1 | //
|
---|
2 | // solvent.cc
|
---|
3 | //
|
---|
4 | // Copyright (C) 1997 Limit Point Systems, Inc.
|
---|
5 | //
|
---|
6 | // Author: Curtis Janssen <cljanss@limitpt.com>
|
---|
7 | // Maintainer: LPS
|
---|
8 | //
|
---|
9 | // This file is part of the SC Toolkit.
|
---|
10 | //
|
---|
11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
12 | // it under the terms of the GNU Library General Public License as published by
|
---|
13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
14 | // any later version.
|
---|
15 | //
|
---|
16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | // GNU Library General Public License for more details.
|
---|
20 | //
|
---|
21 | // You should have received a copy of the GNU Library General Public License
|
---|
22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
24 | //
|
---|
25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
26 | //
|
---|
27 |
|
---|
28 | #ifdef __GNUC__
|
---|
29 | #pragma implementation
|
---|
30 | #endif
|
---|
31 |
|
---|
32 | #include <util/misc/timer.h>
|
---|
33 | #include <util/misc/formio.h>
|
---|
34 | #include <util/state/stateio.h>
|
---|
35 | #include <chemistry/qc/basis/petite.h>
|
---|
36 | #include <chemistry/qc/wfn/solvent.h>
|
---|
37 |
|
---|
38 | #include <math/isosurf/volume.h>
|
---|
39 | #include <chemistry/qc/dft/integrator.h>
|
---|
40 | #include <chemistry/qc/dft/functional.h>
|
---|
41 |
|
---|
42 | #include <iomanip>
|
---|
43 |
|
---|
44 | using namespace std;
|
---|
45 | using namespace sc;
|
---|
46 |
|
---|
47 | namespace sc {
|
---|
48 |
|
---|
49 | //. The \clsnm{NElFunctional} computes the number of electrons.
|
---|
50 | //. It is primarily for testing the integrator.
|
---|
51 | class NElInShapeFunctional: public DenFunctional {
|
---|
52 | private:
|
---|
53 | Ref<Volume> vol_;
|
---|
54 | double isoval_;
|
---|
55 | public:
|
---|
56 | NElInShapeFunctional(const Ref<Volume> &, double);
|
---|
57 | ~NElInShapeFunctional();
|
---|
58 |
|
---|
59 | void point(const PointInputData&, PointOutputData&);
|
---|
60 | };
|
---|
61 |
|
---|
62 | /////////////////////////////////////////////////////////////////////////////
|
---|
63 | // NElFunctional
|
---|
64 |
|
---|
65 | static ClassDesc NElInShapeFunctional_cd(
|
---|
66 | typeid(NElInShapeFunctional),"NElInShapeFunctional",1,"public DenFunctional",
|
---|
67 | 0, 0, 0);
|
---|
68 |
|
---|
69 | NElInShapeFunctional::NElInShapeFunctional(const Ref<Volume>& vol,
|
---|
70 | double isoval)
|
---|
71 | {
|
---|
72 | vol_ = vol;
|
---|
73 | isoval_ = isoval;
|
---|
74 | }
|
---|
75 |
|
---|
76 | NElInShapeFunctional::~NElInShapeFunctional()
|
---|
77 | {
|
---|
78 | }
|
---|
79 |
|
---|
80 | void
|
---|
81 | NElInShapeFunctional::point(const PointInputData &id,
|
---|
82 | PointOutputData &od)
|
---|
83 | {
|
---|
84 | vol_->set_x(id.r);
|
---|
85 | if (vol_->value() <= isoval_) {
|
---|
86 | od.energy = id.a.rho + id.b.rho;
|
---|
87 | }
|
---|
88 | else {
|
---|
89 | od.energy = 0.0;
|
---|
90 | }
|
---|
91 | }
|
---|
92 |
|
---|
93 | /////////////////////////////////////////////////////////////////////////////
|
---|
94 |
|
---|
95 | static ClassDesc BEMSolventH_cd(
|
---|
96 | typeid(BEMSolventH),"BEMSolventH",1,"public AccumH",
|
---|
97 | 0, create<BEMSolventH>, create<BEMSolventH>);
|
---|
98 |
|
---|
99 | BEMSolventH::BEMSolventH(const Ref<KeyVal>&keyval):
|
---|
100 | AccumH(keyval)
|
---|
101 | {
|
---|
102 | charge_positions_ = 0;
|
---|
103 | normals_ = 0;
|
---|
104 | efield_dot_normals_ = 0;
|
---|
105 | charges_ = 0;
|
---|
106 | charges_n_ = 0;
|
---|
107 | solvent_ << keyval->describedclassvalue("solvent");
|
---|
108 | gamma_ = keyval->doublevalue("gamma");
|
---|
109 | if (keyval->error() != KeyVal::OK) {
|
---|
110 | Ref<Units> npm = new Units("dyne/cm");
|
---|
111 | gamma_ = 72.75 * npm->to_atomic_units();
|
---|
112 | }
|
---|
113 | // If onebody add a term to the one body hamiltonian, h.
