source: doc/userguide/userguide.xml@ a84e8d

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since a84e8d was a84e8d, checked in by Frederik Heber <heber@…>, 10 years ago

Added Push/PopMolecules selection action.

  • Property mode set to 100644
File size: 124.0 KB
Line 
1<?xml version="1.0" encoding="UTF-8"?>
2<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN"
3 "http://www.oasis-open.org/docbook/xml/4.5/docbookx.dtd" [
4<!ENTITY molecuilder_logo SYSTEM "pictures/molecuilder_logo.png" NDATA PNG>
5<!ENTITY dialog_box SYSTEM "pictures/dialog_box.png" NDATA PNG>
6<!ENTITY dialog_add-atom_tooltip SYSTEM "pictures/dialog_add-atom_tooltip.png" NDATA PNG>
7<!ENTITY dialog_complex SYSTEM "pictures/dialog_complex.png" NDATA PNG>
8<!ENTITY dialog_exit SYSTEM "pictures/dialog_exit.png" NDATA PNG>
9<!ENTITY example_basic_view SYSTEM "pictures/example_basic_view.png" NDATA PNG>
10]>
11<book version="5.0" xmlns="http://docbook.org/ns/docbook"
12 xmlns:xlink="http://www.w3.org/1999/xlink"
13 xmlns:xi="http://www.w3.org/2001/XInclude"
14 xmlns:svg="http://www.w3.org/2000/svg"
15 xmlns:m="http://www.w3.org/1998/Math/MathML"
16 xmlns:html="http://www.w3.org/1999/xhtml"
17 xmlns:db="http://docbook.org/ns/docbook">
18 <info>
19 <title>MoleCuilder - a Molecule Builder</title>
20
21 <author>
22 <personname><firstname>Frederik</firstname><surname>Heber</surname></personname>
23
24 <affiliation>
25 <orgname>heber@ins.uni-bonn.de</orgname>
26 </affiliation>
27 </author>
28
29 <pubdate>07/03/14</pubdate>
30 </info>
31
32 <chapter>
33 <title>Introduction</title>
34
35 <figure>
36 <title>MoleCuilder logo depicting a tesselated buckyball and a benzene
37 molecule</title>
38
39 <mediaobject>
40 <imageobject>
41 <imagedata entityref="molecuilder_logo" scalefit="1" width="100%"/>
42 </imageobject>
43 </mediaobject>
44 </figure>
45
46 <section xml:id='whatis'>
47 <title xml:id='whatis.title'>What is MoleCuilder?</title>
48
49 <para>In Short,<command> MoleCuilder</command> is a concatenation of
50 molecule and builder.</para>
51
52 <para>In more words, molecular dynamics simulations are frequently
53 employed to simulate material behavior under stress, chemical reactions
54 such as of cementitious materials, or folding pathways and docking
55 procedures of bio proteins. Even if the computational load, due to the
56 large number of atoms, is very demanding, nonetheless they may serve as
57 a starting point, e.g. extracting parameters for a coarser model.
58 However, what is on the other hand the starting point of molecular
59 dynamics simulations? It is the coordinate and element of each atom
60 combined with potential functions that model the interactions.</para>
61
62 <para>MoleCuilder allows to fully construct such a starting point:
63 letting the user construct atomic and molecular geometries by a simple
64 point&amp;click approach, a CAD-pendant on the nanoscale. Creating
65 suitable empirical potentials by fitting parameters to ab-initio
66 calculations within hours. Specific emphasis is placed on a
67 simple-to-use interface, allowing for the quick-and-dirty building of
68 molecular systems, and on scriptability. Eventually, not a single, but
69 many, related molecular systems have to be created.</para>
70
71 <section xml:id='installation'>
72 <title xml:id='installation.title'>Installation requirements</title>
73
74 <para>For installations requirements and instructions we refer to the
75 internal documentation of MoleCuilder, created via doxgen from the
76 source code.</para>
77 </section>
78
79 <section xml:id='license'>
80 <title xml:id='license.title'>License</title>
81
82 <para>As long as no other license statement is given, MoleCuilder is
83 free for user under the GNU Public License (GPL) Version 2 (see
84 <uri>www.gnu.de/documents/gpl-2.0.de.html</uri>).</para>
85 </section>
86
87 <section xml:id='disclaimer'>
88 <title xml:id='disclaimer.title'>Disclaimer</title>
89
90 <para>We quote section 11 from the GPLv2 license:</para>
91
92 <remark>Because the program is licensed free of charge, there is not
93 warranty for the program, to the extent permitted by applicable law.
94 Except when otherwise stated in writing in the copyright holders
95 and/or other parties provide the program "as is" without warranty of
96 any kind, either expressed or implied. Including, but not limited to,
97 the implied warranties of merchantability and fitness for a particular
98 purpose. The entire risk as to the quality and performance of the
99 program is with you. Should the program prove defective, you assume
100 the cost of all necessary servicing, repair, or correction.</remark>
101 </section>
102
103 <section xml:id='feedback'>
104 <title xml:id='feedback.title'>Feedback</title>
105
106 <para>If you encounter any bugs, errors, or would like to submit
107 feature request, please use the email address provided at the very
108 beginning of this user guide. The author is especially thankful for
109 any description of all related events prior to occurrence of the
110 error, saved "session scripts" (see below) and auxiliary files. Please
111 mind sensible space restrictions of email attachments.</para>
112 </section>
113
114 <section xml:id='notation'>
115 <title xml:id='notation.title'>Notation</title>
116
117 <para>We briefly explain a few specific wordings associated with the
118 program:</para>
119
120 <itemizedlist>
121 <listitem>
122 <para><emphasis>Action</emphasis> is a command that allows for
123 undoing and redoing, i.e. a single atomic procedure for
124 manipulating the molecular system.</para>
125 </listitem>
126
127 <listitem>
128 <para>Selection refers to a subsets from the set of instances of a
129 particular type, e.g. atoms.</para>
130 </listitem>
131
132 <listitem>
133 <para>Shape means a specific region of the domain that can be
134 described in the way of constructive geometry, i.e. as the
135 intersection, negation, and combination of primitives such as
136 spheres or cylinders.</para>
137 </listitem>
138 </itemizedlist>
139 </section>
140
141 <section xml:id='completeness'>
142 <title xml:id='completeness.title'>Completeness</title>
143
144 <para>This documentation takes quite some effort to write. Hence, the
145 described features and especially the actions herein are settled with
146 respect to their functionality, while newer features or actions are
147 probably missing. This should be a clear sign to you that these are
148 probably not safe to use yet. If you nonetheless require them and thus
149 should acquire some familiarity with the code itself. This suggests
150 changing to the developer documentation which is maintained along with
151 the source code with <productname>doxygen</productname>.</para>
152 </section>
153 </section>
154 </chapter>
155
156 <chapter>
157 <title>Features</title>
158
159 <para>Basically, <command>MoleCuilder</command> parses geometries from
160 files, manipulates them and stores them again in files. The manipulation
161 can be done either via a command-line interface or via the graphical user
162 interface.</para>
163
164 <section xml:id='concepts'>
165 <title xml:id='concepts.title'>Concepts</title>
166
167 <para>In general, we divide the molecular systems into three different
168 components or scales.</para>
169
170 <orderedlist>
171 <listitem>
172 <para>Atoms</para>
173
174 <para>Atoms are the undividable objects of the molecular systems.
175 They have an element <quote>Z</quote> and three coordinates
176 <quote>(x,y,z)</quote>.</para>
177 </listitem>
178
179 <listitem>
180 <para>Molecules</para>
181
182 <para>Molecules are bound conglomeration of atoms. They contain a
183 number of atoms and a specific center in the domain such that its
184 atoms are placed relative to this center. Also, they may have a
185 bounding box, i.e. a subdomain that contains all of the atoms in the
186 molecule.</para>
187
188 <para>Note that the molecular structure of the system, i.e. the
189 bonding graph, is determined by MoleCuilder and used to dissect the
190 system into distinct molecules automatically.</para>
191 </listitem>
192
193 <listitem>
194 <para>Clusters</para>
195
196 <para>Clusters are unbound conglomeration of atoms. Clusters serves
197 as groups of atoms for specific operations that would be to
198 restricted if they worked on just molecules.</para>
199 </listitem>
200
201 <listitem>
202 <para>Domain</para>
203
204 <para>The domain refers to the simulation domain. It is
205 parallelepiped in <inlineequation>
206 <m:math display="inline">
207 <m:mi>\mathbb{R}^3</m:mi>
208 </m:math>
209 </inlineequation>where either periodic, wrapped, or open boundary
210 conditions apply. The domain contains all atoms, i.e. the box
211 containing all atoms.</para>
212 </listitem>
213 </orderedlist>
214 </section>
215
216 <section xml:id='interfaces'>
217 <title xml:id='interfaces.title'>Interfaces</title>
218
219 <para>MoleCuilder has four different interfaces: Command-line, text
220 menu, graphical user interface, and python interface.</para>
221
222 <orderedlist>
223 <listitem>
224 <para>Command-Line</para>
225
226 <para>The command-line interface allows to use MoleCuilder
227 non-interactively via a terminal session. The program is executed by
228 expanding the shell command with a number of commands including all
229 required options that are executed one after the other. After
230 execution of the last command, the program quits. The command-line
231 interface usually works on a specific file that is given as input,
232 manipulated, analysed, ... via the sequence of commands and
233 eventually all changes are stored in the this file. Hence, the input
234 file acts as the state of the starting configuration that is
235 modified via MoleCuilder.</para>
236 </listitem>
237
238 <listitem>
239 <para>Text menu</para>
240
241 <para>The text-menu is similar to the command-line interface with
242 the exception that it allows for interactive sessions. Commands are
243 chosen from a text menu and executed directly after selection by the
244 user.</para>
245 </listitem>
246
247 <listitem>
248 <para>Graphical interface</para>
249
250 <para>The graphical interface is based on Qt. It features a full
251 graphical representation of the simulation domain with atoms and
252 their bonds. It allows manipulation in point&amp;click fashion.
253 Commands are selected from pull-down menus and dialogs are used to
254 query the user for all required parameters to such a command.</para>
255 </listitem>
256
257 <listitem>
258 <para>Python interface</para>
259
260 <para>The last interface is accessible only within the python
261 programming language. MoleCuilder can be loaded as a module and its
262 commands can be executed with either the python interpreter
263 interactively or via python scripts non-interactively. Note that
264 this allows auxiliary calculations to be performed in pythons whose
265 results may be used as parameters in subsequent commands.</para>
266 </listitem>
267 </orderedlist>
268 </section>
269
270 <section xml:id='fileformats'>
271 <title xml:id='fileformats.title'>Known File formats</title>
272
273 <para>We briefly the file formats MoleCuilder can parse and
274 store.</para>
275
276 <itemizedlist>
277 <listitem>
278 <para>XYZ, <filename>.xyz</filename> (simplest of all formats,
279 line-wise element and three coordinates with two line header, number
280 of lines and a comment line)</para>
281 </listitem>
282
283 <listitem>
284 <para><link xlink:href="http://www.mpqc.org/"><productname>MPQC
285 </productname></link>, <filename>.in</filename></para>
286 </listitem>
287
288 <listitem>
289 <para><link xlink:href="http://www.pdb.org/">PDB</link>, <filename>
290 .pdb</filename></para>
291 </listitem>
292
293 <listitem>
294 <para><productname>ESPACK</productname>, <filename>.conf</filename>
295 (electronic structure package by Institute for Numerical Simulation,
296 University of Bonn, code not in circulation)</para>
297 </listitem>
298
299 <listitem>
300 <para><link xlink:href="http://www.psicode.org/"><productname>PSI4
301 </productname></link>, <filename>.psi</filename></para>
302 </listitem>
303
304 <listitem>
305 <para><link xlink:href="http://www.tremolo-x.org/"><productname>
306 TREMOLO</productname></link>, <filename>.data</filename></para>
307 </listitem>
308
309 <listitem>
310 <para>XML, <filename>.xml</filename> (XML as read by
311 <link xlink:href="http://www.scafacos.org/">ScaFaCoS</link>
312 project)</para>
313 </listitem>
314 </itemizedlist>
315
316 <para>These are identified via their suffixes and can be converted from
317 one into another (with loss of all data not in the intersection of
318 stored properties of the two involved file formats).</para>
319 </section>
320 </chapter>
321
322 <chapter>
323 <title>Interfaces</title>
324
325 <para>In this chapter, we explain the intention and use of the four
326 interfaces.</para>
327
328 <para>We give the most extensive explanation of the command-line
329 interface, all subsequent interfaces are explained in highlighting their
330 differences with respect to the command-line interface. This is because
331 the command-line lends itself very well to representation in this textual
332 user guide. Although some images of the graphical interface are given
333 below, they would blow the size of the guide out of proportion.</para>
334
335 <para>In any case, you should make yourself familiar with at least one of
336 the interactive (text menu, GUI) and one of the non-interactive
337 (command-line, python) interfaces to use MoleCuilder to is full potential:
338 The interactive interface gives you the immediate feedback in constructing
339 "synthesis" (build) chains (of commands) for constructing your specific
340 molecular system in the computer. The non-interactive interface lends
341 itself to quick creation of related systems that differ only by specific
342 parameters you have modified in the script (command-line can be used in
343 shell scripts, python itself is a scripted language). Also, the
344 non-interactive interfaces are used for storing sessions which helps you
345 in documentation your experiments and lateron understanding of what has
346 been done.</para>
347
348 <section xml:id='command-line-interface'>
349 <title xml:id='command-line-interface.title'>Command-line interface</title>
350
351 <para>The command-line interface reads options and commands from the
352 command line and executes them sequentially. This may be for example:
353 Open an empty file, add 2 hydrogen atoms and add 1 oxygen atom, choose a
354 simulation box, fill the box with this given "filler" molecule, save the
355 file. This enables the use of MoleCuilder in simple script-files to
356 create a whole range of geometries that only differ in a few parameters
357 automatically.</para>
358
359 <para>Traditionally, <command>MoleCuilder</command> operates on a single
360 configuration file - the state - which may also store additional
361 information depending on the chosen file format such as parameters for
362 ab-initio computations. An example for the above procedure is given
363 below:</para>
364
365 <programlisting>
366 ./molecuilder \
367 -i sample.xyz \
368 --add-atom H \
369 --domain-position "0.,0.,0." \
370 ...
