source: ThirdParty/mpqc_open/src/lib/chemistry/qc/wfn/solvent.cc

Candidate_v1.6.1
Last change on this file was 860145, checked in by Frederik Heber <heber@…>, 8 years ago

Merge commit '0b990dfaa8c6007a996d030163a25f7f5fc8a7e7' as 'ThirdParty/mpqc_open'

  • Property mode set to 100644
File size: 15.7 KB
Line 
1//
2// solvent.cc
3//
4// Copyright (C) 1997 Limit Point Systems, Inc.
5//
6// Author: Curtis Janssen <cljanss@limitpt.com>
7// Maintainer: LPS
8//
9// This file is part of the SC Toolkit.
10//
11// The SC Toolkit is free software; you can redistribute it and/or modify
12// it under the terms of the GNU Library General Public License as published by
13// the Free Software Foundation; either version 2, or (at your option)
14// any later version.
15//
16// The SC Toolkit is distributed in the hope that it will be useful,
17// but WITHOUT ANY WARRANTY; without even the implied warranty of
18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// GNU Library General Public License for more details.
20//
21// You should have received a copy of the GNU Library General Public License
22// along with the SC Toolkit; see the file COPYING.LIB. If not, write to
23// the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24//
25// The U.S. Government is granted a limited license as per AL 91-7.
26//
27
28#ifdef __GNUC__
29#pragma implementation
30#endif
31
32#include <util/misc/timer.h>
33#include <util/misc/formio.h>
34#include <util/state/stateio.h>
35#include <chemistry/qc/basis/petite.h>
36#include <chemistry/qc/wfn/solvent.h>
37
38#include <math/isosurf/volume.h>
39#include <chemistry/qc/dft/integrator.h>
40#include <chemistry/qc/dft/functional.h>
41
42#include <iomanip>
43
44using namespace std;
45using namespace sc;
46
47namespace sc {
48
49//. The \clsnm{NElFunctional} computes the number of electrons.
50//. It is primarily for testing the integrator.
51class NElInShapeFunctional: public DenFunctional {
52 private:
53 Ref<Volume> vol_;
54 double isoval_;
55 public:
56 NElInShapeFunctional(const Ref<Volume> &, double);
57 ~NElInShapeFunctional();
58
59 void point(const PointInputData&, PointOutputData&);
60};
61
62/////////////////////////////////////////////////////////////////////////////
63// NElFunctional
64
65static ClassDesc NElInShapeFunctional_cd(
66 typeid(NElInShapeFunctional),"NElInShapeFunctional",1,"public DenFunctional",
67 0, 0, 0);
68
69NElInShapeFunctional::NElInShapeFunctional(const Ref<Volume>& vol,
70 double isoval)
71{
72 vol_ = vol;
73 isoval_ = isoval;
74}
75
76NElInShapeFunctional::~NElInShapeFunctional()
77{
78}
79
80void
81NElInShapeFunctional::point(const PointInputData &id,
82 PointOutputData &od)
83{
84 vol_->set_x(id.r);
85 if (vol_->value() <= isoval_) {
86 od.energy = id.a.rho + id.b.rho;
87 }
88 else {
89 od.energy = 0.0;
90 }
91}
92
93/////////////////////////////////////////////////////////////////////////////
94
95static ClassDesc BEMSolventH_cd(
96 typeid(BEMSolventH),"BEMSolventH",1,"public AccumH",
97 0, create<BEMSolventH>, create<BEMSolventH>);
98
99BEMSolventH::BEMSolventH(const Ref<KeyVal>&keyval):
100 AccumH(keyval)
101{
102 charge_positions_ = 0;
103 normals_ = 0;
104 efield_dot_normals_ = 0;
105 charges_ = 0;
106 charges_n_ = 0;
107 solvent_ << keyval->describedclassvalue("solvent");
108 gamma_ = keyval->doublevalue("gamma");
109 if (keyval->error() != KeyVal::OK) {
110 Ref<Units> npm = new Units("dyne/cm");
111 gamma_ = 72.75 * npm->to_atomic_units();
112 }
113 // If onebody add a term to the one body hamiltonian, h.
