[0b990d] | 1 | //
|
---|
| 2 | // fjt.cc
|
---|
| 3 | //
|
---|
| 4 | // Copyright (C) 1996 Limit Point Systems, Inc.
|
---|
| 5 | //
|
---|
| 6 | // Author: Curtis Janssen <cljanss@limitpt.com>
|
---|
| 7 | // Maintainer: LPS
|
---|
| 8 | //
|
---|
| 9 | // This file is part of the SC Toolkit.
|
---|
| 10 | //
|
---|
| 11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
| 12 | // it under the terms of the GNU Library General Public License as published by
|
---|
| 13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
| 14 | // any later version.
|
---|
| 15 | //
|
---|
| 16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
| 17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 19 | // GNU Library General Public License for more details.
|
---|
| 20 | //
|
---|
| 21 | // You should have received a copy of the GNU Library General Public License
|
---|
| 22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
| 23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
| 24 | //
|
---|
| 25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
| 26 | //
|
---|
| 27 |
|
---|
| 28 | #ifdef __GNUG__
|
---|
| 29 | #pragma implementation
|
---|
| 30 | #endif
|
---|
| 31 |
|
---|
| 32 | /* These routines are based on the gamfun program of
|
---|
| 33 | * Trygve Ulf Helgaker (fall 1984)
|
---|
| 34 | * and calculates the incomplete gamma function as
|
---|
| 35 | * described by McMurchie & Davidson, J. Comp. Phys. 26 (1978) 218.
|
---|
| 36 | * The original routine computed the function for maximum j = 20.
|
---|
| 37 | */
|
---|
| 38 |
|
---|
| 39 | #include <stdlib.h>
|
---|
| 40 | #include <math.h>
|
---|
| 41 |
|
---|
| 42 | #include <iostream>
|
---|
| 43 |
|
---|
| 44 | #include <util/misc/formio.h>
|
---|
| 45 | #include <util/misc/exenv.h>
|
---|
| 46 | #include <chemistry/qc/intv3/fjt.h>
|
---|
| 47 |
|
---|
| 48 | using namespace std;
|
---|
| 49 | using namespace sc;
|
---|
| 50 |
|
---|
| 51 | /* Tablesize should always be at least 121. */
|
---|
| 52 | #define TABLESIZE 121
|
---|
| 53 |
|
---|
| 54 | /* Tabulate the incomplete gamma function and put in gtable. */
|
---|
| 55 | /*
|
---|
| 56 | * For J = JMAX a power series expansion is used, see for
|
---|
| 57 | * example Eq.(39) given by V. Saunders in "Computational
|
---|
| 58 | * Techniques in Quantum Chemistry and Molecular Physics",
|
---|
| 59 | * Reidel 1975. For J < JMAX the values are calculated
|
---|
| 60 | * using downward recursion in J.
|
---|
| 61 | */
|
---|
| 62 | FJT::FJT(int max)
|
---|
| 63 | {
|
---|
| 64 | int i,j;
|
---|
| 65 | double denom,d2jmax1,r2jmax1,wval,d2wval,sum,term,rexpw;
|
---|
| 66 |
|
---|
| 67 | maxj = max;
|
---|
| 68 |
|
---|
| 69 | /* Allocate storage for gtable and int_fjttable. */
|
---|
| 70 | int_fjttable = new double[maxj+1];
|
---|
| 71 | gtable = new double*[ngtable()];
|
---|
| 72 | for (i=0; i<ngtable(); i++) {
|
---|
| 73 | gtable[i] = new double[TABLESIZE];
|
---|
| 74 | }
|
---|
| 75 |
|
---|
| 76 | /* Tabulate the gamma function for t(=wval)=0.0. */
|
---|
| 77 | denom = 1.0;
|
---|
| 78 | for (i=0; i<ngtable(); i++) {
|
---|
| 79 | gtable[i][0] = 1.0/denom;
|
---|
| 80 | denom += 2.0;
|
---|
| 81 | }
|
---|
| 82 |
|
---|
| 83 | /* Tabulate the gamma function from t(=wval)=0.1, to 12.0. */
|
---|
| 84 | d2jmax1 = 2.0*(ngtable()-1) + 1.0;
|
---|
| 85 | r2jmax1 = 1.0/d2jmax1;
|
---|
| 86 | for (i=1; i<TABLESIZE; i++) {
|
---|
| 87 | wval = 0.1 * i;