371 </programlisting>
372
373 <para>The first argument is the executable itself. Second, there is a
374 slew of arguments -- one per line split with a backslash telling the
375 shell that the line still continues -- consisting of the input action and
376 an arbitrarily named file <filename>sample.xyz</filename>, which may be
377 empty and whose file format is chosen by the given extension. The third
378 is the add-atom action following by an option that gives the position in
379 the domain where to add the "H"ydrogen atom. An action is always
380 introduced via a double hyphen and its full name (containing just
381 non-capital letters and hyphens) or a single hyphen and a single letter
382 for its shortform, e.g. -a for adding an atom to the system. It is
383 followed by a fixed number of options. Most of these have default values
384 and in this do not have to be specified. If not enough options are given
385 or invalid values have been entered, an error message is printed stating
386 the name of the first missing or invalid option value.</para>
387
388 <note>
389 <para>Note that not all action have shortforms and it is best practice
390 to have the full action name instead of its shortform to make the
391 command-line understable to you in years to come.</para>
392 </note>
393
394 <section xml:id='preliminaries'>
395 <title xml:id='preliminaries.title'>Preliminaries</title>
396
397 <para>Some preliminary remarks are in order which we have gathered
398 here on how these actions work in general.</para>
399
400 <para>Below we first delve into some details about secondary structure
401 such as selections, shapes, and randomization required to specify
402 subsets of atoms and molecules you wish to manipulate. Then, we have
403 ordered the subsequent details on the manipulation depending on the
404 scale they act upon - single atoms, multiple atoms organised as
405 molecules, and all atoms organised by their containing domain.</para>
406
407 <para>In the following we will always give a command to illustrate the
408 procedure but just the necessary parts, i.e. "..." implies to prepend
409 it with the executable and input command for a specific configuration
410 file, for storing the manipulated state of the molecular system. Note
411 that</para>
412
413 <programlisting>./molecuilder --help</programlisting>
414
415 <para>will always give you a list of all available actions and also a
416 brief explanation on how to properly enter values of a specific type,
417 e.g. an element, a vector, or a list of numbers. Details to a specific
418 action can be requested when its full name is known, e.g. for
419 "add-atom",</para>
420
421 <programlisting>./molecuilder --help --actionname add-atom</programlisting>
422
423 <para>which fills you in on each option to the action: its full name,
424 its expected type, and a possibly present default value, and a brief
425 description of the option.</para>
426
427 <para>An Action can be undone and redone, e.g. undo adding an atom as
428 follows,</para>
429
430 <programlisting>... --add-atom H --domain-position "0,0,0" --undo</programlisting>
431
432 <para>and redo as follows</para>
433
434 <programlisting>... --add-atom H --domain-position "0,0,0" --undo --redo</programlisting>
435
436 <para>With the non-interactive interfaces this may seem rather
437 superfluous but it comes in very handy in the interactive ones. Also
438 this tells you that actions are placed in a queue, i.e. a history,
439 that undo and redo manipulate.</para>
440 </section>
441
442 <section xml:id='fileparsers'>
443 <title xml:id='fileparsers.title'>File parsers</title>
444
445 <para>We have already given a list of all known file formats, see
446 <link linkend="fileformats">File formats</link>. Next, we explain how these
447 file formats are picked and manipulated.</para>
448
449 <section xml:id='fileparsers.parsing'>
450 <title xml:id='fileparsers.parsing.title'>Parsing files</title>
451
452 <para>We already discussed that the command-line interface works
453 state-based and hence you should supply it with a file to work
454 on.</para>
455
456 <programlisting>... --input water.data</programlisting>
457
458 <para>This will load all information, especially atoms with their
459 element and position, from the file <filename>water.data</filename>
460 into the state. All changes will eventually be stored to this file,
461 or to files with the prefix <filename>water</filename> and suffixes
462 of desired file formats, e.g. <filename>water.in</filename> if you
463 specified <productname>MPQC</productname>.</para>
464
465 <programlisting>... --load morewater.xyz</programlisting>
466
467 <para>This will load another file <filename>water.xyz</filename>,
468 however changes will still be written to files prefixed with
469 <filename>water</filename>. Note that now already two state files
470 will stored, <filename>water.data</filename> and
471 <filename>water.xyz</filename> as these two different file formats
472 have been used.</para>
473 </section>
474
475 <section xml:id='fileparsers.set-output'>
476 <title xml:id='fileparsers.set-output.tile'>Adding output file
477 formats</title>
478
479 <para>We already know that loading a file also picks a file format
480 by its suffix. We may add further file formats to which the state of
481 the molecular system on program exit.</para>
482
483 <programlisting>... --set-output mpqc tremolo</programlisting>
484
485 <para>This will store the final state of the molecular systems as
486 <productname>MPQC</productname> and as
487 <productname>TREMOLO</productname> configuration file.</para>
488 </section>
489
490 <section xml:id='fileparsers.output-as'>
491 <title xml:id='fileparsers.output-as.title'>Output the current
492 molecular system</title>
493
494 <para>This will store the current World, i.e. all its atoms, to a
495 given file, where the output format is determined from the file
496 suffix.</para>
497
498 <programlisting>... --output-as world.xyz</programlisting>
499 </section>
500
501 <section xml:id='fileparsers.save-selected-molecules'>
502 <title xml:id='fileparsers.save-selected-molecules.title'>Output
503 the current molecular system</title>
504
505 <para>This will store all atoms contained in the currently selected
506 molecules to file. This is different to "store-saturated-fragment"
507 as it will not saturate dangling bonds because only whole molecules,
508 i.e. whose bond graph is connected, will be stored.</para>
509
510 <programlisting>... --save-selected-molecules waters.pdb
511 </programlisting>
512 </section>
513
514 <section xml:id='fileparsers.bond-file'>
515 <title xml:id='fileparsers.bond-file.title'>Load extra bond
516 information</title>
517
518 <para>For some parsers bond information is stored not with the atoms
519 coordinates but in an extra file. This action parses such a file.</para>
520
521 <programlisting>... --bond-file water.dbond
522 </programlisting>
523 </section>
524 </section>
525
526 <section xml:id='selections'>
527 <title xml:id='selections.title'>Selections and unselections</title>
528
529 <para>In order to tell MoleCuilder on what subset of atoms a specific
530 Action is to be performed, there are <emphasis>selection
531 actions</emphasis>. Note that a selection per se does not change
532 anything in the state of the molecular system in any way.</para>
533
534 <para>Selections either work on atoms, on molecules, or on shapes
535 (this we explain lateron). A given selection is maintained from the
536 execution of the selection action to the end of program or until
537 modified by another selection applied on the same type (atom,
538 molecule, shape).</para>
539
540 <para>We only give a brief list on the kind of selections per type,
541 each action is executed either as follows, exemplified by selecting
542 all atoms.</para>
543
544 <programlisting>.... --select-all-atoms</programlisting>
545
546 <para>or, exemplified by unselecting the last molecule,</para>
547
548 <programlisting>... --unselect-molecule-by-order -1</programlisting>
549
550 <itemizedlist>
551 <listitem>
552 <para>Atoms</para>
553
554 <itemizedlist>
555 <listitem>
556 <para>All</para>
557 <programlisting>
558 ... --select-all-atoms
559 </programlisting>
560 </listitem>
561
562 <listitem>
563 <para>None</para>
564 <programlisting>
565 ... --unselect-all-atoms
566 </programlisting>
567 <programlisting>
568 ... --clear-atom-selection
569 </programlisting>
570 </listitem>
571
572 <listitem>
573 <para>Invert selection</para>
574 <programlisting>
575 ... --invert-atoms
576 </programlisting>
577 </listitem>
578
579 <listitem>
580 <para>By Element (all hydrogen atoms, all sulphur atoms,
581 ...)</para>
582 <programlisting>
583 ... --select-atom-by-element 1
584 </programlisting>
585 <programlisting>
586 ... --unselect-atom-by-element 1
587 </programlisting>
588 </listitem>
589
590 <listitem>
591 <para>By Id (atom with id 76)</para>
592 <programlisting>
593 ... --select-atom-by-id 76
594 </programlisting>
595 <programlisting>
596 ... --unselect-atom-by-id 76
597 </programlisting>
598 </listitem>
599
600 <listitem>
601 <para>By Order (the first (1), the second, ... the last
602 created(-1), the last but one)</para>
603 <programlisting>
604 ... --select-atom-by-order 1
605 </programlisting>
606 <programlisting>
607 ... --unselect-atom-by-order -2
608 </programlisting>
609 </listitem>
610
611 <listitem>
612 <para>By Shape (specific region of the domain)</para>
613 <programlisting>
614 ... --select-atom-inside-volume
615 </programlisting>
616 <programlisting>
617 ... --unselect-atoms-inside-volume
618 </programlisting>
619 </listitem>
620
621 <listitem>
622 <para>By Molecule (all atoms belonging to currently selected
623 molecules)</para>
624 <programlisting>
625 ... --select-molecules-atoms
626 </programlisting>
627 <programlisting>
628 ... --unselect-molecules-atoms
629 </programlisting>
630 </listitem>
631
632 <listitem>
633 <para>Push/Pop the current selection to/from a stack to store
634 it momentarily and allow modifications in MakroActions.</para>
635 <programlisting>
636 ... --push-atom-selection
637 </programlisting>
638 <programlisting>
639 ... --pop-atom-selection
640 </programlisting>
641 </listitem>
642 </itemizedlist>
643 </listitem>
644
645 <listitem>
646 <para>Molecules</para>
647
648 <itemizedlist>
649 <listitem>
650 <para>All</para>
651 <programlisting>
652 ... --select-all-molecules
653 </programlisting>
654 </listitem>
655
656 <listitem>
657 <para>None</para>
658 <programlisting>
659 ... --unselect-all-molecules
660 </programlisting>
661 <programlisting>
662 ... --clear-molecule-selection
663 </programlisting>
664 </listitem>
665
666 <listitem>
667 <para>Invert selection</para>
668 <programlisting>
669 ... --invert-molecules
670 </programlisting>
671 </listitem>
672
673 <listitem>
674 <para>By Id (molecule with id 4)</para>
675 <programlisting>
676 ... --select-molecule-by-id 2
677 </programlisting>
678 <programlisting>
679 ... --unselect-molecule-by-id 2
680 </programlisting>
681 </listitem>
682
683 <listitem>
684 <para>By Order (first created molecule, second created
685 molecule, ...)</para>
686 <programlisting>
687 ... --select-molecule-by-order 2
688 </programlisting>
689 <programlisting>
690 ... --unselect-molecule-by-order -2
691 </programlisting>
692 </listitem>
693
694 <listitem>
695 <para>By Formula (molecule with H2O as formula)</para>
696 <programlisting>
697 ... --select-molecules-by-formula "H2O"
698 </programlisting>
699 <programlisting>
700 ... --unselect-molecules-by-formula "H2O"
701 </programlisting>
702 </listitem>
703
704 <listitem>
705 <para>By Name (molecule named "water4")</para>
706 <programlisting>
707 ... --select-molecules-by-name "water4"
708 </programlisting>
709 <programlisting>
710 ... --unselect-molecules-by-name "water4"
711 </programlisting>
712 </listitem>
713
714 <listitem>
715 <para>By Atom (all molecules for which at least one atom is
716 currently selected)</para>
717 <programlisting>
718 ... --select-atoms-molecules
719 </programlisting>
720 <programlisting>
721 ... --unselect-atoms-molecules
722 </programlisting>
723 </listitem>
724
725 <listitem>
726 <para>Push/Pop the current selection to/from a stack to store
727 it momentarily and allow modifications in MakroActions.</para>
728 <programlisting>
729 ... --push-molecule-selection
730 </programlisting>
731 <programlisting>
732 ... --pop-molecule-selection
733 </programlisting>
734 </listitem>
735 </itemizedlist>
736 </listitem>
737
738 <listitem>
739 <para>Shapes</para>
740
741 <itemizedlist>
742 <listitem>
743 <para>All</para>
744 <programlisting>
745 ... --select-all-shapes
746 </programlisting>
747 </listitem>
748
749 <listitem>
750 <para>None</para>
751 <programlisting>
752 ... --unselect-all-shapes
753 </programlisting>
754 </listitem>
755
756 <listitem>
757 <para>By Name (shape name "sphere1")</para>
758 <programlisting>
759 ... --select-shape-by-name "sphere1"
760 </programlisting>
761 <programlisting>
762 ... --unselect-shape-by-name "sphere1"
763 </programlisting>
764 </listitem>
765 </itemizedlist>
766 </listitem>
767
768 </itemizedlist>
769
770 <remark>Note that an unselected instance (e.g. an atom) remains
771 unselected upon further unselection and vice versa with
772 selection.</remark>
773
774 <para>These above selections work then in conjunction with other
775 actions and make them very powerful, e.g. you can remove all atoms
776 inside a sphere by a selecting the spherical shape and subsequently
777 selecting all atoms inside the shape and then removing them.</para>
778 </section>
779
780 <section xml:id='shapes'>
781 <title xml:id='shapes.title'>Shapes</title>
782
783 <para>Shapes are specific regions of the domain. There are just a few
784 so-called <emphasis>primitive</emphasis> shapes such as cuboid,
785 sphere, cylinder, the whole domain, none of it. However, these can be
786 combined via boolean operations such as and, or, and not. This
787 approach is called <emphasis>constructive geometry</emphasis>. E.g. by
788 combining a sphere with the negated (not) of a smaller sphere, we
789 obtain a spherical surface of specific thickness.</para>
790
791 <section xml:id='shapes.create-shape'>
792 <title xml:id='shapes.create-shape.title'>Creating shapes</title>
793
794 <para>Primitive shapes can be created as follows,</para>
795
796 <programlisting>
797 ... --create-shape \
798 --shape-type sphere \
799 --shape-name "sphere1" \
800 --stretch "2,2,2" \
801 --translation "5,5,5"
802 </programlisting>
803
804 <para>This will create a sphere of radius 2 (initial radius is 1)
805 with name "sphere1" that is centered at (5,5,5). Other primitives at
806 cuboid and cylinder, where a rotation can be specified as
807 follows.</para>
808
809 <programlisting>
810 ... --create-shape \
811 --shape-type cuboid \
812 --shape-name "box" \
813 --stretch "1,2,2" \
814 --translation "5,5,5" \
815 --angle-x "90"
816 </programlisting>
817 </section>
818
819 <section xml:id='shapes.combine-shapes'>
820 <title xml:id='shapes.combine-shapes.title'>Combining shapes</title>
821
822 <para>Any two shapes can be combined by boolean operations as follows</para>
823
824 <programlisting>
825 ... --combine-shapes \
826 --shape-name "combinedshape" \
827 --shape-op "AND" \
828 </programlisting>
829
830 <para>This will combine two currently selected shapes vis the "AND" operation
831 and create a new shape called "combinedshape". Note that the two old shapes
832 are still present after this operation. We briefly explain each operation:
833 </para>
834 <itemizedlist>
835 <listitem>
836 <para><emphasis>AND</emphasis> combines two currently selected shapes
837 into a new shape that only consists of the volume where shapes overlap.</para>
838 </listitem>
839 <listitem>
840 <para><emphasis>OR</emphasis> combines two currently selected shapes
841 into a new shape that consists of all the volume where that either shape
842 occupies.</para>
843 </listitem>
844 <listitem>
845 <para><emphasis>NOT</emphasis> creates the inverse to a currently selected
846 single shape that contains the volume with respect to the simulation domain
847 that the present one does not.</para>
848 </listitem>
849 </itemizedlist>
850 </section>
851
852 <section xml:id='shapes.remove-shape'>
853 <title xml:id='shapes.remove-shape.title'>Removing shapes</title>
854
855 <para>Removing a shape is as simple as removing an atom.</para>
856
857 <programlisting>... --remove-shape </programlisting>
858
859 <para>This removes the currently selected shapes.</para>
860 </section>
861
862 <section xml:id='shapes.manipulation'>
863 <title xml:id='shapes.manipulation.title'>Manipulating shapes</title>
864
865 <para>Shapes can be stretched, scaled, rotated, and translated to
866 modify primitives or combined primitive shapes. As you have seen
867 this manipulation could have occurred already at creation but also
868 later on. We just the list examples of the various manipulations
869 below, each works on the currently selected shapes.</para>
870
871 <programlisting>
872 ... --stretch-shapes "1,1,2" \
873 --stretch-center "5,5,5"
874 </programlisting>
875
876 <para>This stretches the shapes relative to the center at (5,5,5)
877 (default is origin) by a factor of 2 in the z direction.</para>
878
879 <programlisting>
880 ... --rotate-shapes \
881 --center "10,2,2" \
882 --angle-x 90 \
883 --angle-y 0 \
884 --angle-z 0
885 </programlisting>
886
887 <para>This way all selected shapes are rotated by 90 degrees around
888 the x axis with respect to the center at (10,2,2).</para>
889
890 <programlisting>... --translate-shapes "5,0,0" </programlisting>
891
892 <para>This translates all selected shapes by 5 along the x
893 axis.</para>
894 </section>
895 </section>
896
897 <section xml:id='randomization'>
898 <title xml:id='randomization.title'>Randomization</title>
899
900 <para>Some operations require randomness as input, e.g. when filling a
901 domain with molecules these may be randomly translated and rotated.
