m:mi>\Delta_t = 0.1</m:mi>
1295 </m:math>
1296 </inlineequation>and correcting forces and velocities such that
1297 the sum over all atoms is zero.</para>
1298 </section>
1299
1300 <section xml:id='molecule.force-annealing'>
1301 <title xml:id='molecule.force-annealing.title'>Anneal the atomic
1302 forces</title>
1303
1304 <para>This will shift the atoms in a such a way as to decrease (or
1305 anneal) the forces acting upon them.</para>
1306
1307 <para>Forces may either be already present for the set of atoms by
1308 some other way (e.g. from a prior fragmentation calculation) or,
1309 as shown here, from an external file. We anneal the forces for
1310 one step with a certain initial step width of 0.5 atomic time
1311 units and do not create a new timestep for each optimization
1312 step.</para>
1313
1314 <programlisting>
1315 ... --force-annealing \
1316 --forces-file test.forces \
1317 --deltat 0.5 \
1318 --steps 1 \
1319 --output-every-step 0
1320 </programlisting>
1321 </section>
1322
1323 <section xml:id='molecule.linear-interpolation-of-trajectories'>
1324 <title xml:id='molecule.linear-interpolation-of-trajectories.title'>
1325 Linear interpolation between configurations</title>
1326
1327 <para>This is similar to verlet-integration, only that it performs
1328 a linear integration irrespective of the acting atomic forces.
1329 </para>
1330
1331 <para>The following call will produce an interpolation between the
1332 configurations in time step 0 and time step 1 with 98 intermediate
1333 steps, i.e. current step 1 will end up in time step 99. In this
1334 case an idential mapping is used to associated atoms in start and
1335 end configuration.</para>
1336
1337 <programlisting>
1338 ... --linear-interpolation-of-trajectories \
1339 --start-step 0 \
1340 --end-step 1 \
1341 --interpolation-steps 100 \
1342 --id-mapping 1
1343 </programlisting>
1344 </section>
1345 </section>
1346
1347 <section xml:id='domain'>
1348 <title xml:id='domain.title'>Manipulate domain</title>
1349
1350 <para>Here, we elaborate on how to duplicate all the atoms inside the
1351 domain, how the scale the coordinate system, how to center the atoms
1352 with respect to certain points, how to realign them by given
1353 constraints, how to mirror and most importantly how to specify the
1354 domain.</para>
1355
1356 <section xml:id='domain.change-box'>
1357 <title xml:id='domain.change-box.title'>Changing the domain</title>
1358
1359 <para>The domain is specified by a symmetric 3x3 matrix. The
1360 eigenvalues (diagonal entries in case of a diagonal matrix) give the
1361 length of the edges, additional entries specify transformations of
1362 the box such that it becomes a more general parallelepiped.</para>
1363
1364 <programlisting>... change-box "20,0,20,0,0,20"</programlisting>
1365
1366 <para>As the domain matrix is symmetric, six values suffice to fully
1367 specify it. We have to give the six components of the lower diagonal
1368 matrix. Here, we change the box to a cuboid of equal edge length of
1369 20.</para>
1370 </section>
1371
1372 <section xml:id='domain.bound-in-box'>
1373 <title xml:id='domain.bound-in-box.title'>Bound atoms inside box
1374 </title>
1375
1376 <para>The following applies the current boundary conditions to the
1377 atoms. In case of periodic or wrapped boundary conditions the atoms
1378 will be periodically translated to be inside the domain
1379 again.</para>
1380
1381 <programlisting>... --bound-in-box</programlisting>
1382 </section>
1383
1384 <section xml:id='domain.center-in-box'>
1385 <title xml:id='domain.center-in-box.title'>Center atoms inside the
1386 domain</title>
1387
1388 <para>This is a combination of changing the box and bounding the
1389 atoms inside it.</para>
1390
1391 <programlisting>... --center-in-box "20,0,20,0,0,"</programlisting>
1392 </section>
1393
1394 <section xml:id='domain.center-edge'>
1395 <title xml:id='domain.center-edge.title'>Center the atoms at an
1396 edge</title>
1397
1398 <para>MoleCuilder can calculate the minimum box (parallel to the
1399 cardinal axis) all atoms would fit in and translate all atoms in
1400 such a way that the lower, left, front edge of this minimum is at
1401 the origin (0,0,0).</para>
1402
1403 <programlisting>... --center-edge</programlisting>
1404 </section>
1405
1406 <section xml:id='domain.add-empty-boundary'>
1407 <title xml:id='domain.add-empty-boundary.title'>Extending the
1408 boundary by adding an empty boundary</title>
1409
1410 <para>In the same manner as above a minimum box is determined that
1411 is subsequently expanded by a boundary of the given additional
1412 thickness. This applies to either side.</para>
1413
1414 <programlisting>... --add-empty-boundary "5,5,5"</programlisting>
1415
1416 <para>This will enlarge the box in such a way that every atom is at
1417 least by a distance of 5 away from the boundary of the domain (in
1418 the infinity norm).</para>
1419 </section>
1420
1421 <section xml:id='domain.scale-box'>
1422 <title xml:id='domain.scale-box.title'>Scaling the box</title>
1423
1424 <para>You can enlarge the domain by simple scaling factors.</para>
1425
1426 <programlisting>... --scale-box "1,1,2.5"</programlisting>
1427
1428 <para>Here, the domain is stretched in the z direction by a factor
1429 of 2.5.</para>
1430 </section>
1431
1432 <section xml:id='domain.repeat-box'>
1433 <title xml:id='domain.repeat-box.title'>Repeating the box</title>
1434
1435 <para>Under periodic boundary conditions often only the minimal
1436 periodic cell is stored. If need be, multiple images can be easily
1437 added to the current state of the system by repeating the box, i.e.
1438 the box along with all contained atoms is copied and placed
1439 adjacently.</para>
1440
1441 <programlisting>... --repeat-box "1,2,2"</programlisting>
1442
1443 <para>This will create a 2x2 grid of the current domain, replicating
1444 it along the y and z direction along with all atoms. If the domain
1445 contained before a single water molecule, we will now have four of
1446 them.</para>
1447 </section>
1448
1449 <section xml:id='domain.set-boundary-conditions'>
1450 <title xml:id='domain.set-boundary-conditions.title'>Change the
1451 boundary conditions</title>
1452
1453 <para>Various boundary conditions can be applied that affect how
1454 certain Actions work, e.g. translate-atoms. We briefly give a list
1455 of all possible conditions:</para>
1456 <itemizedlist>
1457 <listitem>
1458 <para>Wrap</para>
1459 <para>Coordinates are wrapped to the other side of the domain,
1460 i.e. periodic boundary conditions.</para>
1461 </listitem>
1462 <listitem>
1463 <para>Bounce</para>
1464 <para>Coordinates are bounced back into the domain, i.e. they
1465 are reflected from the domain walls.</para>
1466 </listitem>
1467 <listitem>
1468 <para>Ignore</para>
1469 <para>No boundary conditions apply.</para>
1470 </listitem>
1471 </itemizedlist>
1472
1473 <para>The following will set the boundary conditions to periodic.
1474 </para>
1475
1476 <programlisting>... --set-boundary-conditions "Wrap Wrap Wrap"
1477 </programlisting>
1478 </section>
1479 </section>
1480
1481 <section xml:id='filling'>
1482 <title xml:id='filling.title'>Filling</title>
1483
1484 <para>Filling a specific part of the domain with one type of
1485 molecule, e.g. a water molecule, is the more advanced type of
1486 copying of a molecule (see copy-molecule) and we need several
1487 ingredients.</para>
1488
1489 <para>First, we need to specify the part of the domain. This is done
1490 via a shape. We have already learned how to create and select
1491 shapes. The currently selected shape will serve as the fill-in
1492 region.</para>
1493
1494 <para>Then, they are three types of filling, domain, volume, and
1495 surface. The domain is filled with a regular grid of fill-in points.