114 // Otherwise the energy contribution is scalar.
115 onebody_ = keyval->booleanvalue("onebody");
116 if (keyval->error() != KeyVal::OK) onebody_ = 1;
117 // Normalize the charges if normalize_q is set.
118 normalize_q_ = keyval->booleanvalue("normalize_q");
119 if (keyval->error() != KeyVal::OK) normalize_q_ = 1;
120 // Compute separately contributes to the energy from surfaces
121 // charges induced by the nuclear and electronic charge densities.
122 separate_surf_charges_ = keyval->booleanvalue("separate_surf_charges");
123 if (keyval->error() != KeyVal::OK) separate_surf_charges_ = 0;
124 // The Cammi-Tomasi Y term is set equal to the J term (as it formally is).
125 y_equals_j_ = keyval->booleanvalue("y_equals_j");
126 if (keyval->error() != KeyVal::OK) y_equals_j_ = 0;
127 // As a test, integrate the number of electrons inside the surface.
128 integrate_nelectron_ = keyval->booleanvalue("integrate_nelectron");
129 if (keyval->error() != KeyVal::OK) integrate_nelectron_ = 0;
130}
131
132BEMSolventH::BEMSolventH(StateIn&s):
133 SavableState(s),
134 AccumH(s)
135{
136 charge_positions_ = 0;
137 normals_ = 0;
138 efield_dot_normals_ = 0;
139 charges_ = 0;
140 charges_n_ = 0;
141 escalar_ = 0;
142
143 wfn_ << SavableState::restore_state(s);
144 //solvent_.restore_state(s);
145 abort();
146}
147
148BEMSolventH::~BEMSolventH()
149{
150 // just in case
151 done();
152}
153
154void
155BEMSolventH::save_data_state(StateOut&s)
156{
157 AccumH::save_data_state(s);
158
159 SavableState::save_state(wfn_.pointer(),s);
160 //solvent_.save_state(s);
161 abort();
162}
163
164void
165BEMSolventH::init(const Ref<Wavefunction>& wfn)
166{
167 tim_enter("solvent");
168 tim_enter("init");
169 wfn_ = wfn;
170 // just in case
171 done();
172 solvent_->init();
173 charge_positions_ = solvent_->alloc_charge_positions();
174 normals_ = solvent_->alloc_normals();
175 efield_dot_normals_ = solvent_->alloc_efield_dot_normals();
176 charges_ = solvent_->alloc_charges();
177 charges_n_ = solvent_->alloc_charges();
178
179 // get the positions of the charges
180 solvent_->charge_positions(charge_positions_);
181
182 // get the surface normals
183 solvent_->normals(normals_);
184
185 if (integrate_nelectron_) {
186 Ref<DenIntegrator> integrator = new RadialAngularIntegrator();
187 Ref<DenFunctional> functional
188 = new NElInShapeFunctional(solvent_->surface()->volume_object(),
189 solvent_->surface()->isovalue());
190 integrator->init(wfn_);
191 integrator->integrate(functional);
192 integrator->done();
193 ExEnv::out0() << indent
194 << scprintf("N(e) in isosurf = %12.8f", integrator->value())
195 << endl;
196 }
197
198 edisprep_ = solvent_->disprep();
199
200 tim_exit("init");
201 tim_exit("solvent");
202}
203
204// This adds J + X to h, where J and X are the matrices defined
205// by Canni and Tomasi, J Comp Chem, 16(12), 1457, 1995.
206// The resulting SCF free energy expression is
207// G = 1/2TrP[h' + F'] + Une + Unn + Vnn
208// -1/2(Uee+Uen+Une+Unn)
209// which in the Canni-Tomasi notation is
210// = 1/2TrP[h+1/2(X+J+Y+G)] + Vnn + 1/2Unn
211// which is identical to the Canni-Tomasi energy expression.
212// My Fock matrix is
213// F' = h + J + X + G
214// while the Canni-Tomasi Fock matrix is F' = h + 1/2(J+Y) + X + G.