902 Random values are obtained by a random number generator that consists
903 of two parts: engine and distribution. The engine yields a uniform set
904 of random numbers in a specific interval, the distribution modifies
905 them, e.g. to become gaussian.</para>
906
907 <para>There are several Actions to modify the specific engine and
908 distribution and their parameters. One example usage is that with the
909 aforementioned filling of the domain molecules are rotated randomly.
910 If you specify a random number generator that randomly just spills out
911 values 0,1,2,3, then the randomness is just the orientation of the
912 molecule with respect to a specific axis: x,y,z. (rotation is at most
913 360 degrees and 0,1,2,3 act as divisor, hence rotation angle is always
914 a multiple of 90 degrees).</para>
915
916 <programlisting>
917 ... --set-random-number-distribution "uniform_int" \
918 --random-number-distribution-parameters "p=1"
919 </programlisting>
920
921 <para>This changes the distribution to "uniform_int", i.e. integer
922 numbers distributed uniformly.</para>
923
924 <programlisting>
925 ... --set-random-number-engine "mt19937" \
926 --random-numner-engine-parameters "seed=10"
927 </programlisting>
928
929 <para>Specifying the seed allows you to obtain the same sequence of
930 random numbers for testing purposes.</para>
931 </section>
932
933 <section xml:id='atoms'>
934 <title xml:id='atoms.title'>Manipulate atoms</title>
935
936 <para>Here, we explain in detail how to add, remove atoms, change its
937 element type, scale the bond in between or measure the bond length or
938 angle.</para>
939
940 <section xml:id='atoms.add-atom'>
941 <title xml:id='atoms.add-atom.title'>Adding atoms</title>
942
943 <para>Adding an atom to the domain requires the element of the atom
944 and its coordinates as follows,</para>
945
946 <programlisting>
947 ... --add-atom O \
948 --domain-position "2.,3.,2.35"
949 </programlisting>
950
951 <para>where the element is given via its chemical symbol and the
952 vector gives the position within the domain</para>
953 </section>
954
955 <section xml:id='atoms.remove-atom'>
956 <title xml:id='atoms.remove-atom.title'>Removing atoms</title>
957
958 <para>Removing atom(s) does not need any option and operates on the
959 currently selected ones.</para>
960
961 <programlisting>... --remove-atom</programlisting>
962 </section>
963
964 <section xml:id='atoms.translate-atom'>
965 <title xml:id='atoms.translate-atom.title'>Translating atoms</title>
966
967 <para>In order to translate the current selected subset of atoms you
968 specify a translation vector.</para>
969
970 <programlisting>
971 ... --translate-atoms "-1,0,0" \
972 --periodic 0
973 </programlisting>
974
975 <para>This translate all atoms by "-1" along the x axis and does not
976 mind the boundary conditions, i.e. might shift atoms outside of the
977 domain.</para>
978 </section>
979
980 <section xml:id='atoms.mirror-atoms'>
981 <title xml:id='atoms.mirror-atoms.title'>Mirroring atoms</title>
982
983 <para>Present (and selected) atoms can be mirrored with respect to
984 a certain plane. You have to specify the normal vector of the plane
985 and the offset with respect to the origin as follows</para>
986
987 <programlisting>
988 ... --mirror-atoms "1,0,0" \
989 --plane-offset 10.1 \
990 --periodic 0
991 </programlisting>
992 </section>
993
994 <section xml:id='atoms.translate-to-origin'>
995 <title xml:id='atoms.translate-to-origin.title'>Translating atoms</title>
996
997 <para>The following Action is convenient to place a subset of atoms
998 at a known position, the origin, and then translate to some other
999 absolute coordinate. It calculates the average position of the set
1000 of selected atoms and then translates all atoms by the negative of
1001 this center, i.e. the center is afterwards at the origin.</para>
1002
1003 <programlisting>... --translate-to-origin</programlisting>
1004 </section>
1005
1006 <section xml:id='atoms.change-element'>
1007 <title xml:id='atoms.change-element.title'>Changing an atoms element
1008 </title>
1009
1010 <para>You can easily turn lead or silver into gold, by selecting the
1011 silver atom and calling the change element action.</para>
1012
1013 <programlisting>... --change-element Au</programlisting>
1014 </section>
1015 </section>
1016
1017 <section xml:id='bond'>
1018 <title xml:id='bond.title'>Bond-related manipulation</title>
1019
1020 <para>Atoms can also be manipulated with respect to the bonds.
1021 <remark>Note that with bonds we always mean covalent bonds.</remark>
1022 First, we explain how to modify the bond structure itself, then we go
1023 in the details of using the bond information to change bond distance
1024 and angles.</para>
1025
1026 <section xml:id='bond.create-adjacency'>
1027 <title xml:id='bond.create-adjacency.title'>Creating a bond graph
1028 </title>
1029
1030 <para>In case you have loaded a configuration file with no bond
1031 information, e.g. XYZ, it is necessary to create the bond graph.
1032 This is done by a heuristic distance criterion.</para>
1033
1034 <programlisting>... --create-adjacency</programlisting>
1035
1036 <para>This uses by default a criterion based on van-der-Waals radii,
1037 i.e. if we look at two atoms indexed by "a" and "b"</para>
1038
1039 <equation>
1040 <title>V(a) + V(b) - \tau &lt; R_{ab} &lt; V(a) + V(b) +
1041 \tau</title>
1042
1043 <m:math display="block">
1044 <m:mi>where V(.) is the lookup table for the radii for a given
1045 element and \tau is a threshold value, set to 0.4.</m:mi>
1046 </m:math>
1047 </equation>
1048
1049 <para>As a second option, you may load a file containing bond table
1050 information.</para>
1051
1052 <programlisting>... --bond-table table.dat</programlisting>
1053
1054 <para>which would parse a file <filename>table.dat</filename> for a
1055 table giving typical bond distances between elements a and b. These
1056 are used in the above criterion as <inlineequation>
1057 <m:math display="inline">
1058 <m:mi>V(a,b)</m:mi>
1059 </m:math>
1060 </inlineequation> in place of <inlineequation>
1061 <m:math display="inline">
1062 <m:mi>V(a)+V(b)</m:mi>
1063 </m:math>
1064 </inlineequation>.</para>
1065 </section>
1066
1067 <section xml:id='bond.destroy-adjacency'>
1068 <title xml:id='bond.destroy-adjacency.title'>Destroying the bond
1069 graph</title>
1070
1071 <para>The bond graph can be removed completely (and all bonds along
1072 with it).</para>
1073
1074 <programlisting>... --destroy-adjacency</programlisting>
1075 </section>
1076
1077 <section xml:id='bond.correct-bonddegree'>
1078 <title xml:id='bond.correct-bonddegree.title'>Correcting bond
1079 degrees</title>
1080
1081 <para>Typically, after loading an input file bond information, e.g.
1082 a PDB file, the bond graph is complete but we lack the weights. That
1083 is we do not know whether a bond is single, double, triple, ...
1084 This action corrects the bond degree by enforcing charge neutrality
1085 among the connected atoms.
1086 </para>
1087 <para>This action is in fact quadratically scaling in the number of
1088 atoms. Hence, for large systems this may take longer than expected.
1089 </para>
1090
1091 <programlisting>... --correct-bonddegree</programlisting>
1092 </section>
1093
1094 <section xml:id='bond.depth-first-search'>
1095 <title xml:id='bond.depth-first-search.title'>Analysing a bond
1096 graph</title>
1097
1098 <para>You can perform a depth-first search analysis that reveals
1099 cycles and other graph-related information.</para>
1100
1101 <programlisting>... --depth-first-search</programlisting>
1102 </section>
1103
1104 <section xml:id='bond.subgraph-dissection'>
1105 <title xml:id='bond.subgraph-dissection.title'>Dissecting the
1106 molecular system into molecules</title>
1107
1108 <para>The bond graph information can be used to recognize the
1109 molecule within the system. Imagine you have just loaded a PDB file
1110 containing bond information. However, initially all atoms are dumped
1111 into the same molecule. Before you can start manipulating, you need
1112 to dissect the system into individual molecules. Note that this is
1113 just structural information and does not change the state of the
1114 system.</para>
1115
1116 <programlisting>... --subgraph-dissection</programlisting>
1117
1118 <para>This analyses the bond graph and splits the single molecule up
1119 into individual (new) ones that each contain a single connected
1120 subgraph, hence the naming.</para>
1121 </section>
1122
1123 <section xml:id='bond.update-molecules'>
1124 <title xml:id='bond.update-molecules.title'>Updating molecule
1125 structure</title>
1126
1127 <para>When the bond information has changed, new molecules might
1128 have formed, this action updates all the molecules by scanning
1129 the connectedness of the bond grapf of the molecular system.
1130 </para>
1131
1132 <programlisting>... --update-molecules</programlisting>
1133 </section>
1134
1135 <section xml:id='bond.add-bond'>
1136 <title xml:id='bond.add-bond.title'>Adding a bond manually</title>
1137
1138 <para>When the automatically created adjacency or bond graph
1139 contains faulty bonds or lacks some, you can add them manually.
1140 First, you must have selected two atoms.</para>
1141
1142 <programlisting>... --add-bond</programlisting>
1143 </section>
1144
1145 <section xml:id='bond.remove-bond'>
1146 <title xml:id='bond.remove-bond.title'>Removing a bond manually
1147 </title>
1148
1149 <para>In much the same way as adding a bond, you can also remove a
1150 bond.</para>
1151
1152 <programlisting>... --remove-bond</programlisting>
1153 </section>
1154
1155 <section xml:id='bond.save-bonds'>
1156 <title xml:id='bond.save-bonds.title'>Saving bond information
1157 </title>
1158
1159 <para>Bond information can be saved to a file in <link
1160 xlink:href="http://www.molecuilder.com/"><productname>TREMOLO
1161 </productname></link>'s dbond style.</para>
1162
1163 <programlisting>... --save-bonds system.dbonds</programlisting>
1164
1165 <para>Similarly is the following Action which saves the bond
1166 information as a simple list of one atomic id per line and in
1167 the same line, separated by spaces, the ids of all atoms connected
1168 to it.</para>
1169
1170 <programlisting>... --save-adjacency system.adj</programlisting>
1171
1172 </section>
1173
1174 <section xml:id='bond.stretch-bond'>
1175 <title xml:id='bond.stretch-bond.title'>Stretching a bond</title>
1176
1177 <para>Stretching a bond actually refers to translation of the
1178 associated pair of atoms. However, this action will keep the rest of
1179 the molecule to which both atoms belong to invariant as well.</para>
1180
1181 <programlisting>... --stretch-bond 1.2</programlisting>
1182
1183 <para>This scales the original bond distance to the new bond
1184 distance 1.2, shifting the right hand side and the left hand side of
1185 the molecule accordingly.</para>
1186
1187 <warning>
1188 <para>this fails with aromatic rings (but you can always
1189 undo).</para>
1190 </warning>
1191 </section>
1192
1193 <section xml:id='bond.change-bond-angle'>
1194 <title xml:id='bond.change-bond-angle.title'>Changing a bond angle
1195 </title>
1196
1197 <para>In the same way as stretching a bond, you can change the angle
1198 in between two bonds. This works if exactly three atoms are selected
1199 and two pairs are bonded.</para>
1200
1201 <programlisting>... --change-bond-angle 90</programlisting>
1202
1203 <para>This will change the angle from its value to 90 degree by
1204 translating the two outer atoms of this triangle (the atom connected
1205 to both others is the axis of the rotation).</para>
1206 </section>
1207 </section>
1208
1209 <section xml:id='molecule'>
1210 <title xml:id='molecule.title'>Manipulate molecules</title>
1211
1212 <para>Molecules are agglomerations of atoms that are bonded. Hence,
1213 the actions working on molecules differ from those working on atoms.
