[0b990d] | 1 | //
|
---|
| 2 | // macros.h
|
---|
| 3 | //
|
---|
| 4 | // Copyright (C) 2001 Edward Valeev
|
---|
| 5 | //
|
---|
| 6 | // Author: Edward Valeev <edward.valeev@chemistry.gatech.edu>
|
---|
| 7 | // Maintainer: EV
|
---|
| 8 | //
|
---|
| 9 | // This file is part of the SC Toolkit.
|
---|
| 10 | //
|
---|
| 11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
| 12 | // it under the terms of the GNU Library General Public License as published by
|
---|
| 13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
| 14 | // any later version.
|
---|
| 15 | //
|
---|
| 16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
| 17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 19 | // GNU Library General Public License for more details.
|
---|
| 20 | //
|
---|
| 21 | // You should have received a copy of the GNU Library General Public License
|
---|
| 22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
| 23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
| 24 | //
|
---|
| 25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
| 26 | //
|
---|
| 27 |
|
---|
| 28 | /* True if the integral is nonzero. */
|
---|
| 29 | #define INT_NONZERO(x) (((x)< -1.0e-15)||((x)> 1.0e-15))
|
---|
| 30 |
|
---|
| 31 | /* Computes an index to a Cartesian function within a shell given
|
---|
| 32 | * am = total angular momentum
|
---|
| 33 | * i = the exponent of x (i is used twice in the macro--beware side effects)
|
---|
| 34 | * j = the exponent of y
|
---|
| 35 | * formula: (am - i + 1)*(am - i)/2 + am - i - j unless i==am, then 0
|
---|
| 36 | * The following loop will generate indices in the proper order:
|
---|
| 37 | * cartindex = 0;
|
---|
| 38 | * for (i=am; i>=0; i--) {
|
---|
| 39 | * for (j=am-i; j>=0; j--) {
|
---|
| 40 | * do_it_with(cartindex);
|
---|
| 41 | * cartindex++;
|
---|
| 42 | * }
|
---|
| 43 | * }
|
---|
| 44 | */
|
---|
| 45 | #define INT_CARTINDEX(am,i,j) (((i) == (am))? 0 : (((((am) - (i) + 1)*((am) - (i)))>>1) + (am) - (i) - (j)))
|
---|
| 46 |
|
---|
| 47 | /* This sets up the above loop over cartesian exponents as follows
|
---|
| 48 | * FOR_CART(i,j,k,am)
|
---|
| 49 | * Stuff using i,j,k.
|
---|
| 50 | * END_FOR_CART
|
---|
| 51 | */
|
---|
| 52 | #define FOR_CART(i,j,k,am) for((i)=(am);(i)>=0;(i)--) {\
|
---|
| 53 | for((j)=(am)-(i);(j)>=0;(j)--) \
|
---|
| 54 | { (k) = (am) - (i) - (j);
|
---|
| 55 | #define END_FOR_CART }}
|
---|
| 56 |
|
---|
| 57 | /* This sets up a loop over all of the generalized contractions
|
---|
| 58 | * and all of the cartesian exponents.
|
---|
| 59 | * gc is the number of the gen con
|
---|
| 60 | * index is the index within the current gen con.
