source: doc/userguide/userguide.xml@ 0241c5

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 0241c5 was 066442, checked in by Frederik Heber <heber@…>, 10 years ago

Added TranslateMolecule action.

  • added translate-molecule to userguide.
  • added translate-miolecule regression tests.
  • TranslateAtoms now has extra option position.
  • Property mode set to 100644
File size: 124.4 KB
Line 
1<?xml version="1.0" encoding="UTF-8"?>
2<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN"
3 "http://www.oasis-open.org/docbook/xml/4.5/docbookx.dtd" [
4<!ENTITY molecuilder_logo SYSTEM "pictures/molecuilder_logo.png" NDATA PNG>
5<!ENTITY dialog_box SYSTEM "pictures/dialog_box.png" NDATA PNG>
6<!ENTITY dialog_add-atom_tooltip SYSTEM "pictures/dialog_add-atom_tooltip.png" NDATA PNG>
7<!ENTITY dialog_complex SYSTEM "pictures/dialog_complex.png" NDATA PNG>
8<!ENTITY dialog_exit SYSTEM "pictures/dialog_exit.png" NDATA PNG>
9<!ENTITY example_basic_view SYSTEM "pictures/example_basic_view.png" NDATA PNG>
10]>
11<book version="5.0" xmlns="http://docbook.org/ns/docbook"
12 xmlns:xlink="http://www.w3.org/1999/xlink"
13 xmlns:xi="http://www.w3.org/2001/XInclude"
14 xmlns:svg="http://www.w3.org/2000/svg"
15 xmlns:m="http://www.w3.org/1998/Math/MathML"
16 xmlns:html="http://www.w3.org/1999/xhtml"
17 xmlns:db="http://docbook.org/ns/docbook">
18 <info>
19 <title>MoleCuilder - a Molecule Builder</title>
20
21 <author>
22 <personname><firstname>Frederik</firstname><surname>Heber</surname></personname>
23
24 <affiliation>
25 <orgname>heber@ins.uni-bonn.de</orgname>
26 </affiliation>
27 </author>
28
29 <pubdate>07/03/14</pubdate>
30 </info>
31
32 <chapter>
33 <title>Introduction</title>
34
35 <figure>
36 <title>MoleCuilder logo depicting a tesselated buckyball and a benzene
37 molecule</title>
38
39 <mediaobject>
40 <imageobject>
41 <imagedata entityref="molecuilder_logo" scalefit="1" width="100%"/>
42 </imageobject>
43 </mediaobject>
44 </figure>
45
46 <section xml:id='whatis'>
47 <title xml:id='whatis.title'>What is MoleCuilder?</title>
48
49 <para>In Short,<command> MoleCuilder</command> is a concatenation of
50 molecule and builder.</para>
51
52 <para>In more words, molecular dynamics simulations are frequently
53 employed to simulate material behavior under stress, chemical reactions
54 such as of cementitious materials, or folding pathways and docking
55 procedures of bio proteins. Even if the computational load, due to the
56 large number of atoms, is very demanding, nonetheless they may serve as
57 a starting point, e.g. extracting parameters for a coarser model.
58 However, what is on the other hand the starting point of molecular
59 dynamics simulations? It is the coordinate and element of each atom
60 combined with potential functions that model the interactions.</para>
61
62 <para>MoleCuilder allows to fully construct such a starting point:
63 letting the user construct atomic and molecular geometries by a simple
64 point&amp;click approach, a CAD-pendant on the nanoscale. Creating
65 suitable empirical potentials by fitting parameters to ab-initio
66 calculations within hours. Specific emphasis is placed on a
67 simple-to-use interface, allowing for the quick-and-dirty building of
68 molecular systems, and on scriptability. Eventually, not a single, but
69 many, related molecular systems have to be created.</para>
70
71 <section xml:id='installation'>
72 <title xml:id='installation.title'>Installation requirements</title>
73
74 <para>For installations requirements and instructions we refer to the
75 internal documentation of MoleCuilder, created via doxgen from the
76 source code.</para>
77 </section>
78
79 <section xml:id='license'>
80 <title xml:id='license.title'>License</title>
81
82 <para>As long as no other license statement is given, MoleCuilder is
83 free for user under the GNU Public License (GPL) Version 2 (see
84 <uri>www.gnu.de/documents/gpl-2.0.de.html</uri>).</para>
85 </section>
86
87 <section xml:id='disclaimer'>
88 <title xml:id='disclaimer.title'>Disclaimer</title>
89
90 <para>We quote section 11 from the GPLv2 license:</para>
91
92 <remark>Because the program is licensed free of charge, there is not
93 warranty for the program, to the extent permitted by applicable law.
94 Except when otherwise stated in writing in the copyright holders
95 and/or other parties provide the program "as is" without warranty of
96 any kind, either expressed or implied. Including, but not limited to,
97 the implied warranties of merchantability and fitness for a particular
98 purpose. The entire risk as to the quality and performance of the
99 program is with you. Should the program prove defective, you assume
100 the cost of all necessary servicing, repair, or correction.</remark>
101 </section>
102
103 <section xml:id='feedback'>
104 <title xml:id='feedback.title'>Feedback</title>
105
106 <para>If you encounter any bugs, errors, or would like to submit
107 feature request, please use the email address provided at the very
108 beginning of this user guide. The author is especially thankful for
109 any description of all related events prior to occurrence of the
110 error, saved "session scripts" (see below) and auxiliary files. Please
111 mind sensible space restrictions of email attachments.</para>
112 </section>
113
114 <section xml:id='notation'>
115 <title xml:id='notation.title'>Notation</title>
116
117 <para>We briefly explain a few specific wordings associated with the
118 program:</para>
119
120 <itemizedlist>
121 <listitem>
122 <para><emphasis>Action</emphasis> is a command that allows for
123 undoing and redoing, i.e. a single atomic procedure for
124 manipulating the molecular system.</para>
125 </listitem>
126
127 <listitem>
128 <para>Selection refers to a subsets from the set of instances of a
129 particular type, e.g. atoms.</para>
130 </listitem>
131
132 <listitem>
133 <para>Shape means a specific region of the domain that can be
134 described in the way of constructive geometry, i.e. as the
135 intersection, negation, and combination of primitives such as
136 spheres or cylinders.</para>
137 </listitem>
138 </itemizedlist>
139 </section>
140
141 <section xml:id='completeness'>
142 <title xml:id='completeness.title'>Completeness</title>
143
144 <para>This documentation takes quite some effort to write. Hence, the
145 described features and especially the actions herein are settled with
146 respect to their functionality, while newer features or actions are
147 probably missing. This should be a clear sign to you that these are
148 probably not safe to use yet. If you nonetheless require them and thus
149 should acquire some familiarity with the code itself. This suggests
150 changing to the developer documentation which is maintained along with
151 the source code with <productname>doxygen</productname>.</para>
152 </section>
153 </section>
154 </chapter>
155
156 <chapter>
157 <title>Features</title>
158
159 <para>Basically, <command>MoleCuilder</command> parses geometries from
160 files, manipulates them and stores them again in files. The manipulation
161 can be done either via a command-line interface or via the graphical user
162 interface.</para>
163
164 <section xml:id='concepts'>
165 <title xml:id='concepts.title'>Concepts</title>
166
167 <para>In general, we divide the molecular systems into three different
168 components or scales.</para>
169
170 <orderedlist>
171 <listitem>
172 <para>Atoms</para>
173
174 <para>Atoms are the undividable objects of the molecular systems.
175 They have an element <quote>Z</quote> and three coordinates
176 <quote>(x,y,z)</quote>.</para>
177 </listitem>
178
179 <listitem>
180 <para>Molecules</para>
181
182 <para>Molecules are bound conglomeration of atoms. They contain a
183 number of atoms and a specific center in the domain such that its
184 atoms are placed relative to this center. Also, they may have a
185 bounding box, i.e. a subdomain that contains all of the atoms in the
186 molecule.</para>
187
188 <para>Note that the molecular structure of the system, i.e. the
189 bonding graph, is determined by MoleCuilder and used to dissect the
190 system into distinct molecules automatically.</para>
191 </listitem>
192
193 <listitem>
194 <para>Clusters</para>
195
196 <para>Clusters are unbound conglomeration of atoms. Clusters serves
197 as groups of atoms for specific operations that would be to
198 restricted if they worked on just molecules.</para>
199 </listitem>
200
201 <listitem>
202 <para>Domain</para>
203
204 <para>The domain refers to the simulation domain. It is
205 parallelepiped in <inlineequation>
206 <m:math display="inline">
207 <m:mi>\mathbb{R}^3</m:mi>
208 </m:math>
209 </inlineequation>where either periodic, wrapped, or open boundary
210 conditions apply. The domain contains all atoms, i.e. the box
211 containing all atoms.</para>
212 </listitem>
213 </orderedlist>
214 </section>
215
216 <section xml:id='interfaces'>
217 <title xml:id='interfaces.title'>Interfaces</title>
218
219 <para>MoleCuilder has four different interfaces: Command-line, text
220 menu, graphical user interface, and python interface.</para>
221
222 <orderedlist>
223 <listitem>
224 <para>Command-Line</para>
225
226 <para>The command-line interface allows to use MoleCuilder
227 non-interactively via a terminal session. The program is executed by
228 expanding the shell command with a number of commands including all
229 required options that are executed one after the other. After
230 execution of the last command, the program quits. The command-line
231 interface usually works on a specific file that is given as input,
232 manipulated, analysed, ... via the sequence of commands and
233 eventually all changes are stored in the this file. Hence, the input
234 file acts as the state of the starting configuration that is
235 modified via MoleCuilder.</para>
236 </listitem>
237
238 <listitem>
239 <para>Text menu</para>
240
241 <para>The text-menu is similar to the command-line interface with
242 the exception that it allows for interactive sessions. Commands are
243 chosen from a text menu and executed directly after selection by the
244 user.</para>
245 </listitem>
246
247 <listitem>
248 <para>Graphical interface</para>
249
250 <para>The graphical interface is based on Qt. It features a full
251 graphical representation of the simulation domain with atoms and
252 their bonds. It allows manipulation in point&amp;click fashion.
253 Commands are selected from pull-down menus and dialogs are used to
254 query the user for all required parameters to such a command.</para>
255 </listitem>
256
257 <listitem>
258 <para>Python interface</para>
259
260 <para>The last interface is accessible only within the python
261 programming language. MoleCuilder can be loaded as a module and its
262 commands can be executed with either the python interpreter
263 interactively or via python scripts non-interactively. Note that
264 this allows auxiliary calculations to be performed in pythons whose
265 results may be used as parameters in subsequent commands.</para>
266 </listitem>
267 </orderedlist>
268 </section>
269
270 <section xml:id='fileformats'>
271 <title xml:id='fileformats.title'>Known File formats</title>
272
273 <para>We briefly the file formats MoleCuilder can parse and
274 store.</para>
275
276 <itemizedlist>
277 <listitem>
278 <para>XYZ, <filename>.xyz</filename> (simplest of all formats,
279 line-wise element and three coordinates with two line header, number
280 of lines and a comment line)</para>
281 </listitem>
282
283 <listitem>
284 <para><link xlink:href="http://www.mpqc.org/"><productname>MPQC
285 </productname></link>, <filename>.in</filename></para>
286 </listitem>
287
288 <listitem>
289 <para><link xlink:href="http://www.pdb.org/">PDB</link>, <filename>
290 .pdb</filename></para>
291 </listitem>
292
293 <listitem>
294 <para><productname>ESPACK</productname>, <filename>.conf</filename>
295 (electronic structure package by Institute for Numerical Simulation,
296 University of Bonn, code not in circulation)</para>
297 </listitem>
298
299 <listitem>
300 <para><link xlink:href="http://www.psicode.org/"><productname>PSI4
301 </productname></link>, <filename>.psi</filename></para>
302 </listitem>
303
304 <listitem>
305 <para><link xlink:href="http://www.tremolo-x.org/"><productname>
306 TREMOLO</productname></link>, <filename>.data</filename></para>
307 </listitem>
308
309 <listitem>
310 <para>XML, <filename>.xml</filename> (XML as read by
311 <link xlink:href="http://www.scafacos.org/">ScaFaCoS</link>
312 project)</para>
313 </listitem>
314 </itemizedlist>
315
316 <para>These are identified via their suffixes and can be converted from
317 one into another (with loss of all data not in the intersection of
318 stored properties of the two involved file formats).</para>
319 </section>
320 </chapter>
321
322 <chapter>
323 <title>Interfaces</title>
324
325 <para>In this chapter, we explain the intention and use of the four
326 interfaces.</para>
327
328 <para>We give the most extensive explanation of the command-line
329 interface, all subsequent interfaces are explained in highlighting their
330 differences with respect to the command-line interface. This is because
331 the command-line lends itself very well to representation in this textual
332 user guide. Although some images of the graphical interface are given
333 below, they would blow the size of the guide out of proportion.</para>
334
335 <para>In any case, you should make yourself familiar with at least one of
336 the interactive (text menu, GUI) and one of the non-interactive
337 (command-line, python) interfaces to use MoleCuilder to is full potential:
338 The interactive interface gives you the immediate feedback in constructing
339 "synthesis" (build) chains (of commands) for constructing your specific
340 molecular system in the computer. The non-interactive interface lends
341 itself to quick creation of related systems that differ only by specific
342 parameters you have modified in the script (command-line can be used in
343 shell scripts, python itself is a scripted language). Also, the
344 non-interactive interfaces are used for storing sessions which helps you
345 in documentation your experiments and lateron understanding of what has
346 been done.</para>
347
348 <section xml:id='command-line-interface'>
349 <title xml:id='command-line-interface.title'>Command-line interface</title>
350
351 <para>The command-line interface reads options and commands from the
352 command line and executes them sequentially. This may be for example:
353 Open an empty file, add 2 hydrogen atoms and add 1 oxygen atom, choose a
354 simulation box, fill the box with this given "filler" molecule, save the
355 file. This enables the use of MoleCuilder in simple script-files to
356 create a whole range of geometries that only differ in a few parameters
357 automatically.</para>
358
359 <para>Traditionally, <command>MoleCuilder</command> operates on a single
360 configuration file - the state - which may also store additional
361 information depending on the chosen file format such as parameters for
362 ab-initio computations. An example for the above procedure is given
363 below:</para>
364
365 <programlisting>
366 ./molecuilder \
367 -i sample.xyz \
368 --add-atom H \
369 --domain-position "0.,0.,0." \
370 ...