|
---|
114 | // Otherwise the energy contribution is scalar.
|
---|
115 | onebody_ = keyval->booleanvalue("onebody");
|
---|
116 | if (keyval->error() != KeyVal::OK) onebody_ = 1;
|
---|
117 | // Normalize the charges if normalize_q is set.
|
---|
118 | normalize_q_ = keyval->booleanvalue("normalize_q");
|
---|
119 | if (keyval->error() != KeyVal::OK) normalize_q_ = 1;
|
---|
120 | // Compute separately contributes to the energy from surfaces
|
---|
121 | // charges induced by the nuclear and electronic charge densities.
|
---|
122 | separate_surf_charges_ = keyval->booleanvalue("separate_surf_charges");
|
---|
123 | if (keyval->error() != KeyVal::OK) separate_surf_charges_ = 0;
|
---|
124 | // The Cammi-Tomasi Y term is set equal to the J term (as it formally is).
|
---|
125 | y_equals_j_ = keyval->booleanvalue("y_equals_j");
|
---|
126 | if (keyval->error() != KeyVal::OK) y_equals_j_ = 0;
|
---|
127 | // As a test, integrate the number of electrons inside the surface.
|
---|
128 | integrate_nelectron_ = keyval->booleanvalue("integrate_nelectron");
|
---|
129 | if (keyval->error() != KeyVal::OK) integrate_nelectron_ = 0;
|
---|
130 | }
|
---|
131 |
|
---|
132 | BEMSolventH::BEMSolventH(StateIn&s):
|
---|
133 | SavableState(s),
|
---|
134 | AccumH(s)
|
---|
135 | {
|
---|
136 | charge_positions_ = 0;
|
---|
137 | normals_ = 0;
|
---|
138 | efield_dot_normals_ = 0;
|
---|
139 | charges_ = 0;
|
---|
140 | charges_n_ = 0;
|
---|
141 | escalar_ = 0;
|
---|
142 |
|
---|
143 | wfn_ << SavableState::restore_state(s);
|
---|
144 | //solvent_.restore_state(s);
|
---|
145 | abort();
|
---|
146 | }
|
---|
147 |
|
---|
148 | BEMSolventH::~BEMSolventH()
|
---|
149 | {
|
---|
150 | // just in case
|
---|
151 | done();
|
---|
152 | }
|
---|
153 |
|
---|
154 | void
|
---|
155 | BEMSolventH::save_data_state(StateOut&s)
|
---|
156 | {
|
---|
157 | AccumH::save_data_state(s);
|
---|
158 |
|
---|
159 | SavableState::save_state(wfn_.pointer(),s);
|
---|
160 | //solvent_.save_state(s);
|
---|
161 | abort();
|
---|
162 | }
|
---|
163 |
|
---|
164 | void
|
---|
165 | BEMSolventH::init(const Ref<Wavefunction>& wfn)
|
---|
166 | {
|
---|
167 | tim_enter("solvent");
|
---|
168 | tim_enter("init");
|
---|
169 | wfn_ = wfn;
|
---|
170 | // just in case
|
---|
171 | done();
|
---|