|
---|
| 88 | d2wval = 2.0 * wval;
|
---|
| 89 | term = r2jmax1;
|
---|
| 90 | sum = term;
|
---|
| 91 | denom = d2jmax1;
|
---|
| 92 | for (j=2; j<=200; j++) {
|
---|
| 93 | denom = denom + 2.0;
|
---|
| 94 | term = term * d2wval / denom;
|
---|
| 95 | sum = sum + term;
|
---|
| 96 | if (term <= 1.0e-15) break;
|
---|
| 97 | }
|
---|
| 98 | rexpw = exp(-wval);
|
---|
| 99 |
|
---|
| 100 | /* Fill in the values for the highest j gtable entries (top row). */
|
---|
| 101 | gtable[ngtable()-1][i] = rexpw * sum;
|
---|
| 102 |
|
---|
| 103 | /* Work down the table filling in the rest of the column. */
|
---|
| 104 | denom = d2jmax1;
|
---|
| 105 | for (j=ngtable() - 2; j>=0; j--) {
|
---|
| 106 | denom = denom - 2.0;
|
---|
| 107 | gtable[j][i] = (gtable[j+1][i]*d2wval + rexpw)/denom;
|
---|
| 108 | }
|
---|
| 109 | }
|
---|
| 110 |
|
---|
| 111 | /* Form some denominators, so divisions can be eliminated below. */
|
---|
| 112 | denomarray = new double[max+1];
|
---|
| 113 | denomarray[0] = 0.0;
|
---|
| 114 | for (i=1; i<=max; i++) {
|
---|
| 115 | denomarray[i] = 1.0/(2*i - 1);
|
---|
| 116 | }
|
---|
| 117 |
|
---|
| 118 | wval_infinity = 2*max + 37.0;
|
---|
| 119 | itable_infinity = (int) (10 * wval_infinity);
|
---|
| 120 |
|
---|
| 121 | }
|
---|
| 122 |
|
---|
| 123 | FJT::~FJT()
|
---|
| 124 | {
|
---|
| 125 | delete[] int_fjttable;
|
---|
| 126 | for (int i=0; i<maxj+7; i++) {
|
---|
| 127 | delete[] gtable[i];
|
---|
| 128 | }
|
---|
| 129 | delete[] gtable;
|
---|
| 130 | delete[] denomarray;
|
---|
| 131 | }
|
---|
| 132 |
|
---|
| 133 | /* Using the tabulated incomplete gamma function in gtable, compute
|
---|
| 134 | * the incomplete gamma function for a particular wval for all 0<=j<=J.
|
---|
| 135 | * The result is placed in the global intermediate int_fjttable.
|
---|
| 136 | */
|
---|
| 137 | double *
|
---|
| 138 | FJT::values(int J,double wval)
|
---|
| 139 | {
|
---|
| 140 | const double sqrpih = 0.886226925452758;
|
---|
| 141 | const double coef2 = 0.5000000000000000;
|
---|
| 142 | const double coef3 = -0.1666666666666667;
|
---|
| 143 | const double coef4 = 0.0416666666666667;
|
---|
| 144 | const double coef5 = -0.0083333333333333;
|
---|
| 145 | const double coef6 = 0.0013888888888889;
|
---|
| 146 | const double gfac30 = 0.4999489092;
|
---|
| 147 | const double gfac31 = -0.2473631686;
|
---|
| 148 | const double gfac32 = 0.321180909;
|
---|
| 149 | const double gfac33 = -0.3811559346;
|
---|
| 150 | const double gfac20 = 0.4998436875;
|
---|
| 151 | const double gfac21 = -0.24249438;
|
---|
| 152 | const double gfac22 = 0.24642845;
|
---|
| 153 | const double gfac10 = 0.499093162;
|
---|
| 154 | const double gfac11 = -0.2152832;
|
---|
| 155 | const double gfac00 = -0.490;
|
---|
| 156 |
|
---|
| 157 | double wdif, d2wal, rexpw, /* denom, */ gval, factor, rwval, term;
|
---|
| 158 | int i, itable, irange;
|
---|
| 159 |
|
---|
| 160 | if (J>maxj) {
|
---|
| 161 | ExEnv::errn()
|
---|
| 162 | << scprintf("the int_fjt routine has been incorrectly used")
|
---|
| 163 | << endl;
|
---|
| 164 | ExEnv::errn()
|
---|
| 165 | << scprintf("J = %d but maxj = %d",J,maxj)
|
---|
| 166 | << endl;
|
---|
| 167 | abort();
|
---|
| 168 | }
|
---|
| 169 |
|
---|
| 170 | /* Compute an index into the table. */
|
---|
| 171 | /* The test is needed to avoid floating point exceptions for
|
---|
| 172 | * large values of wval. */
|
---|
| 173 | if (wval > wval_infinity) {