371 </programlisting>
372
373 <para>The first argument is the executable itself. Second, there is a
374 slew of arguments -- one per line split with a backslash telling the
375 shell that the line still continues -- consisting of the input action and
376 an arbitrarily named file <filename>sample.xyz</filename>, which may be
377 empty and whose file format is chosen by the given extension. The third
378 is the add-atom action following by an option that gives the position in
379 the domain where to add the "H"ydrogen atom. An action is always
380 introduced via a double hyphen and its full name (containing just
381 non-capital letters and hyphens) or a single hyphen and a single letter
382 for its shortform, e.g. -a for adding an atom to the system. It is
383 followed by a fixed number of options. Most of these have default values
384 and in this do not have to be specified. If not enough options are given
385 or invalid values have been entered, an error message is printed stating
386 the name of the first missing or invalid option value.</para>
387
388 <note>
389 <para>Note that not all action have shortforms and it is best practice
390 to have the full action name instead of its shortform to make the
391 command-line understable to you in years to come.</para>
392 </note>
393
394 <section xml:id='preliminaries'>
395 <title xml:id='preliminaries.title'>Preliminaries</title>
396
397 <para>Some preliminary remarks are in order which we have gathered
398 here on how these actions work in general.</para>
399
400 <para>Below we first delve into some details about secondary structure
401 such as selections, shapes, and randomization required to specify
402 subsets of atoms and molecules you wish to manipulate. Then, we have
403 ordered the subsequent details on the manipulation depending on the
404 scale they act upon - single atoms, multiple atoms organised as
405 molecules, and all atoms organised by their containing domain.</para>
406
407 <para>In the following we will always give a command to illustrate the
408 procedure but just the necessary parts, i.e. "..." implies to prepend
409 it with the executable and input command for a specific configuration
410 file, for storing the manipulated state of the molecular system. Note
411 that</para>
412
413 <programlisting>./molecuilder --help</programlisting>
414
415 <para>will always give you a list of all available actions and also a
416 brief explanation on how to properly enter values of a specific type,
417 e.g. an element, a vector, or a list of numbers. Details to a specific
418 action can be requested when its full name is known, e.g. for
419 "add-atom",</para>
420
421 <programlisting>./molecuilder --help --actionname add-atom</programlisting>
422
423 <para>which fills you in on each option to the action: its full name,
424 its expected type, and a possibly present default value, and a brief
425 description of the option.</para>
426
427 <para>An Action can be undone and redone, e.g. undo adding an atom as
428 follows,</para>
429
430 <programlisting>... --add-atom H --domain-position "0,0,0" --undo</programlisting>
431
432 <para>and redo as follows</para>
433
434 <programlisting>... --add-atom H --domain-position "0,0,0" --undo --redo</programlisting>
435
436 <para>With the non-interactive interfaces this may seem rather
437 superfluous but it comes in very handy in the interactive ones. Also
438 this tells you that actions are placed in a queue, i.e. a history,
439 that undo and redo manipulate.</para>
440 </section>
441
442 <section xml:id='fileparsers'>
443 <title xml:id='fileparsers.title'>File parsers</title>
444
445 <para>We have already given a list of all known file formats, see
446 <link linkend="fileformats">File formats</link>. Next, we explain how these
447 file formats are picked and manipulated.</para>
448
449 <section xml:id='fileparsers.parsing'>
450 <title xml:id='fileparsers.parsing.title'>Parsing files</title>
451
452 <para>We already discussed that the command-line interface works
453 state-based and hence you should supply it with a file to work
454 on.</para>
455
456 <programlisting>... --input water.data</programlisting>
457
458 <para>This will load all information, especially atoms with their
459 element and position, from the file <filename>water.data</filename>
460 into the state. All changes will eventually be stored to this file,
461 or to files with the prefix <filename>water</filename> and suffixes
462 of desired file formats, e.g. <filename>water.in</filename> if you
463 specified <productname>MPQC</productname>.</para>
464
465 <programlisting>... --load morewater.xyz</programlisting>
466
467 <para>This will load another file <filename>water.xyz</filename>,
468 however changes will still be written to files prefixed with
469 <filename>water</filename>. Note that now already two state files
470 will stored, <filename>water.data</filename> and
471 <filename>water.xyz</filename> as these two different file formats
472 have been used.</para>
473 </section>
474
475 <section xml:id='fileparsers.set-output'>
476 <title xml:id='fileparsers.set-output.tile'>Adding output file
477 formats</title>
478
479 <para>We already know that loading a file also picks a file format
480 by its suffix. We may add further file formats to which the state of
481 the molecular system on program exit.</para>
482
483 <programlisting>... --set-output mpqc tremolo</programlisting>
484
485 <para>This will store the final state of the molecular systems as
486 <productname>MPQC</productname> and as
487 <productname>TREMOLO</productname> configuration file.</para>
488 </section>
489
490 <section xml:id='fileparsers.output-as'>
491 <title xml:id='fileparsers.output-as.title'>Output the current
492 molecular system</title>
493
494 <para>This will store the current World, i.e. all its atoms, to a
495 given file, where the output format is determined from the file
496 suffix.</para>
497
498 <programlisting>... --output-as world.xyz</programlisting>
499 </section>
500
501 <section xml:id='fileparsers.save-selected-molecules'>
502 <title xml:id='fileparsers.save-selected-molecules.title'>Output
503 the current molecular system</title>
504
505 <para>This will store all atoms contained in the currently selected
506 molecules to file. This is different to "store-saturated-fragment"
507 as it will not saturate dangling bonds because only whole molecules,
508 i.e. whose bond graph is connected, will be stored.</para>
509
510 <programlisting>... --save-selected-molecules waters.pdb
511 </programlisting>
512 </section>
513
514 <section xml:id='fileparsers.bond-file'>
515 <title xml:id='fileparsers.bond-file.title'>Load extra bond
516 information</title>
517
518 <para>For some parsers bond information is stored not with the atoms
519 coordinates but in an extra file. This action parses such a file.</para>
520
521 <programlisting>... --bond-file water.dbond
522 </programlisting>
523 </section>
524 </section>
525
526 <section xml:id='selections'>
527 <title xml:id='selections.title'>Selections and unselections</title>
528
529 <para>In order to tell MoleCuilder on what subset of atoms a specific
530 Action is to be performed, there are <emphasis>selection
531 actions</emphasis>. Note that a selection per se does not change
532 anything in the state of the molecular system in any way.</para>
533
534 <para>Selections either work on atoms, on molecules, or on shapes
535 (this we explain lateron). A given selection is maintained from the
536 execution of the selection action to the end of program or until
537 modified by another selection applied on the same type (atom,
538 molecule, shape).</para>
539
540 <para>We only give a brief list on the kind of selections per type,
541 each action is executed either as follows, exemplified by selecting
542 all atoms.</para>
543
544 <programlisting>.... --select-all-atoms</programlisting>
545
546 <para>or, exemplified by unselecting the last molecule,</para>
547
548 <programlisting>... --unselect-molecule-by-order -1</programlisting>
549
550 <itemizedlist>
551 <listitem>
552 <para>Atoms</para>
553
554 <itemizedlist>
555 <listitem>
556 <para>All</para>
557 <programlisting>
558 ... --select-all-atoms
559 </programlisting>
560 </listitem>
561
562 <listitem>
563 <para>None</para>
564 <programlisting>
565 ... --unselect-all-atoms
566 </programlisting>
567 <programlisting>
568 ... --clear-atom-selection
569 </programlisting>
570 </listitem>
571
572 <listitem>
573 <para>Invert selection</para>
574 <programlisting>
575 ... --invert-atoms
576 </programlisting>
577 </listitem>
578
579 <listitem>
580 <para>By Element (all hydrogen atoms, all sulphur atoms,
581 ...)</para>
582 <programlisting>
583 ... --select-atom-by-element 1
584 </programlisting>
585 <programlisting>
586 ... --unselect-atom-by-element 1
587 </programlisting>
588 </listitem>
589
590 <listitem>
591 <para>By Id (atom with id 76)</para>
592 <programlisting>
593 ... --select-atom-by-id 76
594 </programlisting>
595 <programlisting>
596 ... --unselect-atom-by-id 76
597 </programlisting>
598 </listitem>
599
600 <listitem>
601 <para>By Order (the first (1), the second, ... the last
602 created(-1), the last but one)</para>
603 <programlisting>
604 ... --select-atom-by-order 1
605 </programlisting>
606 <programlisting>
607 ... --unselect-atom-by-order -2
608 </programlisting>
609 </listitem>
610
611 <listitem>
612 <para>By Shape (specific region of the domain)</para>
613 <programlisting>
614 ... --select-atom-inside-volume
615 </programlisting>
616 <programlisting>
617 ... --unselect-atoms-inside-volume
618 </programlisting>
619 </listitem>
620
621 <listitem>
622 <para>By Molecule (all atoms belonging to currently selected
623 molecules)</para>
624 <programlisting>
625 ... --select-molecules-atoms
626 </programlisting>
627 <programlisting>
628 ... --unselect-molecules-atoms
629 </programlisting>
630 </listitem>
631
632 <listitem>
633 <para>Push/Pop the current selection to/from a stack to store
634 it momentarily and allow modifications in MakroActions.</para>
635 <programlisting>
636 ... --push-atom-selection
637 </programlisting>
638 <programlisting>
639 ... --pop-atom-selection
640 </programlisting>
641 </listitem>
642 </itemizedlist>
643 </listitem>
644
645 <listitem>
646 <para>Molecules</para>
647
648 <itemizedlist>
649 <listitem>
650 <para>All</para>
651 <programlisting>
652 ... --select-all-molecules
653 </programlisting>
654 </listitem>
655
656 <listitem>
657 <para>None</para>
658 <programlisting>
659 ... --unselect-all-molecules
660 </programlisting>
661 <programlisting>
662 ... --clear-molecule-selection
663 </programlisting>
664 </listitem>
665
666 <listitem>
667 <para>Invert selection</para>
668 <programlisting>
669 ... --invert-molecules
670 </programlisting>
671 </listitem>
672
673 <listitem>
674 <para>By Id (molecule with id 4)</para>
675 <programlisting>
676 ... --select-molecule-by-id 2
677 </programlisting>
678 <programlisting>
679 ... --unselect-molecule-by-id 2
680 </programlisting>
681 </listitem>
682
683 <listitem>
684 <para>By Order (first created molecule, second created
685 molecule, ...)</para>
686 <programlisting>
687 ... --select-molecule-by-order 2
688 </programlisting>
689 <programlisting>
690 ... --unselect-molecule-by-order -2
691 </programlisting>
692 </listitem>
693
694 <listitem>
695 <para>By Formula (molecule with H2O as formula)</para>
696 <programlisting>
697 ... --select-molecules-by-formula "H2O"
698 </programlisting>
699 <programlisting>
700 ... --unselect-molecules-by-formula "H2O"
701 </programlisting>
702 </listitem>
703
704 <listitem>
705 <para>By Name (molecule named "water4")</para>
706 <programlisting>
707 ... --select-molecules-by-name "water4"
708 </programlisting>
709 <programlisting>
710 ... --unselect-molecules-by-name "water4"
711 </programlisting>
712 </listitem>
713
714 <listitem>
715 <para>By Atom (all molecules for which at least one atom is
716 currently selected)</para>
717 <programlisting>
718 ... --select-atoms-molecules
719 </programlisting>
720 <programlisting>
721 ... --unselect-atoms-molecules
722 </programlisting>
723 </listitem>
724
725 <listitem>
726 <para>Push/Pop the current selection to/from a stack to store
727 it momentarily and allow modifications in MakroActions.</para>
728 <programlisting>
729 ... --push-molecule-selection
730 </programlisting>
731 <programlisting>
732 ... --pop-molecule-selection
733 </programlisting>
734 </listitem>
735 </itemizedlist>
736 </listitem>
737
738 <listitem>
739 <para>Shapes</para>
740
741 <itemizedlist>
742 <listitem>
743 <para>All</para>
744 <programlisting>
745 ... --select-all-shapes
746 </programlisting>
747 </listitem>
748
749 <listitem>
750 <para>None</para>
751 <programlisting>
752 ... --unselect-all-shapes
753 </programlisting>
754 </listitem>
755
756 <listitem>
757 <para>By Name (shape name "sphere1")</para>
758 <programlisting>
759 ... --select-shape-by-name "sphere1"
760 </programlisting>
761 <programlisting>
762 ... --unselect-shape-by-name "sphere1"
763 </programlisting>
764 </listitem>
765 </itemizedlist>
766 </listitem>
767
768 </itemizedlist>
769
770 <remark>Note that an unselected instance (e.g. an atom) remains
771 unselected upon further unselection and vice versa with
772 selection.</remark>
773
774 <para>These above selections work then in conjunction with other
775 actions and make them very powerful, e.g. you can remove all atoms
776 inside a sphere by a selecting the spherical shape and subsequently
777 selecting all atoms inside the shape and then removing them.</para>
778 </section>
779
780 <section xml:id='shapes'>
781 <title xml:id='shapes.title'>Shapes</title>
782
783 <para>Shapes are specific regions of the domain. There are just a few
784 so-called <emphasis>primitive</emphasis> shapes such as cuboid,
785 sphere, cylinder, the whole domain, none of it. However, these can be
786 combined via boolean operations such as and, or, and not. This
787 approach is called <emphasis>constructive geometry</emphasis>. E.g. by
788 combining a sphere with the negated (not) of a smaller sphere, we
789 obtain a spherical surface of specific thickness.</para>
790
791 <section xml:id='shapes.create-shape'>
792 <title xml:id='shapes.create-shape.title'>Creating shapes</title>
793
794 <para>Primitive shapes can be created as follows,</para>
795
796 <programlisting>
797 ... --create-shape \
798 --shape-type sphere \
799 --shape-name "sphere1" \
800 --stretch "2,2,2" \
801 --translation "5,5,5"
802 </programlisting>
803
804 <para>This will create a sphere of radius 2 (initial radius is 1)
805 with name "sphere1" that is centered at (5,5,5). Other primitives at
806 cuboid and cylinder, where a rotation can be specified as
807 follows.</para>
808
809 <programlisting>
810 ... --create-shape \
811 --shape-type cuboid \
812 --shape-name "box" \
813 --stretch "1,2,2" \
814 --translation "5,5,5" \
815 --angle-x "90"
816 </programlisting>
817 </section>
818
819 <section xml:id='shapes.combine-shapes'>
820 <title xml:id='shapes.combine-shapes.title'>Combining shapes</title>
821
822 <para>Any two shapes can be combined by boolean operations as follows</para>
823
824 <programlisting>
825 ... --combine-shapes \
826 --shape-name "combinedshape" \
827 --shape-op "AND" \
828 </programlisting>
829
830 <para>This will combine two currently selected shapes vis the "AND" operation
831 and create a new shape called "combinedshape". Note that the two old shapes
832 are still present after this operation. We briefly explain each operation:
833 </para>
834 <itemizedlist>
835 <listitem>
836 <para><emphasis>AND</emphasis> combines two currently selected shapes
837 into a new shape that only consists of the volume where shapes overlap.</para>
838 </listitem>
839 <listitem>
840 <para><emphasis>OR</emphasis> combines two currently selected shapes
841 into a new shape that consists of all the volume where that either shape
842 occupies.</para>
843 </listitem>
844 <listitem>
845 <para><emphasis>NOT</emphasis> creates the inverse to a currently selected
846 single shape that contains the volume with respect to the simulation domain
847 that the present one does not.</para>
848 </listitem>
849 </itemizedlist>
850 </section>
851
852 <section xml:id='shapes.remove-shape'>
853 <title xml:id='shapes.remove-shape.title'>Removing shapes</title>
854
855 <para>Removing a shape is as simple as removing an atom.</para>
856
857 <programlisting>... --remove-shape </programlisting>
858
859 <para>This removes the currently selected shapes.</para>
860 </section>
861
862 <section xml:id='shapes.manipulation'>
863 <title xml:id='shapes.manipulation.title'>Manipulating shapes</title>
864
865 <para>Shapes can be stretched, scaled, rotated, and translated to
866 modify primitives or combined primitive shapes. As you have seen
867 this manipulation could have occurred already at creation but also
868 later on. We just the list examples of the various manipulations
869 below, each works on the currently selected shapes.</para>
870
871 <programlisting>
872 ... --stretch-shapes "1,1,2" \
873 --stretch-center "5,5,5"
874 </programlisting>
875
876 <para>This stretches the shapes relative to the center at (5,5,5)
877 (default is origin) by a factor of 2 in the z direction.</para>
878
879 <programlisting>
880 ... --rotate-shapes \
881 --center "10,2,2" \
882 --angle-x 90 \
883 --angle-y 0 \
884 --angle-z 0
885 </programlisting>
886
887 <para>This way all selected shapes are rotated by 90 degrees around
888 the x axis with respect to the center at (10,2,2).</para>
889
890 <programlisting>... --translate-shapes "5,0,0" </programlisting>
891
892 <para>This translates all selected shapes by 5 along the x
893 axis.</para>
894 </section>
895 </section>
896
897 <section xml:id='randomization'>
898 <title xml:id='randomization.title'>Randomization</title>
899
900 <para>Some operations require randomness as input, e.g. when filling a
901 domain with molecules these may be randomly translated and rotated.