1496 A volume and a surface are filled by a set of equidistant points
1497 distributed within the volume or on the surface of a selected
1498 shape. Molecules will then be copied and translated points when they
1499 "fit".</para>
1500
1501 <para>The filler procedure checks each fill-in point whether there
1502 is enough space for the molecule. To know this, we require a cluster
1503 instead of a molecule. This is just a general agglomeration of atoms
1504 combined with a bounding box that contains all of them and serves as
1505 its minimal volume. I.e. we need this cluster. For this a number of
1506 atoms have to be specified, the minimum bounding box is generated
1507 automatically.</para>
1508
1509 <para>On top of that molecules can be selected whose volume is
1510 additionally excluded from the filling region.</para>
1511
1512 <section xml:id='filling.fill-regular-grid'>
1513 <title xml:id='filling.fill-regular-grid.title'>Fill the domain with
1514 molecules</title>
1515
1516 <para>The call to fill the volume of the selected shape with the
1517 selected atoms is then as follows,</para>
1518
1519 <programlisting>
1520 ... --fill-regular-grid \
1521 --mesh-size "5,5,5" \
1522 --mesh-offset ".5,.5,.5" \
1523 --DoRotate 1 \
1524 --min-distance 1. \
1525 --random-atom-displacement 0.05 \
1526 --random-molecule-displacement 0.4 \
1527 --tesselation-radius 2.5
1528 </programlisting>
1529
1530 <para>This generates a grid of 5x5x5 fill-in points within the
1531 sphere that are offset such as to lay centered within the sphere
1532 (offset per axis in [0,1]). Additionally, each molecule is rotated
1533 by random rotation matrix, each atom is translated randomly by at
1534 most 0.05, each molecule's center at most by 0.4. The selected
1535 molecules' volume is obtained by tesselating their surface and
1536 excluding every fill-in point whose distance to this surface does
1537 not exceed 1. We refer to our comments in
1538 <link linkend="randomization">Randomization</link>for details on
1539 changing the randomness.</para>
1540 </section>
1541
1542 <section xml:id='filling.fill-volume'>
1543 <title xml:id='filling.fill-volume.title'>Fill a shape's volume
1544 with molecules</title>
1545
1546 <para>More specifically than filling the whole domain with molecules,
1547 maybe except areas where other molecules already are, we also can
1548 fill only specific parts by selecting a shape and calling upon
1549 the following action:</para>
1550
1551 <programlisting>
1552 ... --fill-volume \
1553 --counts 12 \
1554 --min-distance 1. \
1555 --DoRotate 1 \
1556 --random-atom-displacement 0.05 \
1557 --random-molecule-displacement 0.4 \
1558 --tesselation-radius 2.5
1559 </programlisting>
1560 </section>
1561
1562 <section xml:id='filling.fill-surface'>
1563 <title xml:id='filling.fill-surface.title'>Fill a shape's surface
1564 with molecules</title>
1565
1566 <para>Filling a surface is very similar to filling its volume.
1567 Again the number of equidistant points has to be specified.
1568 However, randomness is constrained as the molecule is be aligned
1569 with the surface in a specific manner. The alignment axis refers
1570 to the largest principal axis of the filler molecule and will
1571 be aligned parallel to the surface normal at the fill-in point.
1572 </para>
1573
1574 <para>The call below fill in 12 points with a minimum distance
1575 between the instances of 1 angstroem. We allow for certain random
1576 displacements and use the z-axis for aligning the molecules on
1577 the surface.</para>
1578
1579 <programlisting>
1580 ... --fill-surface \
1581 --counts 12 \
1582 --min-distance 1. \
1583 --DoRotate 1 \
1584 --random-atom-displacement 0.05 \
1585 --random-molecule-displacement 0.4 \
1586 --Alignment-Axis "0,0,1"
1587 </programlisting>
1588 </section>
1589
1590 <section xml:id='filling.suspend-in-molecule'>
1591 <title xml:id='filling.suspend-in-molecule.title'>Suspend in molecule
1592 </title>
1593
1594 <para>Add a given molecule in the simulation domain in such a way
1595 that the total density is as desired.</para>
1596
1597 <programlisting>
1598 ... --suspend-in-molecule 1.
1599 </programlisting>
1600 </section>
1601
1602 <section xml:id='filling.fill-molecule'>
1603 <title xml:id='filling.fill-molecule.title'>Fill in molecule</title>
1604
1605 <para>This action will be soon be removed.</para>
1606
1607 <programlisting>
1608 ... --fill-molecule
1609 </programlisting>
1610 </section>
1611
1612 <section xml:id='filling.fill-void'>
1613 <title xml:id='filling.fill-void.title'>Fill void with molecule
1614 </title>
1615
1616 <para>This action will be soon be removed.</para>
1617
1618 <programlisting>
1619 ... --fill-void
1620 </programlisting>
1621 </section>
1622 </section>
1623
1624 <section xml:id='analysis'>
1625 <title xml:id='analysis.title'>Analysis</title>
1626
1627 <para></para>
1628
1629 <section xml:id='analysis.pair-correlation'>
1630 <title xml:id='analysis.pair-correlation.title'>Pair Correlation
1631 </title>
1632
1633 <para>Pair correlation checks for two given elements on the typical
1634 distance they can be found with respect to one another. E.g. for
1635 water one might be interested what is the typical distance for
1636 hydrogen and oxygen atoms.</para>
1637
1638 <programlisting>
1639 ... --pair-correlation \
1640 --elements 1 8 \
1641 --bin-start 0 \
1642 --bin-width 0.7 \
1643 --bin-end 10 \
1644 --output-file histogram.dat \
1645 --bin-output-file bins.dat \
1646 --periodic 0
1647 </programlisting>
1648
1649 <para>This will compile a histogram for the interval [0,10] in steps
1650 of 0.7 and increment a specific bin if the distance of one such pair
1651 of a hydrogen and an oxygen atom can be found within its distance
1652 interval.</para>
1653 </section>
1654
1655 <section xml:id='analysis.dipole-correlation'>
1656 <title xml:id='analysis.dipole-correlation.title'>Dipole Correlation
1657 </title>
1658
1659 <para>The dipole correlation is similar to the pair correlation, only
1660 that it correlates the orientation of dipoles in the molecular
1661 system with one another.</para>
1662 <para>Note that the dipole correlation works on the currently
1663 selected molecules, e.g. all water molecules if so selected.</para>
1664
1665 <programlisting>
1666 ... --dipole-correlation \
1667 --bin-start 0 \
1668 --bin-width 0.7 \
1669 --bin-end 10 \
1670 --output-file histogram.dat \
1671 --bin-output-file bins.dat \
1672 --periodic 0
1673 </programlisting>
1674 </section>
1675
1676 <section xml:id='analysis.dipole-angular-correlation'>
1677 <title xml:id='analysis.dipole-angular-correlation.title'>Dipole
1678 Angular Correlation</title>
1679
1680 <para>The dipole angular correlation looks at the angles of a
1681 dipole over time. It takes the orientation of a certain time step
1682 as the zero angle and bins all other orientations found in later
1683 time steps relative to it.
1684 </para>
1685 <para>Note that in contrast to the dipole correlation the dipole
1686 angular correlation works on the molecules determined by a formula.
1687 This is because selections do not work over time steps as molecules
1688 might change.
