source: doc/userguide/userguide.xml@ b119a0

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since b119a0 was 9e1bfb, checked in by Frederik Heber <heber@…>, 10 years ago

Merge branch 'Refactoring_PotentialActions' into Candidate_v1.4.9

  • Property mode set to 100644
File size: 121.1 KB
Line 
1<?xml version="1.0" encoding="UTF-8"?>
2<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN"
3 "http://www.oasis-open.org/docbook/xml/4.5/docbookx.dtd" [
4<!ENTITY molecuilder_logo SYSTEM "pictures/molecuilder_logo.png" NDATA PNG>
5<!ENTITY dialog_box SYSTEM "pictures/dialog_box.png" NDATA PNG>
6<!ENTITY dialog_add-atom_tooltip SYSTEM "pictures/dialog_add-atom_tooltip.png" NDATA PNG>
7<!ENTITY dialog_complex SYSTEM "pictures/dialog_complex.png" NDATA PNG>
8<!ENTITY dialog_exit SYSTEM "pictures/dialog_exit.png" NDATA PNG>
9<!ENTITY example_basic_view SYSTEM "pictures/example_basic_view.png" NDATA PNG>
10]>
11<book version="5.0" xmlns="http://docbook.org/ns/docbook"
12 xmlns:xlink="http://www.w3.org/1999/xlink"
13 xmlns:xi="http://www.w3.org/2001/XInclude"
14 xmlns:svg="http://www.w3.org/2000/svg"
15 xmlns:m="http://www.w3.org/1998/Math/MathML"
16 xmlns:html="http://www.w3.org/1999/xhtml"
17 xmlns:db="http://docbook.org/ns/docbook">
18 <info>
19 <title>MoleCuilder - a Molecule Builder</title>
20
21 <author>
22 <personname><firstname>Frederik</firstname><surname>Heber</surname></personname>
23
24 <affiliation>
25 <orgname>heber@ins.uni-bonn.de</orgname>
26 </affiliation>
27 </author>
28
29 <pubdate>07/03/14</pubdate>
30 </info>
31
32 <chapter>
33 <title>Introduction</title>
34
35 <figure>
36 <title>MoleCuilder logo depicting a tesselated buckyball and a benzene
37 molecule</title>
38
39 <mediaobject>
40 <imageobject>
41 <imagedata entityref="molecuilder_logo" scalefit="1" width="100%"/>
42 </imageobject>
43 </mediaobject>
44 </figure>
45
46 <section xml:id='whatis'>
47 <title xml:id='whatis.title'>What is MoleCuilder?</title>
48
49 <para>In Short,<command> MoleCuilder</command> is a concatenation of
50 molecule and builder.</para>
51
52 <para>In more words, molecular dynamics simulations are frequently
53 employed to simulate material behavior under stress, chemical reactions
54 such as of cementitious materials, or folding pathways and docking
55 procedures of bio proteins. Even if the computational load, due to the
56 large number of atoms, is very demanding, nonetheless they may serve as
57 a starting point, e.g. extracting parameters for a coarser model.
58 However, what is on the other hand the starting point of molecular
59 dynamics simulations? It is the coordinate and element of each atom
60 combined with potential functions that model the interactions.</para>
61
62 <para>MoleCuilder allows to fully construct such a starting point:
63 letting the user construct atomic and molecular geometries by a simple
64 point&amp;click approach, a CAD-pendant on the nanoscale. Creating
65 suitable empirical potentials by fitting parameters to ab-initio
66 calculations within hours. Specific emphasis is placed on a
67 simple-to-use interface, allowing for the quick-and-dirty building of
68 molecular systems, and on scriptability. Eventually, not a single, but
69 many, related molecular systems have to be created.</para>
70
71 <section xml:id='installation'>
72 <title xml:id='installation.title'>Installation requirements</title>
73
74 <para>For installations requirements and instructions we refer to the
75 internal documentation of MoleCuilder, created via doxgen from the
76 source code.</para>
77 </section>
78
79 <section xml:id='license'>
80 <title xml:id='license.title'>License</title>
81
82 <para>As long as no other license statement is given, MoleCuilder is
83 free for user under the GNU Public License (GPL) Version 2 (see
84 <uri>www.gnu.de/documents/gpl-2.0.de.html</uri>).</para>
85 </section>
86
87 <section xml:id='disclaimer'>
88 <title xml:id='disclaimer.title'>Disclaimer</title>
89
90 <para>We quote section 11 from the GPLv2 license:</para>
91
92 <remark>Because the program is licensed free of charge, there is not
93 warranty for the program, to the extent permitted by applicable law.
94 Except when otherwise stated in writing in the copyright holders
95 and/or other parties provide the program "as is" without warranty of
96 any kind, either expressed or implied. Including, but not limited to,
97 the implied warranties of merchantability and fitness for a particular
98 purpose. The entire risk as to the quality and performance of the
99 program is with you. Should the program prove defective, you assume
100 the cost of all necessary servicing, repair, or correction.</remark>
101 </section>
102
103 <section xml:id='feedback'>
104 <title xml:id='feedback.title'>Feedback</title>
105
106 <para>If you encounter any bugs, errors, or would like to submit
107 feature request, please use the email address provided at the very
108 beginning of this user guide. The author is especially thankful for
109 any description of all related events prior to occurrence of the
110 error, saved "session scripts" (see below) and auxiliary files. Please
111 mind sensible space restrictions of email attachments.</para>
112 </section>
113
114 <section xml:id='notation'>
115 <title xml:id='notation.title'>Notation</title>
116
117 <para>We briefly explain a few specific wordings associated with the
118 program:</para>
119
120 <itemizedlist>
121 <listitem>
122 <para><emphasis>Action</emphasis> is a command that allows for
123 undoing and redoing, i.e. a single atomic procedure for
124 manipulating the molecular system.</para>
125 </listitem>
126
127 <listitem>
128 <para>Selection refers to a subsets from the set of instances of a
129 particular type, e.g. atoms.</para>
130 </listitem>
131
132 <listitem>
133 <para>Shape means a specific region of the domain that can be
134 described in the way of constructive geometry, i.e. as the
135 intersection, negation, and combination of primitives such as
136 spheres or cylinders.</para>
137 </listitem>
138 </itemizedlist>
139 </section>
140
141 <section xml:id='completeness'>
142 <title xml:id='completeness.title'>Completeness</title>
143
144 <para>This documentation takes quite some effort to write. Hence, the
145 described features and especially the actions herein are settled with
146 respect to their functionality, while newer features or actions are
147 probably missing. This should be a clear sign to you that these are
148 probably not safe to use yet. If you nonetheless require them and thus
149 should acquire some familiarity with the code itself. This suggests
150 changing to the developer documentation which is maintained along with
151 the source code with <productname>doxygen</productname>.</para>
152 </section>
153 </section>
154 </chapter>
155
156 <chapter>
157 <title>Features</title>
158
159 <para>Basically, <command>MoleCuilder</command> parses geometries from
160 files, manipulates them and stores them again in files. The manipulation
161 can be done either via a command-line interface or via the graphical user
162 interface.</para>
163
164 <section xml:id='concepts'>
165 <title xml:id='concepts.title'>Concepts</title>
166
167 <para>In general, we divide the molecular systems into three different
168 components or scales.</para>
169
170 <orderedlist>
171 <listitem>
172 <para>Atoms</para>
173
174 <para>Atoms are the undividable objects of the molecular systems.
175 They have an element <quote>Z</quote> and three coordinates
176 <quote>(x,y,z)</quote>.</para>
177 </listitem>
178
179 <listitem>
180 <para>Molecules</para>
181
182 <para>Molecules are bound conglomeration of atoms. They contain a
183 number of atoms and a specific center in the domain such that its
184 atoms are placed relative to this center. Also, they may have a
185 bounding box, i.e. a subdomain that contains all of the atoms in the
186 molecule.</para>
187
188 <para>Note that the molecular structure of the system, i.e. the
189 bonding graph, is determined by MoleCuilder and used to dissect the
190 system into distinct molecules automatically.</para>
191 </listitem>
192
193 <listitem>
194 <para>Clusters</para>
195
196 <para>Clusters are unbound conglomeration of atoms. Clusters serves
197 as groups of atoms for specific operations that would be to
198 restricted if they worked on just molecules.</para>
199 </listitem>
200
201 <listitem>
202 <para>Domain</para>
203
204 <para>The domain refers to the simulation domain. It is
205 parallelepiped in <inlineequation>
206 <m:math display="inline">
207 <m:mi>\mathbb{R}^3</m:mi>
208 </m:math>
209 </inlineequation>where either periodic, wrapped, or open boundary
210 conditions apply. The domain contains all atoms, i.e. the box
211 containing all atoms.</para>
212 </listitem>
213 </orderedlist>
214 </section>
215
216 <section xml:id='interfaces'>
217 <title xml:id='interfaces.title'>Interfaces</title>
218
219 <para>MoleCuilder has four different interfaces: Command-line, text
220 menu, graphical user interface, and python interface.</para>
221
222 <orderedlist>
223 <listitem>
224 <para>Command-Line</para>
225
226 <para>The command-line interface allows to use MoleCuilder
227 non-interactively via a terminal session. The program is executed by
228 expanding the shell command with a number of commands including all
229 required options that are executed one after the other. After
230 execution of the last command, the program quits. The command-line
231 interface usually works on a specific file that is given as input,
232 manipulated, analysed, ... via the sequence of commands and
233 eventually all changes are stored in the this file. Hence, the input
234 file acts as the state of the starting configuration that is
235 modified via MoleCuilder.</para>
236 </listitem>
237
238 <listitem>
239 <para>Text menu</para>
240
241 <para>The text-menu is similar to the command-line interface with
242 the exception that it allows for interactive sessions. Commands are
243 chosen from a text menu and executed directly after selection by the
244 user.</para>
245 </listitem>
246
247 <listitem>
248 <para>Graphical interface</para>
249
250 <para>The graphical interface is based on Qt. It features a full
251 graphical representation of the simulation domain with atoms and
252 their bonds. It allows manipulation in point&amp;click fashion.
253 Commands are selected from pull-down menus and dialogs are used to
254 query the user for all required parameters to such a command.</para>
255 </listitem>
256
257 <listitem>
258 <para>Python interface</para>
259
260 <para>The last interface is accessible only within the python
261 programming language. MoleCuilder can be loaded as a module and its
262 commands can be executed with either the python interpreter
263 interactively or via python scripts non-interactively. Note that
264 this allows auxiliary calculations to be performed in pythons whose
265 results may be used as parameters in subsequent commands.</para>
266 </listitem>
267 </orderedlist>
268 </section>
269
270 <section xml:id='fileformats'>
271 <title xml:id='fileformats.title'>Known File formats</title>
272
273 <para>We briefly the file formats MoleCuilder can parse and
274 store.</para>
275
276 <itemizedlist>
277 <listitem>
278 <para>XYZ, <filename>.xyz</filename> (simplest of all formats,
279 line-wise element and three coordinates with two line header, number
280 of lines and a comment line)</para>
281 </listitem>
282
283 <listitem>
284 <para><link xlink:href="http://www.mpqc.org/"><productname>MPQC
285 </productname></link>, <filename>.in</filename></para>
286 </listitem>
287
288 <listitem>
289 <para><link xlink:href="http://www.pdb.org/">PDB</link>, <filename>
290 .pdb</filename></para>
291 </listitem>
292
293 <listitem>
294 <para><productname>ESPACK</productname>, <filename>.conf</filename>
295 (electronic structure package by Institute for Numerical Simulation,
296 University of Bonn, code not in circulation)</para>
297 </listitem>
298
299 <listitem>
300 <para><link xlink:href="http://www.psicode.org/"><productname>PSI4
301 </productname></link>, <filename>.psi</filename></para>
302 </listitem>
303
304 <listitem>
305 <para><link xlink:href="http://www.tremolo-x.org/"><productname>
306 TREMOLO</productname></link>, <filename>.data</filename></para>
307 </listitem>
308
309 <listitem>
310 <para>XML, <filename>.xml</filename> (XML as read by
311 <link xlink:href="http://www.scafacos.org/">ScaFaCoS</link>
312 project)</para>
313 </listitem>
314 </itemizedlist>
315
316 <para>These are identified via their suffixes and can be converted from
317 one into another (with loss of all data not in the intersection of
318 stored properties of the two involved file formats).</para>
319 </section>
320 </chapter>
321
322 <chapter>
323 <title>Interfaces</title>
324
325 <para>In this chapter, we explain the intention and use of the four
326 interfaces.</para>
327
328 <para>We give the most extensive explanation of the command-line
329 interface, all subsequent interfaces are explained in highlighting their
330 differences with respect to the command-line interface. This is because
331 the command-line lends itself very well to representation in this textual
332 user guide. Although some images of the graphical interface are given
333 below, they would blow the size of the guide out of proportion.</para>
334
335 <para>In any case, you should make yourself familiar with at least one of
336 the interactive (text menu, GUI) and one of the non-interactive
337 (command-line, python) interfaces to use MoleCuilder to is full potential:
338 The interactive interface gives you the immediate feedback in constructing
339 "synthesis" (build) chains (of commands) for constructing your specific
340 molecular system in the computer. The non-interactive interface lends
341 itself to quick creation of related systems that differ only by specific
342 parameters you have modified in the script (command-line can be used in
343 shell scripts, python itself is a scripted language). Also, the
344 non-interactive interfaces are used for storing sessions which helps you
345 in documentation your experiments and lateron understanding of what has
346 been done.</para>
347
348 <section xml:id='command-line-interface'>
349 <title xml:id='command-line-interface.title'>Command-line interface</title>
350
351 <para>The command-line interface reads options and commands from the
352 command line and executes them sequentially. This may be for example:
353 Open an empty file, add 2 hydrogen atoms and add 1 oxygen atom, choose a
354 simulation box, fill the box with this given "filler" molecule, save the
355 file. This enables the use of MoleCuilder in simple script-files to
356 create a whole range of geometries that only differ in a few parameters
357 automatically.</para>
358
359 <para>Traditionally, <command>MoleCuilder</command> operates on a single
360 configuration file - the state - which may also store additional
361 information depending on the chosen file format such as parameters for
362 ab-initio computations. An example for the above procedure is given
363 below:</para>
364
365 <programlisting>
366 ./molecuilder \
367 -i sample.xyz \
368 --add-atom H \
369 --domain-position "0.,0.,0." \
370 ...