902 Random values are obtained by a random number generator that consists
903 of two parts: engine and distribution. The engine yields a uniform set
904 of random numbers in a specific interval, the distribution modifies
905 them, e.g. to become gaussian.</para>
906
907 <para>There are several Actions to modify the specific engine and
908 distribution and their parameters. One example usage is that with the
909 aforementioned filling of the domain molecules are rotated randomly.
910 If you specify a random number generator that randomly just spills out
911 values 0,1,2,3, then the randomness is just the orientation of the
912 molecule with respect to a specific axis: x,y,z. (rotation is at most
913 360 degrees and 0,1,2,3 act as divisor, hence rotation angle is always
914 a multiple of 90 degrees).</para>
915
916 <programlisting>
917 ... --set-random-number-distribution "uniform_int" \
918 --random-number-distribution-parameters "p=1"
919 </programlisting>
920
921 <para>This changes the distribution to "uniform_int", i.e. integer
922 numbers distributed uniformly.</para>
923
924 <programlisting>
925 ... --set-random-number-engine "mt19937" \
926 --random-numner-engine-parameters "seed=10"
927 </programlisting>
928
929 <para>Specifying the seed allows you to obtain the same sequence of
930 random numbers for testing purposes.</para>
931 </section>
932
933 <section xml:id='atoms'>
934 <title xml:id='atoms.title'>Manipulate atoms</title>
935
936 <para>Here, we explain in detail how to add, remove atoms, change its
937 element type, scale the bond in between or measure the bond length or
938 angle.</para>
939
940 <section xml:id='atoms.add-atom'>
941 <title xml:id='atoms.add-atom.title'>Adding atoms</title>
942
943 <para>Adding an atom to the domain requires the element of the atom
944 and its coordinates as follows,</para>
945
946 <programlisting>
947 ... --add-atom O \
948 --domain-position "2.,3.,2.35"
949 </programlisting>
950
951 <para>where the element is given via its chemical symbol and the
952 vector gives the position within the domain</para>
953 </section>
954
955 <section xml:id='atoms.remove-atom'>
956 <title xml:id='atoms.remove-atom.title'>Removing atoms</title>
957
958 <para>Removing atom(s) does not need any option and operates on the
959 currently selected ones.</para>
960
961 <programlisting>... --remove-atom</programlisting>
962 </section>
963
964 <section xml:id='atoms.translate-atom'>
965 <title xml:id='atoms.translate-atom.title'>Translating atoms</title>
966
967 <para>In order to translate the current selected subset of atoms you
968 specify a translation vector.</para>
969
970 <programlisting>
971 ... --translate-atoms "-1,0,0" \
972 --periodic 0
973 </programlisting>
974
975 <para>This translate all atoms by "-1" along the x axis and does not
976 mind the boundary conditions, i.e. might shift atoms outside of the
977 domain.</para>
978 </section>
979
980 <section xml:id='atoms.mirror-atoms'>
981 <title xml:id='atoms.mirror-atoms.title'>Mirroring atoms</title>
982
983 <para>Present (and selected) atoms can be mirrored with respect to
984 a certain plane. You have to specify the normal vector of the plane
985 and the offset with respect to the origin as follows</para>
986
987 <programlisting>
988 ... --mirror-atoms "1,0,0" \
989 --plane-offset 10.1 \
990 --periodic 0
991 </programlisting>
992 </section>
993
994 <section xml:id='atoms.translate-to-origin'>
995 <title xml:id='atoms.translate-to-origin.title'>Translating atoms</title>
996
997 <para>The following Action is convenient to place a subset of atoms
998 at a known position, the origin, and then translate to some other
999 absolute coordinate. It calculates the average position of the set
1000 of selected atoms and then translates all atoms by the negative of
1001 this center, i.e. the center is afterwards at the origin.</para>
1002
1003 <programlisting>... --translate-to-origin</programlisting>
1004 </section>
1005
1006 <section xml:id='atoms.change-element'>
1007 <title xml:id='atoms.change-element.title'>Changing an atoms element
1008 </title>
1009
1010 <para>You can easily turn lead or silver into gold, by selecting the
1011 silver atom and calling the change element action.</para>
1012
1013 <programlisting>... --change-element Au</programlisting>
1014 </section>
1015 </section>
1016
1017 <section xml:id='bond'>
1018 <title xml:id='bond.title'>Bond-related manipulation</title>
1019
1020 <para>Atoms can also be manipulated with respect to the bonds.
1021 <remark>Note that with bonds we always mean covalent bonds.</remark>
1022 First, we explain how to modify the bond structure itself, then we go
1023 in the details of using the bond information to change bond distance
1024 and angles.</para>
1025
1026 <section xml:id='bond.create-adjacency'>
1027 <title xml:id='bond.create-adjacency.title'>Creating a bond graph
1028 </title>
1029
1030 <para>In case you have loaded a configuration file with no bond
1031 information, e.g. XYZ, it is necessary to create the bond graph.
1032 This is done by a heuristic distance criterion.</para>
1033
1034 <programlisting>... --create-adjacency</programlisting>
1035
1036 <para>This uses by default a criterion based on van-der-Waals radii,
1037 i.e. if we look at two atoms indexed by "a" and "b"</para>
1038
1039 <equation>
1040 <title>V(a) + V(b) - \tau &lt; R_{ab} &lt; V(a) + V(b) +
1041 \tau</title>
1042
1043 <m:math display="block">
1044 <m:mi>where V(.) is the lookup table for the radii for a given
1045 element and \tau is a threshold value, set to 0.4.</m:mi>
1046 </m:math>
1047 </equation>
1048
1049 <para>As a second option, you may load a file containing bond table
1050 information.</para>
1051
1052 <programlisting>... --bond-table table.dat</programlisting>
1053
1054 <para>which would parse a file <filename>table.dat</filename> for a
1055 table giving typical bond distances between elements a and b. These
1056 are used in the above criterion as <inlineequation>
1057 <m:math display="inline">
1058 <m:mi>V(a,b)</m:mi>
1059 </m:math>
1060 </inlineequation> in place of <inlineequation>
1061 <m:math display="inline">
1062 <m:mi>V(a)+V(b)</m:mi>
1063 </m:math>
1064 </inlineequation>.</para>
1065 </section>
1066
1067 <section xml:id='bond.destroy-adjacency'>
1068 <title xml:id='bond.destroy-adjacency.title'>Destroying the bond
1069 graph</title>
1070
1071 <para>The bond graph can be removed completely (and all bonds along
1072 with it).</para>
1073
1074 <programlisting>... --destroy-adjacency</programlisting>
1075 </section>
1076
1077 <section xml:id='bond.correct-bonddegree'>
1078 <title xml:id='bond.correct-bonddegree.title'>Correcting bond
1079 degrees</title>
1080
1081 <para>Typically, after loading an input file bond information, e.g.
1082 a PDB file, the bond graph is complete but we lack the weights. That
1083 is we do not know whether a bond is single, double, triple, ...
1084 This action corrects the bond degree by enforcing charge neutrality
1085 among the connected atoms.
1086 </para>
1087 <para>This action is in fact quadratically scaling in the number of
1088 atoms. Hence, for large systems this may take longer than expected.
1089 </para>
1090
1091 <programlisting>... --correct-bonddegree</programlisting>
1092 </section>
1093
1094 <section xml:id='bond.depth-first-search'>
1095 <title xml:id='bond.depth-first-search.title'>Analysing a bond
1096 graph</title>
1097
1098 <para>You can perform a depth-first search analysis that reveals
1099 cycles and other graph-related information.</para>
1100
1101 <programlisting>... --depth-first-search</programlisting>
1102 </section>
1103
1104 <section xml:id='bond.subgraph-dissection'>
1105 <title xml:id='bond.subgraph-dissection.title'>Dissecting the
1106 molecular system into molecules</title>
1107
1108 <para>The bond graph information can be used to recognize the
1109 molecule within the system. Imagine you have just loaded a PDB file
1110 containing bond information. However, initially all atoms are dumped
1111 into the same molecule. Before you can start manipulating, you need
1112 to dissect the system into individual molecules. Note that this is
1113 just structural information and does not change the state of the
1114 system.</para>
1115
1116 <programlisting>... --subgraph-dissection</programlisting>
1117
1118 <para>This analyses the bond graph and splits the single molecule up
1119 into individual (new) ones that each contain a single connected
1120 subgraph, hence the naming.</para>
1121 </section>
1122
1123 <section xml:id='bond.update-molecules'>
1124 <title xml:id='bond.update-molecules.title'>Updating molecule
1125 structure</title>
1126
1127 <para>When the bond information has changed, new molecules might
1128 have formed, this action updates all the molecules by scanning
1129 the connectedness of the bond grapf of the molecular system.
1130 </para>
1131
1132 <programlisting>... --update-molecules</programlisting>
1133 </section>
1134
1135 <section xml:id='bond.add-bond'>
1136 <title xml:id='bond.add-bond.title'>Adding a bond manually</title>
1137
1138 <para>When the automatically created adjacency or bond graph
1139 contains faulty bonds or lacks some, you can add them manually.
1140 First, you must have selected two atoms.</para>
1141
1142 <programlisting>... --add-bond</programlisting>
1143 </section>
1144
1145 <section xml:id='bond.remove-bond'>
1146 <title xml:id='bond.remove-bond.title'>Removing a bond manually
1147 </title>
1148
1149 <para>In much the same way as adding a bond, you can also remove a
1150 bond.</para>
1151
1152 <programlisting>... --remove-bond</programlisting>
1153 </section>
1154
1155 <section xml:id='bond.save-bonds'>
1156 <title xml:id='bond.save-bonds.title'>Saving bond information
1157 </title>
1158
1159 <para>Bond information can be saved to a file in <link
1160 xlink:href="http://www.molecuilder.com/"><productname>TREMOLO
1161 </productname></link>'s dbond style.</para>
1162
1163 <programlisting>... --save-bonds system.dbonds</programlisting>
1164
1165 <para>Similarly is the following Action which saves the bond
1166 information as a simple list of one atomic id per line and in
1167 the same line, separated by spaces, the ids of all atoms connected
1168 to it.</para>
1169
1170 <programlisting>... --save-adjacency system.adj</programlisting>
1171
1172 </section>
1173
1174 <section xml:id='bond.stretch-bond'>
1175 <title xml:id='bond.stretch-bond.title'>Stretching a bond</title>
1176
1177 <para>Stretching a bond actually refers to translation of the
1178 associated pair of atoms. However, this action will keep the rest of
1179 the molecule to which both atoms belong to invariant as well.</para>
1180
1181 <programlisting>... --stretch-bond 1.2</programlisting>
1182
1183 <para>This scales the original bond distance to the new bond
1184 distance 1.2, shifting the right hand side and the left hand side of
1185 the molecule accordingly.</para>
1186
1187 <warning>
1188 <para>this fails with aromatic rings (but you can always
1189 undo).</para>
1190 </warning>
1191 </section>
1192
1193 <section xml:id='bond.change-bond-angle'>
1194 <title xml:id='bond.change-bond-angle.title'>Changing a bond angle
1195 </title>
1196
1197 <para>In the same way as stretching a bond, you can change the angle
1198 in between two bonds. This works if exactly three atoms are selected
1199 and two pairs are bonded.</para>
1200
1201 <programlisting>... --change-bond-angle 90</programlisting>
1202
1203 <para>This will change the angle from its value to 90 degree by
1204 translating the two outer atoms of this triangle (the atom connected
1205 to both others is the axis of the rotation).</para>
1206 </section>
1207 </section>
1208
1209 <section xml:id='molecule'>
1210 <title xml:id='molecule.title'>Manipulate molecules</title>
1211
1212 <para>Molecules are agglomerations of atoms that are bonded. Hence,
1213 the actions working on molecules differ from those working on atoms.
