[0b990d] | 1 | //
|
---|
| 2 | // solvent.cc
|
---|
| 3 | //
|
---|
| 4 | // Copyright (C) 1997 Limit Point Systems, Inc.
|
---|
| 5 | //
|
---|
| 6 | // Author: Curtis Janssen <cljanss@limitpt.com>
|
---|
| 7 | // Maintainer: LPS
|
---|
| 8 | //
|
---|
| 9 | // This file is part of the SC Toolkit.
|
---|
| 10 | //
|
---|
| 11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
| 12 | // it under the terms of the GNU Library General Public License as published by
|
---|
| 13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
| 14 | // any later version.
|
---|
| 15 | //
|
---|
| 16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
| 17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 19 | // GNU Library General Public License for more details.
|
---|
| 20 | //
|
---|
| 21 | // You should have received a copy of the GNU Library General Public License
|
---|
| 22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
| 23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
| 24 | //
|
---|
| 25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
| 26 | //
|
---|
| 27 |
|
---|
| 28 | #ifdef __GNUC__
|
---|
| 29 | #pragma implementation
|
---|
| 30 | #endif
|
---|
| 31 |
|
---|
| 32 | #include <util/misc/timer.h>
|
---|
| 33 | #include <util/misc/formio.h>
|
---|
| 34 | #include <util/state/stateio.h>
|
---|
| 35 | #include <chemistry/qc/basis/petite.h>
|
---|
| 36 | #include <chemistry/qc/wfn/solvent.h>
|
---|
| 37 |
|
---|
| 38 | #include <math/isosurf/volume.h>
|
---|
| 39 | #include <chemistry/qc/dft/integrator.h>
|
---|
| 40 | #include <chemistry/qc/dft/functional.h>
|
---|
| 41 |
|
---|
| 42 | #include <iomanip>
|
---|
| 43 |
|
---|
| 44 | using namespace std;
|
---|
| 45 | using namespace sc;
|
---|
| 46 |
|
---|
| 47 | namespace sc {
|
---|
| 48 |
|
---|
| 49 | //. The \clsnm{NElFunctional} computes the number of electrons.
|
---|
| 50 | //. It is primarily for testing the integrator.
|
---|
| 51 | class NElInShapeFunctional: public DenFunctional {
|
---|
| 52 | private:
|
---|
| 53 | Ref<Volume> vol_;
|
---|
| 54 | double isoval_;
|
---|
| 55 | public:
|
---|
| 56 | NElInShapeFunctional(const Ref<Volume> &, double);
|
---|
| 57 | ~NElInShapeFunctional();
|
---|
| 58 |
|
---|
| 59 | void point(const PointInputData&, PointOutputData&);
|
---|
| 60 | };
|
---|
| 61 |
|
---|
| 62 | /////////////////////////////////////////////////////////////////////////////
|
---|
| 63 | // NElFunctional
|
---|
| 64 |
|
---|
| 65 | static ClassDesc NElInShapeFunctional_cd(
|
---|
| 66 | typeid(NElInShapeFunctional),"NElInShapeFunctional",1,"public DenFunctional",
|
---|
| 67 | 0, 0, 0);
|
---|
| 68 |
|
---|
| 69 | NElInShapeFunctional::NElInShapeFunctional(const Ref<Volume>& vol,
|
---|
| 70 | double isoval)
|
---|
| 71 | {
|
---|
| 72 | vol_ = vol;
|
---|
| 73 | isoval_ = isoval;
|
---|
| 74 | }
|
---|
| 75 |
|
---|
| 76 | NElInShapeFunctional::~NElInShapeFunctional()
|
---|
| 77 | {
|
---|
| 78 | }
|
---|
| 79 |
|
---|
| 80 | void
|
---|
| 81 | NElInShapeFunctional::point(const PointInputData &id,
