1 | //
|
---|
2 | // macros.h
|
---|
3 | //
|
---|
4 | // Copyright (C) 2001 Edward Valeev
|
---|
5 | //
|
---|
6 | // Author: Edward Valeev <edward.valeev@chemistry.gatech.edu>
|
---|
7 | // Maintainer: EV
|
---|
8 | //
|
---|
9 | // This file is part of the SC Toolkit.
|
---|
10 | //
|
---|
11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
12 | // it under the terms of the GNU Library General Public License as published by
|
---|
13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
14 | // any later version.
|
---|
15 | //
|
---|
16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | // GNU Library General Public License for more details.
|
---|
20 | //
|
---|
21 | // You should have received a copy of the GNU Library General Public License
|
---|
22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
24 | //
|
---|
25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
26 | //
|
---|
27 |
|
---|
28 | /* True if the integral is nonzero. */
|
---|
29 | #define INT_NONZERO(x) (((x)< -1.0e-15)||((x)> 1.0e-15))
|
---|
30 |
|
---|
31 | /* Computes an index to a Cartesian function within a shell given
|
---|
32 | * am = total angular momentum
|
---|
33 | * i = the exponent of x (i is used twice in the macro--beware side effects)
|
---|
34 | * j = the exponent of y
|
---|
35 | * formula: (am - i + 1)*(am - i)/2 + am - i - j unless i==am, then 0
|
---|
36 | * The following loop will generate indices in the proper order:
|
---|
37 | * cartindex = 0;
|
---|
38 | * for (i=am; i>=0; i--) {
|
---|
39 | * for (j=am-i; j>=0; j--) {
|
---|
40 | * do_it_with(cartindex);
|
---|
41 | * cartindex++;
|
---|
42 | * }
|
---|
43 | * }
|
---|
44 | */
|
---|
45 | #define INT_CARTINDEX(am,i,j) (((i) == (am))? 0 : (((((am) - (i) + 1)*((am) - (i)))>>1) + (am) - (i) - (j)))
|
---|
46 |
|
---|
47 | /* This sets up the above loop over cartesian exponents as follows
|
---|
48 | * FOR_CART(i,j,k,am)
|
---|
49 | * Stuff using i,j,k.
|
---|
50 | * END_FOR_CART
|
---|
51 | */
|
---|
52 | #define FOR_CART(i,j,k,am) for((i)=(am);(i)>=0;(i)--) {\
|
---|
53 | for((j)=(am)-(i);(j)>=0;(j)--) \
|
---|
54 | { (k) = (am) - (i) - (j);
|
---|
55 | #define END_FOR_CART }}
|
---|
56 |
|
---|
57 | /* This sets up a loop over all of the generalized contractions
|
---|
58 | * and all of the cartesian exponents.
|
---|
59 | * gc is the number of the gen con
|
---|
60 | * index is the index within the current gen con.
|
---|
61 | * i,j,k are the angular momentum for x,y,z
|
---|
62 | * sh is the shell pointer
|
---|
63 | */
|
---|
64 | #define FOR_GCCART(gc,index,i,j,k,sh)\
|
---|
65 | for ((gc)=0; (gc)<(sh)->ncon; (gc)++) {\
|
---|
66 | (index)=0;\
|
---|
67 | FOR_CART(i,j,k,(sh)->type[gc].am)
|
---|
68 |
|
---|
69 | #define FOR_GCCART_GS(gc,index,i,j,k,sh)\
|
---|
70 | for ((gc)=0; (gc)<(sh)->ncontraction(); (gc)++) {\
|
---|
71 | (index)=0;\
|
---|
72 | FOR_CART(i,j,k,(sh)->am(gc))
|
---|
73 |
|
---|
74 | #define END_FOR_GCCART(index)\
|
---|
75 | (index)++;\
|
---|
76 | END_FOR_CART\
|
---|
77 | }
|
---|
78 |
|
---|
79 | #define END_FOR_GCCART_GS(index)\
|
---|
80 | (index)++;\
|
---|
81 | END_FOR_CART\
|
---|
82 | }
|
---|
83 |
|
---|
84 | /* These are like the above except no index is kept track of. */
|
---|
85 | #define FOR_GCCART2(gc,i,j,k,sh)\
|
---|
86 | for ((gc)=0; (gc)<(sh)->ncon; (gc)++) {\
|
---|
87 | FOR_CART(i,j,k,(sh)->type[gc].am)
|
---|
88 |
|
---|
89 | #define END_FOR_GCCART2\
|
---|
90 | END_FOR_CART\
|
---|
91 | }
|
---|
92 |
|
---|
93 | /* These are used to loop over shells, given the centers structure
|
---|
94 | * and the center index, and shell index. */
|
---|
95 | #define FOR_SHELLS(c,i,j) for((i)=0;(i)<(c)->n;i++) {\
|
---|
96 | for((j)=0;(j)<(c)->center[(i)].basis.n;j++) {
|
---|
97 | #define END_FOR_SHELLS }}
|
---|
98 |
|
---|
99 | /* Computes the number of Cartesian function in a shell given
|
---|
100 | * am = total angular momentum
|
---|
101 | * formula: (am*(am+1))/2 + am+1;
|
---|
102 | */
|
---|
103 | #define INT_NCART(am) ((am>=0)?((((am)+2)*((am)+1))>>1):0)
|
---|
104 |
|
---|
105 | /* Like INT_NCART, but only for nonnegative arguments. */
|
---|
106 | #define INT_NCART_NN(am) ((((am)+2)*((am)+1))>>1)
|
---|
107 |
|
---|
108 | /* For a given ang. mom., am, with n cartesian functions, compute the
