1 | //
|
---|
2 | // fjt.cc
|
---|
3 | //
|
---|
4 | // Copyright (C) 1996 Limit Point Systems, Inc.
|
---|
5 | //
|
---|
6 | // Author: Curtis Janssen <cljanss@limitpt.com>
|
---|
7 | // Maintainer: LPS
|
---|
8 | //
|
---|
9 | // This file is part of the SC Toolkit.
|
---|
10 | //
|
---|
11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
12 | // it under the terms of the GNU Library General Public License as published by
|
---|
13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
14 | // any later version.
|
---|
15 | //
|
---|
16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | // GNU Library General Public License for more details.
|
---|
20 | //
|
---|
21 | // You should have received a copy of the GNU Library General Public License
|
---|
22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
24 | //
|
---|
25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
26 | //
|
---|
27 |
|
---|
28 | #ifdef __GNUG__
|
---|
29 | #pragma implementation
|
---|
30 | #endif
|
---|
31 |
|
---|
32 | /* These routines are based on the gamfun program of
|
---|
33 | * Trygve Ulf Helgaker (fall 1984)
|
---|
34 | * and calculates the incomplete gamma function as
|
---|
35 | * described by McMurchie & Davidson, J. Comp. Phys. 26 (1978) 218.
|
---|
36 | * The original routine computed the function for maximum j = 20.
|
---|
37 | */
|
---|
38 |
|
---|
39 | #include <stdlib.h>
|
---|
40 | #include <math.h>
|
---|
41 |
|
---|
42 | #include <iostream>
|
---|
43 |
|
---|
44 | #include <util/misc/formio.h>
|
---|
45 | #include <util/misc/exenv.h>
|
---|
46 | #include <chemistry/qc/intv3/fjt.h>
|
---|
47 |
|
---|
48 | using namespace std;
|
---|
49 | using namespace sc;
|
---|
50 |
|
---|
51 | /* Tablesize should always be at least 121. */
|
---|
52 | #define TABLESIZE 121
|
---|
53 |
|
---|
54 | /* Tabulate the incomplete gamma function and put in gtable. */
|
---|
55 | /*
|
---|
56 | * For J = JMAX a power series expansion is used, see for
|
---|
57 | * example Eq.(39) given by V. Saunders in "Computational
|
---|
58 | * Techniques in Quantum Chemistry and Molecular Physics",
|
---|
59 | * Reidel 1975. For J < JMAX the values are calculated
|
---|
60 | * using downward recursion in J.
|
---|
61 | */
|
---|
62 | FJT::FJT(int max)
|
---|
63 | {
|
---|
64 | int i,j;
|
---|
65 | double denom,d2jmax1,r2jmax1,wval,d2wval,sum,term,rexpw;
|
---|
66 |
|
---|
67 | maxj = max;
|
---|
68 |
|
---|
69 | /* Allocate storage for gtable and int_fjttable. */
|
---|
70 | int_fjttable = new double[maxj+1];
|
---|
71 | gtable = new double*[ngtable()];
|
---|
72 | for (i=0; i<ngtable(); i++) {
|
---|
73 | gtable[i] = new double[TABLESIZE];
|
---|
74 | }
|
---|
75 |
|
---|
76 | /* Tabulate the gamma function for t(=wval)=0.0. */
|
---|
77 | denom = 1.0;
|
---|
78 | for (i=0; i<ngtable(); i++) {
|
---|
79 | gtable[i][0] = 1.0/denom;
|
---|
80 | denom += 2.0;
|
---|
81 | }
|
---|
82 |
|
---|
83 | /* Tabulate the gamma function from t(=wval)=0.1, to 12.0. */
|
---|
84 | d2jmax1 = 2.0*(ngtable()-1) + 1.0;
|
---|
85 | r2jmax1 = 1.0/d2jmax1;
|
---|
86 | for (i=1; i<TABLESIZE; i++) {
|
---|
87 | wval = 0.1 * i;
|
---|
88 | d2wval = 2.0 * wval;
|
---|
89 | term = r2jmax1;
|
---|
90 | sum = term;