|
---|
| 82 | PointOutputData &od)
|
---|
| 83 | {
|
---|
| 84 | vol_->set_x(id.r);
|
---|
| 85 | if (vol_->value() <= isoval_) {
|
---|
| 86 | od.energy = id.a.rho + id.b.rho;
|
---|
| 87 | }
|
---|
| 88 | else {
|
---|
| 89 | od.energy = 0.0;
|
---|
| 90 | }
|
---|
| 91 | }
|
---|
| 92 |
|
---|
| 93 | /////////////////////////////////////////////////////////////////////////////
|
---|
| 94 |
|
---|
| 95 | static ClassDesc BEMSolventH_cd(
|
---|
| 96 | typeid(BEMSolventH),"BEMSolventH",1,"public AccumH",
|
---|
| 97 | 0, create<BEMSolventH>, create<BEMSolventH>);
|
---|
| 98 |
|
---|
| 99 | BEMSolventH::BEMSolventH(const Ref<KeyVal>&keyval):
|
---|
| 100 | AccumH(keyval)
|
---|
| 101 | {
|
---|
| 102 | charge_positions_ = 0;
|
---|
| 103 | normals_ = 0;
|
---|
| 104 | efield_dot_normals_ = 0;
|
---|
| 105 | charges_ = 0;
|
---|
| 106 | charges_n_ = 0;
|
---|
| 107 | solvent_ << keyval->describedclassvalue("solvent");
|
---|
| 108 | gamma_ = keyval->doublevalue("gamma");
|
---|
| 109 | if (keyval->error() != KeyVal::OK) {
|
---|
| 110 | Ref<Units> npm = new Units("dyne/cm");
|
---|
| 111 | gamma_ = 72.75 * npm->to_atomic_units();
|
---|
| 112 | }
|
---|
| 113 | // If onebody add a term to the one body hamiltonian, h.
|
---|
| 114 | // Otherwise the energy contribution is scalar.
|
---|
| 115 | onebody_ = keyval->booleanvalue("onebody");
|
---|
| 116 | if (keyval->error() != KeyVal::OK) onebody_ = 1;
|
---|
| 117 | // Normalize the charges if normalize_q is set.
|
---|
| 118 | normalize_q_ = keyval->booleanvalue("normalize_q");
|
---|
| 119 | if (keyval->error() != KeyVal::OK) normalize_q_ = 1;
|
---|
| 120 | // Compute separately contributes to the energy from surfaces
|
---|
| 121 | // charges induced by the nuclear and electronic charge densities.
|
---|
| 122 | separate_surf_charges_ = keyval->booleanvalue("separate_surf_charges");
|
---|
| 123 | if (keyval->error() != KeyVal::OK) separate_surf_charges_ = 0;
|
---|
| 124 | // The Cammi-Tomasi Y term is set equal to the J term (as it formally is).
|
---|
| 125 | y_equals_j_ = keyval->booleanvalue("y_equals_j");
|
---|
| 126 | if (keyval->error() != KeyVal::OK) y_equals_j_ = 0;
|
---|
| 127 | // As a test, integrate the number of electrons inside the surface.
|
---|
| 128 | integrate_nelectron_ = keyval->booleanvalue("integrate_nelectron");
|
---|
| 129 | if (keyval->error() != KeyVal::OK) integrate_nelectron_ = 0;
|
---|
| 130 | }
|
---|
| 131 |
|
---|
| 132 | BEMSolventH::BEMSolventH(StateIn&s):
|
---|
| 133 | SavableState(s),
|
---|
| 134 | AccumH(s)
|
---|
| 135 | {
|
---|
| 136 | charge_positions_ = 0;
|
---|
| 137 | normals_ = 0;
|
---|
| 138 | efield_dot_normals_ = 0;
|
---|
| 139 | charges_ = 0;
|
---|
| 140 | charges_n_ = 0;
|
---|
| 141 | escalar_ = 0;
|
---|
| 142 |
|
---|
| 143 | wfn_ << SavableState::restore_state(s);
|
---|
| 144 | //solvent_.restore_state(s);
|
---|
| 145 | abort();
|
---|
| 146 | }
|
---|
| 147 |
|
---|
| 148 | BEMSolventH::~BEMSolventH()
|
---|
| 149 | {
|
---|
| 150 | // just in case