1214 Joining two molecules can only be accomplished by adding a bond in
1215 between, and in the reverse fashion splitting a molecule by removing
1216 all bonds in between. Actions below mostly deal with copying
1217 molecules. Removing of molecules is done via selecting the molecule's
1218 atoms and removing them, which removes the atoms as well.</para>
1219
1220 <note>
1221 <para>Initially when you load a file via the input action all atoms
1222 are placed in a single molecule despite any present bond
1223 information, see <link linkend="fragmentation">Dissecting the
1224 molecular system into molecules</link></para>
1225 </note>
1226
1227 <section xml:id='molecule.copy'>
1228 <title xml:id='molecule.copy.title'>Copy molecules</title>
1229
1230 <para>A basic operation is to duplicate a molecule. This works on a
1231 single, currently selected molecule. Afterwards, we elaborate on a
1232 more complex manner of copying, filling a specific shape with
1233 molecules.</para>
1234
1235 <programlisting>
1236 ... --copy-molecule \
1237 --position "10,10,10"
1238 </programlisting>
1239
1240 <para>This action copies the selected molecule and inserts it at the
1241 position (10,10,10) in the domain with respect to the molecule's
1242 center. In effect, it copies all the atoms of the original molecule
1243 and adds new bonds in between these copied atoms such that their
1244 bond subgraphs are identical.</para>
1245 </section>
1246
1247 <section xml:id='molecule.change-molname'>
1248 <title xml:id='molecule.change-molname.title'>Change a molecules
1249 name</title>
1250
1251 <para>You can change the name of a molecule which is important for
1252 selection.</para>
1253
1254 <programlisting>... -change-molname "test</programlisting>
1255
1256 <para>This will change the name of the (only) selected molecule to
1257 "test".</para>
1258
1259 <para>Connected with this is the default name an unknown molecule
1260 gets.</para>
1261
1262 <programlisting>... --default-molname test</programlisting>
1263
1264 <para>This will change the default name of a molecule to
1265 "test".</para>
1266
1267 <note>
1268 <para>Note that a molecule loaded from file gets the filename
1269 (without suffix) as its name.</para>
1270 </note>
1271 </section>
1272
1273 <section xml:id='molecule.remove-molecule'>
1274 <title xml:id='molecule.remove-molecule.title'>Remove molecules
1275 </title>
1276
1277 <para>This removes one or multiple selected molecules.</para>
1278
1279 <programlisting>... -remove-molecule</programlisting>
1280
1281 <para>This essentially just removes all of the molecules' atoms
1282 which in turn also causes the removal of the molecule.</para>
1283 </section>
1284
1285 <section xml:id='molecule.translate-molecules'>
1286 <title xml:id='molecule.translate-molecules.title'>Translate molecules
1287 </title>
1288
1289 <para>This translates one or multiple selected molecules by a
1290 specific offset..</para>
1291
1292 <programlisting>... -translate-molecules</programlisting>
1293
1294 <para>This essentially translates all of the molecules' atoms.</para>
1295 </section>
1296
1297 <section xml:id='molecule.rotate-around-self'>
1298 <title xml:id='molecule.rotate-around-self.title'>Rotate around self
1299 </title>
1300
1301 <para>You can rotate a molecule around its own axis.</para>
1302
1303 <programlisting>
1304 ... --rotate-around-self "90" \
1305 --axis "0,0,1"
1306 </programlisting>
1307
1308 <para>This rotates the molecule around the z axis by 90 degrees as
1309 if the origin were at its center of origin.</para>
1310 </section>
1311
1312 <section xml:id='molecule.rotate-around-origin'>
1313 <title xml:id='molecule.rotate-around-origin.title'>Rotate around
1314 origin</title>
1315
1316 <para>In the same manner the molecule can be rotated around an
1317 external origin.</para>
1318
1319 <programlisting>
1320 ... --rotate-around-origin 90 \
1321 --position "0,0,1"\
1322 </programlisting>
1323
1324 <para>This rotates the molecule around an axis from the origin to
1325 the position (0,0,1), i.e. around the z axis, by 90 degrees.</para>
1326 </section>
1327
1328 <section xml:id='molecule.rotate-to-principal-axis-system'>
1329 <title xml:id='molecule.rotate-to-principal-axis-system.title'>
1330 Rotate to principal axis system</title>
1331
1332 <para>The principal axis system is given by an ellipsoid that mostly
1333 matches the molecules shape. The principal axis system can be just
1334 simply determined by</para>
1335
1336 <programlisting>... --principal-axis-system</programlisting>
1337
1338 <para>To rotate the molecule around itself to align with this system
1339 do as follows.</para>
1340
1341 <programlisting>... --rotate-to-principal-axis-system "0,0,1"
1342 </programlisting>
1343
1344 <para>This rotates the molecule in such a manner that the ellipsoids
1345 largest axis is aligned with the z axis. <remark>Note that "0,0,-1"
1346 would align anti-parallel.</remark></para>
1347 </section>
1348
1349 <section xml:id='molecule.verlet-integration'>
1350 <title xml:id='molecule.verlet-integration.title'>Perform verlet
1351 integration</title>
1352
1353 <para>Atoms not only have a position, but each instance also stores
1354 velocity and a force vector. These can be used in a velocity verlet
1355 integration step. Velocity verlet is a often employed time
1356 integration algorithm in molecular dynamics simulations.</para>
1357
1358 <programlisting>
1359 ... --verlet-integration \
1360 --deltat 0.1 \
1361 --keep-fixed-CenterOfMass 0
1362 </programlisting>
1363
1364 <para>This will integrate with a timestep of <inlineequation>
1365 <m:math display="inline">
1366 <m:mi>\Delta_t = 0.1</m:mi>
1367 </m:math>
1368 </inlineequation>and correcting forces and velocities such that
1369 the sum over all atoms is zero.</para>
1370 </section>
1371
1372 <section xml:id='molecule.force-annealing'>
1373 <title xml:id='molecule.force-annealing.title'>Anneal the atomic
1374 forces</title>
1375
1376 <para>This will shift the atoms in a such a way as to decrease (or
1377 anneal) the forces acting upon them.</para>
1378
1379 <para>Forces may either be already present for the set of atoms by
1380 some other way (e.g. from a prior fragmentation calculation) or,
1381 as shown here, from an external file. We anneal the forces for
1382 one step with a certain initial step width of 0.5 atomic time
1383 units and do not create a new timestep for each optimization
1384 step.</para>
1385
1386 <programlisting>
1387 ... --force-annealing \
1388 --forces-file test.forces \
1389 --deltat 0.5 \
1390 --steps 1 \
1391 --output-every-step 0
1392 </programlisting>
1393 </section>
1394
1395 <section xml:id='molecule.linear-interpolation-of-trajectories'>
1396 <title xml:id='molecule.linear-interpolation-of-trajectories.title'>
1397 Linear interpolation between configurations</title>
1398
1399 <para>This is similar to verlet-integration, only that it performs
1400 a linear integration irrespective of the acting atomic forces.
1401 </para>
1402
1403 <para>The following call will produce an interpolation between the
1404 configurations in time step 0 and time step 1 with 98 intermediate
1405 steps, i.e. current step 1 will end up in time step 99. In this
1406 case an idential mapping is used to associated atoms in start and
1407 end configuration.</para>
1408
1409 <programlisting>
1410 ... --linear-interpolation-of-trajectories \
1411 --start-step 0 \
1412 --end-step 1 \
1413 --interpolation-steps 100 \
1414 --id-mapping 1
1415 </programlisting>
1416 </section>
1417 </section>
1418
1419 <section xml:id='domain'>
1420 <title xml:id='domain.title'>Manipulate domain</title>
1421
1422 <para>Here, we elaborate on how to duplicate all the atoms inside the
1423 domain, how the scale the coordinate system, how to center the atoms
1424 with respect to certain points, how to realign them by given
1425 constraints, how to mirror and most importantly how to specify the
1426 domain.</para>
1427
1428 <section xml:id='domain.change-box'>
1429 <title xml:id='domain.change-box.title'>Changing the domain</title>
1430
1431 <para>The domain is specified by a symmetric 3x3 matrix. The
1432 eigenvalues (diagonal entries in case of a diagonal matrix) give the
1433 length of the edges, additional entries specify transformations of
1434 the box such that it becomes a more general parallelepiped.</para>
1435
1436 <programlisting>... change-box "20,0,20,0,0,20"</programlisting>
1437
1438 <para>As the domain matrix is symmetric, six values suffice to fully
1439 specify it. We have to give the six components of the lower diagonal
1440 matrix. Here, we change the box to a cuboid of equal edge length of
1441 20.</para>
1442 </section>
1443
1444 <section xml:id='domain.bound-in-box'>
1445 <title xml:id='domain.bound-in-box.title'>Bound atoms inside box
1446 </title>
1447
1448 <para>The following applies the current boundary conditions to the
1449 atoms. In case of periodic or wrapped boundary conditions the atoms
1450 will be periodically translated to be inside the domain
1451 again.</para>
1452
1453 <programlisting>... --bound-in-box</programlisting>
1454 </section>
1455
1456 <section xml:id='domain.center-in-box'>
1457 <title xml:id='domain.center-in-box.title'>Center atoms inside the
1458 domain</title>
1459
1460 <para>This is a combination of changing the box and bounding the
1461 atoms inside it.</para>
1462
1463 <programlisting>... --center-in-box "20,0,20,0,0,"</programlisting>
1464 </section>
1465
1466 <section xml:id='domain.center-edge'>
1467 <title xml:id='domain.center-edge.title'>Center the atoms at an
1468 edge</title>
1469
1470 <para>MoleCuilder can calculate the minimum box (parallel to the
1471 cardinal axis) all atoms would fit in and translate all atoms in
1472 such a way that the lower, left, front edge of this minimum is at
1473 the origin (0,0,0).</para>
1474
1475 <programlisting>... --center-edge</programlisting>
1476 </section>
1477
1478 <section xml:id='domain.add-empty-boundary'>
1479 <title xml:id='domain.add-empty-boundary.title'>Extending the
1480 boundary by adding an empty boundary</title>
1481
1482 <para>In the same manner as above a minimum box is determined that
1483 is subsequently expanded by a boundary of the given additional
1484 thickness. This applies to either side.</para>
1485
1486 <programlisting>... --add-empty-boundary "5,5,5"</programlisting>
1487
1488 <para>This will enlarge the box in such a way that every atom is at
1489 least by a distance of 5 away from the boundary of the domain (in
1490 the infinity norm).</para>
1491 </section>
1492
1493 <section xml:id='domain.scale-box'>
1494 <title xml:id='domain.scale-box.title'>Scaling the box</title>
1495
1496 <para>You can enlarge the domain by simple scaling factors.</para>
1497
1498 <programlisting>... --scale-box "1,1,2.5"</programlisting>
1499
1500 <para>Here, the domain is stretched in the z direction by a factor
1501 of 2.5.</para>
1502 </section>
1503
1504 <section xml:id='domain.repeat-box'>
1505 <title xml:id='domain.repeat-box.title'>Repeating the box</title>
1506
1507 <para>Under periodic boundary conditions often only the minimal
1508 periodic cell is stored. If need be, multiple images can be easily
1509 added to the current state of the system by repeating the box, i.e.
1510 the box along with all contained atoms is copied and placed
1511 adjacently.</para>
1512
1513 <programlisting>... --repeat-box "1,2,2"</programlisting>
1514
1515 <para>This will create a 2x2 grid of the current domain, replicating
1516 it along the y and z direction along with all atoms. If the domain
1517 contained before a single water molecule, we will now have four of
1518 them.</para>
1519 </section>
1520
1521 <section xml:id='domain.set-boundary-conditions'>
1522 <title xml:id='domain.set-boundary-conditions.title'>Change the
1523 boundary conditions</title>
1524
1525 <para>Various boundary conditions can be applied that affect how
1526 certain Actions work, e.g. translate-atoms. We briefly give a list
1527 of all possible conditions:</para>
1528 <itemizedlist>
1529 <listitem>
1530 <para>Wrap</para>
1531 <para>Coordinates are wrapped to the other side of the domain,
1532 i.e. periodic boundary conditions.</para>
1533 </listitem>
1534 <listitem>
1535 <para>Bounce</para>
1536 <para>Coordinates are bounced back into the domain, i.e. they
1537 are reflected from the domain walls.</para>
1538 </listitem>
1539 <listitem>
1540 <para>Ignore</para>
1541 <para>No boundary conditions apply.</para>
1542 </listitem>
1543 </itemizedlist>
1544
1545 <para>The following will set the boundary conditions to periodic.
1546 </para>
1547
1548 <programlisting>... --set-boundary-conditions "Wrap Wrap Wrap"
1549 </programlisting>
1550 </section>
1551 </section>
1552
1553 <section xml:id='filling'>
1554 <title xml:id='filling.title'>Filling</title>
1555
1556 <para>Filling a specific part of the domain with one type of
1557 molecule, e.g. a water molecule, is the more advanced type of
1558 copying of a molecule (see copy-molecule) and we need several
1559 ingredients.</para>
1560
1561 <para>First, we need to specify the part of the domain. This is done
1562 via a shape. We have already learned how to create and select
1563 shapes. The currently selected shape will serve as the fill-in
1564 region.</para>
1565
1566 <para>Then, they are three types of filling, domain, volume, and
1567 surface. The domain is filled with a regular grid of fill-in points.