371 </programlisting>
372
373 <para>The first argument is the executable itself. Second, there is a
374 slew of arguments -- one per line split with a backslash telling the
375 shell that the line still continues -- consisting of the input action and
376 an arbitrarily named file <filename>sample.xyz</filename>, which may be
377 empty and whose file format is chosen by the given extension. The third
378 is the add-atom action following by an option that gives the position in
379 the domain where to add the "H"ydrogen atom. An action is always
380 introduced via a double hyphen and its full name (containing just
381 non-capital letters and hyphens) or a single hyphen and a single letter
382 for its shortform, e.g. -a for adding an atom to the system. It is
383 followed by a fixed number of options. Most of these have default values
384 and in this do not have to be specified. If not enough options are given
385 or invalid values have been entered, an error message is printed stating
386 the name of the first missing or invalid option value.</para>
387
388 <note>
389 <para>Note that not all action have shortforms and it is best practice
390 to have the full action name instead of its shortform to make the
391 command-line understable to you in years to come.</para>
392 </note>
393
394 <section xml:id='preliminaries'>
395 <title xml:id='preliminaries.title'>Preliminaries</title>
396
397 <para>Some preliminary remarks are in order which we have gathered
398 here on how these actions work in general.</para>
399
400 <para>Below we first delve into some details about secondary structure
401 such as selections, shapes, and randomization required to specify
402 subsets of atoms and molecules you wish to manipulate. Then, we have
403 ordered the subsequent details on the manipulation depending on the
404 scale they act upon - single atoms, multiple atoms organised as
405 molecules, and all atoms organised by their containing domain.</para>
406
407 <para>In the following we will always give a command to illustrate the
408 procedure but just the necessary parts, i.e. "..." implies to prepend
409 it with the executable and input command for a specific configuration
410 file, for storing the manipulated state of the molecular system. Note
411 that</para>
412
413 <programlisting>./molecuilder --help</programlisting>
414
415 <para>will always give you a list of all available actions and also a
416 brief explanation on how to properly enter values of a specific type,
417 e.g. an element, a vector, or a list of numbers. Details to a specific
418 action can be requested when its full name is known, e.g. for
419 "add-atom",</para>
420
421 <programlisting>./molecuilder --help --actionname add-atom</programlisting>
422
423 <para>which fills you in on each option to the action: its full name,
424 its expected type, and a possibly present default value, and a brief
425 description of the option.</para>
426
427 <para>An Action can be undone and redone, e.g. undo adding an atom as
428 follows,</para>
429
430 <programlisting>... --add-atom H --domain-position "0,0,0" --undo</programlisting>
431
432 <para>and redo as follows</para>
433
434 <programlisting>... --add-atom H --domain-position "0,0,0" --undo --redo</programlisting>
435
436 <para>With the non-interactive interfaces this may seem rather
437 superfluous but it comes in very handy in the interactive ones. Also
438 this tells you that actions are placed in a queue, i.e. a history,
439 that undo and redo manipulate.</para>
440 </section>
441
442 <section xml:id='fileparsers'>
443 <title xml:id='fileparsers.title'>File parsers</title>
444
445 <para>We have already given a list of all known file formats, see
446 <link linkend="fileformats">File formats</link>. Next, we explain how these
447 file formats are picked and manipulated.</para>
448
449 <section xml:id='fileparsers.parsing'>
450 <title xml:id='fileparsers.parsing.title'>Parsing files</title>
451
452 <para>We already discussed that the command-line interface works
453 state-based and hence you should supply it with a file to work
454 on.</para>
455
456 <programlisting>... --input water.data</programlisting>
457
458 <para>This will load all information, especially atoms with their
459 element and position, from the file <filename>water.data</filename>
460 into the state. All changes will eventually be stored to this file,
461 or to files with the prefix <filename>water</filename> and suffixes
462 of desired file formats, e.g. <filename>water.in</filename> if you
463 specified <productname>MPQC</productname>.</para>
464
465 <programlisting>... --load morewater.xyz</programlisting>
466
467 <para>This will load another file <filename>water.xyz</filename>,
468 however changes will still be written to files prefixed with
469 <filename>water</filename>. Note that now already two state files
470 will stored, <filename>water.data</filename> and
471 <filename>water.xyz</filename> as these two different file formats
472 have been used.</para>
473 </section>
474
475 <section xml:id='fileparsers.set-output'>
476 <title xml:id='fileparsers.set-output.tile'>Adding output file
477 formats</title>
478
479 <para>We already know that loading a file also picks a file format
480 by its suffix. We may add further file formats to which the state of
481 the molecular system on program exit.</para>
482
483 <programlisting>... --set-output mpqc tremolo</programlisting>
484
485 <para>This will store the final state of the molecular systems as
486 <productname>MPQC</productname> and as
487 <productname>TREMOLO</productname> configuration file.</para>
488 </section>
489
490 <section xml:id='fileparsers.output-as'>
491 <title xml:id='fileparsers.output-as.title'>Output the current
492 molecular system</title>
493
494 <para>This will store the current World, i.e. all its atoms, to a
495 given file, where the output format is determined from the file
496 suffix.</para>
497
498 <programlisting>... --output-as world.xyz</programlisting>
499 </section>
500
501 <section xml:id='fileparsers.save-selected-molecules'>
502 <title xml:id='fileparsers.save-selected-molecules.title'>Output
503 the current molecular system</title>
504
505 <para>This will store all atoms contained in the currently selected
506 molecules to file. This is different to "store-saturated-fragment"
507 as it will not saturate dangling bonds because only whole molecules,
508 i.e. whose bond graph is connected, will be stored.</para>
509
510 <programlisting>... --save-selected-molecules waters.pdb
511 </programlisting>
512 </section>
513
514 <section xml:id='fileparsers.bond-file'>
515 <title xml:id='fileparsers.bond-file.title'>Load extra bond
516 information</title>
517
518 <para>For some parsers bond information is stored not with the atoms
519 coordinates but in an extra file. This action parses such a file.</para>
520
521 <programlisting>... --bond-file water.dbond
522 </programlisting>
523 </section>
524 </section>
525
526 <section xml:id='selections'>
527 <title xml:id='selections.title'>Selections and unselections</title>
528
529 <para>In order to tell MoleCuilder on what subset of atoms a specific
530 Action is to be performed, there are <emphasis>selection
531 actions</emphasis>. Note that a selection per se does not change
532 anything in the state of the molecular system in any way.</para>
533
534 <para>Selections either work on atoms, on molecules, or on shapes
535 (this we explain lateron). A given selection is maintained from the
536 execution of the selection action to the end of program or until
537 modified by another selection applied on the same type (atom,
538 molecule, shape).</para>
539
540 <para>We only give a brief list on the kind of selections per type,
541 each action is executed either as follows, exemplified by selecting
542 all atoms.</para>
543
544 <programlisting>.... --select-all-atoms</programlisting>
545
546 <para>or, exemplified by unselecting the last molecule,</para>
547
548 <programlisting>... --unselect-molecule-by-order -1</programlisting>
549
550 <itemizedlist>
551 <listitem>
552 <para>Atoms</para>
553
554 <itemizedlist>
555 <listitem>
556 <para>All</para>
557 <programlisting>
558 ... --select-all-atoms
559 </programlisting>
560 </listitem>
561
562 <listitem>
563 <para>None</para>
564 <programlisting>
565 ... --unselect-all-atoms
566 </programlisting>
567 <programlisting>
568 ... --clear-atom-selection
569 </programlisting>
570 </listitem>
571
572 <listitem>
573 <para>Invert selection</para>
574 <programlisting>
575 ... --invert-atoms
576 </programlisting>
577 </listitem>
578
579 <listitem>
580 <para>By Element (all hydrogen atoms, all sulphur atoms,
581 ...)</para>
582 <programlisting>
583 ... --select-atom-by-element 1
584 </programlisting>
585 <programlisting>
586 ... --unselect-atom-by-element 1
587 </programlisting>
588 </listitem>
589
590 <listitem>
591 <para>By Id (atom with id 76)</para>
592 <programlisting>
593 ... --select-atom-by-id 76
594 </programlisting>
595 <programlisting>
596 ... --unselect-atom-by-id 76
597 </programlisting>
598 </listitem>
599
600 <listitem>
601 <para>By Order (the first (1), the second, ... the last
602 created(-1), the last but one)</para>
603 <programlisting>
604 ... --select-atom-by-order 1
605 </programlisting>
606 <programlisting>
607 ... --unselect-atom-by-order -2
608 </programlisting>
609 </listitem>
610
611 <listitem>
612 <para>By Shape (specific region of the domain)</para>
613 <programlisting>
614 ... --select-atom-inside-volume
615 </programlisting>
616 <programlisting>
617 ... --unselect-atoms-inside-volume
618 </programlisting>
619 </listitem>
620
621 <listitem>
622 <para>By Molecule (all atoms belonging to currently selected
623 molecules)</para>
624 <programlisting>
625 ... --select-molecules-atoms
626 </programlisting>
627 <programlisting>
628 ... --unselect-molecules-atoms
629 </programlisting>
630 </listitem>
631 </itemizedlist>
632 </listitem>
633
634 <listitem>
635 <para>Molecules</para>
636
637 <itemizedlist>
638 <listitem>
639 <para>All</para>
640 <programlisting>
641 ... --select-all-molecules
642 </programlisting>
643 </listitem>
644
645 <listitem>
646 <para>None</para>
647 <programlisting>
648 ... --unselect-all-molecules
649 </programlisting>
650 <programlisting>
651 ... --clear-molecule-selection
652 </programlisting>
653 </listitem>
654
655 <listitem>
656 <para>Invert selection</para>
657 <programlisting>
658 ... --invert-molecules
659 </programlisting>
660 </listitem>
661
662 <listitem>
663 <para>By Id (molecule with id 4)</para>
664 <programlisting>
665 ... --select-molecule-by-id 2
666 </programlisting>
667 <programlisting>
668 ... --unselect-molecule-by-id 2
669 </programlisting>
670 </listitem>
671
672 <listitem>
673 <para>By Order (first created molecule, second created
674 molecule, ...)</para>
675 <programlisting>
676 ... --select-molecule-by-order 2
677 </programlisting>
678 <programlisting>
679 ... --unselect-molecule-by-order -2
680 </programlisting>
681 </listitem>
682
683 <listitem>
684 <para>By Formula (molecule with H2O as formula)</para>
685 <programlisting>
686 ... --select-molecules-by-formula "H2O"
687 </programlisting>
688 <programlisting>
689 ... --unselect-molecules-by-formula "H2O"
690 </programlisting>
691 </listitem>
692
693 <listitem>
694 <para>By Name (molecule named "water4")</para>
695 <programlisting>
696 ... --select-molecules-by-name "water4"
697 </programlisting>
698 <programlisting>
699 ... --unselect-molecules-by-name "water4"
700 </programlisting>
701 </listitem>
702
703 <listitem>
704 <para>By Atom (all molecules for which at least one atom is
705 currently selected)</para>
706 <programlisting>
707 ... --select-atoms-molecules
708 </programlisting>
709 <programlisting>
710 ... --unselect-atoms-molecules
711 </programlisting>
712 </listitem>
713 </itemizedlist>
714 </listitem>
715
716 <listitem>
717 <para>Shapes</para>
718
719 <itemizedlist>
720 <listitem>
721 <para>All</para>
722 <programlisting>
723 ... --select-all-shapes
724 </programlisting>
725 </listitem>
726
727 <listitem>
728 <para>None</para>
729 <programlisting>
730 ... --unselect-all-shapes
731 </programlisting>
732 </listitem>
733
734 <listitem>
735 <para>By Name (shape name "sphere1")</para>
736 <programlisting>
737 ... --select-shape-by-name "sphere1"
738 </programlisting>
739 <programlisting>
740 ... --unselect-shape-by-name "sphere1"
741 </programlisting>
742 </listitem>
743 </itemizedlist>
744 </listitem>
745
746 </itemizedlist>
747
748 <remark>Note that an unselected instance (e.g. an atom) remains
749 unselected upon further unselection and vice versa with
750 selection.</remark>
751
752 <para>These above selections work then in conjunction with other
753 actions and make them very powerful, e.g. you can remove all atoms
754 inside a sphere by a selecting the spherical shape and subsequently
755 selecting all atoms inside the shape and then removing them.</para>
756 </section>
757
758 <section xml:id='shapes'>
759 <title xml:id='shapes.title'>Shapes</title>
760
761 <para>Shapes are specific regions of the domain. There are just a few
762 so-called <emphasis>primitive</emphasis> shapes such as cuboid,
763 sphere, cylinder, the whole domain, none of it. However, these can be
764 combined via boolean operations such as and, or, and not. This
765 approach is called <emphasis>constructive geometry</emphasis>. E.g. by
766 combining a sphere with the negated (not) of a smaller sphere, we
767 obtain a spherical surface of specific thickness.</para>
768
769 <section xml:id='shapes.create-shape'>
770 <title xml:id='shapes.create-shape.title'>Creating shapes</title>
771
772 <para>Primitive shapes can be created as follows,</para>
773
774 <programlisting>
775 ... --create-shape \
776 --shape-type sphere \
777 --shape-name "sphere1" \
778 --stretch "2,2,2" \
779 --translation "5,5,5"
780 </programlisting>
781
782 <para>This will create a sphere of radius 2 (initial radius is 1)
783 with name "sphere1" that is centered at (5,5,5). Other primitives at
784 cuboid and cylinder, where a rotation can be specified as
785 follows.</para>
786
787 <programlisting>
788 ... --create-shape \
789 --shape-type cuboid \
790 --shape-name "box" \
791 --stretch "1,2,2" \
792 --translation "5,5,5" \
793 --angle-x "90"
794 </programlisting>
795 </section>
796
797 <section xml:id='shapes.combine-shapes'>
798 <title xml:id='shapes.combine-shapes.title'>Combining shapes</title>
799
800 <para>Any two shapes can be combined by boolean operations as follows</para>
801
802 <programlisting>
803 ... --combine-shapes \
804 --shape-name "combinedshape" \
805 --shape-op "AND" \
806 </programlisting>
807
808 <para>This will combine two currently selected shapes vis the "AND" operation
809 and create a new shape called "combinedshape". Note that the two old shapes
810 are still present after this operation. We briefly explain each operation:
811 </para>
812 <itemizedlist>
813 <listitem>
814 <para><emphasis>AND</emphasis> combines two currently selected shapes
815 into a new shape that only consists of the volume where shapes overlap.</para>
816 </listitem>
817 <listitem>
818 <para><emphasis>OR</emphasis> combines two currently selected shapes
819 into a new shape that consists of all the volume where that either shape
820 occupies.</para>
821 </listitem>
822 <listitem>
823 <para><emphasis>NOT</emphasis> creates the inverse to a currently selected
824 single shape that contains the volume with respect to the simulation domain
825 that the present one does not.</para>
826 </listitem>
827 </itemizedlist>
828 </section>
829
830 <section xml:id='shapes.remove-shape'>
831 <title xml:id='shapes.remove-shape.title'>Removing shapes</title>
832
833 <para>Removing a shape is as simple as removing an atom.</para>
834
835 <programlisting>... --remove-shape </programlisting>
836
837 <para>This removes the currently selected shapes.</para>
838 </section>
839
840 <section xml:id='shapes.manipulation'>
841 <title xml:id='shapes.manipulation.title'>Manipulating shapes</title>
842
843 <para>Shapes can be stretched, scaled, rotated, and translated to
844 modify primitives or combined primitive shapes. As you have seen
845 this manipulation could have occurred already at creation but also
846 later on. We just the list examples of the various manipulations
847 below, each works on the currently selected shapes.</para>
848
849 <programlisting>
850 ... --stretch-shapes "1,1,2" \
851 --stretch-center "5,5,5"
852 </programlisting>
853
854 <para>This stretches the shapes relative to the center at (5,5,5)
855 (default is origin) by a factor of 2 in the z direction.</para>
856
857 <programlisting>
858 ... --rotate-shapes \
859 --center "10,2,2" \
860 --angle-x 90 \
861 --angle-y 0 \
862 --angle-z 0
863 </programlisting>
864
865 <para>This way all selected shapes are rotated by 90 degrees around
866 the x axis with respect to the center at (10,2,2).</para>
867
868 <programlisting>... --translate-shapes "5,0,0" </programlisting>
869
870 <para>This translates all selected shapes by 5 along the x
871 axis.</para>
872 </section>
873 </section>
874
875 <section xml:id='randomization'>
876 <title xml:id='randomization.title'>Randomization</title>
877
878 <para>Some operations require randomness as input, e.g. when filling a
879 domain with molecules these may be randomly translated and rotated.