|
---|
| 151 | done();
|
---|
| 152 | }
|
---|
| 153 |
|
---|
| 154 | void
|
---|
| 155 | BEMSolventH::save_data_state(StateOut&s)
|
---|
| 156 | {
|
---|
| 157 | AccumH::save_data_state(s);
|
---|
| 158 |
|
---|
| 159 | SavableState::save_state(wfn_.pointer(),s);
|
---|
| 160 | //solvent_.save_state(s);
|
---|
| 161 | abort();
|
---|
| 162 | }
|
---|
| 163 |
|
---|
| 164 | void
|
---|
| 165 | BEMSolventH::init(const Ref<Wavefunction>& wfn)
|
---|
| 166 | {
|
---|
| 167 | tim_enter("solvent");
|
---|
| 168 | tim_enter("init");
|
---|
| 169 | wfn_ = wfn;
|
---|
| 170 | // just in case
|
---|
| 171 | done();
|
---|
| 172 | solvent_->init();
|
---|
| 173 | charge_positions_ = solvent_->alloc_charge_positions();
|
---|
| 174 | normals_ = solvent_->alloc_normals();
|
---|
| 175 | efield_dot_normals_ = solvent_->alloc_efield_dot_normals();
|
---|
| 176 | charges_ = solvent_->alloc_charges();
|
---|
| 177 | charges_n_ = solvent_->alloc_charges();
|
---|
| 178 |
|
---|
| 179 | // get the positions of the charges
|
---|
| 180 | solvent_->charge_positions(charge_positions_);
|
---|
| 181 |
|
---|
| 182 | // get the surface normals
|
---|
| 183 | solvent_->normals(normals_);
|
---|
| 184 |
|
---|
| 185 | if (integrate_nelectron_) {
|
---|
| 186 | Ref<DenIntegrator> integrator = new RadialAngularIntegrator();
|
---|
| 187 | Ref<DenFunctional> functional
|
---|
| 188 | = new NElInShapeFunctional(solvent_->surface()->volume_object(),
|
---|
| 189 | solvent_->surface()->isovalue());
|
---|
| 190 | integrator->init(wfn_);
|
---|
| 191 | integrator->integrate(functional);
|
---|
| 192 | integrator->done();
|
---|
| 193 | ExEnv::out0() << indent
|
---|
| 194 | << scprintf("N(e) in isosurf = %12.8f", integrator->value())
|
---|
| 195 | << endl;
|
---|
| 196 | }
|
---|
| 197 |
|
---|
| 198 | edisprep_ = solvent_->disprep();
|
---|
| 199 |
|
---|
| 200 | tim_exit("init");
|
---|
| 201 | tim_exit("solvent");
|
---|
| 202 | }
|
---|
| 203 |
|
---|
| 204 | // This adds J + X to h, where J and X are the matrices defined
|
---|
| 205 | // by Canni and Tomasi, J Comp Chem, 16(12), 1457, 1995.
|
---|
| 206 | // The resulting SCF free energy expression is
|
---|
| 207 | // G = 1/2TrP[h' + F'] + Une + Unn + Vnn
|
---|
| 208 | // -1/2(Uee+Uen+Une+Unn)
|
---|
| 209 | // which in the Canni-Tomasi notation is
|
---|
| 210 | // = 1/2TrP[h+1/2(X+J+Y+G)] + Vnn + 1/2Unn
|
---|
| 211 | // which is identical to the Canni-Tomasi energy expression.
|
---|
| 212 | // My Fock matrix is
|
---|
| 213 | // F' = h + J + X + G
|
---|
| 214 | // while the Canni-Tomasi Fock matrix is F' = h + 1/2(J+Y) + X + G.
|
---|
| 215 | // However, since J = Y formally, (assuming no numerical errors
|
---|
| 216 | // and all charge is enclosed, Canni-Tomasi use F' = h + J + X + G
|
---|
| 217 | // to get better numerical results.
|
---|
| 218 | //
|
---|
| 219 | // If the y_equals_j option is true, the energy expression used
|
---|
| 220 | // here is G = 1/2TrP[h+1/2(X+2J+G)] + Vnn + 1/2Unn, however, THIS
|
---|
| 221 | // IS NOT RECOMMENDED.