1568 A volume and a surface are filled by a set of equidistant points
1569 distributed within the volume or on the surface of a selected
1570 shape. Molecules will then be copied and translated points when they
1571 "fit".</para>
1572
1573 <para>The filler procedure checks each fill-in point whether there
1574 is enough space for the molecule. To know this, we require a cluster
1575 instead of a molecule. This is just a general agglomeration of atoms
1576 combined with a bounding box that contains all of them and serves as
1577 its minimal volume. I.e. we need this cluster. For this a number of
1578 atoms have to be specified, the minimum bounding box is generated
1579 automatically.</para>
1580
1581 <para>On top of that molecules can be selected whose volume is
1582 additionally excluded from the filling region.</para>
1583
1584 <section xml:id='filling.fill-regular-grid'>
1585 <title xml:id='filling.fill-regular-grid.title'>Fill the domain with
1586 molecules</title>
1587
1588 <para>The call to fill the volume of the selected shape with the
1589 selected atoms is then as follows,</para>
1590
1591 <programlisting>
1592 ... --fill-regular-grid \
1593 --mesh-size "5,5,5" \
1594 --mesh-offset ".5,.5,.5" \
1595 --DoRotate 1 \
1596 --min-distance 1. \
1597 --random-atom-displacement 0.05 \
1598 --random-molecule-displacement 0.4 \
1599 --tesselation-radius 2.5
1600 </programlisting>
1601
1602 <para>This generates a grid of 5x5x5 fill-in points within the
1603 sphere that are offset such as to lay centered within the sphere
1604 (offset per axis in [0,1]). Additionally, each molecule is rotated
1605 by random rotation matrix, each atom is translated randomly by at
1606 most 0.05, each molecule's center at most by 0.4. The selected
1607 molecules' volume is obtained by tesselating their surface and
1608 excluding every fill-in point whose distance to this surface does
1609 not exceed 1. We refer to our comments in
1610 <link linkend="randomization">Randomization</link>for details on
1611 changing the randomness.</para>
1612 </section>
1613
1614 <section xml:id='filling.fill-volume'>
1615 <title xml:id='filling.fill-volume.title'>Fill a shape's volume
1616 with molecules</title>
1617
1618 <para>More specifically than filling the whole domain with molecules,
1619 maybe except areas where other molecules already are, we also can
1620 fill only specific parts by selecting a shape and calling upon
1621 the following action:</para>
1622
1623 <programlisting>
1624 ... --fill-volume \
1625 --counts 12 \
1626 --min-distance 1. \
1627 --DoRotate 1 \
1628 --random-atom-displacement 0.05 \
1629 --random-molecule-displacement 0.4 \
1630 --tesselation-radius 2.5
1631 </programlisting>
1632 </section>
1633
1634 <section xml:id='filling.fill-surface'>
1635 <title xml:id='filling.fill-surface.title'>Fill a shape's surface
1636 with molecules</title>
1637
1638 <para>Filling a surface is very similar to filling its volume.
1639 Again the number of equidistant points has to be specified.
1640 However, randomness is constrained as the molecule is be aligned
1641 with the surface in a specific manner. The alignment axis refers
1642 to the largest principal axis of the filler molecule and will
1643 be aligned parallel to the surface normal at the fill-in point.
1644 </para>
1645
1646 <para>The call below fill in 12 points with a minimum distance
1647 between the instances of 1 angstroem. We allow for certain random
1648 displacements and use the z-axis for aligning the molecules on
1649 the surface.</para>
1650
1651 <programlisting>
1652 ... --fill-surface \
1653 --counts 12 \
1654 --min-distance 1. \
1655 --DoRotate 1 \
1656 --random-atom-displacement 0.05 \
1657 --random-molecule-displacement 0.4 \
1658 --Alignment-Axis "0,0,1"
1659 </programlisting>
1660 </section>
1661
1662 <section xml:id='filling.suspend-in-molecule'>
1663 <title xml:id='filling.suspend-in-molecule.title'>Suspend in molecule
1664 </title>
1665
1666 <para>Add a given molecule in the simulation domain in such a way
1667 that the total density is as desired.</para>
1668
1669 <programlisting>
1670 ... --suspend-in-molecule 1.
1671 </programlisting>
1672 </section>
1673
1674 <section xml:id='filling.fill-molecule'>
1675 <title xml:id='filling.fill-molecule.title'>Fill in molecule</title>
1676
1677 <para>This action will be soon be removed.</para>
1678
1679 <programlisting>
1680 ... --fill-molecule
1681 </programlisting>
1682 </section>
1683
1684 <section xml:id='filling.fill-void'>
1685 <title xml:id='filling.fill-void.title'>Fill void with molecule
1686 </title>
1687
1688 <para>This action will be soon be removed.</para>
1689
1690 <programlisting>
1691 ... --fill-void
1692 </programlisting>
1693 </section>
1694 </section>
1695
1696 <section xml:id='analysis'>
1697 <title xml:id='analysis.title'>Analysis</title>
1698
1699 <para></para>
1700
1701 <section xml:id='analysis.pair-correlation'>
1702 <title xml:id='analysis.pair-correlation.title'>Pair Correlation
1703 </title>
1704
1705 <para>Pair correlation checks for two given elements on the typical
1706 distance they can be found with respect to one another. E.g. for
1707 water one might be interested what is the typical distance for
1708 hydrogen and oxygen atoms.</para>
1709
1710 <programlisting>
1711 ... --pair-correlation \
1712 --elements 1 8 \
1713 --bin-start 0 \
1714 --bin-width 0.7 \
1715 --bin-end 10 \
1716 --output-file histogram.dat \
1717 --bin-output-file bins.dat \
1718 --periodic 0
1719 </programlisting>
1720
1721 <para>This will compile a histogram for the interval [0,10] in steps
1722 of 0.7 and increment a specific bin if the distance of one such pair
1723 of a hydrogen and an oxygen atom can be found within its distance
1724 interval.</para>
1725 </section>
1726
1727 <section xml:id='analysis.dipole-correlation'>
1728 <title xml:id='analysis.dipole-correlation.title'>Dipole Correlation
1729 </title>
1730
1731 <para>The dipole correlation is similar to the pair correlation, only
1732 that it correlates the orientation of dipoles in the molecular
1733 system with one another.</para>
1734 <para>Note that the dipole correlation works on the currently
1735 selected molecules, e.g. all water molecules if so selected.</para>
1736
1737 <programlisting>
1738 ... --dipole-correlation \
1739 --bin-start 0 \
1740 --bin-width 0.7 \
1741 --bin-end 10 \
1742 --output-file histogram.dat \
1743 --bin-output-file bins.dat \
1744 --periodic 0
1745 </programlisting>
1746 </section>
1747
1748 <section xml:id='analysis.dipole-angular-correlation'>
1749 <title xml:id='analysis.dipole-angular-correlation.title'>Dipole
1750 Angular Correlation</title>
1751
1752 <para>The dipole angular correlation looks at the angles of a
1753 dipole over time. It takes the orientation of a certain time step
1754 as the zero angle and bins all other orientations found in later
1755 time steps relative to it.
1756 </para>
1757 <para>Note that in contrast to the dipole correlation the dipole
1758 angular correlation works on the molecules determined by a formula.
1759 This is because selections do not work over time steps as molecules
1760 might change.
1761 </para>
1762
1763 <programlisting>
1764 ... --dipole-angular-correlation H2O \
1765 --bin-start 0 \
1766 --bin-width 5 \
1767 --bin-end 360 \
1768 --output-file histogram.dat \
1769 --bin-output-file bins.dat \
1770 --periodic 0 \
1771 --time-step-zero 0
1772 </programlisting>
1773 </section>
1774
1775 <section xml:id='analysis.point-correlation'>
1776 <title xml:id='analysis.point-correlation.title'>Point Correlation
1777 </title>
1778
1779 <para>Point correlation is very similar to pair correlation, only
1780 that it correlates not positions of atoms among one another but
1781 against a fixed, given point.</para>
1782
1783 <programlisting>
1784 ... --point-correlation \
1785 --elements 1 8 \
1786 --position "0,0,0" \
1787 --bin-start 0 \
1788 --bin-width 0.7 \
1789 --bin-end 10 \
1790 --output-file histogram.dat \
1791 --bin-output-file bins.dat \
1792 --periodic 0
1793 </programlisting>
1794
1795 <para>This would calculate the correlation of all hydrogen and
1796 oxygen atoms with respect to the origin.</para>
1797 </section>
1798
1799 <section xml:id='analysis.surface-correlation'>
1800 <title xml:id='analysis.surface-correlation.title'>Surface
1801 Correlation</title>
1802
1803 <para>The surface correlation calculates the distance of a set
1804 of atoms with respect to a tesselated surface.</para>
1805
1806 <programlisting>
1807 ... --surface-correlation \
1808 --elements 1 8 \
1809 --bin-start 0 \
1810 --bin-width 0.7 \
1811 --bin-end 10 \
1812 --output-file histogram.dat \
1813 --bin-output-file bins.dat \
1814 --periodic 0
1815 </programlisting>
1816 </section>
1817
1818 <section xml:id='analysis.molecular-volume'>
1819 <title xml:id='analysis.molecular-volume.title'>Molecular Volume
1820 </title>
1821
1822 <para>This simply calculates the volume that a selected molecule
1823 occupies. For this the molecular surface is determined via a
1824 tesselation. Note that this surface is minimal is that aspect
1825 that each node of the tesselation consists of an atom of the
1826 molecule.</para>
1827
1828 <programlisting>... --molecular-volume</programlisting>
1829 </section>
1830
1831 <section xml:id='analysis.average-molecule-force'>
1832 <title xml:id='analysis.average-molecule-forcetitle'>Average force
1833 acting on a molecule</title>
1834
1835 <para>This sums up all the forces of each atom of a currently
1836 selected molecule and returns the average force vector. This should
1837 give you the general direction of acceleration of the molecule.
1838 </para>
1839
1840 <programlisting>... --molecular-volume</programlisting>
1841 </section>
1842
1843 </section>
1844
1845 <section xml:id='fragmentation'>
1846 <title xml:id='fragmentation.title'>Fragmentation</title>
1847
1848 <para>Fragmentation refers to a so-called linear-scaling method called
1849 "Bond-Order diSSection in an ANOVA-like fashion" (BOSSANOVA),
1850 developed by <personname>Frederik Heber</personname>. In this section
1851 we briefly explain what the method does and how the associated actions
1852 work.</para>
1853
1854 <para>The central idea behind the BOSSANOVA scheme is to fragment the
1855 graph of the molecular system into connected subgraphs of a certain
1856 number of vertices (atoms). To give an example, loading a ethane atom
1857 with the chemical formula C2H6, fragmenting the molecule up to order 1
1858 means creating two fragments, both methane-like from either carbon
1859 atom including surrounding hydrogen atoms. Fragmenting up to order 2
1860 would return both the methane fragments and additionally the full
1861 ethane molecule as it resembles a fragment of order 2, namely
1862 containing two (non-hydrogen) atoms.</para>
1863
1864 <para>The reason for doing this is that usual ab-initio calculations
1865 of molecular systems via methods such as Density Functional Theory or
1866 Hartree-Fock scale at least as <inlineequation>
1867 <m:math display="inline">
1868 <m:mi>{\cal O}(M^3}</m:mi>
1869 </m:math>
1870 </inlineequation>with the number of atoms <inlineequation>
1871 <m:math display="inline">
1872 <m:mi>M</m:mi>
1873 </m:math>
1874 </inlineequation>. Hence, calculating the ground state energy of a
1875 number of fragment molecules scaling linearly with the number of atoms
1876 yields a linear-scaling methods. In the doctoral thesis of Frederik
1877 Heber, it is explained why this is a sensible ansatz mathematically
1878 and shown that it delivers a very good accuracy if electrons (and
1879 hence interactions) are in general localized.</para>
1880
1881 <para>Long-range interactions are artificially truncated, however,
1882 with this fragment ansatz. It can be obtained in a perturbation manner
1883 by sampling the resulting electronic and nuclei charge density on a
1884 grid, summing over all fragments, and solving the associated Poisson
1885 equation. Such a calculation is implemented via the solver
1886 <productname>vmg</productname> by Julian Iseringhausen that is
1887 contained in the <link xlink:href="http://www.scafacos.org/">
1888 <productname>ScaFaCoS</productname></link>.</para>
1889
1890 <para>Note that we treat hydrogen special (but can be switched off) as
1891 fragments are calculated as closed shell (total spin equals zero).
1892 Also, we use hydrogen to saturate any dangling bonds that occur as
1893 bonds are cut when fragmenting a molecule (this, too, can be switched
1894 off).</para>
1895
1896 <section xml:id='fragmentation.fragment-molecule'>
1897 <title xml:id='fragmentation.fragment-molecule.title'>Fragmenting a
1898 molecular system</title>
1899
1900 <para>For the current selection of atoms, all fragments consisting
1901 of these (sub)set of atoms are created in the following
1902 manner.</para>
1903
1904 <programlisting>
1905 ... --fragment-molecule "BondFragment" \
1906 --DoCyclesFull 1 \
1907 --distance 3. \
1908 --order 3 \
1909 --grid-level 5 \
1910 --output-types xyz mpqc
1911 </programlisting>
1912
1913 <para>We go through each of the options one after the other. During
1914 fragmentation some files are created storing state information, i.e.
1915 the vertex/atom indices per fragment and so on. These files all need
1916 a common prefix, here "BondFragment". Then, we specify that cycles
1917 should be treated fully. This compensates for electrons in aromatic
1918 rings being delocalized over the ring. If cycles in the graph,
1919 originating from aromatic rings, are always calculated fully, i.e.