|
---|
| 61 | * i,j,k are the angular momentum for x,y,z
|
---|
| 62 | * sh is the shell pointer
|
---|
| 63 | */
|
---|
| 64 | #define FOR_GCCART(gc,index,i,j,k,sh)\
|
---|
| 65 | for ((gc)=0; (gc)<(sh)->ncon; (gc)++) {\
|
---|
| 66 | (index)=0;\
|
---|
| 67 | FOR_CART(i,j,k,(sh)->type[gc].am)
|
---|
| 68 |
|
---|
| 69 | #define FOR_GCCART_GS(gc,index,i,j,k,sh)\
|
---|
| 70 | for ((gc)=0; (gc)<(sh)->ncontraction(); (gc)++) {\
|
---|
| 71 | (index)=0;\
|
---|
| 72 | FOR_CART(i,j,k,(sh)->am(gc))
|
---|
| 73 |
|
---|
| 74 | #define END_FOR_GCCART(index)\
|
---|
| 75 | (index)++;\
|
---|
| 76 | END_FOR_CART\
|
---|
| 77 | }
|
---|
| 78 |
|
---|
| 79 | #define END_FOR_GCCART_GS(index)\
|
---|
| 80 | (index)++;\
|
---|
| 81 | END_FOR_CART\
|
---|
| 82 | }
|
---|
| 83 |
|
---|
| 84 | /* These are like the above except no index is kept track of. */
|
---|
| 85 | #define FOR_GCCART2(gc,i,j,k,sh)\
|
---|
| 86 | for ((gc)=0; (gc)<(sh)->ncon; (gc)++) {\
|
---|
| 87 | FOR_CART(i,j,k,(sh)->type[gc].am)
|
---|
| 88 |
|
---|
| 89 | #define END_FOR_GCCART2\
|
---|
| 90 | END_FOR_CART\
|
---|
| 91 | }
|
---|
| 92 |
|
---|
| 93 | /* These are used to loop over shells, given the centers structure
|
---|
| 94 | * and the center index, and shell index. */
|
---|
| 95 | #define FOR_SHELLS(c,i,j) for((i)=0;(i)<(c)->n;i++) {\
|
---|
| 96 | for((j)=0;(j)<(c)->center[(i)].basis.n;j++) {
|
---|
| 97 | #define END_FOR_SHELLS }}
|
---|
| 98 |
|
---|
| 99 | /* Computes the number of Cartesian function in a shell given
|
---|
| 100 | * am = total angular momentum
|
---|
| 101 | * formula: (am*(am+1))/2 + am+1;
|
---|
| 102 | */
|
---|
| 103 | #define INT_NCART(am) ((am>=0)?((((am)+2)*((am)+1))>>1):0)
|
---|
| 104 |
|
---|
| 105 | /* Like INT_NCART, but only for nonnegative arguments. */
|
---|
| 106 | #define INT_NCART_NN(am) ((((am)+2)*((am)+1))>>1)
|
---|
| 107 |
|
---|
| 108 | /* For a given ang. mom., am, with n cartesian functions, compute the
|
---|
| 109 | * number of cartesian functions for am+1 or am-1
|
---|
| 110 | */
|
---|
| 111 | #define INT_NCART_DEC(am,n) ((n)-(am)-1)
|
---|
| 112 | #define INT_NCART_INC(am,n) ((n)+(am)+2)
|
---|
| 113 |
|
---|
| 114 | /* Computes the number of pure angular momentum functions in a shell
|
---|
| 115 | * given am = total angular momentum
|
---|
| 116 | */
|
---|
| 117 | #define INT_NPURE(am) (2*(am)+1)
|
---|
| 118 |
|
---|
| 119 | /* Computes the number of functions in a shell given
|
---|
| 120 | * pu = pure angular momentum boolean
|
---|
| 121 | * am = total angular momentum
|
---|
| 122 | */
|
---|
| 123 | #define INT_NFUNC(pu,am) ((pu)?INT_NPURE(am):INT_NCART(am))
|
---|
| 124 |
|
---|
| 125 | /* Given a centers pointer and a shell number, this evaluates the
|
---|
| 126 | * pointer to that shell. */
|
---|
| 127 | #define INT_SH(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]])
|
---|
| 128 |
|
---|
| 129 | /* Given a centers pointer and a shell number, get the angular momentum
|
---|
| 130 | * of that shell. */
|
---|
| 131 | #define INT_SH_AM(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].type.am)
|
---|
| 132 |
|
---|
| 133 | /* Given a centers pointer and a shell number, get pure angular momentum