|
---|
| 222 | void
|
---|
| 223 | BEMSolventH::accum(const RefSymmSCMatrix& h)
|
---|
| 224 | {
|
---|
| 225 | tim_enter("solvent");
|
---|
| 226 | tim_enter("accum");
|
---|
| 227 | int i,j;
|
---|
| 228 |
|
---|
| 229 | //// compute the polarization charges
|
---|
| 230 |
|
---|
| 231 | // compute the e-field at each point and dot with normals
|
---|
| 232 | tim_enter("efield");
|
---|
| 233 | int ncharge = solvent_->ncharge();
|
---|
| 234 | Ref<EfieldDotVectorData> efdn_dat = new EfieldDotVectorData;
|
---|
| 235 | Ref<OneBodyInt> efdn = wfn_->integral()->efield_dot_vector(efdn_dat);
|
---|
| 236 | Ref<SCElementOp> efdn_op = new OneBodyIntOp(efdn);
|
---|
| 237 | RefSymmSCMatrix ao_density = wfn_->ao_density()->copy();
|
---|
| 238 | RefSymmSCMatrix efdn_mat(ao_density->dim(), ao_density->kit());
|
---|
| 239 | // for the scalar products, scale the density's off-diagonals by two
|
---|
| 240 | ao_density->scale(2.0);
|
---|
| 241 | ao_density->scale_diagonal(0.5);
|
---|
| 242 | Ref<SCElementScalarProduct> sp = new SCElementScalarProduct;
|
---|
| 243 | Ref<SCElementOp2> generic_sp(sp.pointer());
|
---|
| 244 | for (i=0; i<ncharge; i++) {
|
---|
| 245 | efdn_dat->set_position(charge_positions_[i]);
|
---|
| 246 | efdn_dat->set_vector(normals_[i]);
|
---|
| 247 | efdn->reinitialize();
|
---|
| 248 | efdn_mat->assign(0.0);
|
---|
| 249 | efdn_mat->element_op(efdn_op);
|
---|
| 250 | sp->init();
|
---|
| 251 | efdn_mat->element_op(generic_sp, ao_density);
|
---|
| 252 | efield_dot_normals_[i] = sp->result();
|
---|
| 253 | }
|
---|
| 254 | RefSCDimension aodim = ao_density.dim();
|
---|
| 255 | Ref<SCMatrixKit> aokit = ao_density.kit();
|
---|
| 256 | ao_density = 0;
|
---|
| 257 | efdn_mat = 0;
|
---|
| 258 | tim_exit("efield");
|
---|
| 259 |
|
---|
| 260 | // compute a new set of charges
|
---|
| 261 | tim_enter("charges");
|
---|
| 262 | // electron contrib
|
---|
| 263 | solvent_->compute_charges(efield_dot_normals_, charges_);
|
---|
| 264 | double qeenc = solvent_->computed_enclosed_charge();
|
---|
| 265 | // nuclear contrib
|
---|
| 266 | for (i=0; i<ncharge; i++) {
|
---|
| 267 | double nuc_efield[3];
|
---|
| 268 | wfn_->molecule()->nuclear_efield(charge_positions_[i], nuc_efield);
|
---|
| 269 | double tmp = 0.0;
|
---|
| 270 | for (j=0; j<3; j++) {
|
---|
| 271 | tmp += nuc_efield[j] * normals_[i][j];
|
---|
| 272 | }
|
---|
| 273 | efield_dot_normals_[i] = tmp;
|
---|
| 274 | }
|
---|
| 275 | solvent_->compute_charges(efield_dot_normals_, charges_n_);
|
---|
| 276 | double qnenc = solvent_->computed_enclosed_charge();
|
---|
| 277 | tim_exit("charges");
|
---|
| 278 |
|
---|
| 279 | // normalize the charges
|
---|
| 280 | // e and n are independently normalized since the nature of the
|
---|
| 281 | // errors in e and n are different: n error is just numerical and
|
---|
| 282 | // e error is numerical plus diffuseness of electron distribution
|
---|
| 283 | if (normalize_q_) {
|
---|
| 284 | tim_enter("norm");
|
---|
| 285 | // electron contrib
|
---|
| 286 | solvent_->normalize_charge(-wfn_->nelectron(), charges_);
|
---|
| 287 | // nuclear contrib
|
---|
| 288 | solvent_->normalize_charge(wfn_->molecule()->nuclear_charge(),
|
---|
| 289 | charges_n_);
|
---|
| 290 | tim_exit("norm");
|
---|
| 291 | }
|
---|
| 292 | // sum the nuclear and electron contrib
|