215// However, since J = Y formally, (assuming no numerical errors
216// and all charge is enclosed, Canni-Tomasi use F' = h + J + X + G
217// to get better numerical results.
218//
219// If the y_equals_j option is true, the energy expression used
220// here is G = 1/2TrP[h+1/2(X+2J+G)] + Vnn + 1/2Unn, however, THIS
221// IS NOT RECOMMENDED.
222void
223BEMSolventH::accum(const RefSymmSCMatrix& h)
224{
225 tim_enter("solvent");
226 tim_enter("accum");
227 int i,j;
228
229 //// compute the polarization charges
230
231 // compute the e-field at each point and dot with normals
232 tim_enter("efield");
233 int ncharge = solvent_->ncharge();
234 Ref<EfieldDotVectorData> efdn_dat = new EfieldDotVectorData;
235 Ref<OneBodyInt> efdn = wfn_->integral()->efield_dot_vector(efdn_dat);
236 Ref<SCElementOp> efdn_op = new OneBodyIntOp(efdn);
237 RefSymmSCMatrix ao_density = wfn_->ao_density()->copy();
238 RefSymmSCMatrix efdn_mat(ao_density->dim(), ao_density->kit());
239 // for the scalar products, scale the density's off-diagonals by two
240 ao_density->scale(2.0);
241 ao_density->scale_diagonal(0.5);
242 Ref<SCElementScalarProduct> sp = new SCElementScalarProduct;
243 Ref<SCElementOp2> generic_sp(sp.pointer());
244 for (i=0; i<ncharge; i++) {
245 efdn_dat->set_position(charge_positions_[i]);
246 efdn_dat->set_vector(normals_[i]);
247 efdn->reinitialize();
248 efdn_mat->assign(0.0);
249 efdn_mat->element_op(efdn_op);
250 sp->init();
251 efdn_mat->element_op(generic_sp, ao_density);
252 efield_dot_normals_[i] = sp->result();
253 }
254 RefSCDimension aodim = ao_density.dim();
255 Ref<SCMatrixKit> aokit = ao_density.kit();
256 ao_density = 0;
257 efdn_mat = 0;
258 tim_exit("efield");
259
260 // compute a new set of charges
261 tim_enter("charges");
262 // electron contrib
263 solvent_->compute_charges(efield_dot_normals_, charges_);
264 double qeenc = solvent_->computed_enclosed_charge();
265 // nuclear contrib
266 for (i=0; i<ncharge; i++) {
267 double nuc_efield[3];
268 wfn_->molecule()->nuclear_efield(charge_positions_[i], nuc_efield);
269 double tmp = 0.0;
270 for (j=0; j<3; j++) {
271 tmp += nuc_efield[j] * normals_[i][j];
272 }
273 efield_dot_normals_[i] = tmp;
274 }
275 solvent_->compute_charges(efield_dot_normals_, charges_n_);
276 double qnenc = solvent_->computed_enclosed_charge();
277 tim_exit("charges");
278
279 // normalize the charges
280 // e and n are independently normalized since the nature of the
281 // errors in e and n are different: n error is just numerical and
282 // e error is numerical plus diffuseness of electron distribution
283 if (normalize_q_) {
284 tim_enter("norm");
285 // electron contrib
286 solvent_->normalize_charge(-wfn_->nelectron(), charges_);
287 // nuclear contrib
288 solvent_->normalize_charge(wfn_->molecule()->nuclear_charge(),
289 charges_n_);
290 tim_exit("norm");
291 }
292 // sum the nuclear and electron contrib
293 for (i=0; i<ncharge; i++) charges_[i] += charges_n_[i];
294
295 //// compute scalar contributions
296 double A = solvent_->area();