|
---|
91 | denom = d2jmax1;
|
---|
92 | for (j=2; j<=200; j++) {
|
---|
93 | denom = denom + 2.0;
|
---|
94 | term = term * d2wval / denom;
|
---|
95 | sum = sum + term;
|
---|
96 | if (term <= 1.0e-15) break;
|
---|
97 | }
|
---|
98 | rexpw = exp(-wval);
|
---|
99 |
|
---|
100 | /* Fill in the values for the highest j gtable entries (top row). */
|
---|
101 | gtable[ngtable()-1][i] = rexpw * sum;
|
---|
102 |
|
---|
103 | /* Work down the table filling in the rest of the column. */
|
---|
104 | denom = d2jmax1;
|
---|
105 | for (j=ngtable() - 2; j>=0; j--) {
|
---|
106 | denom = denom - 2.0;
|
---|
107 | gtable[j][i] = (gtable[j+1][i]*d2wval + rexpw)/denom;
|
---|
108 | }
|
---|
109 | }
|
---|
110 |
|
---|
111 | /* Form some denominators, so divisions can be eliminated below. */
|
---|
112 | denomarray = new double[max+1];
|
---|
113 | denomarray[0] = 0.0;
|
---|
114 | for (i=1; i<=max; i++) {
|
---|
115 | denomarray[i] = 1.0/(2*i - 1);
|
---|
116 | }
|
---|
117 |
|
---|
118 | wval_infinity = 2*max + 37.0;
|
---|
119 | itable_infinity = (int) (10 * wval_infinity);
|
---|
120 |
|
---|
121 | }
|
---|
122 |
|
---|
123 | FJT::~FJT()
|
---|
124 | {
|
---|
125 | delete[] int_fjttable;
|
---|
126 | for (int i=0; i<maxj+7; i++) {
|
---|
127 | delete[] gtable[i];
|
---|
128 | }
|
---|
129 | delete[] gtable;
|
---|
130 | delete[] denomarray;
|
---|
131 | }
|
---|
132 |
|
---|
133 | /* Using the tabulated incomplete gamma function in gtable, compute
|
---|
134 | * the incomplete gamma function for a particular wval for all 0<=j<=J.
|
---|
135 | * The result is placed in the global intermediate int_fjttable.
|
---|
136 | */
|
---|
137 | double *
|
---|
138 | FJT::values(int J,double wval)
|
---|
139 | {
|
---|
140 | const double sqrpih = 0.886226925452758;
|
---|
141 | const double coef2 = 0.5000000000000000;
|
---|
142 | const double coef3 = -0.1666666666666667;
|
---|
143 | const double coef4 = 0.0416666666666667;
|
---|
144 | const double coef5 = -0.0083333333333333;
|
---|
145 | const double coef6 = 0.0013888888888889;
|
---|
146 | const double gfac30 = 0.4999489092;
|
---|
147 | const double gfac31 = -0.2473631686;
|
---|
148 | const double gfac32 = 0.321180909;
|
---|
149 | const double gfac33 = -0.3811559346;
|
---|
150 | const double gfac20 = 0.4998436875;
|
---|
151 | const double gfac21 = -0.24249438;
|
---|
152 | const double gfac22 = 0.24642845;
|
---|
153 | const double gfac10 = 0.499093162;
|
---|
154 | const double gfac11 = -0.2152832;
|
---|
155 | const double gfac00 = -0.490;
|
---|
156 |
|
---|
157 | double wdif, d2wal, rexpw, /* denom, */ gval, factor, rwval, term;
|
---|
158 | int i, itable, irange;
|
---|
159 |
|
---|
160 | if (J>maxj) {
|
---|
161 | ExEnv::errn()
|
---|
162 | << scprintf("the int_fjt routine has been incorrectly used")
|
---|
163 | << endl;
|
---|
164 | ExEnv::errn()
|
---|
165 | << scprintf("J = %d but maxj = %d",J,maxj)
|
---|
166 | << endl;
|
---|
167 | abort();
|
---|
168 | }
|
---|
169 |
|
---|
170 | /* Compute an index into the table. */
|
---|
171 | /* The test is needed to avoid floating point exceptions for
|
---|
172 | * large values of wval. */
|
---|
173 | if (wval > wval_infinity) {
|
---|
174 | itable = itable_infinity;