1689 </para>
1690
1691 <programlisting>
1692 ... --dipole-angular-correlation H2O \
1693 --bin-start 0 \
1694 --bin-width 5 \
1695 --bin-end 360 \
1696 --output-file histogram.dat \
1697 --bin-output-file bins.dat \
1698 --periodic 0 \
1699 --time-step-zero 0
1700 </programlisting>
1701 </section>
1702
1703 <section xml:id='analysis.point-correlation'>
1704 <title xml:id='analysis.point-correlation.title'>Point Correlation
1705 </title>
1706
1707 <para>Point correlation is very similar to pair correlation, only
1708 that it correlates not positions of atoms among one another but
1709 against a fixed, given point.</para>
1710
1711 <programlisting>
1712 ... --point-correlation \
1713 --elements 1 8 \
1714 --position "0,0,0" \
1715 --bin-start 0 \
1716 --bin-width 0.7 \
1717 --bin-end 10 \
1718 --output-file histogram.dat \
1719 --bin-output-file bins.dat \
1720 --periodic 0
1721 </programlisting>
1722
1723 <para>This would calculate the correlation of all hydrogen and
1724 oxygen atoms with respect to the origin.</para>
1725 </section>
1726
1727 <section xml:id='analysis.surface-correlation'>
1728 <title xml:id='analysis.surface-correlation.title'>Surface
1729 Correlation</title>
1730
1731 <para>The surface correlation calculates the distance of a set
1732 of atoms with respect to a tesselated surface.</para>
1733
1734 <programlisting>
1735 ... --surface-correlation \
1736 --elements 1 8 \
1737 --bin-start 0 \
1738 --bin-width 0.7 \
1739 --bin-end 10 \
1740 --output-file histogram.dat \
1741 --bin-output-file bins.dat \
1742 --periodic 0
1743 </programlisting>
1744 </section>
1745
1746 <section xml:id='analysis.molecular-volume'>
1747 <title xml:id='analysis.molecular-volume.title'>Molecular Volume
1748 </title>
1749
1750 <para>This simply calculates the volume that a selected molecule
1751 occupies. For this the molecular surface is determined via a
1752 tesselation. Note that this surface is minimal is that aspect
1753 that each node of the tesselation consists of an atom of the
1754 molecule.</para>
1755
1756 <programlisting>... --molecular-volume</programlisting>
1757 </section>
1758
1759 <section xml:id='analysis.average-molecule-force'>
1760 <title xml:id='analysis.average-molecule-forcetitle'>Average force
1761 acting on a molecule</title>
1762
1763 <para>This sums up all the forces of each atom of a currently
1764 selected molecule and returns the average force vector. This should
1765 give you the general direction of acceleration of the molecule.
1766 </para>
1767
1768 <programlisting>... --molecular-volume</programlisting>
1769 </section>
1770
1771 </section>
1772
1773 <section xml:id='fragmentation'>
1774 <title xml:id='fragmentation.title'>Fragmentation</title>
1775
1776 <para>Fragmentation refers to a so-called linear-scaling method called
1777 "Bond-Order diSSection in an ANOVA-like fashion" (BOSSANOVA),
1778 developed by <personname>Frederik Heber</personname>. In this section
1779 we briefly explain what the method does and how the associated actions
1780 work.</para>
1781
1782 <para>The central idea behind the BOSSANOVA scheme is to fragment the
1783 graph of the molecular system into connected subgraphs of a certain
1784 number of vertices (atoms). To give an example, loading a ethane atom
1785 with the chemical formula C2H6, fragmenting the molecule up to order 1
1786 means creating two fragments, both methane-like from either carbon
1787 atom including surrounding hydrogen atoms. Fragmenting up to order 2
1788 would return both the methane fragments and additionally the full
1789 ethane molecule as it resembles a fragment of order 2, namely
1790 containing two (non-hydrogen) atoms.</para>
1791
1792 <para>The reason for doing this is that usual ab-initio calculations
1793 of molecular systems via methods such as Density Functional Theory or
1794 Hartree-Fock scale at least as <inlineequation>
1795 <m:math display="inline">
1796 <m:mi>{\cal O}(M^3}</m:mi>
1797 </m:math>
1798 </inlineequation>with the number of atoms <inlineequation>
1799 <m:math display="inline">
1800 <m:mi>M</m:mi>
1801 </m:math>
1802 </inlineequation>. Hence, calculating the ground state energy of a
1803 number of fragment molecules scaling linearly with the number of atoms
1804 yields a linear-scaling methods. In the doctoral thesis of Frederik
1805 Heber, it is explained why this is a sensible ansatz mathematically
1806 and shown that it delivers a very good accuracy if electrons (and
1807 hence interactions) are in general localized.</para>
1808
1809 <para>Long-range interactions are artificially truncated, however,
1810 with this fragment ansatz. It can be obtained in a perturbation manner
1811 by sampling the resulting electronic and nuclei charge density on a
1812 grid, summing over all fragments, and solving the associated Poisson
1813 equation. Such a calculation is implemented via the solver
1814 <productname>vmg</productname> by Julian Iseringhausen that is
1815 contained in the <link xlink:href="http://www.scafacos.org/">
1816 <productname>ScaFaCoS</productname></link>.</para>
1817
1818 <para>Note that we treat hydrogen special (but can be switched off) as
1819 fragments are calculated as closed shell (total spin equals zero).
1820 Also, we use hydrogen to saturate any dangling bonds that occur as
1821 bonds are cut when fragmenting a molecule (this, too, can be switched
1822 off).</para>
1823
1824 <section xml:id='fragmentation.fragment-molecule'>
1825 <title xml:id='fragmentation.fragment-molecule.title'>Fragmenting a
1826 molecular system</title>
1827
1828 <para>For the current selection of atoms, all fragments consisting
1829 of these (sub)set of atoms are created in the following
1830 manner.</para>
1831
1832 <programlisting>
1833 ... --fragment-molecule "BondFragment" \
1834 --DoCyclesFull 1 \
1835 --distance 3. \
1836 --order 3 \
1837 --grid-level 5 \
1838 --output-types xyz mpqc
1839 </programlisting>
1840
1841 <para>We go through each of the options one after the other. During
1842 fragmentation some files are created storing state information, i.e.
1843 the vertex/atom indices per fragment and so on. These files all need
1844 a common prefix, here "BondFragment". Then, we specify that cycles
1845 should be treated fully. This compensates for electrons in aromatic
1846 rings being delocalized over the ring. If cycles in the graph,
1847 originating from aromatic rings, are always calculated fully, i.e.
1848 the whole ring becomes a fragment, we partially overcome these
1849 issues. This does however not work indefinitely and accuracy of the
1850 approximation is limited (<inlineequation>
1851 <m:math display="inline">
1852 <m:mi>&gt;10^{-4}</m:mi>
1853 </m:math>
1854 </inlineequation>) in systems with many interconnected aromatic
1855 rings, such as graphene. Next, we give a distance cutoff of 3 used
1856 in bond graph creation. Then, we specify the maximum order, i.e. the
1857 maximum number of (non-hydrogen) atoms per fragment, here 3. The
1858 higher this number the more expensive the calculation becomes
1859 (because substantially more fragments are created) but also the more
1860 accurate. The grid level refers to the part where long-range Coulomb
1861 interactions are calculated. This is done via solving the associated
1862 Poisson equation with a multigrid solver. As input the solver
1863 requires the density which is sampled on a cartesian grid whose
1864 resolution these parameter defines (<inlineequation>
1865 <m:math display="inline">
1866 <m:mi>2^{\mathrm{level}}</m:mi>
1867 </m:math>
1868 </inlineequation>). And finally, we give the output file formats,
1869 i.e. which file formats are used for writing each fragment
1870 configuration (prefix is "BondFragment", remember?). Here, we use
1871 XYZ (mainly for checking the configurations visually) and MPQC,
1872 which is a very robust Hartree-Fock solver. We refer to the
1873 discussion of the <link linkend="fileparsers">Parsers</link> above
1874 on how to change the parameters of the ab-initio calculation.</para>
1875
1876 <para>After having written all fragment configuration files, you
1877 need to calculate each fragment, grab the resulting energy (and
1878 force vectors) and place them into a result file manually. This at
1879 least is necessary if you have specified output-types above. If not,
1880 the fragments are not written to file but stored internally. Read
1881 on.</para>
1882 </section>
1883
1884 <section xml:id='fragmentation.fragment-automation'>
1885 <title xml:id='fragmentation.fragment-automation.title'>Calculating
1886 fragment energies automatically</title>
1887
1888 <para>Another way of doing this is enabled if you have
1889 <productname>JobMarket</productname> package. JobMarket implements a
1890 client/server ansatz, i.e. two (or more) independent programs are
1891 running (even on another computer but connected via an IP network),
1892 namely a server and at least one client. The server receives
1893 fragment configurations from MoleCuilder and assigns these to a
1894 client who is not busy. The client launches an executable that is
1895 specified in the work package he is assigned and gathers after
1896 calculation a number of values, samewise specified in the package.