880 Random values are obtained by a random number generator that consists
881 of two parts: engine and distribution. The engine yields a uniform set
882 of random numbers in a specific interval, the distribution modifies
883 them, e.g. to become gaussian.</para>
884
885 <para>There are several Actions to modify the specific engine and
886 distribution and their parameters. One example usage is that with the
887 aforementioned filling of the domain molecules are rotated randomly.
888 If you specify a random number generator that randomly just spills out
889 values 0,1,2,3, then the randomness is just the orientation of the
890 molecule with respect to a specific axis: x,y,z. (rotation is at most
891 360 degrees and 0,1,2,3 act as divisor, hence rotation angle is always
892 a multiple of 90 degrees).</para>
893
894 <programlisting>
895 ... --set-random-number-distribution "uniform_int" \
896 --random-number-distribution-parameters "p=1"
897 </programlisting>
898
899 <para>This changes the distribution to "uniform_int", i.e. integer
900 numbers distributed uniformly.</para>
901
902 <programlisting>
903 ... --set-random-number-engine "mt19937" \
904 --random-numner-engine-parameters "seed=10"
905 </programlisting>
906
907 <para>Specifying the seed allows you to obtain the same sequence of
908 random numbers for testing purposes.</para>
909 </section>
910
911 <section xml:id='atoms'>
912 <title xml:id='atoms.title'>Manipulate atoms</title>
913
914 <para>Here, we explain in detail how to add, remove atoms, change its
915 element type, scale the bond in between or measure the bond length or
916 angle.</para>
917
918 <section xml:id='atoms.add-atom'>
919 <title xml:id='atoms.add-atom.title'>Adding atoms</title>
920
921 <para>Adding an atom to the domain requires the element of the atom
922 and its coordinates as follows,</para>
923
924 <programlisting>
925 ... --add-atom O \
926 --domain-position "2.,3.,2.35"
927 </programlisting>
928
929 <para>where the element is given via its chemical symbol and the
930 vector gives the position within the domain</para>
931 </section>
932
933 <section xml:id='atoms.remove-atom'>
934 <title xml:id='atoms.remove-atom.title'>Removing atoms</title>
935
936 <para>Removing atom(s) does not need any option and operates on the
937 currently selected ones.</para>
938
939 <programlisting>... --remove-atom</programlisting>
940 </section>
941
942 <section xml:id='atoms.translate-atom'>
943 <title xml:id='atoms.translate-atom.title'>Translating atoms</title>
944
945 <para>In order to translate the current selected subset of atoms you
946 specify a translation vector.</para>
947
948 <programlisting>
949 ... --translate-atoms "-1,0,0" \
950 --periodic 0
951 </programlisting>
952
953 <para>This translate all atoms by "-1" along the x axis and does not
954 mind the boundary conditions, i.e. might shift atoms outside of the
955 domain.</para>
956 </section>
957
958 <section xml:id='atoms.mirror-atoms'>
959 <title xml:id='atoms.mirror-atoms.title'>Mirroring atoms</title>
960
961 <para>Present (and selected) atoms can be mirrored with respect to
962 a certain plane. You have to specify the normal vector of the plane
963 and the offset with respect to the origin as follows</para>
964
965 <programlisting>
966 ... --mirror-atoms "1,0,0" \
967 --plane-offset 10.1 \
968 --periodic 0
969 </programlisting>
970 </section>
971
972 <section xml:id='atoms.change-element'>
973 <title xml:id='atoms.change-element.title'>Changing an atoms element
974 </title>
975
976 <para>You can easily turn lead or silver into gold, by selecting the
977 silver atom and calling the change element action.</para>
978
979 <programlisting>... --change-element Au</programlisting>
980 </section>
981 </section>
982
983 <section xml:id='bond'>
984 <title xml:id='bond.title'>Bond-related manipulation</title>
985
986 <para>Atoms can also be manipulated with respect to the bonds.
987 <remark>Note that with bonds we always mean covalent bonds.</remark>
988 First, we explain how to modify the bond structure itself, then we go
989 in the details of using the bond information to change bond distance
990 and angles.</para>
991
992 <section xml:id='bond.create-adjacency'>
993 <title xml:id='bond.create-adjacency.title'>Creating a bond graph
994 </title>
995
996 <para>In case you have loaded a configuration file with no bond
997 information, e.g. XYZ, it is necessary to create the bond graph.
998 This is done by a heuristic distance criterion.</para>
999
1000 <programlisting>... --create-adjacency</programlisting>
1001
1002 <para>This uses by default a criterion based on van-der-Waals radii,
1003 i.e. if we look at two atoms indexed by "a" and "b"</para>
1004
1005 <equation>
1006 <title>V(a) + V(b) - \tau &lt; R_{ab} &lt; V(a) + V(b) +
1007 \tau</title>
1008
1009 <m:math display="block">
1010 <m:mi>where V(.) is the lookup table for the radii for a given
1011 element and \tau is a threshold value, set to 0.4.</m:mi>
1012 </m:math>
1013 </equation>
1014
1015 <para>As a second option, you may load a file containing bond table
1016 information.</para>
1017
1018 <programlisting>... --bond-table table.dat</programlisting>
1019
1020 <para>which would parse a file <filename>table.dat</filename> for a
1021 table giving typical bond distances between elements a and b. These
1022 are used in the above criterion as <inlineequation>
1023 <m:math display="inline">
1024 <m:mi>V(a,b)</m:mi>
1025 </m:math>
1026 </inlineequation> in place of <inlineequation>
1027 <m:math display="inline">
1028 <m:mi>V(a)+V(b)</m:mi>
1029 </m:math>
1030 </inlineequation>.</para>
1031 </section>
1032
1033 <section xml:id='bond.destroy-adjacency'>
1034 <title xml:id='bond.destroy-adjacency.title'>Destroying the bond
1035 graph</title>
1036
1037 <para>The bond graph can be removed completely (and all bonds along
1038 with it).</para>
1039
1040 <programlisting>... --destroy-adjacency</programlisting>
1041 </section>
1042
1043 <section xml:id='bond.correct-bonddegree'>
1044 <title xml:id='bond.correct-bonddegree.title'>Correcting bond
1045 degrees</title>
1046
1047 <para>Typically, after loading an input file bond information, e.g.
1048 a PDB file, the bond graph is complete but we lack the weights. That
1049 is we do not know whether a bond is single, double, triple, ...
1050 This action corrects the bond degree by enforcing charge neutrality
1051 among the connected atoms.
1052 </para>
1053 <para>This action is in fact quadratically scaling in the number of
1054 atoms. Hence, for large systems this may take longer than expected.
1055 </para>
1056
1057 <programlisting>... --correct-bonddegree</programlisting>
1058 </section>
1059
1060 <section xml:id='bond.depth-first-search'>
1061 <title xml:id='bond.depth-first-search.title'>Analysing a bond
1062 graph</title>
1063
1064 <para>You can perform a depth-first search analysis that reveals
1065 cycles and other graph-related information.</para>
1066
1067 <programlisting>... --depth-first-search</programlisting>
1068 </section>
1069
1070 <section xml:id='bond.subgraph-dissection'>
1071 <title xml:id='bond.subgraph-dissection.title'>Dissecting the
1072 molecular system into molecules</title>
1073
1074 <para>The bond graph information can be used to recognize the
1075 molecule within the system. Imagine you have just loaded a PDB file
1076 containing bond information. However, initially all atoms are dumped
1077 into the same molecule. Before you can start manipulating, you need
1078 to dissect the system into individual molecules. Note that this is
1079 just structural information and does not change the state of the
1080 system.</para>
1081
1082 <programlisting>... --subgraph-dissection</programlisting>
1083
1084 <para>This analyses the bond graph and splits the single molecule up
1085 into individual (new) ones that each contain a single connected
1086 subgraph, hence the naming.</para>
1087 </section>
1088
1089 <section xml:id='bond.update-molecules'>
1090 <title xml:id='bond.update-molecules.title'>Updating molecule
1091 structure</title>
1092
1093 <para>When the bond information has changed, new molecules might
1094 have formed, this action updates all the molecules by scanning
1095 the connectedness of the bond grapf of the molecular system.
1096 </para>
1097
1098 <programlisting>... --update-molecules</programlisting>
1099 </section>
1100
1101 <section xml:id='bond.add-bond'>
1102 <title xml:id='bond.add-bond.title'>Adding a bond manually</title>
1103
1104 <para>When the automatically created adjacency or bond graph
1105 contains faulty bonds or lacks some, you can add them manually.
1106 First, you must have selected two atoms.</para>
1107
1108 <programlisting>... --add-bond</programlisting>
1109 </section>
1110
1111 <section xml:id='bond.remove-bond'>
1112 <title xml:id='bond.remove-bond.title'>Removing a bond manually
1113 </title>
1114
1115 <para>In much the same way as adding a bond, you can also remove a
1116 bond.</para>
1117
1118 <programlisting>... --remove-bond</programlisting>
1119 </section>
1120
1121 <section xml:id='bond.save-bonds'>
1122 <title xml:id='bond.save-bonds.title'>Saving bond information
1123 </title>
1124
1125 <para>Bond information can be saved to a file in <link
1126 xlink:href="http://www.molecuilder.com/"><productname>TREMOLO
1127 </productname></link>'s dbond style.</para>
1128
1129 <programlisting>... --save-bonds system.dbonds</programlisting>
1130
1131 <para>Similarly is the following Action which saves the bond
1132 information as a simple list of one atomic id per line and in
1133 the same line, separated by spaces, the ids of all atoms connected
1134 to it.</para>
1135
1136 <programlisting>... --save-adjacency system.adj</programlisting>
1137
1138 </section>
1139
1140 <section xml:id='bond.stretch-bond'>
1141 <title xml:id='bond.stretch-bond.title'>Stretching a bond</title>
1142
1143 <para>Stretching a bond actually refers to translation of the
1144 associated pair of atoms. However, this action will keep the rest of
1145 the molecule to which both atoms belong to invariant as well.</para>
1146
1147 <programlisting>... --stretch-bond 1.2</programlisting>
1148
1149 <para>This scales the original bond distance to the new bond
1150 distance 1.2, shifting the right hand side and the left hand side of
1151 the molecule accordingly.</para>
1152
1153 <warning>
1154 <para>this fails with aromatic rings (but you can always
1155 undo).</para>
1156 </warning>
1157 </section>
1158
1159 <section xml:id='bond.change-bond-angle'>
1160 <title xml:id='bond.change-bond-angle.title'>Changing a bond angle
1161 </title>
1162
1163 <para>In the same way as stretching a bond, you can change the angle
1164 in between two bonds. This works if exactly three atoms are selected
1165 and two pairs are bonded.</para>
1166
1167 <programlisting>... --change-bond-angle 90</programlisting>
1168
1169 <para>This will change the angle from its value to 90 degree by
1170 translating the two outer atoms of this triangle (the atom connected
1171 to both others is the axis of the rotation).</para>
1172 </section>
1173 </section>
1174
1175 <section xml:id='molecule'>
1176 <title xml:id='molecule.title'>Manipulate molecules</title>
1177
1178 <para>Molecules are agglomerations of atoms that are bonded. Hence,
1179 the actions working on molecules differ from those working on atoms.