297
298 // the cavitation energy
299 ecavitation_ = A * gamma_;
300
301 // compute the nuclear-surface interaction energy
302 tim_enter("n-s");
303 enucsurf_
304 = solvent_->nuclear_interaction_energy(charge_positions_, charges_);
305 tim_exit("n-s");
306
307 double enqn = 0.0, enqe = 0.0;
308 if (y_equals_j_ || separate_surf_charges_) {
309 tim_enter("n-qn");
310 enqn = solvent_->nuclear_interaction_energy(charge_positions_,
311 charges_n_);
312 enqe = enucsurf_ - enqn;
313 tim_exit("n-qn");
314 }
315
316 //// compute one body contributions
317
318 // compute the electron-surface interaction matrix elements
319 tim_enter("e-s");
320 Ref<PointChargeData> pc_dat = new PointChargeData(ncharge,
321 charge_positions_, charges_);
322 Ref<OneBodyInt> pc = wfn_->integral()->point_charge(pc_dat);
323 Ref<SCElementOp> pc_op = new OneBodyIntOp(pc);
324
325 // compute matrix elements in the ao basis
326 RefSymmSCMatrix h_ao(aodim, aokit);
327 h_ao.assign(0.0);
328 h_ao.element_op(pc_op);
329 // transform to the so basis and add to h
330 RefSymmSCMatrix h_so = wfn_->integral()->petite_list()->to_SO_basis(h_ao);
331 if (onebody_) h->accumulate(h_so);
332 // compute the contribution to the energy
333 sp->init();
334 RefSymmSCMatrix so_density = wfn_->density()->copy();
335 // for the scalar products, scale the density's off-diagonals by two
336 so_density->scale(2.0);
337 so_density->scale_diagonal(0.5);
338 h_so->element_op(generic_sp, so_density);
339 eelecsurf_ = sp->result();
340 tim_exit("e-s");
341
342 double eeqn = 0.0, eeqe = 0.0;
343 if (y_equals_j_ || separate_surf_charges_) {
344 tim_enter("e-qn");
345 pc_dat = new PointChargeData(ncharge, charge_positions_, charges_n_);
346 pc = wfn_->integral()->point_charge(pc_dat);
347 pc_op = new OneBodyIntOp(pc);
348
349 // compute matrix elements in the ao basis
350 h_ao.assign(0.0);
351 h_ao.element_op(pc_op);
352 // transform to the so basis
353 h_so = wfn_->integral()->petite_list()->to_SO_basis(h_ao);
354 // compute the contribution to the energy
355 sp->init();
356 h_so->element_op(generic_sp, so_density);
357 eeqn = sp->result();
358 eeqe = eelecsurf_ - eeqn;
359 tim_exit("e-qn");
360 }
361
362 if (y_equals_j_) {
363 // Remove the y term (enqe) and add the j term (eeqn). Formally,
364 // they are equal, but they are not because some e-density is outside
365 // the surface and because of the numerical approximations.
366 enucsurf_ += eeqn - enqe;
367 }
368
369 // compute the surface-surface interaction energy
370 esurfsurf_ = -0.5*(eelecsurf_+enucsurf_);
371 // (this can also be computed as below, but is much more expensive)
372 //tim_enter("s-s");
373 //double esurfsurf_;
374 //esurfsurf_ = solvent_->self_interaction_energy(charge_positions_, charges_);
375 //tim_exit("s-s");
376
377 escalar_ = enucsurf_ + esurfsurf_ + ecavitation_ + edisprep_;
378 // NOTE: SCF currently only adds h_so to the Fock matrix
379 // so a term is missing in the energy. This term is added here
380 // and when SCF is fixed, should no longer be included.