1214 Joining two molecules can only be accomplished by adding a bond in
1215 between, and in the reverse fashion splitting a molecule by removing
1216 all bonds in between. Actions below mostly deal with copying
1217 molecules. Removing of molecules is done via selecting the molecule's
1218 atoms and removing them, which removes the atoms as well.</para>
1219
1220 <note>
1221 <para>Initially when you load a file via the input action all atoms
1222 are placed in a single molecule despite any present bond
1223 information, see <link linkend="fragmentation">Dissecting the
1224 molecular system into molecules</link></para>
1225 </note>
1226
1227 <section xml:id='molecule.copy'>
1228 <title xml:id='molecule.copy.title'>Copy molecules</title>
1229
1230 <para>A basic operation is to duplicate a molecule. This works on a
1231 single, currently selected molecule. Afterwards, we elaborate on a
1232 more complex manner of copying, filling a specific shape with
1233 molecules.</para>
1234
1235 <programlisting>
1236 ... --copy-molecule \
1237 --position "10,10,10"
1238 </programlisting>
1239
1240 <para>This action copies the selected molecule and inserts it at the
1241 position (10,10,10) in the domain with respect to the molecule's
1242 center. In effect, it copies all the atoms of the original molecule
1243 and adds new bonds in between these copied atoms such that their
1244 bond subgraphs are identical.</para>
1245 </section>
1246
1247 <section xml:id='molecule.change-molname'>
1248 <title xml:id='molecule.change-molname.title'>Change a molecules
1249 name</title>
1250
1251 <para>You can change the name of a molecule which is important for
1252 selection.</para>
1253
1254 <programlisting>... -change-molname "test</programlisting>
1255
1256 <para>This will change the name of the (only) selected molecule to
1257 "test".</para>
1258
1259 <para>Connected with this is the default name an unknown molecule
1260 gets.</para>
1261
1262 <programlisting>... --default-molname test</programlisting>
1263
1264 <para>This will change the default name of a molecule to
1265 "test".</para>
1266
1267 <note>
1268 <para>Note that a molecule loaded from file gets the filename
1269 (without suffix) as its name.</para>
1270 </note>
1271 </section>
1272
1273 <section xml:id='molecule.remove-molecule'>
1274 <title xml:id='molecule.remove-molecule.title'>Remove molecules
1275 </title>
1276
1277 <para>This removes one or multiple selected molecules.</para>
1278
1279 <programlisting>... -remove-molecule</programlisting>
1280
1281 <para>This essentially just removes all of the molecules' atoms
1282 which in turn also causes the removal of the molecule.</para>
1283 </section>
1284
1285 <section xml:id='molecule.rotate-around-self'>
1286 <title xml:id='molecule.rotate-around-self.title'>Rotate around self
1287 </title>
1288
1289 <para>You can rotate a molecule around its own axis.</para>
1290
1291 <programlisting>
1292 ... --rotate-around-self "90" \
1293 --axis "0,0,1"
1294 </programlisting>
1295
1296 <para>This rotates the molecule around the z axis by 90 degrees as
1297 if the origin were at its center of origin.</para>
1298 </section>
1299
1300 <section xml:id='molecule.rotate-around-origin'>
1301 <title xml:id='molecule.rotate-around-origin.title'>Rotate around
1302 origin</title>
1303
1304 <para>In the same manner the molecule can be rotated around an
1305 external origin.</para>
1306
1307 <programlisting>
1308 ... --rotate-around-origin 90 \
1309 --position "0,0,1"\
1310 </programlisting>
1311
1312 <para>This rotates the molecule around an axis from the origin to
1313 the position (0,0,1), i.e. around the z axis, by 90 degrees.</para>
1314 </section>
1315
1316 <section xml:id='molecule.rotate-to-principal-axis-system'>
1317 <title xml:id='molecule.rotate-to-principal-axis-system.title'>
1318 Rotate to principal axis system</title>
1319
1320 <para>The principal axis system is given by an ellipsoid that mostly
1321 matches the molecules shape. The principal axis system can be just
1322 simply determined by</para>
1323
1324 <programlisting>... --principal-axis-system</programlisting>
1325
1326 <para>To rotate the molecule around itself to align with this system
1327 do as follows.</para>
1328
1329 <programlisting>... --rotate-to-principal-axis-system "0,0,1"
1330 </programlisting>
1331
1332 <para>This rotates the molecule in such a manner that the ellipsoids
1333 largest axis is aligned with the z axis. <remark>Note that "0,0,-1"
1334 would align anti-parallel.</remark></para>
1335 </section>
1336
1337 <section xml:id='molecule.verlet-integration'>
1338 <title xml:id='molecule.verlet-integration.title'>Perform verlet
1339 integration</title>
1340
1341 <para>Atoms not only have a position, but each instance also stores
1342 velocity and a force vector. These can be used in a velocity verlet
1343 integration step. Velocity verlet is a often employed time
1344 integration algorithm in molecular dynamics simulations.</para>
1345
1346 <programlisting>
1347 ... --verlet-integration \
1348 --deltat 0.1 \
1349 --keep-fixed-CenterOfMass 0
1350 </programlisting>
1351
1352 <para>This will integrate with a timestep of <inlineequation>
1353 <m:math display="inline">
1354 <m:mi>\Delta_t = 0.1</m:mi>
1355 </m:math>
1356 </inlineequation>and correcting forces and velocities such that
1357 the sum over all atoms is zero.</para>
1358 </section>
1359
1360 <section xml:id='molecule.force-annealing'>
1361 <title xml:id='molecule.force-annealing.title'>Anneal the atomic
1362 forces</title>
1363
1364 <para>This will shift the atoms in a such a way as to decrease (or
1365 anneal) the forces acting upon them.</para>
1366
1367 <para>Forces may either be already present for the set of atoms by
1368 some other way (e.g. from a prior fragmentation calculation) or,
1369 as shown here, from an external file. We anneal the forces for
1370 one step with a certain initial step width of 0.5 atomic time
1371 units and do not create a new timestep for each optimization
1372 step.</para>
1373
1374 <programlisting>
1375 ... --force-annealing \
1376 --forces-file test.forces \
1377 --deltat 0.5 \
1378 --steps 1 \
1379 --output-every-step 0
1380 </programlisting>
1381 </section>
1382
1383 <section xml:id='molecule.linear-interpolation-of-trajectories'>
1384 <title xml:id='molecule.linear-interpolation-of-trajectories.title'>
1385 Linear interpolation between configurations</title>
1386
1387 <para>This is similar to verlet-integration, only that it performs
1388 a linear integration irrespective of the acting atomic forces.
1389 </para>
1390
1391 <para>The following call will produce an interpolation between the
1392 configurations in time step 0 and time step 1 with 98 intermediate
1393 steps, i.e. current step 1 will end up in time step 99. In this
1394 case an idential mapping is used to associated atoms in start and
1395 end configuration.</para>
1396
1397 <programlisting>
1398 ... --linear-interpolation-of-trajectories \
1399 --start-step 0 \
1400 --end-step 1 \
1401 --interpolation-steps 100 \
1402 --id-mapping 1
1403 </programlisting>
1404 </section>
1405 </section>
1406
1407 <section xml:id='domain'>
1408 <title xml:id='domain.title'>Manipulate domain</title>
1409
1410 <para>Here, we elaborate on how to duplicate all the atoms inside the
1411 domain, how the scale the coordinate system, how to center the atoms
1412 with respect to certain points, how to realign them by given
1413 constraints, how to mirror and most importantly how to specify the
1414 domain.</para>
1415
1416 <section xml:id='domain.change-box'>
1417 <title xml:id='domain.change-box.title'>Changing the domain</title>
1418
1419 <para>The domain is specified by a symmetric 3x3 matrix. The
1420 eigenvalues (diagonal entries in case of a diagonal matrix) give the
1421 length of the edges, additional entries specify transformations of
1422 the box such that it becomes a more general parallelepiped.</para>
1423
1424 <programlisting>... change-box "20,0,20,0,0,20"</programlisting>
1425
1426 <para>As the domain matrix is symmetric, six values suffice to fully
1427 specify it. We have to give the six components of the lower diagonal
1428 matrix. Here, we change the box to a cuboid of equal edge length of
1429 20.</para>
1430 </section>
1431
1432 <section xml:id='domain.bound-in-box'>
1433 <title xml:id='domain.bound-in-box.title'>Bound atoms inside box
1434 </title>
1435
1436 <para>The following applies the current boundary conditions to the
1437 atoms. In case of periodic or wrapped boundary conditions the atoms
1438 will be periodically translated to be inside the domain
1439 again.</para>
1440
1441 <programlisting>... --bound-in-box</programlisting>
1442 </section>
1443
1444 <section xml:id='domain.center-in-box'>
1445 <title xml:id='domain.center-in-box.title'>Center atoms inside the
1446 domain</title>
1447
1448 <para>This is a combination of changing the box and bounding the
1449 atoms inside it.</para>
1450
1451 <programlisting>... --center-in-box "20,0,20,0,0,"</programlisting>
1452 </section>
1453
1454 <section xml:id='domain.center-edge'>
1455 <title xml:id='domain.center-edge.title'>Center the atoms at an
1456 edge</title>
1457
1458 <para>MoleCuilder can calculate the minimum box (parallel to the
1459 cardinal axis) all atoms would fit in and translate all atoms in
1460 such a way that the lower, left, front edge of this minimum is at
1461 the origin (0,0,0).</para>
1462
1463 <programlisting>... --center-edge</programlisting>
1464 </section>
1465
1466 <section xml:id='domain.add-empty-boundary'>
1467 <title xml:id='domain.add-empty-boundary.title'>Extending the
1468 boundary by adding an empty boundary</title>
1469
1470 <para>In the same manner as above a minimum box is determined that
1471 is subsequently expanded by a boundary of the given additional
1472 thickness. This applies to either side.</para>
1473
1474 <programlisting>... --add-empty-boundary "5,5,5"</programlisting>
1475
1476 <para>This will enlarge the box in such a way that every atom is at
1477 least by a distance of 5 away from the boundary of the domain (in
1478 the infinity norm).</para>
1479 </section>
1480
1481 <section xml:id='domain.scale-box'>
1482 <title xml:id='domain.scale-box.title'>Scaling the box</title>
1483
1484 <para>You can enlarge the domain by simple scaling factors.</para>
1485
1486 <programlisting>... --scale-box "1,1,2.5"</programlisting>
1487
1488 <para>Here, the domain is stretched in the z direction by a factor
1489 of 2.5.</para>
1490 </section>
1491
1492 <section xml:id='domain.repeat-box'>
1493 <title xml:id='domain.repeat-box.title'>Repeating the box</title>
1494
1495 <para>Under periodic boundary conditions often only the minimal
1496 periodic cell is stored. If need be, multiple images can be easily
1497 added to the current state of the system by repeating the box, i.e.
1498 the box along with all contained atoms is copied and placed
1499 adjacently.</para>
1500
1501 <programlisting>... --repeat-box "1,2,2"</programlisting>
1502
1503 <para>This will create a 2x2 grid of the current domain, replicating
1504 it along the y and z direction along with all atoms. If the domain
1505 contained before a single water molecule, we will now have four of
1506 them.</para>
1507 </section>
1508
1509 <section xml:id='domain.set-boundary-conditions'>
1510 <title xml:id='domain.set-boundary-conditions.title'>Change the
1511 boundary conditions</title>
1512
1513 <para>Various boundary conditions can be applied that affect how
1514 certain Actions work, e.g. translate-atoms. We briefly give a list
1515 of all possible conditions:</para>
1516 <itemizedlist>
1517 <listitem>
1518 <para>Wrap</para>
1519 <para>Coordinates are wrapped to the other side of the domain,
1520 i.e. periodic boundary conditions.</para>
1521 </listitem>
1522 <listitem>
1523 <para>Bounce</para>
1524 <para>Coordinates are bounced back into the domain, i.e. they
1525 are reflected from the domain walls.</para>
1526 </listitem>
1527 <listitem>
1528 <para>Ignore</para>
1529 <para>No boundary conditions apply.</para>
1530 </listitem>
1531 </itemizedlist>
1532
1533 <para>The following will set the boundary conditions to periodic.
1534 </para>
1535
1536 <programlisting>... --set-boundary-conditions "Wrap Wrap Wrap"
1537 </programlisting>
1538 </section>
1539 </section>
1540
1541 <section xml:id='filling'>
1542 <title xml:id='filling.title'>Filling</title>
1543
1544 <para>Filling a specific part of the domain with one type of
1545 molecule, e.g. a water molecule, is the more advanced type of
1546 copying of a molecule (see copy-molecule) and we need several
1547 ingredients.</para>
1548
1549 <para>First, we need to specify the part of the domain. This is done
1550 via a shape. We have already learned how to create and select
1551 shapes. The currently selected shape will serve as the fill-in
1552 region.</para>
1553
1554 <para>Then, they are three types of filling, domain, volume, and
1555 surface. The domain is filled with a regular grid of fill-in points.