172 | solvent_->init();
|
---|
173 | charge_positions_ = solvent_->alloc_charge_positions();
|
---|
174 | normals_ = solvent_->alloc_normals();
|
---|
175 | efield_dot_normals_ = solvent_->alloc_efield_dot_normals();
|
---|
176 | charges_ = solvent_->alloc_charges();
|
---|
177 | charges_n_ = solvent_->alloc_charges();
|
---|
178 |
|
---|
179 | // get the positions of the charges
|
---|
180 | solvent_->charge_positions(charge_positions_);
|
---|
181 |
|
---|
182 | // get the surface normals
|
---|
183 | solvent_->normals(normals_);
|
---|
184 |
|
---|
185 | if (integrate_nelectron_) {
|
---|
186 | Ref<DenIntegrator> integrator = new RadialAngularIntegrator();
|
---|
187 | Ref<DenFunctional> functional
|
---|
188 | = new NElInShapeFunctional(solvent_->surface()->volume_object(),
|
---|
189 | solvent_->surface()->isovalue());
|
---|
190 | integrator->init(wfn_);
|
---|
191 | integrator->integrate(functional);
|
---|
192 | integrator->done();
|
---|
193 | ExEnv::out0() << indent
|
---|
194 | << scprintf("N(e) in isosurf = %12.8f", integrator->value())
|
---|
195 | << endl;
|
---|
196 | }
|
---|
197 |
|
---|
198 | edisprep_ = solvent_->disprep();
|
---|
199 |
|
---|
200 | tim_exit("init");
|
---|
201 | tim_exit("solvent");
|
---|
202 | }
|
---|
203 |
|
---|
204 | // This adds J + X to h, where J and X are the matrices defined
|
---|
205 | // by Canni and Tomasi, J Comp Chem, 16(12), 1457, 1995.
|
---|
206 | // The resulting SCF free energy expression is
|
---|
207 | // G = 1/2TrP[h' + F'] + Une + Unn + Vnn
|
---|
208 | // -1/2(Uee+Uen+Une+Unn)
|
---|
209 | // which in the Canni-Tomasi notation is
|
---|
210 | // = 1/2TrP[h+1/2(X+J+Y+G)] + Vnn + 1/2Unn
|
---|
211 | // which is identical to the Canni-Tomasi energy expression.
|
---|
212 | // My Fock matrix is
|
---|
213 | // F' = h + J + X + G
|
---|
214 | // while the Canni-Tomasi Fock matrix is F' = h + 1/2(J+Y) + X + G.
|
---|
215 | // However, since J = Y formally, (assuming no numerical errors
|
---|
216 | // and all charge is enclosed, Canni-Tomasi use F' = h + J + X + G
|
---|
217 | // to get better numerical results.
|
---|
218 | //
|
---|
219 | // If the y_equals_j option is true, the energy expression used
|
---|
220 | // here is G = 1/2TrP[h+1/2(X+2J+G)] + Vnn + 1/2Unn, however, THIS
|
---|
221 | // IS NOT RECOMMENDED.