---|
| 293 | for (i=0; i<ncharge; i++) charges_[i] += charges_n_[i];
|
---|
| 294 |
|
---|
| 295 | //// compute scalar contributions
|
---|
| 296 | double A = solvent_->area();
|
---|
| 297 |
|
---|
| 298 | // the cavitation energy
|
---|
| 299 | ecavitation_ = A * gamma_;
|
---|
| 300 |
|
---|
| 301 | // compute the nuclear-surface interaction energy
|
---|
| 302 | tim_enter("n-s");
|
---|
| 303 | enucsurf_
|
---|
| 304 | = solvent_->nuclear_interaction_energy(charge_positions_, charges_);
|
---|
| 305 | tim_exit("n-s");
|
---|
| 306 |
|
---|
| 307 | double enqn = 0.0, enqe = 0.0;
|
---|
| 308 | if (y_equals_j_ || separate_surf_charges_) {
|
---|
| 309 | tim_enter("n-qn");
|
---|
| 310 | enqn = solvent_->nuclear_interaction_energy(charge_positions_,
|
---|
| 311 | charges_n_);
|
---|
| 312 | enqe = enucsurf_ - enqn;
|
---|
| 313 | tim_exit("n-qn");
|
---|
| 314 | }
|
---|
| 315 |
|
---|
| 316 | //// compute one body contributions
|
---|
| 317 |
|
---|
| 318 | // compute the electron-surface interaction matrix elements
|
---|
| 319 | tim_enter("e-s");
|
---|
| 320 | Ref<PointChargeData> pc_dat = new PointChargeData(ncharge,
|
---|
| 321 | charge_positions_, charges_);
|
---|
| 322 | Ref<OneBodyInt> pc = wfn_->integral()->point_charge(pc_dat);
|
---|
| 323 | Ref<SCElementOp> pc_op = new OneBodyIntOp(pc);
|
---|
| 324 |
|
---|
| 325 | // compute matrix elements in the ao basis
|
---|
| 326 | RefSymmSCMatrix h_ao(aodim, aokit);
|
---|
| 327 | h_ao.assign(0.0);
|
---|
| 328 | h_ao.element_op(pc_op);
|
---|
| 329 | // transform to the so basis and add to h
|
---|
| 330 | RefSymmSCMatrix h_so = wfn_->integral()->petite_list()->to_SO_basis(h_ao);
|
---|
| 331 | if (onebody_) h->accumulate(h_so);
|
---|
| 332 | // compute the contribution to the energy
|
---|
| 333 | sp->init();
|
---|
| 334 | RefSymmSCMatrix so_density = wfn_->density()->copy();
|
---|
| 335 | // for the scalar products, scale the density's off-diagonals by two
|
---|
| 336 | so_density->scale(2.0);
|
---|
| 337 | so_density->scale_diagonal(0.5);
|
---|
| 338 | h_so->element_op(generic_sp, so_density);
|
---|
| 339 | eelecsurf_ = sp->result();
|
---|
| 340 | tim_exit("e-s");
|
---|
| 341 |
|
---|
| 342 | double eeqn = 0.0, eeqe = 0.0;
|
---|
| 343 | if (y_equals_j_ || separate_surf_charges_) {
|
---|
| 344 | tim_enter("e-qn");
|
---|
| 345 | pc_dat = new PointChargeData(ncharge, charge_positions_, charges_n_);
|
---|
| 346 | pc = wfn_->integral()->point_charge(pc_dat);
|
---|
| 347 | pc_op = new OneBodyIntOp(pc);
|
---|
| 348 |
|
---|
| 349 | // compute matrix elements in the ao basis
|
---|
| 350 | h_ao.assign(0.0);
|
---|
| 351 | h_ao.element_op(pc_op);
|
---|
| 352 | // transform to the so basis
|
---|
| 353 | h_so = wfn_->integral()->petite_list()->to_SO_basis(h_ao);
|
---|
| 354 | // compute the contribution to the energy
|
---|
| 355 | sp->init();
|
---|
| 356 | h_so->element_op(generic_sp, so_density);
|
---|
| 357 | eeqn = sp->result();
|
---|
| 358 | eeqe = eelecsurf_ - eeqn;
|
---|
| 359 | tim_exit("e-qn");
|
---|
| 360 | }
|
---|
| 361 |
|
---|
| 362 | if (y_equals_j_) {
|
---|
| 363 | // Remove the y term (enqe) and add the j term (eeqn). Formally,
|
---|
| 364 | // they are equal, but they are not because some e-density is outside
|
---|
| 365 | // the surface and because of the numerical approximations.