1556 A volume and a surface are filled by a set of equidistant points
1557 distributed within the volume or on the surface of a selected
1558 shape. Molecules will then be copied and translated points when they
1559 "fit".</para>
1560
1561 <para>The filler procedure checks each fill-in point whether there
1562 is enough space for the molecule. To know this, we require a cluster
1563 instead of a molecule. This is just a general agglomeration of atoms
1564 combined with a bounding box that contains all of them and serves as
1565 its minimal volume. I.e. we need this cluster. For this a number of
1566 atoms have to be specified, the minimum bounding box is generated
1567 automatically.</para>
1568
1569 <para>On top of that molecules can be selected whose volume is
1570 additionally excluded from the filling region.</para>
1571
1572 <section xml:id='filling.fill-regular-grid'>
1573 <title xml:id='filling.fill-regular-grid.title'>Fill the domain with
1574 molecules</title>
1575
1576 <para>The call to fill the volume of the selected shape with the
1577 selected atoms is then as follows,</para>
1578
1579 <programlisting>
1580 ... --fill-regular-grid \
1581 --mesh-size "5,5,5" \
1582 --mesh-offset ".5,.5,.5" \
1583 --DoRotate 1 \
1584 --min-distance 1. \
1585 --random-atom-displacement 0.05 \
1586 --random-molecule-displacement 0.4 \
1587 --tesselation-radius 2.5
1588 </programlisting>
1589
1590 <para>This generates a grid of 5x5x5 fill-in points within the
1591 sphere that are offset such as to lay centered within the sphere
1592 (offset per axis in [0,1]). Additionally, each molecule is rotated
1593 by random rotation matrix, each atom is translated randomly by at
1594 most 0.05, each molecule's center at most by 0.4. The selected
1595 molecules' volume is obtained by tesselating their surface and
1596 excluding every fill-in point whose distance to this surface does
1597 not exceed 1. We refer to our comments in
1598 <link linkend="randomization">Randomization</link>for details on
1599 changing the randomness.</para>
1600 </section>
1601
1602 <section xml:id='filling.fill-volume'>
1603 <title xml:id='filling.fill-volume.title'>Fill a shape's volume
1604 with molecules</title>
1605
1606 <para>More specifically than filling the whole domain with molecules,
1607 maybe except areas where other molecules already are, we also can
1608 fill only specific parts by selecting a shape and calling upon
1609 the following action:</para>
1610
1611 <programlisting>
1612 ... --fill-volume \
1613 --counts 12 \
1614 --min-distance 1. \
1615 --DoRotate 1 \
1616 --random-atom-displacement 0.05 \
1617 --random-molecule-displacement 0.4 \
1618 --tesselation-radius 2.5
1619 </programlisting>
1620 </section>
1621
1622 <section xml:id='filling.fill-surface'>
1623 <title xml:id='filling.fill-surface.title'>Fill a shape's surface
1624 with molecules</title>
1625
1626 <para>Filling a surface is very similar to filling its volume.
1627 Again the number of equidistant points has to be specified.
1628 However, randomness is constrained as the molecule is be aligned
1629 with the surface in a specific manner. The alignment axis refers
1630 to the largest principal axis of the filler molecule and will
1631 be aligned parallel to the surface normal at the fill-in point.
1632 </para>
1633
1634 <para>The call below fill in 12 points with a minimum distance
1635 between the instances of 1 angstroem. We allow for certain random
1636 displacements and use the z-axis for aligning the molecules on
1637 the surface.</para>
1638
1639 <programlisting>
1640 ... --fill-surface \
1641 --counts 12 \
1642 --min-distance 1. \
1643 --DoRotate 1 \
1644 --random-atom-displacement 0.05 \
1645 --random-molecule-displacement 0.4 \
1646 --Alignment-Axis "0,0,1"
1647 </programlisting>
1648 </section>
1649
1650 <section xml:id='filling.suspend-in-molecule'>
1651 <title xml:id='filling.suspend-in-molecule.title'>Suspend in molecule
1652 </title>
1653
1654 <para>Add a given molecule in the simulation domain in such a way
1655 that the total density is as desired.</para>
1656
1657 <programlisting>
1658 ... --suspend-in-molecule 1.
1659 </programlisting>
1660 </section>
1661
1662 <section xml:id='filling.fill-molecule'>
1663 <title xml:id='filling.fill-molecule.title'>Fill in molecule</title>
1664
1665 <para>This action will be soon be removed.</para>
1666
1667 <programlisting>
1668 ... --fill-molecule
1669 </programlisting>
1670 </section>
1671
1672 <section xml:id='filling.fill-void'>
1673 <title xml:id='filling.fill-void.title'>Fill void with molecule
1674 </title>
1675
1676 <para>This action will be soon be removed.</para>
1677
1678 <programlisting>
1679 ... --fill-void
1680 </programlisting>
1681 </section>
1682 </section>
1683
1684 <section xml:id='analysis'>
1685 <title xml:id='analysis.title'>Analysis</title>
1686
1687 <para></para>
1688
1689 <section xml:id='analysis.pair-correlation'>
1690 <title xml:id='analysis.pair-correlation.title'>Pair Correlation
1691 </title>
1692
1693 <para>Pair correlation checks for two given elements on the typical
1694 distance they can be found with respect to one another. E.g. for
1695 water one might be interested what is the typical distance for
1696 hydrogen and oxygen atoms.</para>
1697
1698 <programlisting>
1699 ... --pair-correlation \
1700 --elements 1 8 \
1701 --bin-start 0 \
1702 --bin-width 0.7 \
1703 --bin-end 10 \
1704 --output-file histogram.dat \
1705 --bin-output-file bins.dat \
1706 --periodic 0
1707 </programlisting>
1708
1709 <para>This will compile a histogram for the interval [0,10] in steps
1710 of 0.7 and increment a specific bin if the distance of one such pair
1711 of a hydrogen and an oxygen atom can be found within its distance
1712 interval.</para>
1713 </section>
1714
1715 <section xml:id='analysis.dipole-correlation'>
1716 <title xml:id='analysis.dipole-correlation.title'>Dipole Correlation
1717 </title>
1718
1719 <para>The dipole correlation is similar to the pair correlation, only
1720 that it correlates the orientation of dipoles in the molecular
1721 system with one another.</para>
1722 <para>Note that the dipole correlation works on the currently
1723 selected molecules, e.g. all water molecules if so selected.</para>
1724
1725 <programlisting>
1726 ... --dipole-correlation \
1727 --bin-start 0 \
1728 --bin-width 0.7 \
1729 --bin-end 10 \
1730 --output-file histogram.dat \
1731 --bin-output-file bins.dat \
1732 --periodic 0
1733 </programlisting>
1734 </section>
1735
1736 <section xml:id='analysis.dipole-angular-correlation'>
1737 <title xml:id='analysis.dipole-angular-correlation.title'>Dipole
1738 Angular Correlation</title>
1739
1740 <para>The dipole angular correlation looks at the angles of a
1741 dipole over time. It takes the orientation of a certain time step
1742 as the zero angle and bins all other orientations found in later
1743 time steps relative to it.
1744 </para>
1745 <para>Note that in contrast to the dipole correlation the dipole
1746 angular correlation works on the molecules determined by a formula.
1747 This is because selections do not work over time steps as molecules
1748 might change.
1749 </para>
1750
1751 <programlisting>
1752 ... --dipole-angular-correlation H2O \
1753 --bin-start 0 \
1754 --bin-width 5 \
1755 --bin-end 360 \
1756 --output-file histogram.dat \
1757 --bin-output-file bins.dat \
1758 --periodic 0 \
1759 --time-step-zero 0
1760 </programlisting>
1761 </section>
1762
1763 <section xml:id='analysis.point-correlation'>
1764 <title xml:id='analysis.point-correlation.title'>Point Correlation
1765 </title>
1766
1767 <para>Point correlation is very similar to pair correlation, only
1768 that it correlates not positions of atoms among one another but
1769 against a fixed, given point.</para>
1770
1771 <programlisting>
1772 ... --point-correlation \
1773 --elements 1 8 \
1774 --position "0,0,0" \
1775 --bin-start 0 \
1776 --bin-width 0.7 \
1777 --bin-end 10 \
1778 --output-file histogram.dat \
1779 --bin-output-file bins.dat \
1780 --periodic 0
1781 </programlisting>
1782
1783 <para>This would calculate the correlation of all hydrogen and
1784 oxygen atoms with respect to the origin.</para>
1785 </section>
1786
1787 <section xml:id='analysis.surface-correlation'>
1788 <title xml:id='analysis.surface-correlation.title'>Surface
1789 Correlation</title>
1790
1791 <para>The surface correlation calculates the distance of a set
1792 of atoms with respect to a tesselated surface.</para>
1793
1794 <programlisting>
1795 ... --surface-correlation \
1796 --elements 1 8 \
1797 --bin-start 0 \
1798 --bin-width 0.7 \
1799 --bin-end 10 \
1800 --output-file histogram.dat \
1801 --bin-output-file bins.dat \
1802 --periodic 0
1803 </programlisting>
1804 </section>
1805
1806 <section xml:id='analysis.molecular-volume'>
1807 <title xml:id='analysis.molecular-volume.title'>Molecular Volume
1808 </title>
1809
1810 <para>This simply calculates the volume that a selected molecule
1811 occupies. For this the molecular surface is determined via a
1812 tesselation. Note that this surface is minimal is that aspect
1813 that each node of the tesselation consists of an atom of the
1814 molecule.</para>
1815
1816 <programlisting>... --molecular-volume</programlisting>
1817 </section>
1818
1819 <section xml:id='analysis.average-molecule-force'>
1820 <title xml:id='analysis.average-molecule-forcetitle'>Average force
1821 acting on a molecule</title>
1822
1823 <para>This sums up all the forces of each atom of a currently
1824 selected molecule and returns the average force vector. This should
1825 give you the general direction of acceleration of the molecule.
1826 </para>
1827
1828 <programlisting>... --molecular-volume</programlisting>
1829 </section>
1830
1831 </section>
1832
1833 <section xml:id='fragmentation'>
1834 <title xml:id='fragmentation.title'>Fragmentation</title>
1835
1836 <para>Fragmentation refers to a so-called linear-scaling method called
1837 "Bond-Order diSSection in an ANOVA-like fashion" (BOSSANOVA),
1838 developed by <personname>Frederik Heber</personname>. In this section
1839 we briefly explain what the method does and how the associated actions
1840 work.</para>
1841
1842 <para>The central idea behind the BOSSANOVA scheme is to fragment the
1843 graph of the molecular system into connected subgraphs of a certain
1844 number of vertices (atoms). To give an example, loading a ethane atom
1845 with the chemical formula C2H6, fragmenting the molecule up to order 1
1846 means creating two fragments, both methane-like from either carbon
1847 atom including surrounding hydrogen atoms. Fragmenting up to order 2
1848 would return both the methane fragments and additionally the full
1849 ethane molecule as it resembles a fragment of order 2, namely
1850 containing two (non-hydrogen) atoms.</para>
1851
1852 <para>The reason for doing this is that usual ab-initio calculations
1853 of molecular systems via methods such as Density Functional Theory or
1854 Hartree-Fock scale at least as <inlineequation>
1855 <m:math display="inline">
1856 <m:mi>{\cal O}(M^3}</m:mi>
1857 </m:math>
1858 </inlineequation>with the number of atoms <inlineequation>
1859 <m:math display="inline">
1860 <m:mi>M</m:mi>
1861 </m:math>
1862 </inlineequation>. Hence, calculating the ground state energy of a
1863 number of fragment molecules scaling linearly with the number of atoms
1864 yields a linear-scaling methods. In the doctoral thesis of Frederik
1865 Heber, it is explained why this is a sensible ansatz mathematically
1866 and shown that it delivers a very good accuracy if electrons (and
1867 hence interactions) are in general localized.</para>
1868
1869 <para>Long-range interactions are artificially truncated, however,
1870 with this fragment ansatz. It can be obtained in a perturbation manner
1871 by sampling the resulting electronic and nuclei charge density on a
1872 grid, summing over all fragments, and solving the associated Poisson
1873 equation. Such a calculation is implemented via the solver
1874 <productname>vmg</productname> by Julian Iseringhausen that is
1875 contained in the <link xlink:href="http://www.scafacos.org/">
1876 <productname>ScaFaCoS</productname></link>.</para>
1877
1878 <para>Note that we treat hydrogen special (but can be switched off) as
1879 fragments are calculated as closed shell (total spin equals zero).
1880 Also, we use hydrogen to saturate any dangling bonds that occur as
1881 bonds are cut when fragmenting a molecule (this, too, can be switched
1882 off).</para>
1883
1884 <section xml:id='fragmentation.fragment-molecule'>
1885 <title xml:id='fragmentation.fragment-molecule.title'>Fragmenting a
1886 molecular system</title>
1887
1888 <para>For the current selection of atoms, all fragments consisting
1889 of these (sub)set of atoms are created in the following
1890 manner.</para>
1891
1892 <programlisting>
1893 ... --fragment-molecule "BondFragment" \
1894 --DoCyclesFull 1 \
1895 --distance 3. \
1896 --order 3 \
1897 --grid-level 5 \
1898 --output-types xyz mpqc
1899 </programlisting>
1900
1901 <para>We go through each of the options one after the other. During
1902 fragmentation some files are created storing state information, i.e.
1903 the vertex/atom indices per fragment and so on. These files all need
1904 a common prefix, here "BondFragment". Then, we specify that cycles
1905 should be treated fully. This compensates for electrons in aromatic
1906 rings being delocalized over the ring. If cycles in the graph,
1907 originating from aromatic rings, are always calculated fully, i.e.