1897 The results are gathered together by the server and can be requested
1898 from MoleCuilder once they are done. This essentially describe what
1899 is happening during the execution of this action.</para>
1900
1901 <para>Stored fragment jobs can also be parsed again, i.e. reversing
1902 the effect of having output-types specified in <link
1903 linkend="fragmentation.fragment-molecule">Fragmenting a molecule
1904 </link>.</para>
1905
1906 <programlisting>
1907 ... --parse-fragment-jobs \
1908 --fragment-jobs "BondFragment00.in" "BondFragment01.in" \
1909 --fragment-path "./" \
1910 --grid-level 5
1911 </programlisting>
1912
1913 <para>Here, we have specified two files, namely
1914 <filename>BondFragment00.in</filename> and
1915 <filename>BondFragment01.in</filename>, to be parsed from the path
1916 "./", i.e. the current directory. Also, we have specified to sample
1917 the electronic charge density obtained from the calculated ground
1918 state energy solution with a resolution of 5 (see fragment molecule
1919 and also below).</para>
1920
1921 <para>This allows for automated and parallel calculation of all
1922 fragment energies and forces directly within MoleCuilder. The
1923 FragmentationAutomation action takes the fragment configurations
1924 from an internal storage wherein they are placed if in
1925 FragmentMolecule no output-types have been specified.</para>
1926
1927 <programlisting>
1928 ... --fragment-automation \
1929 --fragment-executable mpqc \
1930 --fragment-resultfile BondFragment_results.dat \
1931 --DoLongrange 1 \
1932 --DoValenceOnly 1 \
1933 --grid-level 5 \
1934 --interpolation-degree 3 \
1935 --near-field-cells 4 \
1936 --server-address 127.0.0.1 \
1937 --server-port 1025
1938 </programlisting>
1939
1940 <para>Again, we go through each of the action's options step by
1941 step.</para>
1942
1943 <para>The executable is required if you do not have a patched
1944 version of <productname>MPQC</productname> that may directly act as
1945 a client to JobMarket's server. All calculated results are placed in
1946 the result file. If none is given, they are instead again placed in
1947 an internal storage for later access.</para>
1948
1949 <note>
1950 <para>Long-calculations are only possible with a client that knows
1951 how to handle VMG jobs. If you encounter failures, then it is most
1952 likely that you do not have a suitable client.</para>
1953 </note>
1954
1955 <para>In the next line, we have all options related to calculation
1956 of long-range interactions. We only sample valence charges on the
1957 grid, i.e. not core electrons and the nuclei charge is reduces
1958 respectively. This avoids problems with sampling highly localized
1959 charges on the grid and is in general recommended. Next, there
1960 follow parameters for the multi grid solver, namely the resolution
1961 of the grid, see under fragmenting the molecule, the interpolation
1962 degree and the number of near field cells. A grid level of 6 is
1963 recommended but costly in terms of memory, the other values are at
1964 their recommend values.</para>
1965
1966 <para>In the last line, parameters are given on how to access the
1967 JobMarket server, namely it address and its port.</para>
1968 </section>
1969
1970 <section xml:id='fragmentation.analyse-fragment-results'>
1971 <title xml:id='fragmentation.analyse-fragment-results.title'>
1972 Analyse fragment results</title>
1973
1974 <para>After the energies and force vectors of each fragment have
1975 been calculated, they need to be summed up to an approximation for
1976 the energy and force vectors of the whole molecular system. This is
1977 done by calling this action.</para>
1978
1979 <programlisting>
1980 ... --analyse-fragment-results \
1981 --fragment-prefix "BondFragment" \
1982 --fragment-resultfile BondFragment_results.dat \
1983 --store-grids 1
1984 </programlisting>
1985
1986 <para>The purpose of the prefix should already be known to you, same
1987 with the result file that is the file parsed by MoleCuilder. The
1988 last option states that the sampled charge densities and the
1989 calculated potential from the long-range calculations should be
1990 stored with the summed up energies and forces. Note that this makes
1991 the resulting files substantially larger (Hundreds of megabyte or
1992 even gigabytes). Fragment energies and forces are stored in
1993 so-called internal homology containers. These are explained in the
1994 next section.</para>
1995
1996 <para>Note that this action sets the force vector if these have been
1997 calculated for the fragment. Hence, a
1998 <link linkend="molecule.verlet-integration">verlet integration</link>
1999 is possible afterwards.</para>
2000 </section>
2001
2002 <section xml:id='fragmentation.store-saturated-fragment'>
2003 <title xml:id='fragmentation.store-saturated-fragment.title'>Store
2004 a saturated fragment</title>
2005
2006 <para>After the energies and force vectors of each fragment have
2007 been calculated, they need to be summed up to an approximation for
2008 the energy and force vectors of the whole molecular system. This is
2009 done by calling this action.</para>
2010
2011 <para>This will store the currently selected atoms as a fragment
2012 where all dangling bonds (by atoms that are connected in the bond
2013 graph but have not been selected as well) are saturated with
2014 additional hydrogen atoms. The output formats are set to just xyz.
2015 </para>
2016
2017 <programlisting>
2018 ... --store-saturated-fragment \
2019 --DoSaturate 1 \
2020 --output-types xyz
2021 </programlisting>
2022 </section>
2023 </section>
2024
2025 <section xml:id='homology'>
2026 <title xml:id='homology.title'>Homologies</title>
2027
2028 <para>After a fragmentation procedure has been performed fully, what
2029 to do with the results? The forces can be used already but what about
2030 the energies? The energy value is basically the function evaluation of
2031 the Born-Oppenheimer surface. For molecular dynamics simulations
2032 continuous ab-initio calculations to evaluate the Born-Oppenheimer
2033 surface is not feasible. Instead usually empirical potential functions
2034 are fitted as to resemble the Born-Oppenheimer surface to a sufficient
2035 degree.</para>
2036
2037 <para>One frequent method is the many-body expansion of said surface
2038 which is basically nothing else than the fragment ansatz described
2039 above. Potential functions resemble a specific term in this many-body
2040 expansion. These are discussed in the next section.</para>
2041
2042 <para>For each of these terms all homologous fragments (i.e. having
2043 the same atoms with respect to the present elements and bonded in the
2044 same way), differing only in the coordinate of each atom, are just a
2045 sampling or a function evaluation of this term of the many-body
2046 expansion with respect to varying nuclei coordinates. Hence, it is
2047 appropriate to use these function evaluations in a non-linear
2048 regression procedure. That is, we want to tune the parameter of the
2049 empirical potential function in such a way as to most closely obtain
2050 the same function evaluation as the ab-initio calculation did with the
2051 same nuclear coordinates. Usually, this is done in a least-square
2052 sense, minimising the euclidean norm.</para>
2053
2054 <para>Homologies are then nothing else but containers for a specific
2055 type of fragment of all the different, calculated configurations (i.e.