1180 Joining two molecules can only be accomplished by adding a bond in
1181 between, and in the reverse fashion splitting a molecule by removing
1182 all bonds in between. Actions below mostly deal with copying
1183 molecules. Removing of molecules is done via selecting the molecule's
1184 atoms and removing them, which removes the atoms as well.</para>
1185
1186 <note>
1187 <para>Initially when you load a file via the input action all atoms
1188 are placed in a single molecule despite any present bond
1189 information, see <link linkend="fragmentation">Dissecting the
1190 molecular system into molecules</link></para>
1191 </note>
1192
1193 <section xml:id='molecule.copy'>
1194 <title xml:id='molecule.copy.title'>Copy molecules</title>
1195
1196 <para>A basic operation is to duplicate a molecule. This works on a
1197 single, currently selected molecule. Afterwards, we elaborate on a
1198 more complex manner of copying, filling a specific shape with
1199 molecules.</para>
1200
1201 <programlisting>
1202 ... --copy-molecule \
1203 --position "10,10,10"
1204 </programlisting>
1205
1206 <para>This action copies the selected molecule and inserts it at the
1207 position (10,10,10) in the domain with respect to the molecule's
1208 center. In effect, it copies all the atoms of the original molecule
1209 and adds new bonds in between these copied atoms such that their
1210 bond subgraphs are identical.</para>
1211 </section>
1212
1213 <section xml:id='molecule.change-molname'>
1214 <title xml:id='molecule.change-molname.title'>Change a molecules
1215 name</title>
1216
1217 <para>You can change the name of a molecule which is important for
1218 selection.</para>
1219
1220 <programlisting>... -change-molname "test</programlisting>
1221
1222 <para>This will change the name of the (only) selected molecule to
1223 "test".</para>
1224
1225 <para>Connected with this is the default name an unknown molecule
1226 gets.</para>
1227
1228 <programlisting>... --default-molname test</programlisting>
1229
1230 <para>This will change the default name of a molecule to
1231 "test".</para>
1232
1233 <note>
1234 <para>Note that a molecule loaded from file gets the filename
1235 (without suffix) as its name.</para>
1236 </note>
1237 </section>
1238
1239 <section xml:id='molecule.rotate-around-self'>
1240 <title xml:id='molecule.rotate-around-self.title'>Rotate around self
1241 </title>
1242
1243 <para>You can rotate a molecule around its own axis.</para>
1244
1245 <programlisting>
1246 ... --rotate-around-self "90" \
1247 --axis "0,0,1"
1248 </programlisting>
1249
1250 <para>This rotates the molecule around the z axis by 90 degrees as
1251 if the origin were at its center of origin.</para>
1252 </section>
1253
1254 <section xml:id='molecule.rotate-around-origin'>
1255 <title xml:id='molecule.rotate-around-origin.title'>Rotate around
1256 origin</title>
1257
1258 <para>In the same manner the molecule can be rotated around an
1259 external origin.</para>
1260
1261 <programlisting>
1262 ... --rotate-around-origin 90 \
1263 --position "0,0,1"\
1264 </programlisting>
1265
1266 <para>This rotates the molecule around an axis from the origin to
1267 the position (0,0,1), i.e. around the z axis, by 90 degrees.</para>
1268 </section>
1269
1270 <section xml:id='molecule.rotate-to-principal-axis-system'>
1271 <title xml:id='molecule.rotate-to-principal-axis-system.title'>
1272 Rotate to principal axis system</title>
1273
1274 <para>The principal axis system is given by an ellipsoid that mostly
1275 matches the molecules shape. The principal axis system can be just
1276 simply determined by</para>
1277
1278 <programlisting>... --principal-axis-system</programlisting>
1279
1280 <para>To rotate the molecule around itself to align with this system
1281 do as follows.</para>
1282
1283 <programlisting>... --rotate-to-principal-axis-system "0,0,1"
1284 </programlisting>
1285
1286 <para>This rotates the molecule in such a manner that the ellipsoids
1287 largest axis is aligned with the z axis. <remark>Note that "0,0,-1"
1288 would align anti-parallel.</remark></para>
1289 </section>
1290
1291 <section xml:id='molecule.verlet-integration'>
1292 <title xml:id='molecule.verlet-integration.title'>Perform verlet
1293 integration</title>
1294
1295 <para>Atoms not only have a position, but each instance also stores
1296 velocity and a force vector. These can be used in a velocity verlet
1297 integration step. Velocity verlet is a often employed time
1298 integration algorithm in molecular dynamics simulations.</para>
1299
1300 <programlisting>
1301 ... --verlet-integration \
1302 --deltat 0.1 \
1303 --keep-fixed-CenterOfMass 0
1304 </programlisting>
1305
1306 <para>This will integrate with a timestep of <inlineequation>
1307 <m:math display="inline">
1308 <m:mi>\Delta_t = 0.1</m:mi>
1309 </m:math>
1310 </inlineequation>and correcting forces and velocities such that
1311 the sum over all atoms is zero.</para>
1312 </section>
1313
1314 <section xml:id='molecule.force-annealing'>
1315 <title xml:id='molecule.force-annealing.title'>Anneal the atomic
1316 forces</title>
1317
1318 <para>This will shift the atoms in a such a way as to decrease (or
1319 anneal) the forces acting upon them.</para>
1320
1321 <para>Forces may either be already present for the set of atoms by
1322 some other way (e.g. from a prior fragmentation calculation) or,
1323 as shown here, from an external file. We anneal the forces for
1324 one step with a certain initial step width of 0.5 atomic time
1325 units and do not create a new timestep for each optimization
1326 step.</para>
1327
1328 <programlisting>
1329 ... --force-annealing \
1330 --forces-file test.forces \
1331 --deltat 0.5 \
1332 --steps 1 \
1333 --output-every-step 0
1334 </programlisting>
1335 </section>
1336
1337 <section xml:id='molecule.linear-interpolation-of-trajectories'>
1338 <title xml:id='molecule.linear-interpolation-of-trajectories.title'>
1339 Linear interpolation between configurations</title>
1340
1341 <para>This is similar to verlet-integration, only that it performs
1342 a linear integration irrespective of the acting atomic forces.
1343 </para>
1344
1345 <para>The following call will produce an interpolation between the
1346 configurations in time step 0 and time step 1 with 98 intermediate
1347 steps, i.e. current step 1 will end up in time step 99. In this
1348 case an idential mapping is used to associated atoms in start and
1349 end configuration.</para>
1350
1351 <programlisting>
1352 ... --linear-interpolation-of-trajectories \
1353 --start-step 0 \
1354 --end-step 1 \
1355 --interpolation-steps 100 \
1356 --id-mapping 1
1357 </programlisting>
1358 </section>
1359 </section>
1360
1361 <section xml:id='domain'>
1362 <title xml:id='domain.title'>Manipulate domain</title>
1363
1364 <para>Here, we elaborate on how to duplicate all the atoms inside the
1365 domain, how the scale the coordinate system, how to center the atoms
1366 with respect to certain points, how to realign them by given
1367 constraints, how to mirror and most importantly how to specify the
1368 domain.</para>
1369
1370 <section xml:id='domain.change-box'>
1371 <title xml:id='domain.change-box.title'>Changing the domain</title>
1372
1373 <para>The domain is specified by a symmetric 3x3 matrix. The
1374 eigenvalues (diagonal entries in case of a diagonal matrix) give the
1375 length of the edges, additional entries specify transformations of
1376 the box such that it becomes a more general parallelepiped.</para>
1377
1378 <programlisting>... change-box "20,0,20,0,0,20"</programlisting>
1379
1380 <para>As the domain matrix is symmetric, six values suffice to fully
1381 specify it. We have to give the six components of the lower diagonal
1382 matrix. Here, we change the box to a cuboid of equal edge length of
1383 20.</para>
1384 </section>
1385
1386 <section xml:id='domain.bound-in-box'>
1387 <title xml:id='domain.bound-in-box.title'>Bound atoms inside box
1388 </title>
1389
1390 <para>The following applies the current boundary conditions to the
1391 atoms. In case of periodic or wrapped boundary conditions the atoms
1392 will be periodically translated to be inside the domain
1393 again.</para>
1394
1395 <programlisting>... --bound-in-box</programlisting>
1396 </section>
1397
1398 <section xml:id='domain.center-in-box'>
1399 <title xml:id='domain.center-in-box.title'>Center atoms inside the
1400 domain</title>
1401
1402 <para>This is a combination of changing the box and bounding the
1403 atoms inside it.</para>
1404
1405 <programlisting>... --center-in-box "20,0,20,0,0,"</programlisting>
1406 </section>
1407
1408 <section xml:id='domain.center-edge'>
1409 <title xml:id='domain.center-edge.title'>Center the atoms at an
1410 edge</title>
1411
1412 <para>MoleCuilder can calculate the minimum box (parallel to the
1413 cardinal axis) all atoms would fit in and translate all atoms in
1414 such a way that the lower, left, front edge of this minimum is at
1415 the origin (0,0,0).</para>
1416
1417 <programlisting>... --center-edge</programlisting>
1418 </section>
1419
1420 <section xml:id='domain.add-empty-boundary'>
1421 <title xml:id='domain.add-empty-boundary.title'>Extending the
1422 boundary by adding an empty boundary</title>
1423
1424 <para>In the same manner as above a minimum box is determined that
1425 is subsequently expanded by a boundary of the given additional
1426 thickness. This applies to either side.</para>
1427
1428 <programlisting>... --add-empty-boundary "5,5,5"</programlisting>
1429
1430 <para>This will enlarge the box in such a way that every atom is at
1431 least by a distance of 5 away from the boundary of the domain (in
1432 the infinity norm).</para>
1433 </section>
1434
1435 <section xml:id='domain.scale-box'>
1436 <title xml:id='domain.scale-box.title'>Scaling the box</title>
1437
1438 <para>You can enlarge the domain by simple scaling factors.</para>
1439
1440 <programlisting>... --scale-box "1,1,2.5"</programlisting>
1441
1442 <para>Here, the domain is stretched in the z direction by a factor
1443 of 2.5.</para>
1444 </section>
1445
1446 <section xml:id='domain.repeat-box'>
1447 <title xml:id='domain.repeat-box.title'>Repeating the box</title>
1448
1449 <para>Under periodic boundary conditions often only the minimal
1450 periodic cell is stored. If need be, multiple images can be easily
1451 added to the current state of the system by repeating the box, i.e.
1452 the box along with all contained atoms is copied and placed
1453 adjacently.</para>
1454
1455 <programlisting>... --repeat-box "1,2,2"</programlisting>
1456
1457 <para>This will create a 2x2 grid of the current domain, replicating
1458 it along the y and z direction along with all atoms. If the domain
1459 contained before a single water molecule, we will now have four of
1460 them.</para>
1461 </section>
1462
1463 <section xml:id='domain.set-boundary-conditions'>
1464 <title xml:id='domain.set-boundary-conditions.title'>Change the
1465 boundary conditions</title>
1466
1467 <para>Various boundary conditions can be applied that affect how
1468 certain Actions work, e.g. translate-atoms. We briefly give a list
1469 of all possible conditions:</para>
1470 <itemizedlist>
1471 <listitem>
1472 <para>Wrap</para>
1473 <para>Coordinates are wrapped to the other side of the domain,
1474 i.e. periodic boundary conditions.</para>
1475 </listitem>
1476 <listitem>
1477 <para>Bounce</para>
1478 <para>Coordinates are bounced back into the domain, i.e. they
1479 are reflected from the domain walls.</para>
1480 </listitem>
1481 <listitem>
1482 <para>Ignore</para>
1483 <para>No boundary conditions apply.</para>
1484 </listitem>
1485 </itemizedlist>
1486
1487 <para>The following will set the boundary conditions to periodic.
1488 </para>
1489
1490 <programlisting>... --set-boundary-conditions "Wrap Wrap Wrap"
1491 </programlisting>
1492 </section>
1493 </section>
1494
1495 <section xml:id='filling'>
1496 <title xml:id='filling.title'>Filling</title>
1497
1498 <para>Filling a specific part of the domain with one type of
1499 molecule, e.g. a water molecule, is the more advanced type of
1500 copying of a molecule (see copy-molecule) and we need several
1501 ingredients.</para>
1502
1503 <para>First, we need to specify the part of the domain. This is done
1504 via a shape. We have already learned how to create and select
1505 shapes. The currently selected shape will serve as the fill-in
1506 region.</para>
1507
1508 <para>Then, they are three types of filling, domain, volume, and
1509 surface. The domain is filled with a regular grid of fill-in points.