|
---|
222 | void
|
---|
223 | BEMSolventH::accum(const RefSymmSCMatrix& h)
|
---|
224 | {
|
---|
225 | tim_enter("solvent");
|
---|
226 | tim_enter("accum");
|
---|
227 | int i,j;
|
---|
228 |
|
---|
229 | //// compute the polarization charges
|
---|
230 |
|
---|
231 | // compute the e-field at each point and dot with normals
|
---|
232 | tim_enter("efield");
|
---|
233 | int ncharge = solvent_->ncharge();
|
---|
234 | Ref<EfieldDotVectorData> efdn_dat = new EfieldDotVectorData;
|
---|
235 | Ref<OneBodyInt> efdn = wfn_->integral()->efield_dot_vector(efdn_dat);
|
---|
236 | Ref<SCElementOp> efdn_op = new OneBodyIntOp(efdn);
|
---|
237 | RefSymmSCMatrix ao_density = wfn_->ao_density()->copy();
|
---|
238 | RefSymmSCMatrix efdn_mat(ao_density->dim(), ao_density->kit());
|
---|
239 | // for the scalar products, scale the density's off-diagonals by two
|
---|
240 | ao_density->scale(2.0);
|
---|
241 | ao_density->scale_diagonal(0.5);
|
---|
242 | Ref<SCElementScalarProduct> sp = new SCElementScalarProduct;
|
---|
243 | Ref<SCElementOp2> generic_sp(sp.pointer());
|
---|
244 | for (i=0; i<ncharge; i++) {
|
---|
245 | efdn_dat->set_position(charge_positions_[i]);
|
---|
246 | efdn_dat->set_vector(normals_[i]);
|
---|
247 | efdn->reinitialize();
|
---|
248 | efdn_mat->assign(0.0);
|
---|
249 | efdn_mat->element_op(efdn_op);
|
---|
250 | sp->init();
|
---|
251 | efdn_mat->element_op(generic_sp, ao_density);
|
---|
252 | efield_dot_normals_[i] = sp->result();
|
---|
253 | }
|
---|
254 | RefSCDimension aodim = ao_density.dim();
|
---|
255 | Ref<SCMatrixKit> aokit = ao_density.kit();
|
---|
256 | ao_density = 0;
|
---|
257 | efdn_mat = 0;
|
---|
258 | tim_exit("efield");
|
---|
259 |
|
---|
260 | // compute a new set of charges
|
---|
261 | tim_enter("charges");
|
---|
262 | // electron contrib
|
---|
263 | solvent_->compute_charges(efield_dot_normals_, charges_);
|
---|
264 | double qeenc = solvent_->computed_enclosed_charge();
|
---|
265 | // nuclear contrib
|
---|
266 | for (i=0; i<ncharge; i++) {
|
---|
267 | double nuc_efield[3];
|
---|
268 | wfn_->molecule()->nuclear_efield(charge_positions_[i], nuc_efield);
|
---|
269 | double tmp = 0.0;
|
---|
270 | for (j=0; j<3; j++) {
|
---|
271 | tmp += nuc_efield[j] * normals_[i][j];
|
---|
272 | }
|
---|
273 | efield_dot_normals_[i] = tmp;
|
---|
274 | }
|
---|
275 | solvent_->compute_charges(efield_dot_normals_, charges_n_);
|
---|
276 | double qnenc = solvent_->computed_enclosed_charge();
|
---|
277 | tim_exit("charges");
|
---|
278 |
|
---|
279 | // normalize the charges
|
---|
280 | // e and n are independently normalized since the nature of the
|
---|
281 | // errors in e and n are different: n error is just numerical and
|
---|
282 | // e error is numerical plus diffuseness of electron distribution
|
---|
283 | if (normalize_q_) {
|
---|
284 | tim_enter("norm");
|
---|
285 | // electron contrib
|
---|
286 | solvent_->normalize_charge(-wfn_->nelectron(), charges_);
|
---|
287 | // nuclear contrib
|
---|
288 | solvent_->normalize_charge(wfn_->molecule()->nuclear_charge(),
|
---|
289 | charges_n_);
|
---|
290 | tim_exit("norm");
|
---|
291 | }
|
---|
292 | // sum the nuclear and electron contrib