1908 the whole ring becomes a fragment, we partially overcome these
1909 issues. This does however not work indefinitely and accuracy of the
1910 approximation is limited (<inlineequation>
1911 <m:math display="inline">
1912 <m:mi>&gt;10^{-4}</m:mi>
1913 </m:math>
1914 </inlineequation>) in systems with many interconnected aromatic
1915 rings, such as graphene. Next, we give a distance cutoff of 3 used
1916 in bond graph creation. Then, we specify the maximum order, i.e. the
1917 maximum number of (non-hydrogen) atoms per fragment, here 3. The
1918 higher this number the more expensive the calculation becomes
1919 (because substantially more fragments are created) but also the more
1920 accurate. The grid level refers to the part where long-range Coulomb
1921 interactions are calculated. This is done via solving the associated
1922 Poisson equation with a multigrid solver. As input the solver
1923 requires the density which is sampled on a cartesian grid whose
1924 resolution these parameter defines (<inlineequation>
1925 <m:math display="inline">
1926 <m:mi>2^{\mathrm{level}}</m:mi>
1927 </m:math>
1928 </inlineequation>). And finally, we give the output file formats,
1929 i.e. which file formats are used for writing each fragment
1930 configuration (prefix is "BondFragment", remember?). Here, we use
1931 XYZ (mainly for checking the configurations visually) and MPQC,
1932 which is a very robust Hartree-Fock solver. We refer to the
1933 discussion of the <link linkend="fileparsers">Parsers</link> above
1934 on how to change the parameters of the ab-initio calculation.</para>
1935
1936 <para>After having written all fragment configuration files, you
1937 need to calculate each fragment, grab the resulting energy (and
1938 force vectors) and place them into a result file manually. This at
1939 least is necessary if you have specified output-types above. If not,
1940 the fragments are not written to file but stored internally. Read
1941 on.</para>
1942 </section>
1943
1944 <section xml:id='fragmentation.fragment-automation'>
1945 <title xml:id='fragmentation.fragment-automation.title'>Calculating
1946 fragment energies automatically</title>
1947
1948 <para>Another way of doing this is enabled if you have
1949 <productname>JobMarket</productname> package. JobMarket implements a
1950 client/server ansatz, i.e. two (or more) independent programs are
1951 running (even on another computer but connected via an IP network),
1952 namely a server and at least one client. The server receives
1953 fragment configurations from MoleCuilder and assigns these to a
1954 client who is not busy. The client launches an executable that is
1955 specified in the work package he is assigned and gathers after
1956 calculation a number of values, samewise specified in the package.
1957 The results are gathered together by the server and can be requested
1958 from MoleCuilder once they are done. This essentially describe what
1959 is happening during the execution of this action.</para>
1960
1961 <para>Stored fragment jobs can also be parsed again, i.e. reversing
1962 the effect of having output-types specified in <link
1963 linkend="fragmentation.fragment-molecule">Fragmenting a molecule
1964 </link>.</para>
1965
1966 <programlisting>
1967 ... --parse-fragment-jobs \
1968 --fragment-jobs "BondFragment00.in" "BondFragment01.in" \
1969 --fragment-path "./" \
1970 --grid-level 5
1971 </programlisting>
1972
1973 <para>Here, we have specified two files, namely
1974 <filename>BondFragment00.in</filename> and
1975 <filename>BondFragment01.in</filename>, to be parsed from the path
1976 "./", i.e. the current directory. Also, we have specified to sample
1977 the electronic charge density obtained from the calculated ground
1978 state energy solution with a resolution of 5 (see fragment molecule
1979 and also below).</para>
1980
1981 <para>This allows for automated and parallel calculation of all
1982 fragment energies and forces directly within MoleCuilder. The
1983 FragmentationAutomation action takes the fragment configurations
1984 from an internal storage wherein they are placed if in
1985 FragmentMolecule no output-types have been specified.</para>
1986
1987 <programlisting>
1988 ... --fragment-automation \
1989 --fragment-executable mpqc \
1990 --fragment-resultfile BondFragment_results.dat \
1991 --DoLongrange 1 \
1992 --DoValenceOnly 1 \
1993 --grid-level 5 \
1994 --interpolation-degree 3 \
1995 --near-field-cells 4 \
1996 --server-address 127.0.0.1 \
1997 --server-port 1025
1998 </programlisting>
1999
2000 <para>Again, we go through each of the action's options step by
2001 step.</para>
2002
2003 <para>The executable is required if you do not have a patched
2004 version of <productname>MPQC</productname> that may directly act as
2005 a client to JobMarket's server. All calculated results are placed in
2006 the result file. If none is given, they are instead again placed in
2007 an internal storage for later access.</para>
2008
2009 <note>
2010 <para>Long-calculations are only possible with a client that knows
2011 how to handle VMG jobs. If you encounter failures, then it is most
2012 likely that you do not have a suitable client.</para>
2013 </note>
2014
2015 <para>In the next line, we have all options related to calculation
2016 of long-range interactions. We only sample valence charges on the
2017 grid, i.e. not core electrons and the nuclei charge is reduces
2018 respectively. This avoids problems with sampling highly localized
2019 charges on the grid and is in general recommended. Next, there
2020 follow parameters for the multi grid solver, namely the resolution
2021 of the grid, see under fragmenting the molecule, the interpolation
2022 degree and the number of near field cells. A grid level of 6 is
2023 recommended but costly in terms of memory, the other values are at
2024 their recommend values.</para>
2025
2026 <para>In the last line, parameters are given on how to access the
2027 JobMarket server, namely it address and its port.</para>
2028 </section>
2029
2030 <section xml:id='fragmentation.analyse-fragment-results'>
2031 <title xml:id='fragmentation.analyse-fragment-results.title'>
2032 Analyse fragment results</title>
2033
2034 <para>After the energies and force vectors of each fragment have
2035 been calculated, they need to be summed up to an approximation for
2036 the energy and force vectors of the whole molecular system. This is
2037 done by calling this action.</para>
2038
2039 <programlisting>
2040 ... --analyse-fragment-results \
2041 --fragment-prefix "BondFragment" \
2042 --fragment-resultfile BondFragment_results.dat \
2043 --store-grids 1
2044 </programlisting>
2045
2046 <para>The purpose of the prefix should already be known to you, same
2047 with the result file that is the file parsed by MoleCuilder. The
2048 last option states that the sampled charge densities and the
2049 calculated potential from the long-range calculations should be
2050 stored with the summed up energies and forces. Note that this makes
2051 the resulting files substantially larger (Hundreds of megabyte or
2052 even gigabytes). Fragment energies and forces are stored in
2053 so-called internal homology containers. These are explained in the
2054 next section.</para>
2055
2056 <para>Note that this action sets the force vector if these have been
2057 calculated for the fragment. Hence, a
2058 <link linkend="molecule.verlet-integration">verlet integration</link>
2059 is possible afterwards.</para>
2060 </section>
2061
2062 <section xml:id='fragmentation.store-saturated-fragment'>
2063 <title xml:id='fragmentation.store-saturated-fragment.title'>Store
2064 a saturated fragment</title>
2065
2066 <para>After the energies and force vectors of each fragment have
2067 been calculated, they need to be summed up to an approximation for
2068 the energy and force vectors of the whole molecular system. This is
2069 done by calling this action.</para>
2070
2071 <para>This will store the currently selected atoms as a fragment
2072 where all dangling bonds (by atoms that are connected in the bond
2073 graph but have not been selected as well) are saturated with
2074 additional hydrogen atoms. The output formats are set to just xyz.
2075 </para>
2076
2077 <programlisting>
2078 ... --store-saturated-fragment \
2079 --DoSaturate 1 \
2080 --output-types xyz
2081 </programlisting>
2082 </section>
2083 </section>
2084
2085 <section xml:id='homology'>
2086 <title xml:id='homology.title'>Homologies</title>
2087
2088 <para>After a fragmentation procedure has been performed fully, what
2089 to do with the results? The forces can be used already but what about
2090 the energies? The energy value is basically the function evaluation of
2091 the Born-Oppenheimer surface. For molecular dynamics simulations
2092 continuous ab-initio calculations to evaluate the Born-Oppenheimer
2093 surface is not feasible. Instead usually empirical potential functions
2094 are fitted as to resemble the Born-Oppenheimer surface to a sufficient
2095 degree.</para>
2096
2097 <para>One frequent method is the many-body expansion of said surface
2098 which is basically nothing else than the fragment ansatz described
2099 above. Potential functions resemble a specific term in this many-body
2100 expansion. These are discussed in the next section.</para>
2101
2102 <para>For each of these terms all homologous fragments (i.e. having
2103 the same atoms with respect to the present elements and bonded in the
2104 same way), differing only in the coordinate of each atom, are just a
2105 sampling or a function evaluation of this term of the many-body
2106 expansion with respect to varying nuclei coordinates. Hence, it is
2107 appropriate to use these function evaluations in a non-linear
2108 regression procedure. That is, we want to tune the parameter of the
2109 empirical potential function in such a way as to most closely obtain
2110 the same function evaluation as the ab-initio calculation did with the
2111 same nuclear coordinates. Usually, this is done in a least-square
2112 sense, minimising the euclidean norm.</para>
2113
2114 <para>Homologies are then nothing else but containers for a specific
2115 type of fragment of all the different, calculated configurations (i.e.
2116 varying nuclear coordinates of the same fragment).</para>
2117
2118 <para>Now, we explain the actions that parse and store
2119 homologies.</para>
2120
2121 <programlisting>... --parse-homologies homologies.dat</programlisting>
2122
2123 <para>This parses the all homologies contained in the file
2124 <filename>homologies.dat</filename> and appends them to the homology
2125 container.</para>
2126
2127 <programlisting>... --save-homologies homologies.dat</programlisting>
2128
2129 <para>Complementary, this stores the current contents of the homology
2130 container, overwriting the file
2131 <filename>homologies.dat</filename>.</para>
2132 </section>
2133
2134 <section xml:id='potentials'>
2135 <title xml:id='potentials.title'>Potentials</title>
2136
2137 <para>In much the same manner, we would now ask what are homology
2138 files or containers good for but with the just had explanation it
2139 should be clear: We fit potential function to these function
2140 evaluation of terms of the many-body expansion of the Born-Oppenheimer
2141 surface of the full system.</para>
2142
2143 <section xml:id='potentials.fit-potential'>
2144 <title xml:id='potentials.fit-potential.title'>Fitting empirical
2145 potentials</title>
2146
2147 <para>Let's take a look at an exemplary call to the fit potential
2148 action.</para>
2149
2150 <programlisting>
2151 ... --fit-potential \
2152 --fragment-charges 8 1 1 \
2153 --potential-charges 8 1 \
2154 --potential-type morse \
2155 --take-best-of 5
2156 </programlisting>
2157
2158 <para>Again, we look at each option in turn. The first is the
2159 charges or elements specifying the set of homologous fragments that
2160 we want to look at. Here, obviously we are interested in water
2161 molecules, consisting of a single oxygen and two hydrogen atoms.
2162 Next, we specify the nuclei coordinates of the potential. We give
2163 the type of the potential as morse, which requires a single distance
2164 or two nuclear coordinates, here between an oxygen and a hydrogen
2165 atom. Finally, we state that the non-linear regression should be
2166 done with five random starting positions and the set of parameters
2167 with the smallest L2 norm wins.</para>
2168
2169 <note>
2170 <para>Due to translational and rotational degrees of freedom for
2171 fragments smaller than 7 atoms, it is appropriate to look at the
2172 pair-wise distances and not at the absolute coordinates. Hence,
2173 the two atomic positions, here for oxygen and hydrogen, are
2174 converted to a single distance. If we had given an harmonic
2175 angular potential and three charges/element, 8 1 1, i.e. oxygen
2176 and two hydrogens, we would have obtained three distances.</para>
2177
2178 <para>MoleCuilder always adds a so-called constant potential to
2179 the fit containing only a single parameter, the energy offset.
2180 This offset compensates for the interaction energy associated with
2181 a fragment of order 1, e.g. a single hydrogen atom.</para>
2182 </note>
2183 </section>
2184
2185 <section xml:id='potentials.fit-compound-potential'>
2186 <title xml:id='potentials.fit-compound-potential.title'>Fitting
2187 many empirical potentials simultaneously</title>
2188
2189
2190 <para>Another way is using a file containing a specific set of
2191 potential functions, possibly even with initial values.</para>
2192
2193 <programlisting>
2194 ... --fit-compound-potential \
2195 --fragment-charges 8 1 1 \
2196 --potential-file water.potentials \
2197 --set-threshold 1e-3 \
2198 --training-file test.dat
2199 </programlisting>
2200
2201 <para>Now, all empirical potential functions are summed up into a
2202 so-called compound potential over the combined set of parameters.
2203 These are now fitted simultaneously. For example, if the potential
2204 file <filename>water.potentials</filename> contains a harmonic bond
2205 potential between oxygen and hydrogen and another angular potential
2206 for the angle between hydrogen, oxygen, and hydrogen atom we would
2207 fit a still simple function approximating the energy of a single
2208 water molecule. Here, the threshold takes the place of the
2209 take-best-of option. Here, random starting parameters are used as
2210 long as the final L2 error is not below 1e-3. Also, all data used
2211 for training, i.e. the tuples consisting of the fragments nuclei
2212 coordinates and the associated energy value are written to the file
2213 <filename>test.dat</filename>. This allows for graphical or other
2214 type of analysis.</para>
2215
2216 <para>Note that you can combine the two ways, i.e. start with a
2217 fit-potential call but give an empty potential file. The resulting
2218 parameters are stored in it. Fit other potentials and give different
2219 file names for each in turn. Eventually, you have to combine the file
2220 in a text editor at the moment. And perform a fit-compound-potential
2221 with this file.</para>
2222 </section>
2223
2224
2225 <section xml:id='potentials.parse-potential'>
2226 <title xml:id='potentials.parse-potential.title'>Parsing an
2227 empirical potentials file</title>
2228
2229 <para>Responsible for the compound potential is every potential
2230 function whose signature matches with the designated fragment-charges
2231 and who is currently known to an internal instance called the
2232 PotentialRegistry.</para>
2233
2234 <para>More potentials can be registered (fit-potential will also
2235 register the potential it fits) by parsing them from a file.</para>
2236
2237 <programlisting>
2238 ... --parse-potentials water.potentials
2239 </programlisting>
2240
2241 <note>Currently, only <productname>TREMOLO</productname> potential
2242 files are understood and can be parsed.</note>
2243 </section>
2244
2245 <section xml:id='potentials.save-potential'>
2246 <title xml:id='potentials.save-potential.title'>Saving an
2247 empirical potentials file</title>
2248
2249 <para>The opposite to parse-potentials is save-potentials that writes
2250 every potential currently known to the PotentialRegistry to the given
2251 file along with the currently fitted parameters</para>
2252
2253 <programlisting>
2254 ... --save-potentials water.potentials
2255 </programlisting>
2256
2257 <note>Again, only the <productname>TREMOLO</productname> potential
2258 format is understood currently and is written.</note>
2259 </section>
2260
2261 <section xml:id='potentials.fit-particle-charges'>
2262 <title xml:id='potentials.fit-particle-charges.title'>Fitting
2263 particle charges</title>
2264
2265 <para>The above empirical potential just model the short-range
2266 behavior in the molecular fragment, namely the bonded interaction.