1510 A volume and a surface are filled by a set of equidistant points
1511 distributed within the volume or on the surface of a selected
1512 shape. Molecules will then be copied and translated points when they
1513 "fit".</para>
1514
1515 <para>The filler procedure checks each fill-in point whether there
1516 is enough space for the molecule. To know this, we require a cluster
1517 instead of a molecule. This is just a general agglomeration of atoms
1518 combined with a bounding box that contains all of them and serves as
1519 its minimal volume. I.e. we need this cluster. For this a number of
1520 atoms have to be specified, the minimum bounding box is generated
1521 automatically.</para>
1522
1523 <para>On top of that molecules can be selected whose volume is
1524 additionally excluded from the filling region.</para>
1525
1526 <section xml:id='filling.fill-regular-grid'>
1527 <title xml:id='filling.fill-regular-grid.title'>Fill the domain with
1528 molecules</title>
1529
1530 <para>The call to fill the volume of the selected shape with the
1531 selected atoms is then as follows,</para>
1532
1533 <programlisting>
1534 ... --fill-regular-grid \
1535 --mesh-size "5,5,5" \
1536 --mesh-offset ".5,.5,.5" \
1537 --DoRotate 1 \
1538 --min-distance 1. \
1539 --random-atom-displacement 0.05 \
1540 --random-molecule-displacement 0.4 \
1541 --tesselation-radius 2.5
1542 </programlisting>
1543
1544 <para>This generates a grid of 5x5x5 fill-in points within the
1545 sphere that are offset such as to lay centered within the sphere
1546 (offset per axis in [0,1]). Additionally, each molecule is rotated
1547 by random rotation matrix, each atom is translated randomly by at
1548 most 0.05, each molecule's center at most by 0.4. The selected
1549 molecules' volume is obtained by tesselating their surface and
1550 excluding every fill-in point whose distance to this surface does
1551 not exceed 1. We refer to our comments in
1552 <link linkend="randomization">Randomization</link>for details on
1553 changing the randomness.</para>
1554 </section>
1555
1556 <section xml:id='filling.fill-volume'>
1557 <title xml:id='filling.fill-volume.title'>Fill a shape's volume
1558 with molecules</title>
1559
1560 <para>More specifically than filling the whole domain with molecules,
1561 maybe except areas where other molecules already are, we also can
1562 fill only specific parts by selecting a shape and calling upon
1563 the following action:</para>
1564
1565 <programlisting>
1566 ... --fill-volume \
1567 --counts 12 \
1568 --min-distance 1. \
1569 --DoRotate 1 \
1570 --random-atom-displacement 0.05 \
1571 --random-molecule-displacement 0.4 \
1572 --tesselation-radius 2.5
1573 </programlisting>
1574 </section>
1575
1576 <section xml:id='filling.fill-surface'>
1577 <title xml:id='filling.fill-surface.title'>Fill a shape's surface
1578 with molecules</title>
1579
1580 <para>Filling a surface is very similar to filling its volume.
1581 Again the number of equidistant points has to be specified.
1582 However, randomness is constrained as the molecule is be aligned
1583 with the surface in a specific manner. The alignment axis refers
1584 to the largest principal axis of the filler molecule and will
1585 be aligned parallel to the surface normal at the fill-in point.
1586 </para>
1587
1588 <para>The call below fill in 12 points with a minimum distance
1589 between the instances of 1 angstroem. We allow for certain random
1590 displacements and use the z-axis for aligning the molecules on
1591 the surface.</para>
1592
1593 <programlisting>
1594 ... --fill-surface \
1595 --counts 12 \
1596 --min-distance 1. \
1597 --DoRotate 1 \
1598 --random-atom-displacement 0.05 \
1599 --random-molecule-displacement 0.4 \
1600 --Alignment-Axis "0,0,1"
1601 </programlisting>
1602 </section>
1603
1604 <section xml:id='filling.suspend-in-molecule'>
1605 <title xml:id='filling.suspend-in-molecule.title'>Suspend in molecule
1606 </title>
1607
1608 <para>Add a given molecule in the simulation domain in such a way
1609 that the total density is as desired.</para>
1610
1611 <programlisting>
1612 ... --suspend-in-molecule 1.
1613 </programlisting>
1614 </section>
1615
1616 <section xml:id='filling.fill-molecule'>
1617 <title xml:id='filling.fill-molecule.title'>Fill in molecule</title>
1618
1619 <para>This action will be soon be removed.</para>
1620
1621 <programlisting>
1622 ... --fill-molecule
1623 </programlisting>
1624 </section>
1625
1626 <section xml:id='filling.fill-void'>
1627 <title xml:id='filling.fill-void.title'>Fill void with molecule
1628 </title>
1629
1630 <para>This action will be soon be removed.</para>
1631
1632 <programlisting>
1633 ... --fill-void
1634 </programlisting>
1635 </section>
1636 </section>
1637
1638 <section xml:id='analysis'>
1639 <title xml:id='analysis.title'>Analysis</title>
1640
1641 <para></para>
1642
1643 <section xml:id='analysis.pair-correlation'>
1644 <title xml:id='analysis.pair-correlation.title'>Pair Correlation
1645 </title>
1646
1647 <para>Pair correlation checks for two given elements on the typical
1648 distance they can be found with respect to one another. E.g. for
1649 water one might be interested what is the typical distance for
1650 hydrogen and oxygen atoms.</para>
1651
1652 <programlisting>
1653 ... --pair-correlation \
1654 --elements 1 8 \
1655 --bin-start 0 \
1656 --bin-width 0.7 \
1657 --bin-end 10 \
1658 --output-file histogram.dat \
1659 --bin-output-file bins.dat \
1660 --periodic 0
1661 </programlisting>
1662
1663 <para>This will compile a histogram for the interval [0,10] in steps
1664 of 0.7 and increment a specific bin if the distance of one such pair
1665 of a hydrogen and an oxygen atom can be found within its distance
1666 interval.</para>
1667 </section>
1668
1669 <section xml:id='analysis.dipole-correlation'>
1670 <title xml:id='analysis.dipole-correlation.title'>Dipole Correlation
1671 </title>
1672
1673 <para>The dipole correlation is similar to the pair correlation, only
1674 that it correlates the orientation of dipoles in the molecular
1675 system with one another.</para>
1676 <para>Note that the dipole correlation works on the currently
1677 selected molecules, e.g. all water molecules if so selected.</para>
1678
1679 <programlisting>
1680 ... --dipole-correlation \
1681 --bin-start 0 \
1682 --bin-width 0.7 \
1683 --bin-end 10 \
1684 --output-file histogram.dat \
1685 --bin-output-file bins.dat \
1686 --periodic 0
1687 </programlisting>
1688 </section>
1689
1690 <section xml:id='analysis.dipole-angular-correlation'>
1691 <title xml:id='analysis.dipole-angular-correlation.title'>Dipole
1692 Angular Correlation</title>
1693
1694 <para>The dipole angular correlation looks at the angles of a
1695 dipole over time. It takes the orientation of a certain time step
1696 as the zero angle and bins all other orientations found in later
1697 time steps relative to it.
1698 </para>
1699 <para>Note that in contrast to the dipole correlation the dipole
1700 angular correlation works on the molecules determined by a formula.
1701 This is because selections do not work over time steps as molecules
1702 might change.
1703 </para>
1704
1705 <programlisting>
1706 ... --dipole-angular-correlation H2O \
1707 --bin-start 0 \
1708 --bin-width 5 \
1709 --bin-end 360 \
1710 --output-file histogram.dat \
1711 --bin-output-file bins.dat \
1712 --periodic 0 \
1713 --time-step-zero 0
1714 </programlisting>
1715 </section>
1716
1717 <section xml:id='analysis.point-correlation'>
1718 <title xml:id='analysis.point-correlation.title'>Point Correlation
1719 </title>
1720
1721 <para>Point correlation is very similar to pair correlation, only
1722 that it correlates not positions of atoms among one another but
1723 against a fixed, given point.</para>
1724
1725 <programlisting>
1726 ... --point-correlation \
1727 --elements 1 8 \
1728 --position "0,0,0" \
1729 --bin-start 0 \
1730 --bin-width 0.7 \
1731 --bin-end 10 \
1732 --output-file histogram.dat \
1733 --bin-output-file bins.dat \
1734 --periodic 0
1735 </programlisting>
1736
1737 <para>This would calculate the correlation of all hydrogen and
1738 oxygen atoms with respect to the origin.</para>
1739 </section>
1740
1741 <section xml:id='analysis.surface-correlation'>
1742 <title xml:id='analysis.surface-correlation.title'>Surface
1743 Correlation</title>
1744
1745 <para>The surface correlation calculates the distance of a set
1746 of atoms with respect to a tesselated surface.</para>
1747
1748 <programlisting>
1749 ... --surface-correlation \
1750 --elements 1 8 \
1751 --bin-start 0 \
1752 --bin-width 0.7 \
1753 --bin-end 10 \
1754 --output-file histogram.dat \
1755 --bin-output-file bins.dat \
1756 --periodic 0
1757 </programlisting>
1758 </section>
1759
1760 <section xml:id='analysis.molecullar-volume'>
1761 <title xml:id='analysis.molecullar-volume.title'>Molecular Volume
1762 </title>
1763
1764 <para>This simply calculates the volume that a selected molecule
1765 occupies. For this the molecular surface is determined via a
1766 tesselation. Note that this surface is minimal is that aspect
1767 that each node of the tesselation consists of an atom of the
1768 molecule.</para>
1769
1770 <programlisting>... --molecular-volume</programlisting>
1771 </section>
1772
1773 </section>
1774
1775 <section xml:id='fragmentation'>
1776 <title xml:id='fragmentation.title'>Fragmentation</title>
1777
1778 <para>Fragmentation refers to a so-called linear-scaling method called
1779 "Bond-Order diSSection in an ANOVA-like fashion" (BOSSANOVA),
1780 developed by <personname>Frederik Heber</personname>. In this section
1781 we briefly explain what the method does and how the associated actions
1782 work.</para>
1783
1784 <para>The central idea behind the BOSSANOVA scheme is to fragment the
1785 graph of the molecular system into connected subgraphs of a certain
1786 number of vertices (atoms). To give an example, loading a ethane atom
1787 with the chemical formula C2H6, fragmenting the molecule up to order 1
1788 means creating two fragments, both methane-like from either carbon
1789 atom including surrounding hydrogen atoms. Fragmenting up to order 2
1790 would return both the methane fragments and additionally the full
1791 ethane molecule as it resembles a fragment of order 2, namely
1792 containing two (non-hydrogen) atoms.</para>
1793
1794 <para>The reason for doing this is that usual ab-initio calculations
1795 of molecular systems via methods such as Density Functional Theory or
1796 Hartree-Fock scale at least as <inlineequation>
1797 <m:math display="inline">
1798 <m:mi>{\cal O}(M^3}</m:mi>
1799 </m:math>
1800 </inlineequation>with the number of atoms <inlineequation>
1801 <m:math display="inline">
1802 <m:mi>M</m:mi>
1803 </m:math>
1804 </inlineequation>. Hence, calculating the ground state energy of a
1805 number of fragment molecules scaling linearly with the number of atoms
1806 yields a linear-scaling methods. In the doctoral thesis of Frederik
1807 Heber, it is explained why this is a sensible ansatz mathematically
1808 and shown that it delivers a very good accuracy if electrons (and
1809 hence interactions) are in general localized.</para>
1810
1811 <para>Long-range interactions are artificially truncated, however,
1812 with this fragment ansatz. It can be obtained in a perturbation manner
1813 by sampling the resulting electronic and nuclei charge density on a
1814 grid, summing over all fragments, and solving the associated Poisson
1815 equation. Such a calculation is implemented via the solver
1816 <productname>vmg</productname> by Julian Iseringhausen that is
1817 contained in the <link xlink:href="http://www.scafacos.org/">
1818 <productname>ScaFaCoS</productname></link>.</para>
1819
1820 <para>Note that we treat hydrogen special (but can be switched off) as
1821 fragments are calculated as closed shell (total spin equals zero).
1822 Also, we use hydrogen to saturate any dangling bonds that occur as
1823 bonds are cut when fragmenting a molecule (this, too, can be switched
1824 off).</para>
1825
1826 <section xml:id='fragmentation.fragment-molecule'>
1827 <title xml:id='fragmentation.fragment-molecule.title'>Fragmenting a
1828 molecular system</title>
1829
1830 <para>For the current selection of atoms, all fragments consisting
1831 of these (sub)set of atoms are created in the following
1832 manner.</para>
1833
1834 <programlisting>
1835 ... --fragment-molecule "BondFragment" \
1836 --DoCyclesFull 1 \
1837 --distance 3. \
1838 --order 3 \
1839 --grid-level 5 \
1840 --output-types xyz mpqc
1841 </programlisting>
1842
1843 <para>We go through each of the options one after the other. During
1844 fragmentation some files are created storing state information, i.e.
1845 the vertex/atom indices per fragment and so on. These files all need
1846 a common prefix, here "BondFragment". Then, we specify that cycles
1847 should be treated fully. This compensates for electrons in aromatic
1848 rings being delocalized over the ring. If cycles in the graph,
1849 originating from aromatic rings, are always calculated fully, i.e.