2056 varying nuclear coordinates of the same fragment).</para>
2057
2058 <para>Now, we explain the actions that parse and store
2059 homologies.</para>
2060
2061 <programlisting>... --parse-homologies homologies.dat</programlisting>
2062
2063 <para>This parses the all homologies contained in the file
2064 <filename>homologies.dat</filename> and appends them to the homology
2065 container.</para>
2066
2067 <programlisting>... --save-homologies homologies.dat</programlisting>
2068
2069 <para>Complementary, this stores the current contents of the homology
2070 container, overwriting the file
2071 <filename>homologies.dat</filename>.</para>
2072 </section>
2073
2074 <section xml:id='potentials'>
2075 <title xml:id='potentials.title'>Potentials</title>
2076
2077 <para>In much the same manner, we would now ask what are homology
2078 files or containers good for but with the just had explanation it
2079 should be clear: We fit potential function to these function
2080 evaluation of terms of the many-body expansion of the Born-Oppenheimer
2081 surface of the full system.</para>
2082
2083 <section xml:id='potentials.fit-potential'>
2084 <title xml:id='potentials.fit-potential.title'>Fitting empirical
2085 potentials</title>
2086
2087 <para>Let's take a look at an exemplary call to the fit potential
2088 action.</para>
2089
2090 <programlisting>
2091 ... --fit-potential \
2092 --fragment-charges 8 1 1 \
2093 --potential-charges 8 1 \
2094 --potential-type morse \
2095 --take-best-of 5
2096 </programlisting>
2097
2098 <para>Again, we look at each option in turn. The first is the
2099 charges or elements specifying the set of homologous fragments that
2100 we want to look at. Here, obviously we are interested in water
2101 molecules, consisting of a single oxygen and two hydrogen atoms.
2102 Next, we specify the nuclei coordinates of the potential. We give
2103 the type of the potential as morse, which requires a single distance
2104 or two nuclear coordinates, here between an oxygen and a hydrogen
2105 atom. Finally, we state that the non-linear regression should be
2106 done with five random starting positions and the set of parameters
2107 with the smallest L2 norm wins.</para>
2108
2109 <note>
2110 <para>Due to translational and rotational degrees of freedom for
2111 fragments smaller than 7 atoms, it is appropriate to look at the
2112 pair-wise distances and not at the absolute coordinates. Hence,
2113 the two atomic positions, here for oxygen and hydrogen, are
2114 converted to a single distance. If we had given an harmonic
2115 angular potential and three charges/element, 8 1 1, i.e. oxygen
2116 and two hydrogens, we would have obtained three distances.</para>
2117
2118 <para>MoleCuilder always adds a so-called constant potential to
2119 the fit containing only a single parameter, the energy offset.
2120 This offset compensates for the interaction energy associated with
2121 a fragment of order 1, e.g. a single hydrogen atom.</para>
2122 </note>
2123
2124 <para>Another way is using a file containing a specific set of
2125 potential functions, possibly even with initial values.</para>
2126
2127 <programlisting>
2128 ... --fit-potential \
2129 --fragment-charges 8 1 1 \
2130 --potential-file water.potentials \
2131 --set-threshold 1e-3 \
2132 --training-file test.dat
2133 </programlisting>
2134
2135 <para>Now, all empirical potential functions are summed up into a
2136 so-called compound potential over the combined set of parameters.
2137 These are now fitted simultaneously. For example, if the potential
2138 file <filename>water.potentials</filename> contains a harmonic bond
2139 potential between oxygen and hydrogen and another angular potential
2140 for the angle between hydrogen, oxygen, and hydrogen atom we would
2141 fit a still simple function approximating the energy of a single
2142 water molecule. Here, the threshold takes the place of the
2143 take-best-of option. Here, random starting parameters are used as
2144 long as the final L2 error is not below 1e-3. Also, all data used
2145 for training, i.e. the tuples consisting of the fragments nuclei
2146 coordinates and the associated energy value are written to the file
2147 <filename>test.dat</filename>. This allows for graphical or other
2148 type of analysis.</para>
2149
2150 <para>Note that you can combine the two ways, i.e. start with the
2151 first but give an empty potential file. The resulting parameters are
2152 stored in this way. Fit other potentials and give different file
2153 names for each. Eventually, you have to combine the file in a text
2154 editor at the moment.</para>
2155 </section>
2156
2157 <section xml:id='potentials.fit-particle-charges'>
2158 <title xml:id='potentials.fit-particle-charges.title'>Fitting
2159 particle charges</title>
2160
2161 <para>The above empirical potential just model the short-range
2162 behavior in the molecular fragment, namely the bonded interaction.
2163 In order to model the long-range interaction as well without solving
2164 for the electronic ground state in each time step, particle charges
2165 are used that capture to some degree the created dipoles due to
2166 charge transfer from one atom to another when bonded.</para>
2167
2168 <para>To allow least-squares regression of these partial charges we
2169 need the results of long-range calculations and the store-grids
2170 option (see above under <link linkend="fragmentation">Fragmentation
2171 </link>) must have been given. With these sampled charge density and
2172 Coulomb potential stored in the homology containers, we call this
2173 action as follows.</para>
2174
2175 <programlisting>
2176 ... --fit-particle-charges \
2177 --fragment-charges 8 1 1 \
2178 --potential-file water.potentials \
2179 --radius 0.2
2180 </programlisting>
2181
2182 <para>This will again use water molecule as homologous fragment
2183 "key" to request configurations from the container. Results are
2184 stored in <filename>water.potentials</filename>. The radius is used
2185 to mark the region directly around the nuclei from the fit
2186 procedure. As here the charges of the core electrons and the nuclei
2187 itself dominate, we however are only interested in a good
2188 approximation to the long-range potential, this mask radius allows
2189 to give the range of the excluded zone.</para>
2190 </section>
2191 </section>
2192
2193 <section xml:id='dynamics'>
2194 <title xml:id='dynamics.title'>Dynamics</title>
2195
2196 <para>For fitting potentials or charges we need many homologuous but
2197 different fragments, i.e. atoms with slightly different positions.
2198 How can we generate these?</para>
2199
2200 <para>One possibility is to use molecular dynamics. With the
2201 aforementioned fragmentation scheme we can quickly calculate not only
2202 energies but also forces if the chosen solver, such as
2203 <link xlink:href="http://www.mpqc.org/"><productname>MPQC
2204 </productname></link>, supports it. Integrating these forces
2205 discretely over time gives insight into vibrational features of a
2206 molecular system and allows to generate those positions for fitting
2207 potentials that describe these vibrations.</para>
2208
2209 <section xml:id='dynamics.molecular-dynamics'>
2210 <title xml:id='dynamics.molecular-dynamics.title'>Molecular dynamics
2211 </title>
2212
2213 <para>The molecular dynamics action is a so-called macro Action,
2214 i.e. it combines several other Actions into one, namely:</para>
2215 <itemizedlist>
2216 <listitem>
2217 <para>--verlet-integration</para>
2218 </listitem>
2219 <listitem>
2220 <para>--output</para>
2221 </listitem>
2222 <listitem>
2223 <para>--clear-fragment-results</para>
2224 </listitem>
2225 <listitem>
2226 <para>--destroy-adjacency</para>
2227 </listitem>
2228 <listitem>
2229 <para>--create-adjacency</para>
2230 </listitem>
2231 <listitem>
2232 <para>--update-molecules</para>
2233 </listitem>
2234 <listitem>
2235 <para>--fragment-molecule</para>
2236 </listitem>
2237 <listitem>
2238 <para>--fragment-automation</para>
2239 </listitem>
2240 <listitem>
2241 <para>--analyse-fragment-results</para>
2242 </listitem>
2243 </itemizedlist>
2244
2245 <para>The following will perform a molecular dynamics simulation
2246 for 100 time steps, each time step combining 0.5 atomic time units,
2247 i.e. 1.2 1e-17 s. The other options listed below will seem familiar
2248 to you if you have read about the other Actions listed above. Below
2249 we will not keep the bondgraph, i.e bonds and molecules may change
2250 over the simulation and hence also the created fragments per time
2251 step.