1920 the whole ring becomes a fragment, we partially overcome these
1921 issues. This does however not work indefinitely and accuracy of the
1922 approximation is limited (<inlineequation>
1923 <m:math display="inline">
1924 <m:mi>&gt;10^{-4}</m:mi>
1925 </m:math>
1926 </inlineequation>) in systems with many interconnected aromatic
1927 rings, such as graphene. Next, we give a distance cutoff of 3 used
1928 in bond graph creation. Then, we specify the maximum order, i.e. the
1929 maximum number of (non-hydrogen) atoms per fragment, here 3. The
1930 higher this number the more expensive the calculation becomes
1931 (because substantially more fragments are created) but also the more
1932 accurate. The grid level refers to the part where long-range Coulomb
1933 interactions are calculated. This is done via solving the associated
1934 Poisson equation with a multigrid solver. As input the solver
1935 requires the density which is sampled on a cartesian grid whose
1936 resolution these parameter defines (<inlineequation>
1937 <m:math display="inline">
1938 <m:mi>2^{\mathrm{level}}</m:mi>
1939 </m:math>
1940 </inlineequation>). And finally, we give the output file formats,
1941 i.e. which file formats are used for writing each fragment
1942 configuration (prefix is "BondFragment", remember?). Here, we use
1943 XYZ (mainly for checking the configurations visually) and MPQC,
1944 which is a very robust Hartree-Fock solver. We refer to the
1945 discussion of the <link linkend="fileparsers">Parsers</link> above
1946 on how to change the parameters of the ab-initio calculation.</para>
1947
1948 <para>After having written all fragment configuration files, you
1949 need to calculate each fragment, grab the resulting energy (and
1950 force vectors) and place them into a result file manually. This at
1951 least is necessary if you have specified output-types above. If not,
1952 the fragments are not written to file but stored internally. Read
1953 on.</para>
1954 </section>
1955
1956 <section xml:id='fragmentation.fragment-automation'>
1957 <title xml:id='fragmentation.fragment-automation.title'>Calculating
1958 fragment energies automatically</title>
1959
1960 <para>Another way of doing this is enabled if you have
1961 <productname>JobMarket</productname> package. JobMarket implements a
1962 client/server ansatz, i.e. two (or more) independent programs are
1963 running (even on another computer but connected via an IP network),
1964 namely a server and at least one client. The server receives
1965 fragment configurations from MoleCuilder and assigns these to a
1966 client who is not busy. The client launches an executable that is
1967 specified in the work package he is assigned and gathers after
1968 calculation a number of values, samewise specified in the package.
1969 The results are gathered together by the server and can be requested
1970 from MoleCuilder once they are done. This essentially describe what
1971 is happening during the execution of this action.</para>
1972
1973 <para>Stored fragment jobs can also be parsed again, i.e. reversing
1974 the effect of having output-types specified in <link
1975 linkend="fragmentation.fragment-molecule">Fragmenting a molecule
1976 </link>.</para>
1977
1978 <programlisting>
1979 ... --parse-fragment-jobs \
1980 --fragment-jobs "BondFragment00.in" "BondFragment01.in" \
1981 --fragment-path "./" \
1982 --grid-level 5
1983 </programlisting>
1984
1985 <para>Here, we have specified two files, namely
1986 <filename>BondFragment00.in</filename> and
1987 <filename>BondFragment01.in</filename>, to be parsed from the path
1988 "./", i.e. the current directory. Also, we have specified to sample
1989 the electronic charge density obtained from the calculated ground
1990 state energy solution with a resolution of 5 (see fragment molecule
1991 and also below).</para>
1992
1993 <para>This allows for automated and parallel calculation of all
1994 fragment energies and forces directly within MoleCuilder. The
1995 FragmentationAutomation action takes the fragment configurations
1996 from an internal storage wherein they are placed if in
1997 FragmentMolecule no output-types have been specified.</para>
1998
1999 <programlisting>
2000 ... --fragment-automation \
2001 --fragment-executable mpqc \
2002 --fragment-resultfile BondFragment_results.dat \
2003 --DoLongrange 1 \
2004 --DoValenceOnly 1 \
2005 --grid-level 5 \
2006 --interpolation-degree 3 \
2007 --near-field-cells 4 \
2008 --server-address 127.0.0.1 \
2009 --server-port 1025
2010 </programlisting>
2011
2012 <para>Again, we go through each of the action's options step by
2013 step.</para>
2014
2015 <para>The executable is required if you do not have a patched
2016 version of <productname>MPQC</productname> that may directly act as
2017 a client to JobMarket's server. All calculated results are placed in
2018 the result file. If none is given, they are instead again placed in
2019 an internal storage for later access.</para>
2020
2021 <note>
2022 <para>Long-calculations are only possible with a client that knows
2023 how to handle VMG jobs. If you encounter failures, then it is most
2024 likely that you do not have a suitable client.</para>
2025 </note>
2026
2027 <para>In the next line, we have all options related to calculation
2028 of long-range interactions. We only sample valence charges on the
2029 grid, i.e. not core electrons and the nuclei charge is reduces
2030 respectively. This avoids problems with sampling highly localized
2031 charges on the grid and is in general recommended. Next, there
2032 follow parameters for the multi grid solver, namely the resolution
2033 of the grid, see under fragmenting the molecule, the interpolation
2034 degree and the number of near field cells. A grid level of 6 is
2035 recommended but costly in terms of memory, the other values are at
2036 their recommend values.</para>
2037
2038 <para>In the last line, parameters are given on how to access the
2039 JobMarket server, namely it address and its port.</para>
2040 </section>
2041
2042 <section xml:id='fragmentation.analyse-fragment-results'>
2043 <title xml:id='fragmentation.analyse-fragment-results.title'>
2044 Analyse fragment results</title>
2045
2046 <para>After the energies and force vectors of each fragment have
2047 been calculated, they need to be summed up to an approximation for
2048 the energy and force vectors of the whole molecular system. This is
2049 done by calling this action.</para>
2050
2051 <programlisting>
2052 ... --analyse-fragment-results \
2053 --fragment-prefix "BondFragment" \
2054 --fragment-resultfile BondFragment_results.dat \
2055 --store-grids 1
2056 </programlisting>
2057
2058 <para>The purpose of the prefix should already be known to you, same
2059 with the result file that is the file parsed by MoleCuilder. The
2060 last option states that the sampled charge densities and the
2061 calculated potential from the long-range calculations should be
2062 stored with the summed up energies and forces. Note that this makes
2063 the resulting files substantially larger (Hundreds of megabyte or
2064 even gigabytes). Fragment energies and forces are stored in
2065 so-called internal homology containers. These are explained in the
2066 next section.</para>
2067
2068 <para>Note that this action sets the force vector if these have been
2069 calculated for the fragment. Hence, a
2070 <link linkend="molecule.verlet-integration">verlet integration</link>
2071 is possible afterwards.</para>
2072 </section>
2073
2074 <section xml:id='fragmentation.store-saturated-fragment'>
2075 <title xml:id='fragmentation.store-saturated-fragment.title'>Store
2076 a saturated fragment</title>
2077
2078 <para>After the energies and force vectors of each fragment have
2079 been calculated, they need to be summed up to an approximation for
2080 the energy and force vectors of the whole molecular system. This is
2081 done by calling this action.</para>
2082
2083 <para>This will store the currently selected atoms as a fragment
2084 where all dangling bonds (by atoms that are connected in the bond
2085 graph but have not been selected as well) are saturated with
2086 additional hydrogen atoms. The output formats are set to just xyz.
2087 </para>
2088
2089 <programlisting>
2090 ... --store-saturated-fragment \
2091 --DoSaturate 1 \
2092 --output-types xyz
2093 </programlisting>
2094 </section>
2095 </section>
2096
2097 <section xml:id='homology'>
2098 <title xml:id='homology.title'>Homologies</title>
2099
2100 <para>After a fragmentation procedure has been performed fully, what
2101 to do with the results? The forces can be used already but what about
2102 the energies? The energy value is basically the function evaluation of
2103 the Born-Oppenheimer surface. For molecular dynamics simulations
2104 continuous ab-initio calculations to evaluate the Born-Oppenheimer
2105 surface is not feasible. Instead usually empirical potential functions
2106 are fitted as to resemble the Born-Oppenheimer surface to a sufficient
2107 degree.</para>
2108
2109 <para>One frequent method is the many-body expansion of said surface
2110 which is basically nothing else than the fragment ansatz described
2111 above. Potential functions resemble a specific term in this many-body
2112 expansion. These are discussed in the next section.</para>
2113
2114 <para>For each of these terms all homologous fragments (i.e. having
2115 the same atoms with respect to the present elements and bonded in the
2116 same way), differing only in the coordinate of each atom, are just a
2117 sampling or a function evaluation of this term of the many-body
2118 expansion with respect to varying nuclei coordinates. Hence, it is
2119 appropriate to use these function evaluations in a non-linear
2120 regression procedure. That is, we want to tune the parameter of the
2121 empirical potential function in such a way as to most closely obtain
2122 the same function evaluation as the ab-initio calculation did with the
2123 same nuclear coordinates. Usually, this is done in a least-square
2124 sense, minimising the euclidean norm.</para>
2125
2126 <para>Homologies are then nothing else but containers for a specific
2127 type of fragment of all the different, calculated configurations (i.e.
2128 varying nuclear coordinates of the same fragment).</para>
2129
2130 <para>Now, we explain the actions that parse and store
2131 homologies.</para>
2132
2133 <programlisting>... --parse-homologies homologies.dat</programlisting>
2134
2135 <para>This parses the all homologies contained in the file
2136 <filename>homologies.dat</filename> and appends them to the homology
2137 container.</para>
2138
2139 <programlisting>... --save-homologies homologies.dat</programlisting>
2140
2141 <para>Complementary, this stores the current contents of the homology
2142 container, overwriting the file
2143 <filename>homologies.dat</filename>.</para>
2144 </section>
2145
2146 <section xml:id='potentials'>
2147 <title xml:id='potentials.title'>Potentials</title>
2148
2149 <para>In much the same manner, we would now ask what are homology
2150 files or containers good for but with the just had explanation it
2151 should be clear: We fit potential function to these function
2152 evaluation of terms of the many-body expansion of the Born-Oppenheimer
2153 surface of the full system.</para>
2154
2155 <section xml:id='potentials.fit-potential'>
2156 <title xml:id='potentials.fit-potential.title'>Fitting empirical
2157 potentials</title>
2158
2159 <para>Let's take a look at an exemplary call to the fit potential
2160 action.</para>
2161
2162 <programlisting>
2163 ... --fit-potential \
2164 --fragment-charges 8 1 1 \
2165 --potential-charges 8 1 \
2166 --potential-type morse \
2167 --take-best-of 5
2168 </programlisting>
2169
2170 <para>Again, we look at each option in turn. The first is the
2171 charges or elements specifying the set of homologous fragments that
2172 we want to look at. Here, obviously we are interested in water
2173 molecules, consisting of a single oxygen and two hydrogen atoms.
2174 Next, we specify the nuclei coordinates of the potential. We give
2175 the type of the potential as morse, which requires a single distance
2176 or two nuclear coordinates, here between an oxygen and a hydrogen
2177 atom. Finally, we state that the non-linear regression should be
2178 done with five random starting positions and the set of parameters
2179 with the smallest L2 norm wins.</para>
2180
2181 <note>
2182 <para>Due to translational and rotational degrees of freedom for
2183 fragments smaller than 7 atoms, it is appropriate to look at the
2184 pair-wise distances and not at the absolute coordinates. Hence,
2185 the two atomic positions, here for oxygen and hydrogen, are
2186 converted to a single distance. If we had given an harmonic
2187 angular potential and three charges/element, 8 1 1, i.e. oxygen
2188 and two hydrogens, we would have obtained three distances.</para>
2189
2190 <para>MoleCuilder always adds a so-called constant potential to
2191 the fit containing only a single parameter, the energy offset.
2192 This offset compensates for the interaction energy associated with
2193 a fragment of order 1, e.g. a single hydrogen atom.</para>
2194 </note>
2195 </section>
2196
2197 <section xml:id='potentials.fit-compound-potential'>
2198 <title xml:id='potentials.fit-compound-potential.title'>Fitting
2199 many empirical potentials simultaneously</title>
2200
2201
2202 <para>Another way is using a file containing a specific set of
2203 potential functions, possibly even with initial values.</para>
2204
2205 <programlisting>
2206 ... --fit-compound-potential \
2207 --fragment-charges 8 1 1 \
2208 --potential-file water.potentials \
2209 --set-threshold 1e-3 \
2210 --training-file test.dat
2211 </programlisting>
2212
2213 <para>Now, all empirical potential functions are summed up into a
2214 so-called compound potential over the combined set of parameters.
2215 These are now fitted simultaneously. For example, if the potential
2216 file <filename>water.potentials</filename> contains a harmonic bond
2217 potential between oxygen and hydrogen and another angular potential
2218 for the angle between hydrogen, oxygen, and hydrogen atom we would
2219 fit a still simple function approximating the energy of a single
2220 water molecule. Here, the threshold takes the place of the
2221 take-best-of option. Here, random starting parameters are used as
2222 long as the final L2 error is not below 1e-3. Also, all data used
2223 for training, i.e. the tuples consisting of the fragments nuclei
2224 coordinates and the associated energy value are written to the file
2225 <filename>test.dat</filename>. This allows for graphical or other
2226 type of analysis.</para>
2227
2228 <para>Note that you can combine the two ways, i.e. start with a
2229 fit-potential call but give an empty potential file. The resulting
2230 parameters are stored in it. Fit other potentials and give different
2231 file names for each in turn. Eventually, you have to combine the file
2232 in a text editor at the moment. And perform a fit-compound-potential
2233 with this file.</para>
2234 </section>
2235
2236
2237 <section xml:id='potentials.parse-potential'>
2238 <title xml:id='potentials.parse-potential.title'>Parsing an
2239 empirical potentials file</title>
2240
2241 <para>Responsible for the compound potential is every potential
2242 function whose signature matches with the designated fragment-charges
2243 and who is currently known to an internal instance called the
2244 PotentialRegistry.</para>
2245
2246 <para>More potentials can be registered (fit-potential will also
2247 register the potential it fits) by parsing them from a file.</para>
2248
2249 <programlisting>
2250 ... --parse-potentials water.potentials
2251 </programlisting>
2252
2253 <note>Currently, only <productname>TREMOLO</productname> potential
2254 files are understood and can be parsed.</note>
2255 </section>
2256
2257 <section xml:id='potentials.save-potential'>
2258 <title xml:id='potentials.save-potential.title'>Saving an
2259 empirical potentials file</title>
2260
2261 <para>The opposite to parse-potentials is save-potentials that writes
2262 every potential currently known to the PotentialRegistry to the given
2263 file along with the currently fitted parameters</para>
2264
2265 <programlisting>
2266 ... --save-potentials water.potentials
2267 </programlisting>
2268
2269 <note>Again, only the <productname>TREMOLO</productname> potential
2270 format is understood currently and is written.</note>
2271 </section>
2272
2273 <section xml:id='potentials.fit-particle-charges'>
2274 <title xml:id='potentials.fit-particle-charges.title'>Fitting
2275 particle charges</title>
2276
2277 <para>The above empirical potential just model the short-range
2278 behavior in the molecular fragment, namely the bonded interaction.