|
---|
175 | }
|
---|
176 | else {
|
---|
177 | itable = (int) (10.0 * wval);
|
---|
178 | }
|
---|
179 |
|
---|
180 | /* If itable is small enough use the table to compute int_fjttable. */
|
---|
181 | if (itable < TABLESIZE) {
|
---|
182 |
|
---|
183 | wdif = wval - 0.1 * itable;
|
---|
184 |
|
---|
185 | /* Compute fjt for J. */
|
---|
186 | int_fjttable[J] = (((((coef6 * gtable[J+6][itable]*wdif
|
---|
187 | + coef5 * gtable[J+5][itable])*wdif
|
---|
188 | + coef4 * gtable[J+4][itable])*wdif
|
---|
189 | + coef3 * gtable[J+3][itable])*wdif
|
---|
190 | + coef2 * gtable[J+2][itable])*wdif
|
---|
191 | - gtable[J+1][itable])*wdif
|
---|
192 | + gtable[J][itable];
|
---|
193 |
|
---|
194 | /* Compute the rest of the fjt. */
|
---|
195 | d2wal = 2.0 * wval;
|
---|
196 | rexpw = exp(-wval);
|
---|
197 | /* denom = 2*J + 1; */
|
---|
198 | for (i=J; i>0; i--) {
|
---|
199 | /* denom = denom - 2.0; */
|
---|
200 | int_fjttable[i-1] = (d2wal*int_fjttable[i] + rexpw)*denomarray[i];
|
---|
201 | }
|
---|
202 | }
|
---|
203 | /* If wval <= 2*J + 36.0, use the following formula. */
|
---|
204 | else if (itable <= 20*J + 360) {
|
---|
205 | rwval = 1.0/wval;
|
---|
206 | rexpw = exp(-wval);
|
---|
207 |
|
---|
208 | /* Subdivide wval into 6 ranges. */
|
---|
209 | irange = itable/30 - 3;
|
---|
210 | if (irange == 1) {
|
---|
211 | gval = gfac30 + rwval*(gfac31 + rwval*(gfac32 + rwval*gfac33));
|
---|
212 | int_fjttable[0] = sqrpih*sqrt(rwval) - rexpw*gval*rwval;
|
---|
213 | }
|
---|
214 | else if (irange == 2) {
|
---|
215 | gval = gfac20 + rwval*(gfac21 + rwval*gfac22);
|
---|
216 | int_fjttable[0] = sqrpih*sqrt(rwval) - rexpw*gval*rwval;
|
---|
217 | }
|
---|
218 | else if (irange == 3 || irange == 4) {
|
---|
219 | gval = gfac10 + rwval*gfac11;
|
---|
220 | int_fjttable[0] = sqrpih*sqrt(rwval) - rexpw*gval*rwval;
|
---|
221 | }
|
---|
222 | else if (irange == 5 || irange == 6) {
|
---|
223 | gval = gfac00;
|
---|
224 | int_fjttable[0] = sqrpih*sqrt(rwval) - rexpw*gval*rwval;
|
---|
225 | }
|
---|
226 | else {
|
---|
227 | int_fjttable[0] = sqrpih*sqrt(rwval);
|
---|
228 | }
|
---|
229 |
|
---|
230 | /* Compute the rest of the int_fjttable from int_fjttable[0]. */
|
---|
231 | factor = 0.5 * rwval;
|
---|
232 | term = factor * rexpw;
|
---|
233 | for (i=1; i<=J; i++) {
|
---|
234 | int_fjttable[i] = factor * int_fjttable[i-1] - term;
|
---|
235 | factor = rwval + factor;
|
---|
236 | }
|
---|
237 | }
|
---|
238 | /* For large values of wval use this algorithm: */
|
---|
239 | else {
|
---|
240 | rwval = 1.0/wval;
|
---|
241 | int_fjttable[0] = sqrpih*sqrt(rwval);
|
---|
242 | factor = 0.5 * rwval;
|
---|
243 | for (i=1; i<=J; i++) {
|
---|
244 | int_fjttable[i] = factor * int_fjttable[i-1];
|
---|
245 | factor = rwval + factor;
|
---|
246 | }
|
---|
247 | }
|
---|
248 | /* printf(" %2d %12.8f %4d %12.8f\n",J,wval,itable,int_fjttable[0]); */
|
---|
249 |
|
---|
250 | return int_fjttable;
|
---|
251 | }
|
---|
252 |
|
---|
253 | /////////////////////////////////////////////////////////////////////////////
|
---|
254 |
|
---|
255 | // Local Variables:
|
---|
256 | // mode: c++
|
---|
257 | // c-file-style: "CLJ-CONDENSED"
|
---|
258 | // End:
|
---|