2252 </para>
2253
2254 <programlisting>
2255 ... --molecular-dynamics \
2256 --steps 100 \
2257 --keep-bondgraph 0 \
2258 --order 3 \
2259 --distance 3. \
2260 --deltat 0.5 \
2261 --keep-fixed-CenterOfMass 1 \
2262 --fragment-executable mpqc \
2263 </programlisting>
2264 </section>
2265
2266 <section xml:id='dynamics.optimize-structure'>
2267 <title xml:id='dynamics.optimize-structure.title'>Structure
2268 optimization</title>
2269
2270 <para>Structure optimization is also a macro Action, it basically
2271 combines the same Actions as molecular-dynamics does. However, it
2272 uses force-annealing instead of verlet-integration.</para>
2273
2274 <para>The following performs a structure optimization of the
2275 currently selected atoms (may also be a subset) for up to 100 time
2276 steps, where each time step ist 0.5 atomic time units. The time
2277 step here is the initial step with for annealing.
2278 </para>
2279
2280 <programlisting>
2281 ... --optimize-structure \
2282 --keep-bondgraph 1 \
2283 --output-every-step 1 \
2284 --steps 100 \
2285 --order 3 \
2286 --distance 3. \
2287 --deltat 0.5 \
2288 --keep-fixed-CenterOfMass 1 \
2289 --fragment-executable mpqc \
2290 </programlisting>
2291
2292 <para>Note that output-every-step will allow you to watch the
2293 optimization as each step is placed into a distinct time step.
2294 Otherwise only two time steps would be created: the initial and
2295 the final one containing the optimized structure.</para>
2296 </section>
2297
2298 <section xml:id='dynamics.set-world-time'>
2299 <title xml:id='dynamics.set-world-time.title'>Set the world's time
2300 step</title>
2301
2302 <para>In order to inspect or manipulate atoms and molecules at a
2303 certain time step, the World's time has to be set with the following
2304 Action.
2305 </para>
2306
2307 <para>This will set the World's time to the fifth step (counting
2308 starts at zero).</para>
2309
2310 <programlisting>... --set-world-time 4</programlisting>
2311 </section>
2312
2313 <section xml:id='dynamics.save-temperature'>
2314 <title xml:id='dynamics.save-temperature.title'>Save the
2315 temperature information</title>
2316
2317 <para>For each time step the temperature (i.e. the average velocity
2318 per atom times its mass) will be stored to a file.</para>
2319
2320 <programlisting>
2321 ... --save-temperature temperature.dat \
2322 </programlisting>
2323 </section>
2324 </section>
2325
2326 <section xml:id='dynamics.tesselation'>
2327 <title xml:id='dynamics.tesselation.title'>Tesselations</title>
2328
2329 <para>Tesselations obtain molecular surfaces (and volumes) by rolling
2330 a virtual sphere of a certain radii on a molecule until a closed
2331 surface of connected triangles is created.</para>
2332
2333 <section xml:id='dynamics.tesselation.nonconvex-envelope'>
2334 <title xml:id='dynamics.tesselation.nonconvex-envelope.title'>
2335 Non-convex envelope</title>
2336
2337 <para>This will create a non-convex envelope for a molecule.</para>
2338
2339 <programlisting>
2340 ... --nonconvex-envelope 6. \
2341 --nonconvex-file nonconvex.dat
2342 </programlisting>
2343
2344 <para>This tesselation file can be conveniently viewed with
2345 <productname>TecPlot</productname> or with one of the Tcl script
2346 in the util folder with <productname>VMD</productname>.</para>
2347 </section>
2348
2349 <section xml:id='dynamics.tesselation.convex-envelope'>
2350 <title xml:id='dynamics.tesselation.convex-envelope.title'>Convex
2351 envelope</title>
2352
2353 <para>This will create a convex envelope for a molecule.</para>
2354
2355 <programlisting>
2356 ... --convex-envelope 6. \
2357 --convex-file convex.dat
2358 </programlisting>
2359
2360 <para>This tesselation file can be conveniently viewed with
2361 <productname>TecPlot</productname> or with one of the Tcl script
2362 in the util folder with <productname>VMD</productname>.</para>
2363 </section>
2364 </section>
2365
2366 <section xml:id='various'>
2367 <title xml:id='various.title'>Various commands</title>
2368
2369 <para>Here, we gather all commands that do not fit into one of above
2370 categories for completeness.</para>
2371
2372 <section xml:id='various.verbose'>
2373 <title xml:id='various.verbose.title'>Changing verbosity</title>
2374
2375 <para>The verbosity level is the amount of stuff printed to screen.
2376 This information will in general help you to understand when
2377 something does not work. Mind the <emphasis>ERROR</emphasis> and
2378 <emphasis>WARNING</emphasis> messages in any case.</para>
2379
2380 <para>This sets the verbosity from default of 2 to 4,</para>
2381
2382 <programlisting>... --verbose 4</programlisting>
2383
2384 <para>or shorter,</para>
2385
2386 <programlisting>... -v 4</programlisting>
2387 </section>
2388
2389 <section xml:id='various.element-db'>
2390 <title xml:id='various.element-db.title'>Loading an element
2391 database</title>
2392
2393 <para>Element databases contain information on valency, van der
2394 Waals-radii and other information for each element.</para>
2395
2396 <para>This loads all element database from the current folder (in a
2397 unix environment):</para>
2398
2399 <programlisting>... --element-db ./</programlisting>
2400
2401 </section>
2402
2403 <section xml:id='various.fastparsing'>
2404 <title xml:id='various.fastparsing.title'>Fast parsing</title>
2405
2406 <para>Parsing all time steps from a given input file can take a
2407 while, especially for larger systems. If fast parsing is activated,
2408 only the first time step is loaded, all other are ignored.</para>
2409
2410 <programlisting>... --fastparsing 1</programlisting>
2411 </section>
2412
2413 <section xml:id='various.version'>
2414 <title xml:id='various.version.title'>Giving the version of the
2415 program</title>
2416
2417 <para>This prints the version information of the code, especially
2418 important when you request the fixing of bugs or implementation of
2419 features.</para>
2420
2421 <programlisting>... --version</programlisting>
2422 </section>
2423
2424 <section xml:id='various.warranty'>
2425 <title xml:id='various.warranty.title'>Giving warranty
2426 information</title>
2427
2428 <para>As follows warranty information is given,</para>
2429
2430 <programlisting>... --warranty</programlisting>
2431 </section>
2432
2433 <section xml:id='various.help-redistribute'>
2434 <title xml:id='various.help-redistribute.title'>Giving
2435 redistribution information</title>
2436
2437 <para>This gives information on the license and how to redistribute
2438 the program and its source code</para>
2439
2440 <programlisting>... --help-redistribute</programlisting>
2441 </section>
2442 </section>
2443
2444 <section xml:id='sessions'>
2445 <title xml:id='sessions.title'>Sessions</title>
2446
2447 <para>A session refers to the queue of actions you have executed.