381 if (onebody_) escalar_ += 0.5 * eelecsurf_;
382
383 if (!onebody_) escalar_ += eelecsurf_;
384
385 ExEnv::out0() << incindent;
386 ExEnv::out0() << indent
387 << "Solvent: "
388 << scprintf("q(e-enc)=%12.10f q(n-enc)=%12.10f", qeenc, qnenc)
389 << endl;
390 ExEnv::out0() << incindent;
391 if (separate_surf_charges_) {
392 ExEnv::out0() << indent
393 << scprintf("E(n-qn)=%10.8f ", enqn)
394 << scprintf("E(n-qe)=%10.8f", enqe)
395 << endl;
396 ExEnv::out0() << indent
397 << scprintf("E(e-qn)=%10.8f ", eeqn)
398 << scprintf("E(e-qe)=%10.8f", eeqe)
399 << endl;
400 //ExEnv::out0() << indent
401 // << scprintf("DG = %12.8f ", 0.5*627.51*(enqn+enqe+eeqn+eeqe))
402 // << scprintf("DG(Y=J) = %12.8f", 0.5*627.51*(enqn+2*eeqn+eeqe))
403 // << endl;
404 }
405 ExEnv::out0() << indent
406 << scprintf("E(c)=%10.8f ", ecavitation_)
407 << scprintf("E(disp-rep)=%10.8f", edisprep_)
408 << endl;
409 ExEnv::out0() << indent
410 << scprintf("E(n-s)=%10.8f ", enucsurf_)
411 << scprintf("E(e-s)=%10.8f ", eelecsurf_)
412 << scprintf("E(s-s)=%10.8f ", esurfsurf_)
413 << endl;
414 ExEnv::out0() << decindent;
415 ExEnv::out0() << decindent;
416
417 tim_exit("accum");
418 tim_exit("solvent");
419}
420
421void
422BEMSolventH::done()
423{
424 solvent_->free_normals(normals_);
425 normals_ = 0;
426 solvent_->free_efield_dot_normals(efield_dot_normals_);
427 efield_dot_normals_ = 0;
428 solvent_->free_charges(charges_);
429 solvent_->free_charges(charges_n_);
430 charges_ = 0;
431 charges_n_ = 0;
432 solvent_->free_charge_positions(charge_positions_);
433 charge_positions_ = 0;
434 solvent_->done();
435}
436
437void
438BEMSolventH::print_summary()
439{
440 Ref<Units> unit = new Units("kcal/mol");
441 ExEnv::out0() << endl;
442 ExEnv::out0() << "Summary of solvation calculation:" << endl;
443 ExEnv::out0() << "_______________________________________________" << endl;
444 ExEnv::out0() << endl;
445 ExEnv::out0().setf(ios::scientific,ios::floatfield); // use scientific format
446 ExEnv::out0().precision(5);
447 ExEnv::out0() << indent << "E(nuc-surf): "
448 << setw(12) << setfill(' ')
449 << enucsurf_*unit->from_atomic_units() << " kcal/mol" << endl;
450 ExEnv::out0() << indent << "E(elec-surf): "
451 << setw(12) << setfill(' ')
452 << eelecsurf_*unit->from_atomic_units() << " kcal/mol" << endl;
453 ExEnv::out0() << indent << "E(surf-surf): "
454 << setw(12) << setfill(' ')
455 << esurfsurf_*unit->from_atomic_units() << " kcal/mol" << endl;
456 ExEnv::out0() << indent << "Electrostatic energy: "
457 << setw(12) << setfill(' ')
458 << (enucsurf_+eelecsurf_+esurfsurf_)*unit->from_atomic_units()
459 << " kcal/mol" << endl;
460 ExEnv::out0() << "_______________________________________________" << endl;
461 ExEnv::out0() << endl;
462 ExEnv::out0() << indent << "E(cav): "
463 << setw(12) << setfill(' ')
464 << ecavitation_*unit->from_atomic_units() << " kcal/mol" << endl;
465 ExEnv::out0() << indent << "E(disp): "
466 << setw(12) << setfill(' ')
467 << solvent_->disp()*unit->from_atomic_units() << " kcal/mol" << endl;
468 ExEnv::out0() << indent << "E(rep): "
469 << setw(12) << setfill(' ')
470 << solvent_->rep()*unit->from_atomic_units() << " kcal/mol" << endl;
471 ExEnv::out0() << indent << "Non-electrostatic energy: "
472 << setw(12) << setfill(' ')
473 << (ecavitation_+solvent_->disp()+solvent_->rep())
474 *unit->from_atomic_units() << " kcal/mol" << endl;
475 ExEnv::out0() << "_______________________________________________" << endl;
476
477}
478
479double
480BEMSolventH::e()
481{
482 return escalar_;
483}
484
485/////////////////////////////////////////////////////////////////////////////
486
487}
488
489// Local Variables:
490// mode: c++
491// c-file-style: "CLJ"
492// End:
Note: See TracBrowser for help on using the repository browser.