2267 In order to model the long-range interaction as well without solving
2268 for the electronic ground state in each time step, particle charges
2269 are used that capture to some degree the created dipoles due to
2270 charge transfer from one atom to another when bonded.</para>
2271
2272 <para>To allow least-squares regression of these partial charges we
2273 need the results of long-range calculations and the store-grids
2274 option (see above under <link linkend="fragmentation">Fragmentation
2275 </link>) must have been given. With these sampled charge density and
2276 Coulomb potential stored in the homology containers, we call this
2277 action as follows.</para>
2278
2279 <programlisting>
2280 ... --fit-particle-charges \
2281 --fragment-charges 8 1 1 \
2282 --potential-file water.potentials \
2283 --radius 0.2
2284 </programlisting>
2285
2286 <para>This will again use water molecule as homologous fragment
2287 "key" to request configurations from the container. Results are
2288 stored in <filename>water.potentials</filename>. The radius is used
2289 to mark the region directly around the nuclei from the fit
2290 procedure. As here the charges of the core electrons and the nuclei
2291 itself dominate, we however are only interested in a good
2292 approximation to the long-range potential, this mask radius allows
2293 to give the range of the excluded zone.</para>
2294 </section>
2295 </section>
2296
2297 <section xml:id='dynamics'>
2298 <title xml:id='dynamics.title'>Dynamics</title>
2299
2300 <para>For fitting potentials or charges we need many homologuous but
2301 different fragments, i.e. atoms with slightly different positions.
2302 How can we generate these?</para>
2303
2304 <para>One possibility is to use molecular dynamics. With the
2305 aforementioned fragmentation scheme we can quickly calculate not only
2306 energies but also forces if the chosen solver, such as
2307 <link xlink:href="http://www.mpqc.org/"><productname>MPQC
2308 </productname></link>, supports it. Integrating these forces
2309 discretely over time gives insight into vibrational features of a
2310 molecular system and allows to generate those positions for fitting
2311 potentials that describe these vibrations.</para>
2312
2313 <section xml:id='dynamics.molecular-dynamics'>
2314 <title xml:id='dynamics.molecular-dynamics.title'>Molecular dynamics
2315 </title>
2316
2317 <para>The molecular dynamics action is a so-called macro Action,
2318 i.e. it combines several other Actions into one, namely:</para>
2319 <itemizedlist>
2320 <listitem>
2321 <para>--verlet-integration</para>
2322 </listitem>
2323 <listitem>
2324 <para>--output</para>
2325 </listitem>
2326 <listitem>
2327 <para>--clear-fragment-results</para>
2328 </listitem>
2329 <listitem>
2330 <para>--destroy-adjacency</para>
2331 </listitem>
2332 <listitem>
2333 <para>--create-adjacency</para>
2334 </listitem>
2335 <listitem>
2336 <para>--update-molecules</para>
2337 </listitem>
2338 <listitem>
2339 <para>--fragment-molecule</para>
2340 </listitem>
2341 <listitem>
2342 <para>--fragment-automation</para>
2343 </listitem>
2344 <listitem>
2345 <para>--analyse-fragment-results</para>
2346 </listitem>
2347 </itemizedlist>
2348
2349 <para>The following will perform a molecular dynamics simulation
2350 for 100 time steps, each time step combining 0.5 atomic time units,
2351 i.e. 1.2 1e-17 s. The other options listed below will seem familiar
2352 to you if you have read about the other Actions listed above. Below
2353 we will not keep the bondgraph, i.e bonds and molecules may change
2354 over the simulation and hence also the created fragments per time
2355 step.
2356 </para>
2357
2358 <programlisting>
2359 ... --molecular-dynamics \
2360 --steps 100 \
2361 --keep-bondgraph 0 \
2362 --order 3 \
2363 --distance 3. \
2364 --deltat 0.5 \
2365 --keep-fixed-CenterOfMass 1 \
2366 --fragment-executable mpqc \
2367 </programlisting>
2368 </section>
2369
2370 <section xml:id='dynamics.optimize-structure'>
2371 <title xml:id='dynamics.optimize-structure.title'>Structure
2372 optimization</title>
2373
2374 <para>Structure optimization is also a macro Action, it basically
2375 combines the same Actions as molecular-dynamics does. However, it
2376 uses force-annealing instead of verlet-integration.</para>
2377
2378 <para>The following performs a structure optimization of the
2379 currently selected atoms (may also be a subset) for up to 100 time
2380 steps, where each time step ist 0.5 atomic time units. The time
2381 step here is the initial step with for annealing.
2382 </para>
2383
2384 <programlisting>
2385 ... --optimize-structure \
2386 --keep-bondgraph 1 \
2387 --output-every-step 1 \
2388 --steps 100 \
2389 --order 3 \
2390 --distance 3. \
2391 --deltat 0.5 \
2392 --keep-fixed-CenterOfMass 1 \
2393 --fragment-executable mpqc \
2394 </programlisting>
2395
2396 <para>Note that output-every-step will allow you to watch the
2397 optimization as each step is placed into a distinct time step.
2398 Otherwise only two time steps would be created: the initial and
2399 the final one containing the optimized structure.</para>
2400 </section>
2401
2402 <section xml:id='dynamics.set-world-time'>
2403 <title xml:id='dynamics.set-world-time.title'>Set the world's time
2404 step</title>
2405
2406 <para>In order to inspect or manipulate atoms and molecules at a
2407 certain time step, the World's time has to be set with the following
2408 Action.
2409 </para>
2410
2411 <para>This will set the World's time to the fifth step (counting
2412 starts at zero).</para>
2413
2414 <programlisting>... --set-world-time 4</programlisting>
2415 </section>
2416
2417 <section xml:id='dynamics.save-temperature'>
2418 <title xml:id='dynamics.save-temperature.title'>Save the
2419 temperature information</title>
2420
2421 <para>For each time step the temperature (i.e. the average velocity
2422 per atom times its mass) will be stored to a file.</para>
2423
2424 <programlisting>
2425 ... --save-temperature temperature.dat \
2426 </programlisting>
2427 </section>
2428 </section>
2429
2430 <section xml:id='dynamics.tesselation'>
2431 <title xml:id='dynamics.tesselation.title'>Tesselations</title>
2432
2433 <para>Tesselations obtain molecular surfaces (and volumes) by rolling
2434 a virtual sphere of a certain radii on a molecule until a closed
2435 surface of connected triangles is created.</para>
2436
2437 <section xml:id='dynamics.tesselation.nonconvex-envelope'>
2438 <title xml:id='dynamics.tesselation.nonconvex-envelope.title'>
2439 Non-convex envelope</title>
2440
2441 <para>This will create a non-convex envelope for a molecule and store
2442 it to a file for viewing with external programs.</para>
2443
2444 <programlisting>
2445 ... --nonconvex-envelope 6. \
2446 --nonconvex-file nonconvex.dat
2447 </programlisting>
2448
2449 <para>This tesselation file can be conveniently viewed with
2450 <productname>TecPlot</productname> or with one of the Tcl script
2451 in the util folder with <productname>VMD</productname>. Also,
2452 still pictures can be produced with <productname>Raster3D
2453 </productname>.
2454 <note>The required file header.r3d can be found in a subfolder of
2455 the util folder.</note>
2456 </para>
2457 </section>
2458
2459 <section xml:id='dynamics.tesselation.convex-envelope'>
2460 <title xml:id='dynamics.tesselation.convex-envelope.title'>Convex
2461 envelope</title>
2462
2463 <para>This will create a convex envelope for a molecule and give the
2464 volumes of both the non-convex and the convex envelope. This is good
2465 for measuring the space a molecule takes up, e.g. when filling a
2466 domain and taking care of correct densities.</para>
2467
2468 <programlisting>
2469 ... --convex-envelope 6. \
2470 --convex-file convex.dat
2471 </programlisting>
2472
2473 <para>This tesselation file can be likewise viewed with
2474 <productname>TecPlot</productname> or with one of the Tcl script
2475 in the util folder with <productname>VMD</productname>.</para>
2476 </section>
2477 </section>
2478
2479 <section xml:id='various'>
2480 <title xml:id='various.title'>Various commands</title>
2481
2482 <para>Here, we gather all commands that do not fit into one of above
2483 categories for completeness.</para>
2484
2485 <section xml:id='various.verbose'>
2486 <title xml:id='various.verbose.title'>Changing verbosity</title>
2487
2488 <para>The verbosity level is the amount of stuff printed to screen.
2489 This information will in general help you to understand when
2490 something does not work. Mind the <emphasis>ERROR</emphasis> and
2491 <emphasis>WARNING</emphasis> messages in any case.</para>
2492
2493 <para>This sets the verbosity from default of 2 to 4,</para>
2494
2495 <programlisting>... --verbose 4</programlisting>
2496
2497 <para>or shorter,</para>
2498
2499 <programlisting>... -v 4</programlisting>
2500 </section>
2501
2502 <section xml:id='various.element-db'>
2503 <title xml:id='various.element-db.title'>Loading an element
2504 database</title>
2505
2506 <para>Element databases contain information on valency, van der
2507 Waals-radii and other information for each element.</para>
2508
2509 <para>This loads all element database from the current folder (in a
2510 unix environment):</para>
2511
2512 <programlisting>... --element-db ./</programlisting>
2513
2514 </section>
2515
2516 <section xml:id='various.fastparsing'>
2517 <title xml:id='various.fastparsing.title'>Fast parsing</title>
2518
2519 <para>Parsing all time steps from a given input file can take a
2520 while, especially for larger systems. If fast parsing is activated,
2521 only the first time step is loaded, all other are ignored.</para>
2522
2523 <programlisting>... --fastparsing 1</programlisting>
2524 </section>
2525
2526 <section xml:id='various.version'>
2527 <title xml:id='various.version.title'>Giving the version of the
2528 program</title>
2529
2530 <para>This prints the version information of the code, especially
2531 important when you request the fixing of bugs or implementation of
2532 features.</para>
2533
2534 <programlisting>... --version</programlisting>
2535 </section>
2536
2537 <section xml:id='various.warranty'>
2538 <title xml:id='various.warranty.title'>Giving warranty
2539 information</title>
2540
2541 <para>As follows warranty information is given,</para>
2542
2543 <programlisting>... --warranty</programlisting>
2544 </section>
2545
2546 <section xml:id='various.help-redistribute'>
2547 <title xml:id='various.help-redistribute.title'>Giving
2548 redistribution information</title>
2549
2550 <para>This gives information on the license and how to redistribute
2551 the program and its source code</para>
2552
2553 <programlisting>... --help-redistribute</programlisting>
2554 </section>
2555 </section>
2556
2557 <section xml:id='sessions'>
2558 <title xml:id='sessions.title'>Sessions</title>
2559
2560 <para>A session refers to the queue of actions you have executed.
2561 Together with the initial configuration (and all files required for
2562 actions in the queue) this might be seen as a clever way of storing
2563 the state of a molecular system. When proceeding in a try&amp;error
2564 fashion to construct a certain system, it is a good idea, to store the
2565 session at the point where your attempts start to deviate from one
2566 another.</para>
2567
2568 <section xml:id='sessions.store-session'>
2569 <title xml:id='sessions.store-session.title'>Storing a session
2570 </title>
2571
2572 <para>Storing sessions is simple,</para>
2573
2574 <programlisting>
2575 ... --store-session "session.py" \
2576 --session-type python
2577 </programlisting>
2578
2579 <para>Here, the session type is given as python (the other option is
2580 cli for in the manner of the command-line interface) and the written
2581 python script <filename>session.py</filename> can even be used with
2582 the python interface described below, i.e. it is a full python script
2583 (that however requires the so-called pyMoleCuilder module).</para>
2584 </section>
2585
2586 <section xml:id='sessions.load-session'>
2587 <title xml:id='sessions.load-session.title'>Loading a session</title>
2588
2589 <para>Loading a session only works for python scripts. This actually
2590 blurs the line between the command-line interface and the python
2591 interface a bit. But even more, MoleCuilder automatically executes a
2592 script called <filename>molecuilder.py</filename> if such a file is
2593 contained in the current directory.</para>
2594
2595 <programlisting>... --load-session "session.py"</programlisting>
2596
2597 <para>This will execute every action with its options contained in the
2598 script <filename>session.py</filename>.</para>
2599 </section>
2600 </section>
2601
2602 <section xml:id='various-specific'>
2603 <title xml:id='various-specific.title'>Various specific commands
2604 </title>
2605
2606 <para>In this (final) section of the action description we list a number
2607 Actions that are very specific to some purposes (or other programs).
2608 </para>
2609
2610 <section xml:id='various-specific.save-selected-atoms-as-exttypes'>
2611 <title xml:id='various-specific.save-selected-atoms-as-exttypes.title'>
2612 Saving exttypes of a set of atoms</title>
2613
2614 <para>This saves the atomic ids of all currently selected atoms in a
2615 <link xlink:href="http://www.tremolo-x.com/"><productname>TREMOLO
2616 </productname></link> exttypes file with the given name.</para>
2617
2618 <programlisting>
2619 ... --save-selected-atoms-as-exttypes \
2620 --filename test.exttypes </programlisting>
2621 </section>
2622
2623 <section xml:id='various-specific.set-parser-parameters'>
2624 <title xml:id='various-specific.set-parser-parameters.title'>Setting
2625 parser specific parameters</title>
2626
2627 <para>You can also tweak the parameters stored in this file easily.
2628 For example, <productname>MPQC</productname> stores various
2629 parameters modifying the specific ab-initio calculation performed.