1850 the whole ring becomes a fragment, we partially overcome these
1851 issues. This does however not work indefinitely and accuracy of the
1852 approximation is limited (<inlineequation>
1853 <m:math display="inline">
1854 <m:mi>&gt;10^{-4}</m:mi>
1855 </m:math>
1856 </inlineequation>) in systems with many interconnected aromatic
1857 rings, such as graphene. Next, we give a distance cutoff of 3 used
1858 in bond graph creation. Then, we specify the maximum order, i.e. the
1859 maximum number of (non-hydrogen) atoms per fragment, here 3. The
1860 higher this number the more expensive the calculation becomes
1861 (because substantially more fragments are created) but also the more
1862 accurate. The grid level refers to the part where long-range Coulomb
1863 interactions are calculated. This is done via solving the associated
1864 Poisson equation with a multigrid solver. As input the solver
1865 requires the density which is sampled on a cartesian grid whose
1866 resolution these parameter defines (<inlineequation>
1867 <m:math display="inline">
1868 <m:mi>2^{\mathrm{level}}</m:mi>
1869 </m:math>
1870 </inlineequation>). And finally, we give the output file formats,
1871 i.e. which file formats are used for writing each fragment
1872 configuration (prefix is "BondFragment", remember?). Here, we use
1873 XYZ (mainly for checking the configurations visually) and MPQC,
1874 which is a very robust Hartree-Fock solver. We refer to the
1875 discussion of the <link linkend="fileparsers">Parsers</link> above
1876 on how to change the parameters of the ab-initio calculation.</para>
1877
1878 <para>After having written all fragment configuration files, you
1879 need to calculate each fragment, grab the resulting energy (and
1880 force vectors) and place them into a result file manually. This at
1881 least is necessary if you have specified output-types above. If not,
1882 the fragments are not written to file but stored internally. Read
1883 on.</para>
1884 </section>
1885
1886 <section xml:id='fragmentation.fragment-automation'>
1887 <title xml:id='fragmentation.fragment-automation.title'>Calculating
1888 fragment energies automatically</title>
1889
1890 <para>Another way of doing this is enabled if you have
1891 <productname>JobMarket</productname> package. JobMarket implements a
1892 client/server ansatz, i.e. two (or more) independent programs are
1893 running (even on another computer but connected via an IP network),
1894 namely a server and at least one client. The server receives
1895 fragment configurations from MoleCuilder and assigns these to a
1896 client who is not busy. The client launches an executable that is
1897 specified in the work package he is assigned and gathers after
1898 calculation a number of values, samewise specified in the package.
1899 The results are gathered together by the server and can be requested
1900 from MoleCuilder once they are done. This essentially describe what
1901 is happening during the execution of this action.</para>
1902
1903 <para>Stored fragment jobs can also be parsed again, i.e. reversing
1904 the effect of having output-types specified in <link
1905 linkend="fragmentation.fragment-molecule">Fragmenting a molecule
1906 </link>.</para>
1907
1908 <programlisting>
1909 ... --parse-fragment-jobs \
1910 --fragment-jobs "BondFragment00.in" "BondFragment01.in" \
1911 --fragment-path "./" \
1912 --grid-level 5
1913 </programlisting>
1914
1915 <para>Here, we have specified two files, namely
1916 <filename>BondFragment00.in</filename> and
1917 <filename>BondFragment01.in</filename>, to be parsed from the path
1918 "./", i.e. the current directory. Also, we have specified to sample
1919 the electronic charge density obtained from the calculated ground
1920 state energy solution with a resolution of 5 (see fragment molecule
1921 and also below).</para>
1922
1923 <para>This allows for automated and parallel calculation of all
1924 fragment energies and forces directly within MoleCuilder. The
1925 FragmentationAutomation action takes the fragment configurations
1926 from an internal storage wherein they are placed if in
1927 FragmentMolecule no output-types have been specified.</para>
1928
1929 <programlisting>
1930 ... --fragment-automation \
1931 --fragment-executable mpqc \
1932 --fragment-resultfile BondFragment_results.dat \
1933 --DoLongrange 1 \
1934 --DoValenceOnly 1 \
1935 --grid-level 5 \
1936 --interpolation-degree 3 \
1937 --near-field-cells 4 \
1938 --server-address 127.0.0.1 \
1939 --server-port 1025
1940 </programlisting>
1941
1942 <para>Again, we go through each of the action's options step by
1943 step.</para>
1944
1945 <para>The executable is required if you do not have a patched
1946 version of <productname>MPQC</productname> that may directly act as
1947 a client to JobMarket's server. All calculated results are placed in
1948 the result file. If none is given, they are instead again placed in
1949 an internal storage for later access.</para>
1950
1951 <note>
1952 <para>Long-calculations are only possible with a client that knows
1953 how to handle VMG jobs. If you encounter failures, then it is most
1954 likely that you do not have a suitable client.</para>
1955 </note>
1956
1957 <para>In the next line, we have all options related to calculation
1958 of long-range interactions. We only sample valence charges on the
1959 grid, i.e. not core electrons and the nuclei charge is reduces
1960 respectively. This avoids problems with sampling highly localized
1961 charges on the grid and is in general recommended. Next, there
1962 follow parameters for the multi grid solver, namely the resolution
1963 of the grid, see under fragmenting the molecule, the interpolation
1964 degree and the number of near field cells. A grid level of 6 is
1965 recommended but costly in terms of memory, the other values are at
1966 their recommend values.</para>
1967
1968 <para>In the last line, parameters are given on how to access the
1969 JobMarket server, namely it address and its port.</para>
1970 </section>
1971
1972 <section xml:id='fragmentation.analyse-fragment-results'>
1973 <title xml:id='fragmentation.analyse-fragment-results.title'>
1974 Analyse fragment results</title>
1975
1976 <para>After the energies and force vectors of each fragment have
1977 been calculated, they need to be summed up to an approximation for
1978 the energy and force vectors of the whole molecular system. This is
1979 done by calling this action.</para>
1980
1981 <programlisting>
1982 ... --analyse-fragment-results \
1983 --fragment-prefix "BondFragment" \
1984 --fragment-resultfile BondFragment_results.dat \
1985 --store-grids 1
1986 </programlisting>
1987
1988 <para>The purpose of the prefix should already be known to you, same
1989 with the result file that is the file parsed by MoleCuilder. The
1990 last option states that the sampled charge densities and the
1991 calculated potential from the long-range calculations should be
1992 stored with the summed up energies and forces. Note that this makes
1993 the resulting files substantially larger (Hundreds of megabyte or
1994 even gigabytes). Fragment energies and forces are stored in
1995 so-called internal homology containers. These are explained in the
1996 next section.</para>
1997
1998 <para>Note that this action sets the force vector if these have been
1999 calculated for the fragment. Hence, a
2000 <link linkend="molecule.verlet-integration">verlet integration</link>
2001 is possible afterwards.</para>
2002 </section>
2003
2004 <section xml:id='fragmentation.store-saturated-fragment'>
2005 <title xml:id='fragmentation.store-saturated-fragment.title'>Store
2006 a saturated fragment</title>
2007
2008 <para>After the energies and force vectors of each fragment have
2009 been calculated, they need to be summed up to an approximation for
2010 the energy and force vectors of the whole molecular system. This is
2011 done by calling this action.</para>
2012
2013 <para>This will store the currently selected atoms as a fragment
2014 where all dangling bonds (by atoms that are connected in the bond
2015 graph but have not been selected as well) are saturated with
2016 additional hydrogen atoms. The output formats are set to just xyz.
2017 </para>
2018
2019 <programlisting>
2020 ... --store-saturated-fragment \
2021 --DoSaturate 1 \
2022 --output-types xyz
2023 </programlisting>
2024 </section>
2025 </section>
2026
2027 <section xml:id='homology'>
2028 <title xml:id='homology.title'>Homologies</title>
2029
2030 <para>After a fragmentation procedure has been performed fully, what
2031 to do with the results? The forces can be used already but what about
2032 the energies? The energy value is basically the function evaluation of
2033 the Born-Oppenheimer surface. For molecular dynamics simulations
2034 continuous ab-initio calculations to evaluate the Born-Oppenheimer
2035 surface is not feasible. Instead usually empirical potential functions
2036 are fitted as to resemble the Born-Oppenheimer surface to a sufficient
2037 degree.</para>
2038
2039 <para>One frequent method is the many-body expansion of said surface
2040 which is basically nothing else than the fragment ansatz described
2041 above. Potential functions resemble a specific term in this many-body
2042 expansion. These are discussed in the next section.</para>
2043
2044 <para>For each of these terms all homologous fragments (i.e. having
2045 the same atoms with respect to the present elements and bonded in the
2046 same way), differing only in the coordinate of each atom, are just a
2047 sampling or a function evaluation of this term of the many-body
2048 expansion with respect to varying nuclei coordinates. Hence, it is
2049 appropriate to use these function evaluations in a non-linear
2050 regression procedure. That is, we want to tune the parameter of the
2051 empirical potential function in such a way as to most closely obtain
2052 the same function evaluation as the ab-initio calculation did with the
2053 same nuclear coordinates. Usually, this is done in a least-square
2054 sense, minimising the euclidean norm.</para>
2055
2056 <para>Homologies are then nothing else but containers for a specific
2057 type of fragment of all the different, calculated configurations (i.e.
2058 varying nuclear coordinates of the same fragment).</para>
2059
2060 <para>Now, we explain the actions that parse and store
2061 homologies.</para>
2062
2063 <programlisting>... --parse-homologies homologies.dat</programlisting>
2064
2065 <para>This parses the all homologies contained in the file
2066 <filename>homologies.dat</filename> and appends them to the homology
2067 container.</para>
2068
2069 <programlisting>... --save-homologies homologies.dat</programlisting>
2070
2071 <para>Complementary, this stores the current contents of the homology
2072 container, overwriting the file
2073 <filename>homologies.dat</filename>.</para>
2074 </section>
2075
2076 <section xml:id='potentials'>
2077 <title xml:id='potentials.title'>Potentials</title>
2078
2079 <para>In much the same manner, we would now ask what are homology
2080 files or containers good for but with the just had explanation it
2081 should be clear: We fit potential function to these function
2082 evaluation of terms of the many-body expansion of the Born-Oppenheimer
2083 surface of the full system.</para>
2084
2085 <section xml:id='potentials.fit-potential'>
2086 <title xml:id='potentials.fit-potential.title'>Fitting empirical
2087 potentials</title>
2088
2089 <para>Let's take a look at an exemplary call to the fit potential
2090 action.</para>
2091
2092 <programlisting>
2093 ... --fit-potential \
2094 --fragment-charges 8 1 1 \
2095 --potential-charges 8 1 \
2096 --potential-type morse \
2097 --take-best-of 5
2098 </programlisting>
2099
2100 <para>Again, we look at each option in turn. The first is the
2101 charges or elements specifying the set of homologous fragments that
2102 we want to look at. Here, obviously we are interested in water
2103 molecules, consisting of a single oxygen and two hydrogen atoms.
2104 Next, we specify the nuclei coordinates of the potential. We give
2105 the type of the potential as morse, which requires a single distance
2106 or two nuclear coordinates, here between an oxygen and a hydrogen
2107 atom. Finally, we state that the non-linear regression should be
2108 done with five random starting positions and the set of parameters
2109 with the smallest L2 norm wins.</para>
2110
2111 <note>
2112 <para>Due to translational and rotational degrees of freedom for
2113 fragments smaller than 7 atoms, it is appropriate to look at the
2114 pair-wise distances and not at the absolute coordinates. Hence,
2115 the two atomic positions, here for oxygen and hydrogen, are
2116 converted to a single distance. If we had given an harmonic
2117 angular potential and three charges/element, 8 1 1, i.e. oxygen
2118 and two hydrogens, we would have obtained three distances.</para>
2119
2120 <para>MoleCuilder always adds a so-called constant potential to
2121 the fit containing only a single parameter, the energy offset.
2122 This offset compensates for the interaction energy associated with
2123 a fragment of order 1, e.g. a single hydrogen atom.</para>
2124 </note>
2125 </section>
2126
2127 <section xml:id='potentials.fit-compound-potential'>
2128 <title xml:id='potentials.fit-compound-potential.title'>Fitting
2129 many empirical potentials simultaneously</title>
2130
2131
2132 <para>Another way is using a file containing a specific set of
2133 potential functions, possibly even with initial values.</para>
2134
2135 <programlisting>
2136 ... --fit-compound-potential \
2137 --fragment-charges 8 1 1 \
2138 --potential-file water.potentials \
2139 --set-threshold 1e-3 \
2140 --training-file test.dat
2141 </programlisting>
2142
2143 <para>Now, all empirical potential functions are summed up into a
2144 so-called compound potential over the combined set of parameters.
2145 These are now fitted simultaneously. For example, if the potential
2146 file <filename>water.potentials</filename> contains a harmonic bond
2147 potential between oxygen and hydrogen and another angular potential
2148 for the angle between hydrogen, oxygen, and hydrogen atom we would
2149 fit a still simple function approximating the energy of a single
2150 water molecule. Here, the threshold takes the place of the
2151 take-best-of option. Here, random starting parameters are used as
2152 long as the final L2 error is not below 1e-3. Also, all data used
2153 for training, i.e. the tuples consisting of the fragments nuclei
2154 coordinates and the associated energy value are written to the file
2155 <filename>test.dat</filename>. This allows for graphical or other
2156 type of analysis.</para>
2157
2158 <para>Note that you can combine the two ways, i.e. start with a
2159 fit-potential call but give an empty potential file. The resulting
2160 parameters are stored in it. Fit other potentials and give different
2161 file names for each in turn. Eventually, you have to combine the file
2162 in a text editor at the moment. And perform a fit-compound-potential
2163 with this file.</para>
2164 </section>
2165
2166
2167 <section xml:id='potentials.parse-potential'>
2168 <title xml:id='potentials.parse-potential.title'>Parsing an
2169 empirical potentials file</title>
2170
2171 <para>Responsible for the compound potential is every potential
2172 function whose signature matches with the designated fragment-charges
2173 and who is currently known to an internal instance called the
2174 PotentialRegistry.</para>
2175
2176 <para>More potentials can be registered (fit-potential will also
2177 register the potential it fits) by parsing them from a file.</para>
2178
2179 <programlisting>
2180 ... --parse-potentials water.potentials
2181 </programlisting>
2182
2183 <note>Currently, only <productname>TREMOLO</productname> potential
2184 files are understood and can be parsed.</note>
2185 </section>
2186
2187 <section xml:id='potentials.save-potential'>
2188 <title xml:id='potentials.save-potential.title'>Saving an
2189 empirical potentials file</title>
2190
2191 <para>The opposite to parse-potentials is save-potentials that writes
2192 every potential currently known to the PotentialRegistry to the given
2193 file along with the currently fitted parameters</para>
2194
2195 <programlisting>
2196 ... --save-potentials water.potentials
2197 </programlisting>
2198
2199 <note>Again, only the <productname>TREMOLO</productname> potential
2200 format is understood currently and is written.</note>
2201 </section>
2202
2203 <section xml:id='potentials.fit-particle-charges'>
2204 <title xml:id='potentials.fit-particle-charges.title'>Fitting
2205 particle charges</title>
2206
2207 <para>The above empirical potential just model the short-range
2208 behavior in the molecular fragment, namely the bonded interaction.