|
---|
293 | for (i=0; i<ncharge; i++) charges_[i] += charges_n_[i];
|
---|
294 |
|
---|
295 | //// compute scalar contributions
|
---|
296 | double A = solvent_->area();
|
---|
297 |
|
---|
298 | // the cavitation energy
|
---|
299 | ecavitation_ = A * gamma_;
|
---|
300 |
|
---|
301 | // compute the nuclear-surface interaction energy
|
---|
302 | tim_enter("n-s");
|
---|
303 | enucsurf_
|
---|
304 | = solvent_->nuclear_interaction_energy(charge_positions_, charges_);
|
---|
305 | tim_exit("n-s");
|
---|
306 |
|
---|
307 | double enqn = 0.0, enqe = 0.0;
|
---|
308 | if (y_equals_j_ || separate_surf_charges_) {
|
---|
309 | tim_enter("n-qn");
|
---|
310 | enqn = solvent_->nuclear_interaction_energy(charge_positions_,
|
---|
311 | charges_n_);
|
---|
312 | enqe = enucsurf_ - enqn;
|
---|
313 | tim_exit("n-qn");
|
---|
314 | }
|
---|
315 |
|
---|
316 | //// compute one body contributions
|
---|
317 |
|
---|
318 | // compute the electron-surface interaction matrix elements
|
---|
319 | tim_enter("e-s");
|
---|
320 | Ref<PointChargeData> pc_dat = new PointChargeData(ncharge,
|
---|
321 | charge_positions_, charges_);
|
---|
322 | Ref<OneBodyInt> pc = wfn_->integral()->point_charge(pc_dat);
|
---|
323 | Ref<SCElementOp> pc_op = new OneBodyIntOp(pc);
|
---|
324 |
|
---|
325 | // compute matrix elements in the ao basis
|
---|
326 | RefSymmSCMatrix h_ao(aodim, aokit);
|
---|
327 | h_ao.assign(0.0);
|
---|
328 | h_ao.element_op(pc_op);
|
---|
329 | // transform to the so basis and add to h
|
---|
330 | RefSymmSCMatrix h_so = wfn_->integral()->petite_list()->to_SO_basis(h_ao);
|
---|
331 | if (onebody_) h->accumulate(h_so);
|
---|
332 | // compute the contribution to the energy
|
---|
333 | sp->init();
|
---|
334 | RefSymmSCMatrix so_density = wfn_->density()->copy();
|
---|
335 | // for the scalar products, scale the density's off-diagonals by two
|
---|
336 | so_density->scale(2.0);
|
---|
337 | so_density->scale_diagonal(0.5);
|
---|
338 | h_so->element_op(generic_sp, so_density);
|
---|
339 | eelecsurf_ = sp->result();
|
---|
340 | tim_exit("e-s");
|
---|
341 |
|
---|
342 | double eeqn = 0.0, eeqe = 0.0;
|
---|
343 | if (y_equals_j_ || separate_surf_charges_) {
|
---|
344 | tim_enter("e-qn");
|
---|
345 | pc_dat = new PointChargeData(ncharge, charge_positions_, charges_n_);
|
---|
346 | pc = wfn_->integral()->point_charge(pc_dat);
|
---|
347 | pc_op = new OneBodyIntOp(pc);
|
---|
348 |
|
---|
349 | // compute matrix elements in the ao basis
|
---|
350 | h_ao.assign(0.0);
|
---|
351 | h_ao.element_op(pc_op);
|
---|
352 | // transform to the so basis
|
---|
353 | h_so = wfn_->integral()->petite_list()->to_SO_basis(h_ao);
|
---|
354 | // compute the contribution to the energy
|
---|
355 | sp->init();
|
---|
356 | h_so->element_op(generic_sp, so_density);
|
---|
357 | eeqn = sp->result();
|
---|
358 | eeqe = eelecsurf_ - eeqn;
|
---|
359 | tim_exit("e-qn");
|
---|
360 | }
|
---|
361 |
|
---|
362 | if (y_equals_j_) {
|
---|
363 | // Remove the y term (enqe) and add the j term (eeqn). Formally,
|
---|
364 | // they are equal, but they are not because some e-density is outside
|
---|
365 | // the surface and because of the numerical approximations.