2279 In order to model the long-range interaction as well without solving
2280 for the electronic ground state in each time step, particle charges
2281 are used that capture to some degree the created dipoles due to
2282 charge transfer from one atom to another when bonded.</para>
2283
2284 <para>To allow least-squares regression of these partial charges we
2285 need the results of long-range calculations and the store-grids
2286 option (see above under <link linkend="fragmentation">Fragmentation
2287 </link>) must have been given. With these sampled charge density and
2288 Coulomb potential stored in the homology containers, we call this
2289 action as follows.</para>
2290
2291 <programlisting>
2292 ... --fit-particle-charges \
2293 --fragment-charges 8 1 1 \
2294 --potential-file water.potentials \
2295 --radius 0.2
2296 </programlisting>
2297
2298 <para>This will again use water molecule as homologous fragment
2299 "key" to request configurations from the container. Results are
2300 stored in <filename>water.potentials</filename>. The radius is used
2301 to mark the region directly around the nuclei from the fit
2302 procedure. As here the charges of the core electrons and the nuclei
2303 itself dominate, we however are only interested in a good
2304 approximation to the long-range potential, this mask radius allows
2305 to give the range of the excluded zone.</para>
2306 </section>
2307 </section>
2308
2309 <section xml:id='dynamics'>
2310 <title xml:id='dynamics.title'>Dynamics</title>
2311
2312 <para>For fitting potentials or charges we need many homologuous but
2313 different fragments, i.e. atoms with slightly different positions.
2314 How can we generate these?</para>
2315
2316 <para>One possibility is to use molecular dynamics. With the
2317 aforementioned fragmentation scheme we can quickly calculate not only
2318 energies but also forces if the chosen solver, such as
2319 <link xlink:href="http://www.mpqc.org/"><productname>MPQC
2320 </productname></link>, supports it. Integrating these forces
2321 discretely over time gives insight into vibrational features of a
2322 molecular system and allows to generate those positions for fitting
2323 potentials that describe these vibrations.</para>
2324
2325 <section xml:id='dynamics.molecular-dynamics'>
2326 <title xml:id='dynamics.molecular-dynamics.title'>Molecular dynamics
2327 </title>
2328
2329 <para>The molecular dynamics action is a so-called macro Action,
2330 i.e. it combines several other Actions into one, namely:</para>
2331 <itemizedlist>
2332 <listitem>
2333 <para>--verlet-integration</para>
2334 </listitem>
2335 <listitem>
2336 <para>--output</para>
2337 </listitem>
2338 <listitem>
2339 <para>--clear-fragment-results</para>
2340 </listitem>
2341 <listitem>
2342 <para>--destroy-adjacency</para>
2343 </listitem>
2344 <listitem>
2345 <para>--create-adjacency</para>
2346 </listitem>
2347 <listitem>
2348 <para>--update-molecules</para>
2349 </listitem>
2350 <listitem>
2351 <para>--fragment-molecule</para>
2352 </listitem>
2353 <listitem>
2354 <para>--fragment-automation</para>
2355 </listitem>
2356 <listitem>
2357 <para>--analyse-fragment-results</para>
2358 </listitem>
2359 </itemizedlist>
2360
2361 <para>The following will perform a molecular dynamics simulation
2362 for 100 time steps, each time step combining 0.5 atomic time units,
2363 i.e. 1.2 1e-17 s. The other options listed below will seem familiar
2364 to you if you have read about the other Actions listed above. Below
2365 we will not keep the bondgraph, i.e bonds and molecules may change
2366 over the simulation and hence also the created fragments per time
2367 step.
2368 </para>
2369
2370 <programlisting>
2371 ... --molecular-dynamics \
2372 --steps 100 \
2373 --keep-bondgraph 0 \
2374 --order 3 \
2375 --distance 3. \
2376 --deltat 0.5 \
2377 --keep-fixed-CenterOfMass 1 \
2378 --fragment-executable mpqc \
2379 </programlisting>
2380 </section>
2381
2382 <section xml:id='dynamics.optimize-structure'>
2383 <title xml:id='dynamics.optimize-structure.title'>Structure
2384 optimization</title>
2385
2386 <para>Structure optimization is also a macro Action, it basically
2387 combines the same Actions as molecular-dynamics does. However, it
2388 uses force-annealing instead of verlet-integration.</para>
2389
2390 <para>The following performs a structure optimization of the
2391 currently selected atoms (may also be a subset) for up to 100 time
2392 steps, where each time step ist 0.5 atomic time units. The time
2393 step here is the initial step with for annealing.
2394 </para>
2395
2396 <programlisting>
2397 ... --optimize-structure \
2398 --keep-bondgraph 1 \
2399 --output-every-step 1 \
2400 --steps 100 \
2401 --order 3 \
2402 --distance 3. \
2403 --deltat 0.5 \
2404 --keep-fixed-CenterOfMass 1 \
2405 --fragment-executable mpqc \
2406 </programlisting>
2407
2408 <para>Note that output-every-step will allow you to watch the
2409 optimization as each step is placed into a distinct time step.
2410 Otherwise only two time steps would be created: the initial and
2411 the final one containing the optimized structure.</para>
2412 </section>
2413
2414 <section xml:id='dynamics.set-world-time'>
2415 <title xml:id='dynamics.set-world-time.title'>Set the world's time
2416 step</title>
2417
2418 <para>In order to inspect or manipulate atoms and molecules at a
2419 certain time step, the World's time has to be set with the following
2420 Action.
2421 </para>
2422
2423 <para>This will set the World's time to the fifth step (counting
2424 starts at zero).</para>
2425
2426 <programlisting>... --set-world-time 4</programlisting>
2427 </section>
2428
2429 <section xml:id='dynamics.save-temperature'>
2430 <title xml:id='dynamics.save-temperature.title'>Save the
2431 temperature information</title>
2432
2433 <para>For each time step the temperature (i.e. the average velocity
2434 per atom times its mass) will be stored to a file.</para>
2435
2436 <programlisting>
2437 ... --save-temperature temperature.dat \
2438 </programlisting>
2439 </section>
2440 </section>
2441
2442 <section xml:id='dynamics.tesselation'>
2443 <title xml:id='dynamics.tesselation.title'>Tesselations</title>
2444
2445 <para>Tesselations obtain molecular surfaces (and volumes) by rolling
2446 a virtual sphere of a certain radii on a molecule until a closed
2447 surface of connected triangles is created.</para>
2448
2449 <section xml:id='dynamics.tesselation.nonconvex-envelope'>
2450 <title xml:id='dynamics.tesselation.nonconvex-envelope.title'>
2451 Non-convex envelope</title>
2452
2453 <para>This will create a non-convex envelope for a molecule and store
2454 it to a file for viewing with external programs.</para>
2455
2456 <programlisting>
2457 ... --nonconvex-envelope 6. \
2458 --nonconvex-file nonconvex.dat
2459 </programlisting>
2460
2461 <para>This tesselation file can be conveniently viewed with
2462 <productname>TecPlot</productname> or with one of the Tcl script
2463 in the util folder with <productname>VMD</productname>. Also,
2464 still pictures can be produced with <productname>Raster3D
2465 </productname>.
2466 <note>The required file header.r3d can be found in a subfolder of
2467 the util folder.</note>
2468 </para>
2469 </section>
2470
2471 <section xml:id='dynamics.tesselation.convex-envelope'>
2472 <title xml:id='dynamics.tesselation.convex-envelope.title'>Convex
2473 envelope</title>
2474
2475 <para>This will create a convex envelope for a molecule and give the
2476 volumes of both the non-convex and the convex envelope. This is good
2477 for measuring the space a molecule takes up, e.g. when filling a
2478 domain and taking care of correct densities.</para>
2479
2480 <programlisting>
2481 ... --convex-envelope 6. \
2482 --convex-file convex.dat
2483 </programlisting>
2484
2485 <para>This tesselation file can be likewise viewed with
2486 <productname>TecPlot</productname> or with one of the Tcl script
2487 in the util folder with <productname>VMD</productname>.</para>
2488 </section>
2489 </section>
2490
2491 <section xml:id='various'>
2492 <title xml:id='various.title'>Various commands</title>
2493
2494 <para>Here, we gather all commands that do not fit into one of above
2495 categories for completeness.</para>
2496
2497 <section xml:id='various.verbose'>
2498 <title xml:id='various.verbose.title'>Changing verbosity</title>
2499
2500 <para>The verbosity level is the amount of stuff printed to screen.
2501 This information will in general help you to understand when
2502 something does not work. Mind the <emphasis>ERROR</emphasis> and
2503 <emphasis>WARNING</emphasis> messages in any case.</para>
2504
2505 <para>This sets the verbosity from default of 2 to 4,</para>
2506
2507 <programlisting>... --verbose 4</programlisting>
2508
2509 <para>or shorter,</para>
2510
2511 <programlisting>... -v 4</programlisting>
2512 </section>
2513
2514 <section xml:id='various.element-db'>
2515 <title xml:id='various.element-db.title'>Loading an element
2516 database</title>
2517
2518 <para>Element databases contain information on valency, van der
2519 Waals-radii and other information for each element.</para>
2520
2521 <para>This loads all element database from the current folder (in a
2522 unix environment):</para>
2523
2524 <programlisting>... --element-db ./</programlisting>
2525
2526 </section>
2527
2528 <section xml:id='various.fastparsing'>
2529 <title xml:id='various.fastparsing.title'>Fast parsing</title>
2530
2531 <para>Parsing all time steps from a given input file can take a
2532 while, especially for larger systems. If fast parsing is activated,
2533 only the first time step is loaded, all other are ignored.</para>
2534
2535 <programlisting>... --fastparsing 1</programlisting>
2536 </section>
2537
2538 <section xml:id='various.version'>
2539 <title xml:id='various.version.title'>Giving the version of the
2540 program</title>
2541
2542 <para>This prints the version information of the code, especially
2543 important when you request the fixing of bugs or implementation of
2544 features.</para>
2545
2546 <programlisting>... --version</programlisting>
2547 </section>
2548
2549 <section xml:id='various.warranty'>
2550 <title xml:id='various.warranty.title'>Giving warranty
2551 information</title>
2552
2553 <para>As follows warranty information is given,</para>
2554
2555 <programlisting>... --warranty</programlisting>
2556 </section>
2557
2558 <section xml:id='various.help-redistribute'>
2559 <title xml:id='various.help-redistribute.title'>Giving
2560 redistribution information</title>
2561
2562 <para>This gives information on the license and how to redistribute
2563 the program and its source code</para>
2564
2565 <programlisting>... --help-redistribute</programlisting>
2566 </section>
2567 </section>
2568
2569 <section xml:id='sessions'>
2570 <title xml:id='sessions.title'>Sessions</title>
2571
2572 <para>A session refers to the queue of actions you have executed.
2573 Together with the initial configuration (and all files required for
2574 actions in the queue) this might be seen as a clever way of storing
2575 the state of a molecular system. When proceeding in a try&amp;error
2576 fashion to construct a certain system, it is a good idea, to store the
2577 session at the point where your attempts start to deviate from one
2578 another.</para>
2579
2580 <section xml:id='sessions.store-session'>
2581 <title xml:id='sessions.store-session.title'>Storing a session
2582 </title>
2583
2584 <para>Storing sessions is simple,</para>
2585
2586 <programlisting>
2587 ... --store-session "session.py" \
2588 --session-type python
2589 </programlisting>
2590
2591 <para>Here, the session type is given as python (the other option is
2592 cli for in the manner of the command-line interface) and the written
2593 python script <filename>session.py</filename> can even be used with
2594 the python interface described below, i.e. it is a full python script
2595 (that however requires the so-called pyMoleCuilder module).</para>
2596 </section>
2597
2598 <section xml:id='sessions.load-session'>
2599 <title xml:id='sessions.load-session.title'>Loading a session</title>
2600
2601 <para>Loading a session only works for python scripts. This actually
2602 blurs the line between the command-line interface and the python
2603 interface a bit. But even more, MoleCuilder automatically executes a
2604 script called <filename>molecuilder.py</filename> if such a file is
2605 contained in the current directory.</para>
2606
2607 <programlisting>... --load-session "session.py"</programlisting>
2608
2609 <para>This will execute every action with its options contained in the
2610 script <filename>session.py</filename>.</para>
2611 </section>
2612 </section>
2613
2614 <section xml:id='various-specific'>
2615 <title xml:id='various-specific.title'>Various specific commands
2616 </title>
2617
2618 <para>In this (final) section of the action description we list a number
2619 Actions that are very specific to some purposes (or other programs).
2620 </para>
2621
2622 <section xml:id='various-specific.save-selected-atoms-as-exttypes'>
2623 <title xml:id='various-specific.save-selected-atoms-as-exttypes.title'>
2624 Saving exttypes of a set of atoms</title>
2625
2626 <para>This saves the atomic ids of all currently selected atoms in a
2627 <link xlink:href="http://www.tremolo-x.com/"><productname>TREMOLO
2628 </productname></link> exttypes file with the given name.</para>
2629
2630 <programlisting>
2631 ... --save-selected-atoms-as-exttypes \
2632 --filename test.exttypes </programlisting>
2633 </section>
2634
2635 <section xml:id='various-specific.set-parser-parameters'>
2636 <title xml:id='various-specific.set-parser-parameters.title'>Setting
2637 parser specific parameters</title>
2638
2639 <para>You can also tweak the parameters stored in this file easily.
2640 For example, <productname>MPQC</productname> stores various
2641 parameters modifying the specific ab-initio calculation performed.