|
---|
| 134 | * boolean for that shell. */
|
---|
| 135 | #define INT_SH_PU(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].type.puream)
|
---|
| 136 |
|
---|
| 137 | /* Given a centers pointer, a center number, and a shell number,
|
---|
| 138 | * get the angular momentum of that shell. */
|
---|
| 139 | #define INT_CE_SH_AM(c,a,s) ((c)->center[(a)].basis.shell[(s)].type.am)
|
---|
| 140 |
|
---|
| 141 | /* Given a centers pointer, a center number, and a shell number,
|
---|
| 142 | * get pure angular momentum boolean for that shell. */
|
---|
| 143 | #define INT_CE_SH_PU(c,a,s) ((c)->center[(a)].basis.shell[(s)].type.puream)
|
---|
| 144 |
|
---|
| 145 | /* Given a centers pointer and a shell number, compute the number
|
---|
| 146 | * of functions in that shell. */
|
---|
| 147 | /* #define INT_SH_NFUNC(c,s) INT_NFUNC(INT_SH_PU(c,s),INT_SH_AM(c,s)) */
|
---|
| 148 | #define INT_SH_NFUNC(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].nfunc)
|
---|
| 149 |
|
---|
| 150 | /* These macros assist in looping over the unique integrals
|
---|
| 151 | * in a shell quartet. The exy variables are booleans giving
|
---|
| 152 | * information about the equivalence between shells x and y. The nx
|
---|
| 153 | * variables give the number of functions in each shell, x. The
|
---|
| 154 | * i,j,k are the current values of the looping indices for shells 1, 2, and 3.
|
---|
| 155 | * The macros return the maximum index to be included in a summation
|
---|
| 156 | * over indices 1, 2, 3, and 4.
|
---|
| 157 | * These macros require canonical integrals. This requirement comes
|
---|
| 158 | * from the need that integrals of the shells (1 2|2 1) are not
|
---|
| 159 | * used. The integrals (1 2|1 2) must be used with these macros to
|
---|
| 160 | * get the right nonredundant integrals.
|
---|
| 161 | */
|
---|
| 162 | #define INT_MAX1(n1) ((n1)-1)
|
---|
| 163 | #define INT_MAX2(e12,i,n2) ((e12)?(i):((n2)-1))
|
---|
| 164 | #define INT_MAX3(e13e24,i,n3) ((e13e24)?(i):((n3)-1))
|
---|
| 165 | #define INT_MAX4(e13e24,e34,i,j,k,n4) \
|
---|
| 166 | ((e34)?(((e13e24)&&((k)==(i)))?(j):(k)) \
|
---|
| 167 | :((e13e24)&&((k)==(i)))?(j):(n4)-1)
|
---|
| 168 | /* A note on integral symmetries:
|
---|
| 169 | * There are 15 ways of having equivalent indices.
|
---|
| 170 | * There are 8 of these which are important for determining the
|
---|
| 171 | * nonredundant integrals (that is there are only 8 ways of counting
|
---|
| 172 | * the number of nonredundant integrals in a shell quartet)
|
---|
| 173 | * Integral type Integral Counting Type
|
---|
| 174 | * 1 (1 2|3 4) 1
|
---|
| 175 | * 2 (1 1|3 4) 2
|
---|
| 176 | * 3 (1 2|1 4) ->1
|
---|
| 177 | * 4 (1 2|3 1) ->1
|
---|
| 178 | * 5 (1 1|1 4) 3
|
---|
| 179 | * 6 (1 1|3 1) ->2
|
---|
| 180 | * 7 (1 2|1 1) ->5
|
---|
| 181 | * 8 (1 1|1 1) 4
|
---|
| 182 | * 9 (1 2|2 4) ->1
|
---|
| 183 | * 10 (1 2|3 2) ->1
|
---|
| 184 | * 11 (1 2|3 3) 5
|
---|
| 185 | * 12 (1 1|3 3) 6
|
---|
| 186 | * 13 (1 2|1 2) 7
|
---|
| 187 | * 14 (1 2|2 1) 8 reduces to 7 thru canonicalization
|
---|
| 188 | * 15 (1 2|2 2) ->5
|
---|
| 189 | */
|
---|