|
---|
| 174 | itable = itable_infinity;
|
---|
| 175 | }
|
---|
| 176 | else {
|
---|
| 177 | itable = (int) (10.0 * wval);
|
---|
| 178 | }
|
---|
| 179 |
|
---|
| 180 | /* If itable is small enough use the table to compute int_fjttable. */
|
---|
| 181 | if (itable < TABLESIZE) {
|
---|
| 182 |
|
---|
| 183 | wdif = wval - 0.1 * itable;
|
---|
| 184 |
|
---|
| 185 | /* Compute fjt for J. */
|
---|
| 186 | int_fjttable[J] = (((((coef6 * gtable[J+6][itable]*wdif
|
---|
| 187 | + coef5 * gtable[J+5][itable])*wdif
|
---|
| 188 | + coef4 * gtable[J+4][itable])*wdif
|
---|
| 189 | + coef3 * gtable[J+3][itable])*wdif
|
---|
| 190 | + coef2 * gtable[J+2][itable])*wdif
|
---|
| 191 | - gtable[J+1][itable])*wdif
|
---|
| 192 | + gtable[J][itable];
|
---|
| 193 |
|
---|
| 194 | /* Compute the rest of the fjt. */
|
---|
| 195 | d2wal = 2.0 * wval;
|
---|
| 196 | rexpw = exp(-wval);
|
---|
| 197 | /* denom = 2*J + 1; */
|
---|
| 198 | for (i=J; i>0; i--) {
|
---|
| 199 | /* denom = denom - 2.0; */
|
---|
| 200 | int_fjttable[i-1] = (d2wal*int_fjttable[i] + rexpw)*denomarray[i];
|
---|
| 201 | }
|
---|
| 202 | }
|
---|
| 203 | /* If wval <= 2*J + 36.0, use the following formula. */
|
---|
| 204 | else if (itable <= 20*J + 360) {
|
---|
| 205 | rwval = 1.0/wval;
|
---|
| 206 | rexpw = exp(-wval);
|
---|
| 207 |
|
---|
| 208 | /* Subdivide wval into 6 ranges. */
|
---|
| 209 | irange = itable/30 - 3;
|
---|
| 210 | if (irange == 1) {
|
---|
| 211 | gval = gfac30 + rwval*(gfac31 + rwval*(gfac32 + rwval*gfac33));
|
---|
| 212 | int_fjttable[0] = sqrpih*sqrt(rwval) - rexpw*gval*rwval;
|
---|
| 213 | }
|
---|
| 214 | else if (irange == 2) {
|
---|
| 215 | gval = gfac20 + rwval*(gfac21 + rwval*gfac22);
|
---|
| 216 | int_fjttable[0] = sqrpih*sqrt(rwval) - rexpw*gval*rwval;
|
---|
| 217 | }
|
---|
| 218 | else if (irange == 3 || irange == 4) {
|
---|
| 219 | gval = gfac10 + rwval*gfac11;
|
---|
| 220 | int_fjttable[0] = sqrpih*sqrt(rwval) - rexpw*gval*rwval;
|
---|
| 221 | }
|
---|
| 222 | else if (irange == 5 || irange == 6) {
|
---|
| 223 | gval = gfac00;
|
---|
| 224 | int_fjttable[0] = sqrpih*sqrt(rwval) - rexpw*gval*rwval;
|
---|
| 225 | }
|
---|
| 226 | else {
|
---|
| 227 | int_fjttable[0] = sqrpih*sqrt(rwval);
|
---|
| 228 | }
|
---|
| 229 |
|
---|
| 230 | /* Compute the rest of the int_fjttable from int_fjttable[0]. */
|
---|
| 231 | factor = 0.5 * rwval;
|
---|
| 232 | term = factor * rexpw;
|
---|
| 233 | for (i=1; i<=J; i++) {
|
---|
| 234 | int_fjttable[i] = factor * int_fjttable[i-1] - term;
|
---|
| 235 | factor = rwval + factor;
|
---|
| 236 | }
|
---|
| 237 | }
|
---|
| 238 | /* For large values of wval use this algorithm: */
|
---|
| 239 | else {
|
---|
| 240 | rwval = 1.0/wval;
|
---|
| 241 | int_fjttable[0] = sqrpih*sqrt(rwval);
|
---|
| 242 | factor = 0.5 * rwval;
|
---|
| 243 | for (i=1; i<=J; i++) {
|
---|
| 244 | int_fjttable[i] = factor * int_fjttable[i-1];
|
---|
| 245 | factor = rwval + factor;
|
---|
| 246 | }
|
---|
| 247 | }
|
---|
| 248 | /* printf(" %2d %12.8f %4d %12.8f\n",J,wval,itable,int_fjttable[0]); */
|
---|
| 249 |
|
---|
| 250 | return int_fjttable;
|
---|
| 251 | }
|
---|
| 252 |
|
---|
| 253 | /////////////////////////////////////////////////////////////////////////////
|
---|
| 254 |
|
---|
| 255 | // Local Variables:
|
---|
| 256 | // mode: c++
|
---|
| 257 | // c-file-style: "CLJ-CONDENSED"
|
---|
| 258 | // End:
|
---|