2642 For <link xlink:href="http://www.mpqc.org/"><productname>MPQC
2643 </productname></link> and
2644 <link xlink:href="http://www.psicode.org/"><productname>Psi4
2645 </productname></link> this can be modified as follows.</para>
2646
2647 <programlisting>
2648 ... --set-parser-parameters mpqc \
2649 --parser-parameters "theory=CLHF;basis=6-31*G;"
2650 </programlisting>
2651
2652 <para>This sets the ab-initio theory to closed-shell Hartree-Fock
2653 and the basis set to 6-31*G. Please check the
2654 <productname>MPQC</productname> manual on specific
2655 parameters.</para>
2656 </section>
2657
2658 <section xml:id='various-specific.set-tremolo-atomdata'>
2659 <title xml:id='various-specific.set-tremolo-atomdata.title'>Tremolo
2660 specific options and potential files</title>
2661
2662 <para><productname>TREMOLO</productname>'s configuration files start
2663 with a specific line telling the amount of information stored in the
2664 file. This file can be modified, e.g. to enforce storing of
2665 velocities and forces as well as the atoms positions and
2666 element.</para>
2667
2668 <programlisting>
2669 ... --set-tremolo-atomdata "ATOM id element u=3 v=3 F=3" \
2670 --reset 1
2671 </programlisting>
2672
2673 <para>This will not append but reset the old line and fill it with
2674 the given string.</para>
2675
2676 <para>One specific action is required when loading certain
2677 <productname>TREMOLO</productname> configuration files. These
2678 contain element notations that refer to parameterized names used in
2679 empirical potentials and molecular dynamics simulations and not the
2680 usual chemical symbols, such as H or O. We may load an auxiliary
2681 file that gives the required conversion from OH1 to H, which is the
2682 so-called potential file.</para>
2683
2684 <programlisting>... --parse-tremolo-potentials water.potentials</programlisting>
2685
2686 <para>This parses the lookup table from the file
2687 <filename>water.potentials</filename> and it can be used in
2688 following load actions.</para>
2689 </section>
2690 </section>
2691 </section>
2692
2693 <section xml:id='textmenu-interface'>
2694 <title xml:id='textmenu-interface.title'>Text menu</title>
2695
2696 <para>We now discuss how to use the text menu interface.</para>
2697
2698 <para>The text menu is very much the interface counterpart to the
2699 command-line interface. Both work in a terminal session.</para>
2700
2701 <para>In the text menu, actions can be selected from hierarchical lists.
2702 Note that the menus for the graphical interface are organized in the
2703 exactly same way. After an action has been chosen, the option values
2704 have to be entered one after the other. After the last option value has
2705 been given, the action is executed and the result printed to the
2706 screen.</para>
2707
2708 <para>With regards to the other functionality, it is very much the same
2709 as the command-line interface above.</para>
2710 </section>
2711
2712 <section xml:id='graphical-user-interface'>
2713 <title xml:id='graphical-user-interface.title'>Graphical user interface
2714 </title>
2715
2716 <para>The main point of the GUI is that it renders the atoms and
2717 molecules visually. These are represented by the common
2718 stick-and-ball-model. Single or multiple atoms and molecules can easily
2719 be accessed, activated and manipulated via tables. Changes made in the
2720 tables cause immediate update of the visual representation. Under the
2721 hood each of these manipulations is nothing but the call to an action,
2722 hence is fully undo- and redoable.</para>
2723
2724 <para>This is mostly helpful to design more advanced structures that are
2725 conceptually difficult to imagine without visual aid. At the end, a
2726 session may be stored and this script can then be used to construct
2727 various derived or slightly modified structures.</para>
2728
2729 <section xml:id='graphical-user-interface.basic-view'>
2730 <title xml:id='graphical-user-interface.basic-view.title'>Basic view
2731 </title>
2732
2733 <para>Let us first give an impression of the basic view of the gui
2734 after a molecule has been loaded.</para>
2735
2736 <figure>
2737 <title>Screenshot of the basic view of the GUI after loading a file
2738 with eight water molecules.</title>
2739
2740 <mediaobject>
2741 <imageobject>
2742 <imagedata entityref="example_basic_view" scalefit="1" width="100%"/>
2743 </imageobject>
2744 </mediaobject>
2745 </figure>
2746
2747 <section xml:id='graphical-user-interface.3d-view'>
2748 <title xml:id='graphical-user-interface.3d-view.title'>3D view
2749 </title>
2750
2751 <para>In the above figure, you see the stick-and-ball representation
2752 of the water molecules, the dreibein giving the positive axis
2753 direction and the cuboidal domain on a black background.</para>
2754 </section>
2755
2756 <section xml:id='graphical-user-interface.information-tabs'>
2757 <title xml:id='graphical-user-interface.information-tabs.title'>
2758 Information Tabs</title>
2759
2760 <para>Beneath this 3D view that you can rotate at will your mouse
2761 and zoom in and out with your scroll wheel, you find to the right a
2762 part containing two tabs named Atom and Molecule. Look at where the
2763 mouse pointer is. It has colored the atom underneath in cyan
2764 (although it's also an oxygen atom and should bne coloured in rose
2765 as the rest). You can inspect its properties in the tab Atom: Name,
2766 element, mass, charge, position and number of bonds. If you switch
2767 to the Molecule tab, you would see the properties of the water
2768 molecule this specific atom belongs to.</para>
2769 </section>
2770
2771 <section xml:id='graphical-user-interface.shape'>
2772 <title xml:id='graphical-user-interface.shape.title'>Shape section
2773 </title>
2774
2775 <para>Beneath these information tabs you find the shape sections.
2776 There you find a list of all currently created shapes and you can
2777 manipulate them via the buttons beneath this list.</para>
2778 </section>
2779
2780 <section xml:id='graphical-user-interface.timeline'>
2781 <title xml:id='graphical-user-interface.timeline.title'>Timeline
2782 </title>
2783
2784 <para>Directly below the 3D view there is a long slider. If a loaded
2785 file has multiple time step entries, this slider allows you to
2786 smoothly select one time frame after another. Sliding it with the
2787 mouse from left to right will reveal the animation that is hidden
2788 behind the distinct snapshots stored in the configuration
2789 file.</para>
2790 </section>
2791
2792 <section xml:id='graphical-user-interface.tables'>
2793 <title xml:id='graphical-user-interface.tables.title'>Selection
2794 tables</title>
2795
2796 <para>Underneath the time line there is another place for
2797 tabs.</para>
2798
2799 <para>The first is on molecules, listing all present molecules of
2800 the molecular system in a list view. If you click on a specific
2801 molecule, the one will get selected or unselected depending on its
2802 current selection state (see below for details on this with respect
2803 to the GUI).</para>
2804
2805 <para>The next tab enumerates all elements known to MoleCuilder
2806 where the ones are greyed out that are not present in the molecular
2807 system. Clicking on a present element will select all atoms of this
2808 specific element. A subsequent click unselects again.</para>
2809
2810 <para>Subsequent follow tabs on enumerating the fragments and their
2811 fragment energies if calculated and the homologies along with
2812 graphical depiction (via QWT) if present.</para>
2813 </section>
2814 </section>
2815
2816 <section xml:id='graphical-user-interface.selections'>
2817 <title xml:id='graphical-user-interface.selections.title'>Selections
2818 </title>
2819
2820 <para>Selections work generally always by selecting the respective
2821 action from the pull-down menu.</para>
2822
2823 <para>However, it may also be accessed directly. The row of icons
2824 above the 3D view has two icons depicting the selection of individual
2825 atoms or molecules. If either of them is selected, clicking with the
2826 left mouse button on an atom will either (un)select the atom or its
2827 associated molecule. Multiple atoms can be selected in this
2828 manner.</para>
2829
2830 <para>Also the selection tabs may be used by clicking on the name of a
2831 molecule as stated above or at an element.</para>
2832
2833 <para>Similarly, if shapes are present in the shape section, clicking
2834 them with select them and also cause a translucent visualization to
2835 appear in the 3D view. Note that this visualization is quite costly
2836 right now and not suited to complex shapes.</para>
2837 </section>
2838
2839 <section xml:id='graphical-user-interface.dialogs'>
2840 <title xml:id='graphical-user-interface.dialogs.title'>Dialogs</title>
2841
2842 <para>Most essential, however, to the GUI are the dialogs. Each action
2843 calls forth such a dialog even if no options are required (the
2844 execution of the action has at least to be confirmed). Each dialog
2845 consisting of queries for a particular option value. As each option
2846 value has a specific type, we briefly go into the details of how these
2847 queries look like.</para>
2848
2849 <note>
2850 <para>Each dialog's Ok is greyed out until all entered option values
2851 are valid.</para>
2852 </note>
2853
2854 <section xml:id='graphical-user-interface.dialogs.domain'>
2855 <title xml:id='graphical-user-interface.dialogs.domain.title'>Domain
2856 query</title>
2857
2858 <figure>
2859 <title>Screenshot of a dialog showing a domain query</title>
2860
2861 <mediaobject>
2862 <imageobject>
2863 <imagedata entityref="dialog_box" scalefit="1" width="100%"/>
2864 </imageobject>
2865 </mediaobject>
2866
2867 <para>In the domain query a 3x3 symmetric matrix has to be
2868 entered. In the above screenshots you notice that the only
2869 non-zero entries are on the main diagonal. Here, we have simply
2870 specified a cube of edge length 8. The ok button will be greyed
2871 out if the matrix is either singular or not symmetric.</para>
2872 </figure>
2873 </section>
2874
2875 <section xml:id='graphical-user-interface.dialogs.element'>
2876 <title xml:id='graphical-user-interface.dialogs.element.title'>
2877 Element query</title>
2878
2879 <figure>
2880 <title>Screenshot the add atom action containing an element
2881 query</title>
2882
2883 <mediaobject>
2884 <imageobject>
2885 <imagedata entityref="dialog_add-atom_tooltip" scalefit="1" width="100%"/>
2886 </imageobject>
2887 </mediaobject>
2888
2889 <para>Elements are picked from a pull-down box where all known
2890 elements are listed.</para>
2891
2892 <para>In this dialog you also notice that a tooltip is given,
2893 briefly explaining what the action does.</para>
2894 </figure>
2895 </section>
2896
2897 <section xml:id='graphical-user-interface.dialogs.action'>
2898 <title xml:id='graphical-user-interface.dialogs.action.title'>
2899 Complex query</title>
2900
2901 <figure>
2902 <title>Screenshot of a complex dialog consisting of multiple
2903 queries</title>
2904
2905 <mediaobject>
2906 <imageobject>
2907 <imagedata entityref="dialog_complex" scalefit="1" width="100%"/>
2908 </imageobject>
2909 </mediaobject>
2910
2911 <para>Here we show a more complex dialog. It queries for strings,
2912 for integer values (see the increase/decrease arrows), for
2913 booleans and for files (the "choose" buttons opens a file
2914 dialog).</para>
2915 </figure>
2916 </section>
2917
2918 <section xml:id='graphical-user-interface.dialogs.exit'>
2919 <title xml:id='graphical-user-interface.dialogs.exit.title'>Exit
2920 query</title>
2921
2922 <figure>
2923 <title>Screenshort showing the exit dialog</title>
2924
2925 <mediaobject>
2926 <imageobject>
2927 <imagedata entityref="dialog_exit" scalefit="1" width="100%"/>
2928 </imageobject>
2929 </mediaobject>
2930
2931 <para>Finally, we show the dialog that will pop up when exiting
2932 the graphical interface. It will ask whether it should store the
2933 current state of the system in the input file or not. You may
2934 cancel the exit, close without saving or save the current
2935 state.</para>
2936 </figure>
2937 </section>
2938 </section>
2939 </section>
2940
2941 <section xml:id='python-interface'>
2942 <title xml:id='python-interface.title'>Python interface</title>
2943
2944 <para>Last but not least we elaborate on the python interface. We have
2945 already discusses this interface to some extent. The current session,
2946 i.e. the queue of actions you have executed, can be stored as a python
2947 script and subsequently executed independently of the user interface it
2948 was created with. More general, MoleCuilder can execute arbitrary python
2949 scripts where prior to its execution a specific module is loaded by
2950 default enabling access to MoleCuilder's actions from inside the
2951 script.</para>
2952
2953 <para>MoleCuilder's python module is called pyMoleCuilder. it is
2954 essentially a library that can be imported into python just as any other
2955 module. Let us assume you have started the python interpreter and you
2956 have added the destination of the <filename>pyMoleCuilder</filename>
2957 library to the <varname>PYTHONPATH</varname> variable.</para>
2958
2959 <programlisting>import pyMoleCuilder as mol</programlisting>
2960
2961 <para>Subsequently, you can access the help via</para>
2962
2963 <programlisting>help(mol)</programlisting>
2964
2965 <para>This will list all of MoleCuilder's actions with their function
2966 signatures within python as contained in the module pyMoleCuilder named
2967 as mol in the scope of the currently running interpreter. Note that the
2968 function names are not the names you know from the command-line
2969 interface, they might be called
2970 <computeroutput>WorldChangeBox(...)</computeroutput> or alike.</para>
2971
2972 <para>Let's try it out.</para>
2973
2974 <programlisting>print mol.CommandVersion()</programlisting>
2975
2976 <para>This will state the current version of the library.</para>
2977
2978 <para>Go ahead and try out other commands. Refer to the documentation
2979 under the command-line interface and look up the function name via
2980 help.</para>
2981 </section>
2982 </chapter>
2983
2984 <chapter>
2985 <title>Conclusions</title>
2986
2987 <para>This ends this user guide.</para>
2988
2989 <para>We have given you a brief introduction to the aim of the program and
2990 how each of the four interfaces are to be used. The rest is up to
2991 you.</para>
2992
2993 <para>Tutorials and more information is available online, see <link
2994 xlink:href="http://www.molecuilder.com/">MoleCuilder's website</link>.
2995 </para>
2996
2997 <para>Be aware that in general knowing how the code works allows you to
2998 understand what's going wrong if something's going wrong.</para>
2999
3000 <section>
3001 <title>Thanks</title>
3002
3003 <para>Huge thanks go out to Saskia Metzler who was patient enough to let
3004 me sit next to her while riding ten hours in a bus to Berlin.</para>
3005 </section>
3006 </chapter>
3007</book>
Note: See TracBrowser for help on using the repository browser.