2448 Together with the initial configuration (and all files required for
2449 actions in the queue) this might be seen as a clever way of storing
2450 the state of a molecular system. When proceeding in a try&amp;error
2451 fashion to construct a certain system, it is a good idea, to store the
2452 session at the point where your attempts start to deviate from one
2453 another.</para>
2454
2455 <section xml:id='sessions.store-session'>
2456 <title xml:id='sessions.store-session.title'>Storing a session
2457 </title>
2458
2459 <para>Storing sessions is simple,</para>
2460
2461 <programlisting>
2462 ... --store-session "session.py" \
2463 --session-type python
2464 </programlisting>
2465
2466 <para>Here, the session type is given as python (the other option is
2467 cli for in the manner of the command-line interface) and the written
2468 python script <filename>session.py</filename> can even be used with
2469 the python interface described below, i.e. it is a full python script
2470 (that however requires the so-called pyMoleCuilder module).</para>
2471 </section>
2472
2473 <section xml:id='sessions.load-session'>
2474 <title xml:id='sessions.load-session.title'>Loading a session</title>
2475
2476 <para>Loading a session only works for python scripts. This actually
2477 blurs the line between the command-line interface and the python
2478 interface a bit. But even more, MoleCuilder automatically executes a
2479 script called <filename>molecuilder.py</filename> if such a file is
2480 contained in the current directory.</para>
2481
2482 <programlisting>... --load-session "session.py"</programlisting>
2483
2484 <para>This will execute every action with its options contained in the
2485 script <filename>session.py</filename>.</para>
2486 </section>
2487 </section>
2488
2489 <section xml:id='various-specific'>
2490 <title xml:id='various-specific.title'>Various specific commands
2491 </title>
2492
2493 <para>In this (final) section of the action description we list a number
2494 Actions that are very specific to some purposes (or other programs).
2495 </para>
2496
2497 <section xml:id='various-specific.save-selected-atoms-as-exttypes'>
2498 <title xml:id='various-specific.save-selected-atoms-as-exttypes.title'>
2499 Saving exttypes of a set of atoms</title>
2500
2501 <para>This saves the atomic ids of all currently selected atoms in a
2502 <link xlink:href="http://www.tremolo-x.com/"><productname>TREMOLO
2503 </productname></link> exttypes file with the given name.</para>
2504
2505 <programlisting>
2506 ... --save-selected-atoms-as-exttypes \
2507 --filename test.exttypes </programlisting>
2508 </section>
2509
2510 <section xml:id='various-specific.set-parser-parameters'>
2511 <title xml:id='various-specific.set-parser-parameters.title'>Setting
2512 parser specific parameters</title>
2513
2514 <para>You can also tweak the parameters stored in this file easily.
2515 For example, <productname>MPQC</productname> stores various
2516 parameters modifying the specific ab-initio calculation performed.
2517 For <link xlink:href="http://www.mpqc.org/"><productname>MPQC
2518 </productname></link> and
2519 <link xlink:href="http://www.psicode.org/"><productname>Psi4
2520 </productname></link> this can be modified as follows.</para>
2521
2522 <programlisting>
2523 ... --set-parser-parameters mpqc \
2524 --parser-parameters "theory=CLHF;basis=6-31*G;"
2525 </programlisting>
2526
2527 <para>This sets the ab-initio theory to closed-shell Hartree-Fock
2528 and the basis set to 6-31*G. Please check the
2529 <productname>MPQC</productname> manual on specific
2530 parameters.</para>
2531 </section>
2532
2533 <section xml:id='various-specific.set-tremolo-atomdata'>
2534 <title xml:id='various-specific.set-tremolo-atomdata.title'>Tremolo
2535 specific options and potential files</title>
2536
2537 <para><productname>TREMOLO</productname>'s configuration files start
2538 with a specific line telling the amount of information stored in the
2539 file. This file can be modified, e.g. to enforce storing of
2540 velocities and forces as well as the atoms positions and
2541 element.</para>
2542
2543 <programlisting>
2544 ... --set-tremolo-atomdata "ATOM id element u=3 v=3 F=3" \
2545 --reset 1
2546 </programlisting>
2547
2548 <para>This will not append but reset the old line and fill it with
2549 the given string.</para>
2550
2551 <para>One specific action is required when loading certain
2552 <productname>TREMOLO</productname> configuration files. These
2553 contain element notations that refer to parameterized names used in
2554 empirical potentials and molecular dynamics simulations and not the
2555 usual chemical symbols, such as H or O. We may load an auxiliary
2556 file that gives the required conversion from OH1 to H, which is the
2557 so-called potential file.</para>
2558
2559 <programlisting>... --parse-tremolo-potentials water.potentials</programlisting>
2560
2561 <para>This parses the lookup table from the file
2562 <filename>water.potentials</filename> and it can be used in
2563 following load actions.</para>
2564 </section>
2565 </section>
2566 </section>
2567
2568 <section xml:id='textmenu-interface'>
2569 <title xml:id='textmenu-interface.title'>Text menu</title>
2570
2571 <para>We now discuss how to use the text menu interface.</para>
2572
2573 <para>The text menu is very much the interface counterpart to the
2574 command-line interface. Both work in a terminal session.</para>
2575
2576 <para>In the text menu, actions can be selected from hierarchical lists.
2577 Note that the menus for the graphical interface are organized in the
2578 exactly same way. After an action has been chosen, the option values
2579 have to be entered one after the other. After the last option value has
2580 been given, the action is executed and the result printed to the
2581 screen.</para>
2582
2583 <para>With regards to the other functionality, it is very much the same
2584 as the command-line interface above.</para>
2585 </section>
2586
2587 <section xml:id='graphical-user-interface'>
2588 <title xml:id='graphical-user-interface.title'>Graphical user interface
2589 </title>
2590
2591 <para>The main point of the GUI is that it renders the atoms and
2592 molecules visually. These are represented by the common
2593 stick-and-ball-model. Single or multiple atoms and molecules can easily
2594 be accessed, activated and manipulated via tables. Changes made in the
2595 tables cause immediate update of the visual representation. Under the
2596 hood each of these manipulations is nothing but the call to an action,
2597 hence is fully undo- and redoable.</para>
2598
2599 <para>This is mostly helpful to design more advanced structures that are
2600 conceptually difficult to imagine without visual aid. At the end, a
2601 session may be stored and this script can then be used to construct
2602 various derived or slightly modified structures.</para>
2603
2604 <section xml:id='graphical-user-interface.basic-view'>
2605 <title xml:id='graphical-user-interface.basic-view.title'>Basic view
2606 </title>
2607
2608 <para>Let us first give an impression of the basic view of the gui
2609 after a molecule has been loaded.</para>
2610
2611 <figure>
2612 <title>Screenshot of the basic view of the GUI after loading a file
2613 with eight water molecules.</title>
2614
2615 <mediaobject>
2616 <imageobject>
2617 <imagedata entityref="example_basic_view" scalefit="1" width="100%"/>
2618 </imageobject>
2619 </mediaobject>
2620 </figure>
2621
2622 <section xml:id='graphical-user-interface.3d-view'>
2623 <title xml:id='graphical-user-interface.3d-view.title'>3D view
2624 </title>
2625
2626 <para>In the above figure, you see the stick-and-ball representation
2627 of the water molecules, the dreibein giving the positive axis
2628 direction and the cuboidal domain on a black background.</para>
2629 </section>
2630
2631 <section xml:id='graphical-user-interface.information-tabs'>
2632 <title xml:id='graphical-user-interface.information-tabs.title'>
2633 Information Tabs</title>
2634
2635 <para>Beneath this 3D view that you can rotate at will your mouse
2636 and zoom in and out with your scroll wheel, you find to the right a
2637 part containing two tabs named Atom and Molecule. Look at where the
2638 mouse pointer is. It has colored the atom underneath in cyan
2639 (although it's also an oxygen atom and should bne coloured in rose
2640 as the rest). You can inspect its properties in the tab Atom: Name,
2641 element, mass, charge, position and number of bonds. If you switch
2642 to the Molecule tab, you would see the properties of the water
2643 molecule this specific atom belongs to.</para>
2644 </section>
2645
2646 <section xml:id='graphical-user-interface.shape'>
2647 <title xml:id='graphical-user-interface.shape.title'>Shape section
2648 </title>
2649
2650 <para>Beneath these information tabs you find the shape sections.