|
---|
366 | enucsurf_ += eeqn - enqe;
|
---|
367 | }
|
---|
368 |
|
---|
369 | // compute the surface-surface interaction energy
|
---|
370 | esurfsurf_ = -0.5*(eelecsurf_+enucsurf_);
|
---|
371 | // (this can also be computed as below, but is much more expensive)
|
---|
372 | //tim_enter("s-s");
|
---|
373 | //double esurfsurf_;
|
---|
374 | //esurfsurf_ = solvent_->self_interaction_energy(charge_positions_, charges_);
|
---|
375 | //tim_exit("s-s");
|
---|
376 |
|
---|
377 | escalar_ = enucsurf_ + esurfsurf_ + ecavitation_ + edisprep_;
|
---|
378 | // NOTE: SCF currently only adds h_so to the Fock matrix
|
---|
379 | // so a term is missing in the energy. This term is added here
|
---|
380 | // and when SCF is fixed, should no longer be included.
|
---|
381 | if (onebody_) escalar_ += 0.5 * eelecsurf_;
|
---|
382 |
|
---|
383 | if (!onebody_) escalar_ += eelecsurf_;
|
---|
384 |
|
---|
385 | ExEnv::out0() << incindent;
|
---|
386 | ExEnv::out0() << indent
|
---|
387 | << "Solvent: "
|
---|
388 | << scprintf("q(e-enc)=%12.10f q(n-enc)=%12.10f", qeenc, qnenc)
|
---|
389 | << endl;
|
---|
390 | ExEnv::out0() << incindent;
|
---|
391 | if (separate_surf_charges_) {
|
---|
392 | ExEnv::out0() << indent
|
---|
393 | << scprintf("E(n-qn)=%10.8f ", enqn)
|
---|
394 | << scprintf("E(n-qe)=%10.8f", enqe)
|
---|
395 | << endl;
|
---|
396 | ExEnv::out0() << indent
|
---|
397 | << scprintf("E(e-qn)=%10.8f ", eeqn)
|
---|
398 | << scprintf("E(e-qe)=%10.8f", eeqe)
|
---|
399 | << endl;
|
---|
400 | //ExEnv::out0() << indent
|
---|
401 | // << scprintf("DG = %12.8f ", 0.5*627.51*(enqn+enqe+eeqn+eeqe))
|
---|
402 | // << scprintf("DG(Y=J) = %12.8f", 0.5*627.51*(enqn+2*eeqn+eeqe))
|
---|
403 | // << endl;
|
---|
404 | }
|
---|
405 | ExEnv::out0() << indent
|
---|
406 | << scprintf("E(c)=%10.8f ", ecavitation_)
|
---|
407 | << scprintf("E(disp-rep)=%10.8f", edisprep_)
|
---|
408 | << endl;
|
---|
409 | ExEnv::out0() << indent
|
---|
410 | << scprintf("E(n-s)=%10.8f ", enucsurf_)
|
---|
411 | << scprintf("E(e-s)=%10.8f ", eelecsurf_)
|
---|
412 | << scprintf("E(s-s)=%10.8f ", esurfsurf_)
|
---|
413 | << endl;
|
---|
414 | ExEnv::out0() << decindent;
|
---|
415 | ExEnv::out0() << decindent;
|
---|
416 |
|
---|
417 | tim_exit("accum");
|
---|
418 | tim_exit("solvent");
|
---|
419 | }
|
---|
420 |
|
---|
421 | void
|
---|
422 | BEMSolventH::done()
|
---|
423 | {
|
---|
424 | solvent_->free_normals(normals_);
|
---|
425 | normals_ = 0;
|
---|
426 | solvent_->free_efield_dot_normals(efield_dot_normals_);
|
---|
427 | efield_dot_normals_ = 0;
|
---|
428 | solvent_->free_charges(charges_);
|
---|
429 | solvent_->free_charges(charges_n_);
|
---|
430 | charges_ = 0;
|
---|
431 | charges_n_ = 0;
|
---|