2630 For <link xlink:href="http://www.mpqc.org/"><productname>MPQC
2631 </productname></link> and
2632 <link xlink:href="http://www.psicode.org/"><productname>Psi4
2633 </productname></link> this can be modified as follows.</para>
2634
2635 <programlisting>
2636 ... --set-parser-parameters mpqc \
2637 --parser-parameters "theory=CLHF;basis=6-31*G;"
2638 </programlisting>
2639
2640 <para>This sets the ab-initio theory to closed-shell Hartree-Fock
2641 and the basis set to 6-31*G. Please check the
2642 <productname>MPQC</productname> manual on specific
2643 parameters.</para>
2644 </section>
2645
2646 <section xml:id='various-specific.set-tremolo-atomdata'>
2647 <title xml:id='various-specific.set-tremolo-atomdata.title'>Tremolo
2648 specific options and potential files</title>
2649
2650 <para><productname>TREMOLO</productname>'s configuration files start
2651 with a specific line telling the amount of information stored in the
2652 file. This file can be modified, e.g. to enforce storing of
2653 velocities and forces as well as the atoms positions and
2654 element.</para>
2655
2656 <programlisting>
2657 ... --set-tremolo-atomdata "ATOM id element u=3 v=3 F=3" \
2658 --reset 1
2659 </programlisting>
2660
2661 <para>This will not append but reset the old line and fill it with
2662 the given string.</para>
2663
2664 <para>One specific action is required when loading certain
2665 <productname>TREMOLO</productname> configuration files. These
2666 contain element notations that refer to parameterized names used in
2667 empirical potentials and molecular dynamics simulations and not the
2668 usual chemical symbols, such as H or O. We may load an auxiliary
2669 file that gives the required conversion from OH1 to H, which is the
2670 so-called potential file.</para>
2671
2672 <programlisting>... --parse-tremolo-potentials water.potentials</programlisting>
2673
2674 <para>This parses the lookup table from the file
2675 <filename>water.potentials</filename> and it can be used in
2676 following load actions.</para>
2677 </section>
2678 </section>
2679 </section>
2680
2681 <section xml:id='textmenu-interface'>
2682 <title xml:id='textmenu-interface.title'>Text menu</title>
2683
2684 <para>We now discuss how to use the text menu interface.</para>
2685
2686 <para>The text menu is very much the interface counterpart to the
2687 command-line interface. Both work in a terminal session.</para>
2688
2689 <para>In the text menu, actions can be selected from hierarchical lists.
2690 Note that the menus for the graphical interface are organized in the
2691 exactly same way. After an action has been chosen, the option values
2692 have to be entered one after the other. After the last option value has
2693 been given, the action is executed and the result printed to the
2694 screen.</para>
2695
2696 <para>With regards to the other functionality, it is very much the same
2697 as the command-line interface above.</para>
2698 </section>
2699
2700 <section xml:id='graphical-user-interface'>
2701 <title xml:id='graphical-user-interface.title'>Graphical user interface
2702 </title>
2703
2704 <para>The main point of the GUI is that it renders the atoms and
2705 molecules visually. These are represented by the common
2706 stick-and-ball-model. Single or multiple atoms and molecules can easily
2707 be accessed, activated and manipulated via tables. Changes made in the
2708 tables cause immediate update of the visual representation. Under the
2709 hood each of these manipulations is nothing but the call to an action,
2710 hence is fully undo- and redoable.</para>
2711
2712 <para>This is mostly helpful to design more advanced structures that are
2713 conceptually difficult to imagine without visual aid. At the end, a
2714 session may be stored and this script can then be used to construct
2715 various derived or slightly modified structures.</para>
2716
2717 <section xml:id='graphical-user-interface.basic-view'>
2718 <title xml:id='graphical-user-interface.basic-view.title'>Basic view
2719 </title>
2720
2721 <para>Let us first give an impression of the basic view of the gui
2722 after a molecule has been loaded.</para>
2723
2724 <figure>
2725 <title>Screenshot of the basic view of the GUI after loading a file
2726 with eight water molecules.</title>
2727
2728 <mediaobject>
2729 <imageobject>
2730 <imagedata entityref="example_basic_view" scalefit="1" width="100%"/>
2731 </imageobject>
2732 </mediaobject>
2733 </figure>
2734
2735 <section xml:id='graphical-user-interface.3d-view'>
2736 <title xml:id='graphical-user-interface.3d-view.title'>3D view
2737 </title>
2738
2739 <para>In the above figure, you see the stick-and-ball representation
2740 of the water molecules, the dreibein giving the positive axis
2741 direction and the cuboidal domain on a black background.</para>
2742 </section>
2743
2744 <section xml:id='graphical-user-interface.information-tabs'>
2745 <title xml:id='graphical-user-interface.information-tabs.title'>
2746 Information Tabs</title>
2747
2748 <para>Beneath this 3D view that you can rotate at will your mouse
2749 and zoom in and out with your scroll wheel, you find to the right a
2750 part containing two tabs named Atom and Molecule. Look at where the
2751 mouse pointer is. It has colored the atom underneath in cyan
2752 (although it's also an oxygen atom and should bne coloured in rose
2753 as the rest). You can inspect its properties in the tab Atom: Name,
2754 element, mass, charge, position and number of bonds. If you switch
2755 to the Molecule tab, you would see the properties of the water
2756 molecule this specific atom belongs to.</para>
2757 </section>
2758
2759 <section xml:id='graphical-user-interface.shape'>
2760 <title xml:id='graphical-user-interface.shape.title'>Shape section
2761 </title>
2762
2763 <para>Beneath these information tabs you find the shape sections.
2764 There you find a list of all currently created shapes and you can
2765 manipulate them via the buttons beneath this list.</para>
2766 </section>
2767
2768 <section xml:id='graphical-user-interface.timeline'>
2769 <title xml:id='graphical-user-interface.timeline.title'>Timeline
2770 </title>
2771
2772 <para>Directly below the 3D view there is a long slider. If a loaded
2773 file has multiple time step entries, this slider allows you to
2774 smoothly select one time frame after another. Sliding it with the
2775 mouse from left to right will reveal the animation that is hidden
2776 behind the distinct snapshots stored in the configuration
2777 file.</para>
2778 </section>
2779
2780 <section xml:id='graphical-user-interface.tables'>
2781 <title xml:id='graphical-user-interface.tables.title'>Selection
2782 tables</title>
2783
2784 <para>Underneath the time line there is another place for
2785 tabs.</para>
2786
2787 <para>The first is on molecules, listing all present molecules of
2788 the molecular system in a list view. If you click on a specific
2789 molecule, the one will get selected or unselected depending on its
2790 current selection state (see below for details on this with respect
2791 to the GUI).</para>
2792
2793 <para>The next tab enumerates all elements known to MoleCuilder
2794 where the ones are greyed out that are not present in the molecular
2795 system. Clicking on a present element will select all atoms of this
2796 specific element. A subsequent click unselects again.</para>
2797
2798 <para>Subsequent follow tabs on enumerating the fragments and their
2799 fragment energies if calculated and the homologies along with
2800 graphical depiction (via QWT) if present.</para>
2801 </section>
2802 </section>
2803
2804 <section xml:id='graphical-user-interface.selections'>
2805 <title xml:id='graphical-user-interface.selections.title'>Selections
2806 </title>
2807
2808 <para>Selections work generally always by selecting the respective
2809 action from the pull-down menu.</para>
2810
2811 <para>However, it may also be accessed directly. The row of icons
2812 above the 3D view has two icons depicting the selection of individual
2813 atoms or molecules. If either of them is selected, clicking with the
2814 left mouse button on an atom will either (un)select the atom or its
2815 associated molecule. Multiple atoms can be selected in this
2816 manner.</para>
2817
2818 <para>Also the selection tabs may be used by clicking on the name of a
2819 molecule as stated above or at an element.</para>
2820
2821 <para>Similarly, if shapes are present in the shape section, clicking
2822 them with select them and also cause a translucent visualization to
2823 appear in the 3D view. Note that this visualization is quite costly
2824 right now and not suited to complex shapes.</para>
2825 </section>
2826
2827 <section xml:id='graphical-user-interface.dialogs'>
2828 <title xml:id='graphical-user-interface.dialogs.title'>Dialogs</title>
2829
2830 <para>Most essential, however, to the GUI are the dialogs. Each action
2831 calls forth such a dialog even if no options are required (the
2832 execution of the action has at least to be confirmed). Each dialog
2833 consisting of queries for a particular option value. As each option
2834 value has a specific type, we briefly go into the details of how these
2835 queries look like.</para>
2836
2837 <note>
2838 <para>Each dialog's Ok is greyed out until all entered option values
2839 are valid.</para>
2840 </note>
2841
2842 <section xml:id='graphical-user-interface.dialogs.domain'>
2843 <title xml:id='graphical-user-interface.dialogs.domain.title'>Domain
2844 query</title>
2845
2846 <figure>
2847 <title>Screenshot of a dialog showing a domain query</title>
2848
2849 <mediaobject>
2850 <imageobject>
2851 <imagedata entityref="dialog_box" scalefit="1" width="100%"/>
2852 </imageobject>
2853 </mediaobject>
2854
2855 <para>In the domain query a 3x3 symmetric matrix has to be
2856 entered. In the above screenshots you notice that the only
2857 non-zero entries are on the main diagonal. Here, we have simply
2858 specified a cube of edge length 8. The ok button will be greyed
2859 out if the matrix is either singular or not symmetric.</para>
2860 </figure>
2861 </section>
2862
2863 <section xml:id='graphical-user-interface.dialogs.element'>
2864 <title xml:id='graphical-user-interface.dialogs.element.title'>
2865 Element query</title>
2866
2867 <figure>
2868 <title>Screenshot the add atom action containing an element
2869 query</title>
2870
2871 <mediaobject>
2872 <imageobject>
2873 <imagedata entityref="dialog_add-atom_tooltip" scalefit="1" width="100%"/>
2874 </imageobject>
2875 </mediaobject>
2876
2877 <para>Elements are picked from a pull-down box where all known
2878 elements are listed.</para>
2879
2880 <para>In this dialog you also notice that a tooltip is given,
2881 briefly explaining what the action does.</para>
2882 </figure>
2883 </section>
2884
2885 <section xml:id='graphical-user-interface.dialogs.action'>
2886 <title xml:id='graphical-user-interface.dialogs.action.title'>
2887 Complex query</title>
2888
2889 <figure>
2890 <title>Screenshot of a complex dialog consisting of multiple
2891 queries</title>
2892
2893 <mediaobject>
2894 <imageobject>
2895 <imagedata entityref="dialog_complex" scalefit="1" width="100%"/>
2896 </imageobject>
2897 </mediaobject>
2898
2899 <para>Here we show a more complex dialog. It queries for strings,
2900 for integer values (see the increase/decrease arrows), for
2901 booleans and for files (the "choose" buttons opens a file
2902 dialog).</para>
2903 </figure>
2904 </section>
2905
2906 <section xml:id='graphical-user-interface.dialogs.exit'>
2907 <title xml:id='graphical-user-interface.dialogs.exit.title'>Exit
2908 query</title>
2909
2910 <figure>
2911 <title>Screenshort showing the exit dialog</title>
2912
2913 <mediaobject>
2914 <imageobject>
2915 <imagedata entityref="dialog_exit" scalefit="1" width="100%"/>
2916 </imageobject>
2917 </mediaobject>
2918
2919 <para>Finally, we show the dialog that will pop up when exiting
2920 the graphical interface. It will ask whether it should store the
2921 current state of the system in the input file or not. You may
2922 cancel the exit, close without saving or save the current
2923 state.</para>
2924 </figure>
2925 </section>
2926 </section>
2927 </section>
2928
2929 <section xml:id='python-interface'>
2930 <title xml:id='python-interface.title'>Python interface</title>
2931
2932 <para>Last but not least we elaborate on the python interface. We have
2933 already discusses this interface to some extent. The current session,
2934 i.e. the queue of actions you have executed, can be stored as a python
2935 script and subsequently executed independently of the user interface it
2936 was created with. More general, MoleCuilder can execute arbitrary python
2937 scripts where prior to its execution a specific module is loaded by
2938 default enabling access to MoleCuilder's actions from inside the
2939 script.</para>
2940
2941 <para>MoleCuilder's python module is called pyMoleCuilder. it is
2942 essentially a library that can be imported into python just as any other
2943 module. Let us assume you have started the python interpreter and you
2944 have added the destination of the <filename>pyMoleCuilder</filename>
2945 library to the <varname>PYTHONPATH</varname> variable.</para>
2946
2947 <programlisting>import pyMoleCuilder as mol</programlisting>
2948
2949 <para>Subsequently, you can access the help via</para>
2950
2951 <programlisting>help(mol)</programlisting>
2952
2953 <para>This will list all of MoleCuilder's actions with their function
2954 signatures within python as contained in the module pyMoleCuilder named
2955 as mol in the scope of the currently running interpreter. Note that the
2956 function names are not the names you know from the command-line
2957 interface, they might be called
2958 <computeroutput>WorldChangeBox(...)</computeroutput> or alike.</para>
2959
2960 <para>Let's try it out.</para>
2961
2962 <programlisting>print mol.CommandVersion()</programlisting>
2963
2964 <para>This will state the current version of the library.</para>
2965
2966 <para>Go ahead and try out other commands. Refer to the documentation
2967 under the command-line interface and look up the function name via
2968 help.</para>
2969 </section>
2970 </chapter>
2971
2972 <chapter>
2973 <title>Conclusions</title>
2974
2975 <para>This ends this user guide.</para>
2976
2977 <para>We have given you a brief introduction to the aim of the program and
2978 how each of the four interfaces are to be used. The rest is up to
2979 you.</para>
2980
2981 <para>Tutorials and more information is available online, see <link
2982 xlink:href="http://www.molecuilder.com/">MoleCuilder's website</link>.
2983 </para>
2984
2985 <para>Be aware that in general knowing how the code works allows you to
2986 understand what's going wrong if something's going wrong.</para>
2987
2988 <section>
2989 <title>Thanks</title>
2990
2991 <para>Huge thanks go out to Saskia Metzler who was patient enough to let
2992 me sit next to her while riding ten hours in a bus to Berlin.</para>
2993 </section>
2994 </chapter>
2995</book>
Note: See TracBrowser for help on using the repository browser.