|
---|
| 366 | enucsurf_ += eeqn - enqe;
|
---|
| 367 | }
|
---|
| 368 |
|
---|
| 369 | // compute the surface-surface interaction energy
|
---|
| 370 | esurfsurf_ = -0.5*(eelecsurf_+enucsurf_);
|
---|
| 371 | // (this can also be computed as below, but is much more expensive)
|
---|
| 372 | //tim_enter("s-s");
|
---|
| 373 | //double esurfsurf_;
|
---|
| 374 | //esurfsurf_ = solvent_->self_interaction_energy(charge_positions_, charges_);
|
---|
| 375 | //tim_exit("s-s");
|
---|
| 376 |
|
---|
| 377 | escalar_ = enucsurf_ + esurfsurf_ + ecavitation_ + edisprep_;
|
---|
| 378 | // NOTE: SCF currently only adds h_so to the Fock matrix
|
---|
| 379 | // so a term is missing in the energy. This term is added here
|
---|
| 380 | // and when SCF is fixed, should no longer be included.
|
---|
| 381 | if (onebody_) escalar_ += 0.5 * eelecsurf_;
|
---|
| 382 |
|
---|
| 383 | if (!onebody_) escalar_ += eelecsurf_;
|
---|
| 384 |
|
---|
| 385 | ExEnv::out0() << incindent;
|
---|
| 386 | ExEnv::out0() << indent
|
---|
| 387 | << "Solvent: "
|
---|
| 388 | << scprintf("q(e-enc)=%12.10f q(n-enc)=%12.10f", qeenc, qnenc)
|
---|
| 389 | << endl;
|
---|
| 390 | ExEnv::out0() << incindent;
|
---|
| 391 | if (separate_surf_charges_) {
|
---|
| 392 | ExEnv::out0() << indent
|
---|
| 393 | << scprintf("E(n-qn)=%10.8f ", enqn)
|
---|
| 394 | << scprintf("E(n-qe)=%10.8f", enqe)
|
---|
| 395 | << endl;
|
---|
| 396 | ExEnv::out0() << indent
|
---|
| 397 | << scprintf("E(e-qn)=%10.8f ", eeqn)
|
---|
| 398 | << scprintf("E(e-qe)=%10.8f", eeqe)
|
---|
| 399 | << endl;
|
---|
| 400 | //ExEnv::out0() << indent
|
---|
| 401 | // << scprintf("DG = %12.8f ", 0.5*627.51*(enqn+enqe+eeqn+eeqe))
|
---|
| 402 | // << scprintf("DG(Y=J) = %12.8f", 0.5*627.51*(enqn+2*eeqn+eeqe))
|
---|
| 403 | // << endl;
|
---|
| 404 | }
|
---|
| 405 | ExEnv::out0() << indent
|
---|
| 406 | << scprintf("E(c)=%10.8f ", ecavitation_)
|
---|
| 407 | << scprintf("E(disp-rep)=%10.8f", edisprep_)
|
---|
| 408 | << endl;
|
---|
| 409 | ExEnv::out0() << indent
|
---|
| 410 | << scprintf("E(n-s)=%10.8f ", enucsurf_)
|
---|
| 411 | << scprintf("E(e-s)=%10.8f ", eelecsurf_)
|
---|
| 412 | << scprintf("E(s-s)=%10.8f ", esurfsurf_)
|
---|
| 413 | << endl;
|
---|
| 414 | ExEnv::out0() << decindent;
|
---|
| 415 | ExEnv::out0() << decindent;
|
---|
| 416 |
|
---|
| 417 | tim_exit("accum");
|
---|
| 418 | tim_exit("solvent");
|
---|
| 419 | }
|
---|
| 420 |
|
---|
| 421 | void
|
---|
| 422 | BEMSolventH::done()
|
---|
| 423 | {
|
---|
| 424 | solvent_->free_normals(normals_);
|
---|
| 425 | normals_ = 0;
|
---|
| 426 | solvent_->free_efield_dot_normals(efield_dot_normals_);
|
---|
| 427 | efield_dot_normals_ = 0;
|
---|
| 428 | solvent_->free_charges(charges_);
|
---|
| 429 | solvent_->free_charges(charges_n_);
|
---|
| 430 | charges_ = 0;
|
---|
| 431 | charges_n_ = 0;
|
---|