432 | solvent_->free_charge_positions(charge_positions_);
|
---|
433 | charge_positions_ = 0;
|
---|
434 | solvent_->done();
|
---|
435 | }
|
---|
436 |
|
---|
437 | void
|
---|
438 | BEMSolventH::print_summary()
|
---|
439 | {
|
---|
440 | Ref<Units> unit = new Units("kcal/mol");
|
---|
441 | ExEnv::out0() << endl;
|
---|
442 | ExEnv::out0() << "Summary of solvation calculation:" << endl;
|
---|
443 | ExEnv::out0() << "_______________________________________________" << endl;
|
---|
444 | ExEnv::out0() << endl;
|
---|
445 | ExEnv::out0().setf(ios::scientific,ios::floatfield); // use scientific format
|
---|
446 | ExEnv::out0().precision(5);
|
---|
447 | ExEnv::out0() << indent << "E(nuc-surf): "
|
---|
448 | << setw(12) << setfill(' ')
|
---|
449 | << enucsurf_*unit->from_atomic_units() << " kcal/mol" << endl;
|
---|
450 | ExEnv::out0() << indent << "E(elec-surf): "
|
---|
451 | << setw(12) << setfill(' ')
|
---|
452 | << eelecsurf_*unit->from_atomic_units() << " kcal/mol" << endl;
|
---|
453 | ExEnv::out0() << indent << "E(surf-surf): "
|
---|
454 | << setw(12) << setfill(' ')
|
---|
455 | << esurfsurf_*unit->from_atomic_units() << " kcal/mol" << endl;
|
---|
456 | ExEnv::out0() << indent << "Electrostatic energy: "
|
---|
457 | << setw(12) << setfill(' ')
|
---|
458 | << (enucsurf_+eelecsurf_+esurfsurf_)*unit->from_atomic_units()
|
---|
459 | << " kcal/mol" << endl;
|
---|
460 | ExEnv::out0() << "_______________________________________________" << endl;
|
---|
461 | ExEnv::out0() << endl;
|
---|
462 | ExEnv::out0() << indent << "E(cav): "
|
---|
463 | << setw(12) << setfill(' ')
|
---|
464 | << ecavitation_*unit->from_atomic_units() << " kcal/mol" << endl;
|
---|
465 | ExEnv::out0() << indent << "E(disp): "
|
---|
466 | << setw(12) << setfill(' ')
|
---|
467 | << solvent_->disp()*unit->from_atomic_units() << " kcal/mol" << endl;
|
---|
468 | ExEnv::out0() << indent << "E(rep): "
|
---|
469 | << setw(12) << setfill(' ')
|
---|
470 | << solvent_->rep()*unit->from_atomic_units() << " kcal/mol" << endl;
|
---|
471 | ExEnv::out0() << indent << "Non-electrostatic energy: "
|
---|
472 | << setw(12) << setfill(' ')
|
---|
473 | << (ecavitation_+solvent_->disp()+solvent_->rep())
|
---|
474 | *unit->from_atomic_units() << " kcal/mol" << endl;
|
---|
475 | ExEnv::out0() << "_______________________________________________" << endl;
|
---|
476 |
|
---|
477 | }
|
---|
478 |
|
---|
479 | double
|
---|
480 | BEMSolventH::e()
|
---|
481 | {
|
---|
482 | return escalar_;
|
---|
483 | }
|
---|
484 |
|
---|
485 | /////////////////////////////////////////////////////////////////////////////
|
---|
486 |
|
---|
487 | }
|
---|
488 |
|
---|
489 | // Local Variables:
|
---|
490 | // mode: c++
|
---|
491 | // c-file-style: "CLJ"
|
---|
492 | // End:
|
---|