2209 In order to model the long-range interaction as well without solving
2210 for the electronic ground state in each time step, particle charges
2211 are used that capture to some degree the created dipoles due to
2212 charge transfer from one atom to another when bonded.</para>
2213
2214 <para>To allow least-squares regression of these partial charges we
2215 need the results of long-range calculations and the store-grids
2216 option (see above under <link linkend="fragmentation">Fragmentation
2217 </link>) must have been given. With these sampled charge density and
2218 Coulomb potential stored in the homology containers, we call this
2219 action as follows.</para>
2220
2221 <programlisting>
2222 ... --fit-particle-charges \
2223 --fragment-charges 8 1 1 \
2224 --potential-file water.potentials \
2225 --radius 0.2
2226 </programlisting>
2227
2228 <para>This will again use water molecule as homologous fragment
2229 "key" to request configurations from the container. Results are
2230 stored in <filename>water.potentials</filename>. The radius is used
2231 to mark the region directly around the nuclei from the fit
2232 procedure. As here the charges of the core electrons and the nuclei
2233 itself dominate, we however are only interested in a good
2234 approximation to the long-range potential, this mask radius allows
2235 to give the range of the excluded zone.</para>
2236 </section>
2237 </section>
2238
2239 <section xml:id='dynamics'>
2240 <title xml:id='dynamics.title'>Dynamics</title>
2241
2242 <para>For fitting potentials or charges we need many homologuous but
2243 different fragments, i.e. atoms with slightly different positions.
2244 How can we generate these?</para>
2245
2246 <para>One possibility is to use molecular dynamics. With the
2247 aforementioned fragmentation scheme we can quickly calculate not only
2248 energies but also forces if the chosen solver, such as
2249 <link xlink:href="http://www.mpqc.org/"><productname>MPQC
2250 </productname></link>, supports it. Integrating these forces
2251 discretely over time gives insight into vibrational features of a
2252 molecular system and allows to generate those positions for fitting
2253 potentials that describe these vibrations.</para>
2254
2255 <section xml:id='dynamics.molecular-dynamics'>
2256 <title xml:id='dynamics.molecular-dynamics.title'>Molecular dynamics
2257 </title>
2258
2259 <para>The molecular dynamics action is a so-called macro Action,
2260 i.e. it combines several other Actions into one, namely:</para>
2261 <itemizedlist>
2262 <listitem>
2263 <para>--verlet-integration</para>
2264 </listitem>
2265 <listitem>
2266 <para>--output</para>
2267 </listitem>
2268 <listitem>
2269 <para>--clear-fragment-results</para>
2270 </listitem>
2271 <listitem>
2272 <para>--destroy-adjacency</para>
2273 </listitem>
2274 <listitem>
2275 <para>--create-adjacency</para>
2276 </listitem>
2277 <listitem>
2278 <para>--update-molecules</para>
2279 </listitem>
2280 <listitem>
2281 <para>--fragment-molecule</para>
2282 </listitem>
2283 <listitem>
2284 <para>--fragment-automation</para>
2285 </listitem>
2286 <listitem>
2287 <para>--analyse-fragment-results</para>
2288 </listitem>
2289 </itemizedlist>
2290
2291 <para>The following will perform a molecular dynamics simulation
2292 for 100 time steps, each time step combining 0.5 atomic time units,
2293 i.e. 1.2 1e-17 s. The other options listed below will seem familiar
2294 to you if you have read about the other Actions listed above. Below
2295 we will not keep the bondgraph, i.e bonds and molecules may change
2296 over the simulation and hence also the created fragments per time
2297 step.
2298 </para>
2299
2300 <programlisting>
2301 ... --molecular-dynamics \
2302 --steps 100 \
2303 --keep-bondgraph 0 \
2304 --order 3 \
2305 --distance 3. \
2306 --deltat 0.5 \
2307 --keep-fixed-CenterOfMass 1 \
2308 --fragment-executable mpqc \
2309 </programlisting>
2310 </section>
2311
2312 <section xml:id='dynamics.optimize-structure'>
2313 <title xml:id='dynamics.optimize-structure.title'>Structure
2314 optimization</title>
2315
2316 <para>Structure optimization is also a macro Action, it basically
2317 combines the same Actions as molecular-dynamics does. However, it
2318 uses force-annealing instead of verlet-integration.</para>
2319
2320 <para>The following performs a structure optimization of the
2321 currently selected atoms (may also be a subset) for up to 100 time
2322 steps, where each time step ist 0.5 atomic time units. The time
2323 step here is the initial step with for annealing.
2324 </para>
2325
2326 <programlisting>
2327 ... --optimize-structure \
2328 --keep-bondgraph 1 \
2329 --output-every-step 1 \
2330 --steps 100 \
2331 --order 3 \
2332 --distance 3. \
2333 --deltat 0.5 \
2334 --keep-fixed-CenterOfMass 1 \
2335 --fragment-executable mpqc \
2336 </programlisting>
2337
2338 <para>Note that output-every-step will allow you to watch the
2339 optimization as each step is placed into a distinct time step.
2340 Otherwise only two time steps would be created: the initial and
2341 the final one containing the optimized structure.</para>
2342 </section>
2343
2344 <section xml:id='dynamics.set-world-time'>
2345 <title xml:id='dynamics.set-world-time.title'>Set the world's time
2346 step</title>
2347
2348 <para>In order to inspect or manipulate atoms and molecules at a
2349 certain time step, the World's time has to be set with the following
2350 Action.
2351 </para>
2352
2353 <para>This will set the World's time to the fifth step (counting
2354 starts at zero).</para>
2355
2356 <programlisting>... --set-world-time 4</programlisting>
2357 </section>
2358
2359 <section xml:id='dynamics.save-temperature'>
2360 <title xml:id='dynamics.save-temperature.title'>Save the
2361 temperature information</title>
2362
2363 <para>For each time step the temperature (i.e. the average velocity
2364 per atom times its mass) will be stored to a file.</para>
2365
2366 <programlisting>
2367 ... --save-temperature temperature.dat \
2368 </programlisting>
2369 </section>
2370 </section>
2371
2372 <section xml:id='dynamics.tesselation'>
2373 <title xml:id='dynamics.tesselation.title'>Tesselations</title>
2374
2375 <para>Tesselations obtain molecular surfaces (and volumes) by rolling
2376 a virtual sphere of a certain radii on a molecule until a closed
2377 surface of connected triangles is created.</para>
2378
2379 <section xml:id='dynamics.tesselation.nonconvex-envelope'>
2380 <title xml:id='dynamics.tesselation.nonconvex-envelope.title'>
2381 Non-convex envelope</title>
2382
2383 <para>This will create a non-convex envelope for a molecule.</para>
2384
2385 <programlisting>
2386 ... --nonconvex-envelope 6. \
2387 --nonconvex-file nonconvex.dat
2388 </programlisting>
2389
2390 <para>This tesselation file can be conveniently viewed with
2391 <productname>TecPlot</productname> or with one of the Tcl script
2392 in the util folder with <productname>VMD</productname>.</para>
2393 </section>
2394
2395 <section xml:id='dynamics.tesselation.convex-envelope'>
2396 <title xml:id='dynamics.tesselation.convex-envelope.title'>Convex
2397 envelope</title>
2398
2399 <para>This will create a convex envelope for a molecule.</para>
2400
2401 <programlisting>
2402 ... --convex-envelope 6. \
2403 --convex-file convex.dat
2404 </programlisting>
2405
2406 <para>This tesselation file can be conveniently viewed with
2407 <productname>TecPlot</productname> or with one of the Tcl script
2408 in the util folder with <productname>VMD</productname>.</para>
2409 </section>
2410 </section>
2411
2412 <section xml:id='various'>
2413 <title xml:id='various.title'>Various commands</title>
2414
2415 <para>Here, we gather all commands that do not fit into one of above
2416 categories for completeness.</para>
2417
2418 <section xml:id='various.verbose'>
2419 <title xml:id='various.verbose.title'>Changing verbosity</title>
2420
2421 <para>The verbosity level is the amount of stuff printed to screen.
2422 This information will in general help you to understand when
2423 something does not work. Mind the <emphasis>ERROR</emphasis> and
2424 <emphasis>WARNING</emphasis> messages in any case.</para>
2425
2426 <para>This sets the verbosity from default of 2 to 4,</para>
2427
2428 <programlisting>... --verbose 4</programlisting>
2429
2430 <para>or shorter,</para>
2431
2432 <programlisting>... -v 4</programlisting>
2433 </section>
2434
2435 <section xml:id='various.element-db'>
2436 <title xml:id='various.element-db.title'>Loading an element
2437 database</title>
2438
2439 <para>Element databases contain information on valency, van der
2440 Waals-radii and other information for each element.</para>
2441
2442 <para>This loads all element database from the current folder (in a
2443 unix environment):</para>
2444
2445 <programlisting>... --element-db ./</programlisting>
2446
2447 </section>
2448
2449 <section xml:id='various.fastparsing'>
2450 <title xml:id='various.fastparsing.title'>Fast parsing</title>
2451
2452 <para>Parsing all time steps from a given input file can take a
2453 while, especially for larger systems. If fast parsing is activated,
2454 only the first time step is loaded, all other are ignored.</para>
2455
2456 <programlisting>... --fastparsing 1</programlisting>
2457 </section>
2458
2459 <section xml:id='various.version'>
2460 <title xml:id='various.version.title'>Giving the version of the
2461 program</title>
2462
2463 <para>This prints the version information of the code, especially
2464 important when you request the fixing of bugs or implementation of
2465 features.</para>
2466
2467 <programlisting>... --version</programlisting>
2468 </section>
2469
2470 <section xml:id='various.warranty'>
2471 <title xml:id='various.warranty.title'>Giving warranty
2472 information</title>
2473
2474 <para>As follows warranty information is given,</para>
2475
2476 <programlisting>... --warranty</programlisting>
2477 </section>
2478
2479 <section xml:id='various.help-redistribute'>
2480 <title xml:id='various.help-redistribute.title'>Giving
2481 redistribution information</title>
2482
2483 <para>This gives information on the license and how to redistribute
2484 the program and its source code</para>
2485
2486 <programlisting>... --help-redistribute</programlisting>
2487 </section>
2488 </section>
2489
2490 <section xml:id='sessions'>
2491 <title xml:id='sessions.title'>Sessions</title>
2492
2493 <para>A session refers to the queue of actions you have executed.
2494 Together with the initial configuration (and all files required for
2495 actions in the queue) this might be seen as a clever way of storing
2496 the state of a molecular system. When proceeding in a try&amp;error
2497 fashion to construct a certain system, it is a good idea, to store the
2498 session at the point where your attempts start to deviate from one
2499 another.</para>
2500
2501 <section xml:id='sessions.store-session'>
2502 <title xml:id='sessions.store-session.title'>Storing a session
2503 </title>
2504
2505 <para>Storing sessions is simple,</para>
2506
2507 <programlisting>
2508 ... --store-session "session.py" \
2509 --session-type python
2510 </programlisting>
2511
2512 <para>Here, the session type is given as python (the other option is
2513 cli for in the manner of the command-line interface) and the written
2514 python script <filename>session.py</filename> can even be used with
2515 the python interface described below, i.e. it is a full python script
2516 (that however requires the so-called pyMoleCuilder module).</para>
2517 </section>
2518
2519 <section xml:id='sessions.load-session'>
2520 <title xml:id='sessions.load-session.title'>Loading a session</title>
2521
2522 <para>Loading a session only works for python scripts. This actually
2523 blurs the line between the command-line interface and the python
2524 interface a bit. But even more, MoleCuilder automatically executes a
2525 script called <filename>molecuilder.py</filename> if such a file is
2526 contained in the current directory.</para>
2527
2528 <programlisting>... --load-session "session.py"</programlisting>
2529
2530 <para>This will execute every action with its options contained in the
2531 script <filename>session.py</filename>.</para>
2532 </section>
2533 </section>
2534
2535 <section xml:id='various-specific'>
2536 <title xml:id='various-specific.title'>Various specific commands
2537 </title>
2538
2539 <para>In this (final) section of the action description we list a number
2540 Actions that are very specific to some purposes (or other programs).
2541 </para>
2542
2543 <section xml:id='various-specific.save-selected-atoms-as-exttypes'>
2544 <title xml:id='various-specific.save-selected-atoms-as-exttypes.title'>
2545 Saving exttypes of a set of atoms</title>
2546
2547 <para>This saves the atomic ids of all currently selected atoms in a
2548 <link xlink:href="http://www.tremolo-x.com/"><productname>TREMOLO
2549 </productname></link> exttypes file with the given name.</para>
2550
2551 <programlisting>
2552 ... --save-selected-atoms-as-exttypes \
2553 --filename test.exttypes </programlisting>
2554 </section>
2555
2556 <section xml:id='various-specific.set-parser-parameters'>
2557 <title xml:id='various-specific.set-parser-parameters.title'>Setting
2558 parser specific parameters</title>
2559
2560 <para>You can also tweak the parameters stored in this file easily.
2561 For example, <productname>MPQC</productname> stores various
2562 parameters modifying the specific ab-initio calculation performed.