|
---|
109 | * number of cartesian functions for am+1 or am-1
|
---|
110 | */
|
---|
111 | #define INT_NCART_DEC(am,n) ((n)-(am)-1)
|
---|
112 | #define INT_NCART_INC(am,n) ((n)+(am)+2)
|
---|
113 |
|
---|
114 | /* Computes the number of pure angular momentum functions in a shell
|
---|
115 | * given am = total angular momentum
|
---|
116 | */
|
---|
117 | #define INT_NPURE(am) (2*(am)+1)
|
---|
118 |
|
---|
119 | /* Computes the number of functions in a shell given
|
---|
120 | * pu = pure angular momentum boolean
|
---|
121 | * am = total angular momentum
|
---|
122 | */
|
---|
123 | #define INT_NFUNC(pu,am) ((pu)?INT_NPURE(am):INT_NCART(am))
|
---|
124 |
|
---|
125 | /* Given a centers pointer and a shell number, this evaluates the
|
---|
126 | * pointer to that shell. */
|
---|
127 | #define INT_SH(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]])
|
---|
128 |
|
---|
129 | /* Given a centers pointer and a shell number, get the angular momentum
|
---|
130 | * of that shell. */
|
---|
131 | #define INT_SH_AM(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].type.am)
|
---|
132 |
|
---|
133 | /* Given a centers pointer and a shell number, get pure angular momentum
|
---|
134 | * boolean for that shell. */
|
---|
135 | #define INT_SH_PU(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].type.puream)
|
---|
136 |
|
---|
137 | /* Given a centers pointer, a center number, and a shell number,
|
---|
138 | * get the angular momentum of that shell. */
|
---|
139 | #define INT_CE_SH_AM(c,a,s) ((c)->center[(a)].basis.shell[(s)].type.am)
|
---|
140 |
|
---|
141 | /* Given a centers pointer, a center number, and a shell number,
|
---|
142 | * get pure angular momentum boolean for that shell. */
|
---|
143 | #define INT_CE_SH_PU(c,a,s) ((c)->center[(a)].basis.shell[(s)].type.puream)
|
---|
144 |
|
---|
145 | /* Given a centers pointer and a shell number, compute the number
|
---|
146 | * of functions in that shell. */
|
---|
147 | /* #define INT_SH_NFUNC(c,s) INT_NFUNC(INT_SH_PU(c,s),INT_SH_AM(c,s)) */
|
---|
148 | #define INT_SH_NFUNC(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].nfunc)
|
---|
149 |
|
---|
150 | /* These macros assist in looping over the unique integrals
|
---|
151 | * in a shell quartet. The exy variables are booleans giving
|
---|
152 | * information about the equivalence between shells x and y. The nx
|
---|
153 | * variables give the number of functions in each shell, x. The
|
---|
154 | * i,j,k are the current values of the looping indices for shells 1, 2, and 3.
|
---|
155 | * The macros return the maximum index to be included in a summation
|
---|
156 | * over indices 1, 2, 3, and 4.
|
---|
157 | * These macros require canonical integrals. This requirement comes
|
---|
158 | * from the need that integrals of the shells (1 2|2 1) are not
|
---|
159 | * used. The integrals (1 2|1 2) must be used with these macros to
|
---|
160 | * get the right nonredundant integrals.
|
---|
161 | */
|
---|
162 | #define INT_MAX1(n1) ((n1)-1)
|
---|
163 | #define INT_MAX2(e12,i,n2) ((e12)?(i):((n2)-1))
|
---|
164 | #define INT_MAX3(e13e24,i,n3) ((e13e24)?(i):((n3)-1))
|
---|
165 | #define INT_MAX4(e13e24,e34,i,j,k,n4) \
|
---|
166 | ((e34)?(((e13e24)&&((k)==(i)))?(j):(k)) \
|
---|
167 | :((e13e24)&&((k)==(i)))?(j):(n4)-1)
|
---|
168 | /* A note on integral symmetries:
|
---|
169 | * There are 15 ways of having equivalent indices.
|
---|
170 | * There are 8 of these which are important for determining the
|
---|
171 | * nonredundant integrals (that is there are only 8 ways of counting
|
---|
172 | * the number of nonredundant integrals in a shell quartet)
|
---|
173 | * Integral type Integral Counting Type
|
---|
174 | * 1 (1 2|3 4) 1
|
---|
175 | * 2 (1 1|3 4) 2
|
---|
176 | * 3 (1 2|1 4) ->1
|
---|
177 | * 4 (1 2|3 1) ->1
|
---|
178 | * 5 (1 1|1 4) 3
|
---|
179 | * 6 (1 1|3 1) ->2
|
---|
180 | * 7 (1 2|1 1) ->5
|
---|
181 | * 8 (1 1|1 1) 4
|
---|
182 | * 9 (1 2|2 4) ->1
|
---|
183 | * 10 (1 2|3 2) ->1
|
---|
184 | * 11 (1 2|3 3) 5
|
---|
185 | * 12 (1 1|3 3) 6
|
---|
186 | * 13 (1 2|1 2) 7
|
---|
187 | * 14 (1 2|2 1) 8 reduces to 7 thru canonicalization
|
---|
188 | * 15 (1 2|2 2) ->5
|
---|
189 | */
|
---|