2651 There you find a list of all currently created shapes and you can
2652 manipulate them via the buttons beneath this list.</para>
2653 </section>
2654
2655 <section xml:id='graphical-user-interface.timeline'>
2656 <title xml:id='graphical-user-interface.timeline.title'>Timeline
2657 </title>
2658
2659 <para>Directly below the 3D view there is a long slider. If a loaded
2660 file has multiple time step entries, this slider allows you to
2661 smoothly select one time frame after another. Sliding it with the
2662 mouse from left to right will reveal the animation that is hidden
2663 behind the distinct snapshots stored in the configuration
2664 file.</para>
2665 </section>
2666
2667 <section xml:id='graphical-user-interface.tables'>
2668 <title xml:id='graphical-user-interface.tables.title'>Selection
2669 tables</title>
2670
2671 <para>Underneath the time line there is another place for
2672 tabs.</para>
2673
2674 <para>The first is on molecules, listing all present molecules of
2675 the molecular system in a list view. If you click on a specific
2676 molecule, the one will get selected or unselected depending on its
2677 current selection state (see below for details on this with respect
2678 to the GUI).</para>
2679
2680 <para>The next tab enumerates all elements known to MoleCuilder
2681 where the ones are greyed out that are not present in the molecular
2682 system. Clicking on a present element will select all atoms of this
2683 specific element. A subsequent click unselects again.</para>
2684
2685 <para>Subsequent follow tabs on enumerating the fragments and their
2686 fragment energies if calculated and the homologies along with
2687 graphical depiction (via QWT) if present.</para>
2688 </section>
2689 </section>
2690
2691 <section xml:id='graphical-user-interface.selections'>
2692 <title xml:id='graphical-user-interface.selections.title'>Selections
2693 </title>
2694
2695 <para>Selections work generally always by selecting the respective
2696 action from the pull-down menu.</para>
2697
2698 <para>However, it may also be accessed directly. The row of icons
2699 above the 3D view has two icons depicting the selection of individual
2700 atoms or molecules. If either of them is selected, clicking with the
2701 left mouse button on an atom will either (un)select the atom or its
2702 associated molecule. Multiple atoms can be selected in this
2703 manner.</para>
2704
2705 <para>Also the selection tabs may be used by clicking on the name of a
2706 molecule as stated above or at an element.</para>
2707
2708 <para>Similarly, if shapes are present in the shape section, clicking
2709 them with select them and also cause a translucent visualization to
2710 appear in the 3D view. Note that this visualization is quite costly
2711 right now and not suited to complex shapes.</para>
2712 </section>
2713
2714 <section xml:id='graphical-user-interface.dialogs'>
2715 <title xml:id='graphical-user-interface.dialogs.title'>Dialogs</title>
2716
2717 <para>Most essential, however, to the GUI are the dialogs. Each action
2718 calls forth such a dialog even if no options are required (the
2719 execution of the action has at least to be confirmed). Each dialog
2720 consisting of queries for a particular option value. As each option
2721 value has a specific type, we briefly go into the details of how these
2722 queries look like.</para>
2723
2724 <note>
2725 <para>Each dialog's Ok is greyed out until all entered option values
2726 are valid.</para>
2727 </note>
2728
2729 <section xml:id='graphical-user-interface.dialogs.domain'>
2730 <title xml:id='graphical-user-interface.dialogs.domain.title'>Domain
2731 query</title>
2732
2733 <figure>
2734 <title>Screenshot of a dialog showing a domain query</title>
2735
2736 <mediaobject>
2737 <imageobject>
2738 <imagedata entityref="dialog_box" scalefit="1" width="100%"/>
2739 </imageobject>
2740 </mediaobject>
2741
2742 <para>In the domain query a 3x3 symmetric matrix has to be
2743 entered. In the above screenshots you notice that the only
2744 non-zero entries are on the main diagonal. Here, we have simply
2745 specified a cube of edge length 8. The ok button will be greyed
2746 out if the matrix is either singular or not symmetric.</para>
2747 </figure>
2748 </section>
2749
2750 <section xml:id='graphical-user-interface.dialogs.element'>
2751 <title xml:id='graphical-user-interface.dialogs.element.title'>
2752 Element query</title>
2753
2754 <figure>
2755 <title>Screenshot the add atom action containing an element
2756 query</title>
2757
2758 <mediaobject>
2759 <imageobject>
2760 <imagedata entityref="dialog_add-atom_tooltip" scalefit="1" width="100%"/>
2761 </imageobject>
2762 </mediaobject>
2763
2764 <para>Elements are picked from a pull-down box where all known
2765 elements are listed.</para>
2766
2767 <para>In this dialog you also notice that a tooltip is given,
2768 briefly explaining what the action does.</para>
2769 </figure>
2770 </section>
2771
2772 <section xml:id='graphical-user-interface.dialogs.action'>
2773 <title xml:id='graphical-user-interface.dialogs.action.title'>
2774 Complex query</title>
2775
2776 <figure>
2777 <title>Screenshot of a complex dialog consisting of multiple
2778 queries</title>
2779
2780 <mediaobject>
2781 <imageobject>
2782 <imagedata entityref="dialog_complex" scalefit="1" width="100%"/>
2783 </imageobject>
2784 </mediaobject>
2785
2786 <para>Here we show a more complex dialog. It queries for strings,
2787 for integer values (see the increase/decrease arrows), for
2788 booleans and for files (the "choose" buttons opens a file
2789 dialog).</para>
2790 </figure>
2791 </section>
2792
2793 <section xml:id='graphical-user-interface.dialogs.exit'>
2794 <title xml:id='graphical-user-interface.dialogs.exit.title'>Exit
2795 query</title>
2796
2797 <figure>
2798 <title>Screenshort showing the exit dialog</title>
2799
2800 <mediaobject>
2801 <imageobject>
2802 <imagedata entityref="dialog_exit" scalefit="1" width="100%"/>
2803 </imageobject>
2804 </mediaobject>
2805
2806 <para>Finally, we show the dialog that will pop up when exiting
2807 the graphical interface. It will ask whether it should store the
2808 current state of the system in the input file or not. You may
2809 cancel the exit, close without saving or save the current
2810 state.</para>
2811 </figure>
2812 </section>
2813 </section>
2814 </section>
2815
2816 <section xml:id='python-interface'>
2817 <title xml:id='python-interface.title'>Python interface</title>
2818
2819 <para>Last but not least we elaborate on the python interface. We have
2820 already discusses this interface to some extent. The current session,
2821 i.e. the queue of actions you have executed, can be stored as a python
2822 script and subsequently executed independently of the user interface it
2823 was created with. More general, MoleCuilder can execute arbitrary python
2824 scripts where prior to its execution a specific module is loaded by
2825 default enabling access to MoleCuilder's actions from inside the
2826 script.</para>
2827
2828 <para>MoleCuilder's python module is called pyMoleCuilder. it is
2829 essentially a library that can be imported into python just as any other
2830 module. Let us assume you have started the python interpreter and you
2831 have added the destination of the <filename>pyMoleCuilder</filename>
2832 library to the <varname>PYTHONPATH</varname> variable.</para>
2833
2834 <programlisting>import pyMoleCuilder as mol</programlisting>
2835
2836 <para>Subsequently, you can access the help via</para>
2837
2838 <programlisting>help(mol)</programlisting>
2839
2840 <para>This will list all of MoleCuilder's actions with their function
2841 signatures within python as contained in the module pyMoleCuilder named
2842 as mol in the scope of the currently running interpreter. Note that the
2843 function names are not the names you know from the command-line
2844 interface, they might be called
2845 <computeroutput>WorldChangeBox(...)</computeroutput> or alike.</para>
2846
2847 <para>Let's try it out.</para>
2848
2849 <programlisting>print mol.CommandVersion()</programlisting>
2850
2851 <para>This will state the current version of the library.</para>
2852
2853 <para>Go ahead and try out other commands. Refer to the documentation
2854 under the command-line interface and look up the function name via
2855 help.</para>
2856 </section>
2857 </chapter>
2858
2859 <chapter>
2860 <title>Conclusions</title>
2861
2862 <para>This ends this user guide.</para>
2863
2864 <para>We have given you a brief introduction to the aim of the program and
2865 how each of the four interfaces are to be used. The rest is up to
2866 you.</para>
2867
2868 <para>Tutorials and more information is available online, see <link
2869 xlink:href="http://www.molecuilder.com/">MoleCuilder's website</link>.
2870 </para>
2871
2872 <para>Be aware that in general knowing how the code works allows you to
2873 understand what's going wrong if something's going wrong.</para>
2874
2875 <section>
2876 <title>Thanks</title>
2877
2878 <para>Huge thanks go out to Saskia Metzler who was patient enough to let
2879 me sit next to her while riding ten hours in a bus to Berlin.</para>
2880 </section>
2881 </chapter>
2882</book>
Note: See TracBrowser for help on using the repository browser.