2563 For <link xlink:href="http://www.mpqc.org/"><productname>MPQC
2564 </productname></link> and
2565 <link xlink:href="http://www.psicode.org/"><productname>Psi4
2566 </productname></link> this can be modified as follows.</para>
2567
2568 <programlisting>
2569 ... --set-parser-parameters mpqc \
2570 --parser-parameters "theory=CLHF;basis=6-31*G;"
2571 </programlisting>
2572
2573 <para>This sets the ab-initio theory to closed-shell Hartree-Fock
2574 and the basis set to 6-31*G. Please check the
2575 <productname>MPQC</productname> manual on specific
2576 parameters.</para>
2577 </section>
2578
2579 <section xml:id='various-specific.set-tremolo-atomdata'>
2580 <title xml:id='various-specific.set-tremolo-atomdata.title'>Tremolo
2581 specific options and potential files</title>
2582
2583 <para><productname>TREMOLO</productname>'s configuration files start
2584 with a specific line telling the amount of information stored in the
2585 file. This file can be modified, e.g. to enforce storing of
2586 velocities and forces as well as the atoms positions and
2587 element.</para>
2588
2589 <programlisting>
2590 ... --set-tremolo-atomdata "ATOM id element u=3 v=3 F=3" \
2591 --reset 1
2592 </programlisting>
2593
2594 <para>This will not append but reset the old line and fill it with
2595 the given string.</para>
2596
2597 <para>One specific action is required when loading certain
2598 <productname>TREMOLO</productname> configuration files. These
2599 contain element notations that refer to parameterized names used in
2600 empirical potentials and molecular dynamics simulations and not the
2601 usual chemical symbols, such as H or O. We may load an auxiliary
2602 file that gives the required conversion from OH1 to H, which is the
2603 so-called potential file.</para>
2604
2605 <programlisting>... --parse-tremolo-potentials water.potentials</programlisting>
2606
2607 <para>This parses the lookup table from the file
2608 <filename>water.potentials</filename> and it can be used in
2609 following load actions.</para>
2610 </section>
2611 </section>
2612 </section>
2613
2614 <section xml:id='textmenu-interface'>
2615 <title xml:id='textmenu-interface.title'>Text menu</title>
2616
2617 <para>We now discuss how to use the text menu interface.</para>
2618
2619 <para>The text menu is very much the interface counterpart to the
2620 command-line interface. Both work in a terminal session.</para>
2621
2622 <para>In the text menu, actions can be selected from hierarchical lists.
2623 Note that the menus for the graphical interface are organized in the
2624 exactly same way. After an action has been chosen, the option values
2625 have to be entered one after the other. After the last option value has
2626 been given, the action is executed and the result printed to the
2627 screen.</para>
2628
2629 <para>With regards to the other functionality, it is very much the same
2630 as the command-line interface above.</para>
2631 </section>
2632
2633 <section xml:id='graphical-user-interface'>
2634 <title xml:id='graphical-user-interface.title'>Graphical user interface
2635 </title>
2636
2637 <para>The main point of the GUI is that it renders the atoms and
2638 molecules visually. These are represented by the common
2639 stick-and-ball-model. Single or multiple atoms and molecules can easily
2640 be accessed, activated and manipulated via tables. Changes made in the
2641 tables cause immediate update of the visual representation. Under the
2642 hood each of these manipulations is nothing but the call to an action,
2643 hence is fully undo- and redoable.</para>
2644
2645 <para>This is mostly helpful to design more advanced structures that are
2646 conceptually difficult to imagine without visual aid. At the end, a
2647 session may be stored and this script can then be used to construct
2648 various derived or slightly modified structures.</para>
2649
2650 <section xml:id='graphical-user-interface.basic-view'>
2651 <title xml:id='graphical-user-interface.basic-view.title'>Basic view
2652 </title>
2653
2654 <para>Let us first give an impression of the basic view of the gui
2655 after a molecule has been loaded.</para>
2656
2657 <figure>
2658 <title>Screenshot of the basic view of the GUI after loading a file
2659 with eight water molecules.</title>
2660
2661 <mediaobject>
2662 <imageobject>
2663 <imagedata entityref="example_basic_view" scalefit="1" width="100%"/>
2664 </imageobject>
2665 </mediaobject>
2666 </figure>
2667
2668 <section xml:id='graphical-user-interface.3d-view'>
2669 <title xml:id='graphical-user-interface.3d-view.title'>3D view
2670 </title>
2671
2672 <para>In the above figure, you see the stick-and-ball representation
2673 of the water molecules, the dreibein giving the positive axis
2674 direction and the cuboidal domain on a black background.</para>
2675 </section>
2676
2677 <section xml:id='graphical-user-interface.information-tabs'>
2678 <title xml:id='graphical-user-interface.information-tabs.title'>
2679 Information Tabs</title>
2680
2681 <para>Beneath this 3D view that you can rotate at will your mouse
2682 and zoom in and out with your scroll wheel, you find to the right a
2683 part containing two tabs named Atom and Molecule. Look at where the
2684 mouse pointer is. It has colored the atom underneath in cyan
2685 (although it's also an oxygen atom and should bne coloured in rose
2686 as the rest). You can inspect its properties in the tab Atom: Name,
2687 element, mass, charge, position and number of bonds. If you switch
2688 to the Molecule tab, you would see the properties of the water
2689 molecule this specific atom belongs to.</para>
2690 </section>
2691
2692 <section xml:id='graphical-user-interface.shape'>
2693 <title xml:id='graphical-user-interface.shape.title'>Shape section
2694 </title>
2695
2696 <para>Beneath these information tabs you find the shape sections.
2697 There you find a list of all currently created shapes and you can
2698 manipulate them via the buttons beneath this list.</para>
2699 </section>
2700
2701 <section xml:id='graphical-user-interface.timeline'>
2702 <title xml:id='graphical-user-interface.timeline.title'>Timeline
2703 </title>
2704
2705 <para>Directly below the 3D view there is a long slider. If a loaded
2706 file has multiple time step entries, this slider allows you to
2707 smoothly select one time frame after another. Sliding it with the
2708 mouse from left to right will reveal the animation that is hidden
2709 behind the distinct snapshots stored in the configuration
2710 file.</para>
2711 </section>
2712
2713 <section xml:id='graphical-user-interface.tables'>
2714 <title xml:id='graphical-user-interface.tables.title'>Selection
2715 tables</title>
2716
2717 <para>Underneath the time line there is another place for
2718 tabs.</para>
2719
2720 <para>The first is on molecules, listing all present molecules of
2721 the molecular system in a list view. If you click on a specific
2722 molecule, the one will get selected or unselected depending on its
2723 current selection state (see below for details on this with respect
2724 to the GUI).</para>
2725
2726 <para>The next tab enumerates all elements known to MoleCuilder
2727 where the ones are greyed out that are not present in the molecular
2728 system. Clicking on a present element will select all atoms of this
2729 specific element. A subsequent click unselects again.</para>
2730
2731 <para>Subsequent follow tabs on enumerating the fragments and their
2732 fragment energies if calculated and the homologies along with
2733 graphical depiction (via QWT) if present.</para>
2734 </section>
2735 </section>
2736
2737 <section xml:id='graphical-user-interface.selections'>
2738 <title xml:id='graphical-user-interface.selections.title'>Selections
2739 </title>
2740
2741 <para>Selections work generally always by selecting the respective
2742 action from the pull-down menu.</para>
2743
2744 <para>However, it may also be accessed directly. The row of icons
2745 above the 3D view has two icons depicting the selection of individual
2746 atoms or molecules. If either of them is selected, clicking with the
2747 left mouse button on an atom will either (un)select the atom or its
2748 associated molecule. Multiple atoms can be selected in this
2749 manner.</para>
2750
2751 <para>Also the selection tabs may be used by clicking on the name of a
2752 molecule as stated above or at an element.</para>
2753
2754 <para>Similarly, if shapes are present in the shape section, clicking
2755 them with select them and also cause a translucent visualization to
2756 appear in the 3D view. Note that this visualization is quite costly
2757 right now and not suited to complex shapes.</para>
2758 </section>
2759
2760 <section xml:id='graphical-user-interface.dialogs'>
2761 <title xml:id='graphical-user-interface.dialogs.title'>Dialogs</title>
2762
2763 <para>Most essential, however, to the GUI are the dialogs. Each action
2764 calls forth such a dialog even if no options are required (the
2765 execution of the action has at least to be confirmed). Each dialog
2766 consisting of queries for a particular option value. As each option
2767 value has a specific type, we briefly go into the details of how these
2768 queries look like.</para>
2769
2770 <note>
2771 <para>Each dialog's Ok is greyed out until all entered option values
2772 are valid.</para>
2773 </note>
2774
2775 <section xml:id='graphical-user-interface.dialogs.domain'>
2776 <title xml:id='graphical-user-interface.dialogs.domain.title'>Domain
2777 query</title>
2778
2779 <figure>
2780 <title>Screenshot of a dialog showing a domain query</title>
2781
2782 <mediaobject>
2783 <imageobject>
2784 <imagedata entityref="dialog_box" scalefit="1" width="100%"/>
2785 </imageobject>
2786 </mediaobject>
2787
2788 <para>In the domain query a 3x3 symmetric matrix has to be
2789 entered. In the above screenshots you notice that the only
2790 non-zero entries are on the main diagonal. Here, we have simply
2791 specified a cube of edge length 8. The ok button will be greyed
2792 out if the matrix is either singular or not symmetric.</para>
2793 </figure>
2794 </section>
2795
2796 <section xml:id='graphical-user-interface.dialogs.element'>
2797 <title xml:id='graphical-user-interface.dialogs.element.title'>
2798 Element query</title>
2799
2800 <figure>
2801 <title>Screenshot the add atom action containing an element
2802 query</title>
2803
2804 <mediaobject>
2805 <imageobject>
2806 <imagedata entityref="dialog_add-atom_tooltip" scalefit="1" width="100%"/>
2807 </imageobject>
2808 </mediaobject>
2809
2810 <para>Elements are picked from a pull-down box where all known
2811 elements are listed.</para>
2812
2813 <para>In this dialog you also notice that a tooltip is given,
2814 briefly explaining what the action does.</para>
2815 </figure>
2816 </section>
2817
2818 <section xml:id='graphical-user-interface.dialogs.action'>
2819 <title xml:id='graphical-user-interface.dialogs.action.title'>
2820 Complex query</title>
2821
2822 <figure>
2823 <title>Screenshot of a complex dialog consisting of multiple
2824 queries</title>
2825
2826 <mediaobject>
2827 <imageobject>
2828 <imagedata entityref="dialog_complex" scalefit="1" width="100%"/>
2829 </imageobject>
2830 </mediaobject>
2831
2832 <para>Here we show a more complex dialog. It queries for strings,
2833 for integer values (see the increase/decrease arrows), for
2834 booleans and for files (the "choose" buttons opens a file
2835 dialog).</para>
2836 </figure>
2837 </section>
2838
2839 <section xml:id='graphical-user-interface.dialogs.exit'>
2840 <title xml:id='graphical-user-interface.dialogs.exit.title'>Exit
2841 query</title>
2842
2843 <figure>
2844 <title>Screenshort showing the exit dialog</title>
2845
2846 <mediaobject>
2847 <imageobject>
2848 <imagedata entityref="dialog_exit" scalefit="1" width="100%"/>
2849 </imageobject>
2850 </mediaobject>
2851
2852 <para>Finally, we show the dialog that will pop up when exiting
2853 the graphical interface. It will ask whether it should store the
2854 current state of the system in the input file or not. You may
2855 cancel the exit, close without saving or save the current
2856 state.</para>
2857 </figure>
2858 </section>
2859 </section>
2860 </section>
2861
2862 <section xml:id='python-interface'>
2863 <title xml:id='python-interface.title'>Python interface</title>
2864
2865 <para>Last but not least we elaborate on the python interface. We have
2866 already discusses this interface to some extent. The current session,
2867 i.e. the queue of actions you have executed, can be stored as a python
2868 script and subsequently executed independently of the user interface it
2869 was created with. More general, MoleCuilder can execute arbitrary python
2870 scripts where prior to its execution a specific module is loaded by
2871 default enabling access to MoleCuilder's actions from inside the
2872 script.</para>
2873
2874 <para>MoleCuilder's python module is called pyMoleCuilder. it is
2875 essentially a library that can be imported into python just as any other
2876 module. Let us assume you have started the python interpreter and you
2877 have added the destination of the <filename>pyMoleCuilder</filename>
2878 library to the <varname>PYTHONPATH</varname> variable.</para>
2879
2880 <programlisting>import pyMoleCuilder as mol</programlisting>
2881
2882 <para>Subsequently, you can access the help via</para>
2883
2884 <programlisting>help(mol)</programlisting>
2885
2886 <para>This will list all of MoleCuilder's actions with their function
2887 signatures within python as contained in the module pyMoleCuilder named
2888 as mol in the scope of the currently running interpreter. Note that the
2889 function names are not the names you know from the command-line
2890 interface, they might be called
2891 <computeroutput>WorldChangeBox(...)</computeroutput> or alike.</para>
2892
2893 <para>Let's try it out.</para>
2894
2895 <programlisting>print mol.CommandVersion()</programlisting>
2896
2897 <para>This will state the current version of the library.</para>
2898
2899 <para>Go ahead and try out other commands. Refer to the documentation
2900 under the command-line interface and look up the function name via
2901 help.</para>
2902 </section>
2903 </chapter>
2904
2905 <chapter>
2906 <title>Conclusions</title>
2907
2908 <para>This ends this user guide.</para>
2909
2910 <para>We have given you a brief introduction to the aim of the program and
2911 how each of the four interfaces are to be used. The rest is up to
2912 you.</para>
2913
2914 <para>Tutorials and more information is available online, see <link
2915 xlink:href="http://www.molecuilder.com/">MoleCuilder's website</link>.
2916 </para>
2917
2918 <para>Be aware that in general knowing how the code works allows you to
2919 understand what's going wrong if something's going wrong.</para>
2920
2921 <section>
2922 <title>Thanks</title>
2923
2924 <para>Huge thanks go out to Saskia Metzler who was patient enough to let
2925 me sit next to her while riding ten hours in a bus to Berlin.</para>
2926 </section>
2927 </chapter>
2928</book>
Note: See TracBrowser for help on using the repository browser.