| 432 | solvent_->free_charge_positions(charge_positions_);
|
---|
| 433 | charge_positions_ = 0;
|
---|
| 434 | solvent_->done();
|
---|
| 435 | }
|
---|
| 436 |
|
---|
| 437 | void
|
---|
| 438 | BEMSolventH::print_summary()
|
---|
| 439 | {
|
---|
| 440 | Ref<Units> unit = new Units("kcal/mol");
|
---|
| 441 | ExEnv::out0() << endl;
|
---|
| 442 | ExEnv::out0() << "Summary of solvation calculation:" << endl;
|
---|
| 443 | ExEnv::out0() << "_______________________________________________" << endl;
|
---|
| 444 | ExEnv::out0() << endl;
|
---|
| 445 | ExEnv::out0().setf(ios::scientific,ios::floatfield); // use scientific format
|
---|
| 446 | ExEnv::out0().precision(5);
|
---|
| 447 | ExEnv::out0() << indent << "E(nuc-surf): "
|
---|
| 448 | << setw(12) << setfill(' ')
|
---|
| 449 | << enucsurf_*unit->from_atomic_units() << " kcal/mol" << endl;
|
---|
| 450 | ExEnv::out0() << indent << "E(elec-surf): "
|
---|
| 451 | << setw(12) << setfill(' ')
|
---|
| 452 | << eelecsurf_*unit->from_atomic_units() << " kcal/mol" << endl;
|
---|
| 453 | ExEnv::out0() << indent << "E(surf-surf): "
|
---|
| 454 | << setw(12) << setfill(' ')
|
---|
| 455 | << esurfsurf_*unit->from_atomic_units() << " kcal/mol" << endl;
|
---|
| 456 | ExEnv::out0() << indent << "Electrostatic energy: "
|
---|
| 457 | << setw(12) << setfill(' ')
|
---|
| 458 | << (enucsurf_+eelecsurf_+esurfsurf_)*unit->from_atomic_units()
|
---|
| 459 | << " kcal/mol" << endl;
|
---|
| 460 | ExEnv::out0() << "_______________________________________________" << endl;
|
---|
| 461 | ExEnv::out0() << endl;
|
---|
| 462 | ExEnv::out0() << indent << "E(cav): "
|
---|
| 463 | << setw(12) << setfill(' ')
|
---|
| 464 | << ecavitation_*unit->from_atomic_units() << " kcal/mol" << endl;
|
---|
| 465 | ExEnv::out0() << indent << "E(disp): "
|
---|
| 466 | << setw(12) << setfill(' ')
|
---|
| 467 | << solvent_->disp()*unit->from_atomic_units() << " kcal/mol" << endl;
|
---|
| 468 | ExEnv::out0() << indent << "E(rep): "
|
---|
| 469 | << setw(12) << setfill(' ')
|
---|
| 470 | << solvent_->rep()*unit->from_atomic_units() << " kcal/mol" << endl;
|
---|
| 471 | ExEnv::out0() << indent << "Non-electrostatic energy: "
|
---|
| 472 | << setw(12) << setfill(' ')
|
---|
| 473 | << (ecavitation_+solvent_->disp()+solvent_->rep())
|
---|
| 474 | *unit->from_atomic_units() << " kcal/mol" << endl;
|
---|
| 475 | ExEnv::out0() << "_______________________________________________" << endl;
|
---|
| 476 |
|
---|
| 477 | }
|
---|
| 478 |
|
---|
| 479 | double
|
---|
| 480 | BEMSolventH::e()
|
---|
| 481 | {
|
---|
| 482 | return escalar_;
|
---|
| 483 | }
|
---|
| 484 |
|
---|
| 485 | /////////////////////////////////////////////////////////////////////////////
|
---|
| 486 |
|
---|
| 487 | }
|
---|
| 488 |
|
---|
| 489 | // Local Variables:
|
---|
| 490 | // mode: c++
|
---|
| 491 | // c-file-style: "CLJ"
|
---|
| 492 | // End:
|
---|