[0b990d] | 1 | %BASIS "aug-cc-pV6Z" CARTESIAN
|
---|
| 2 | basis:(
|
---|
| 3 | %Elements References
|
---|
| 4 | %-------- ----------
|
---|
| 5 | %H: K.A. Peterson, D.E. Woon and T. H. Dunning, Jr., (to be published).
|
---|
| 6 | %B - Ne: A. K. Wilson, T. v. Mourik and T. H. Dunning, Jr., J. Mol. Struct.
|
---|
| 7 | % (THEOCHEM) 388, 339 (1997).
|
---|
| 8 | %Elements References
|
---|
| 9 | %-------- ---------
|
---|
| 10 | %H : K.A. Peterson, D.E. Woon (unpublished)
|
---|
| 11 | %B - O: A.K. Wilson, T. van Mourik and T.H. Dunning, Jr. J. Mol. Struct.
|
---|
| 12 | % (THEOCHEM) 388, 339 (1997).
|
---|
| 13 | %Cl:
|
---|
| 14 | %
|
---|
| 15 | %
|
---|
| 16 | % BASIS SET: (10s,5p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
|
---|
| 17 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
| 18 | hydrogen: "aug-cc-pV6Z": [
|
---|
| 19 | (type: [am = s]
|
---|
| 20 | {exp coef:0} = {
|
---|
| 21 | 1776.7755600 0.44000000000E-04
|
---|
| 22 | 254.01771200 0.37200000000E-03
|
---|
| 23 | 54.698039000 0.20940000000E-02
|
---|
| 24 | 15.018344000 0.88630000000E-02
|
---|
| 25 | 4.9150780000 0.30540000000E-01
|
---|
| 26 | })
|
---|
| 27 | (type: [am = s]
|
---|
| 28 | {exp coef:0} = {
|
---|
| 29 | 1.7949240000 1.0000000000
|
---|
| 30 | })
|
---|
| 31 | (type: [am = s]
|
---|
| 32 | {exp coef:0} = {
|
---|
| 33 | 0.71071600000 1.0000000000
|
---|
| 34 | })
|
---|
| 35 | (type: [am = s]
|
---|
| 36 | {exp coef:0} = {
|
---|
| 37 | 0.30480200000 1.0000000000
|
---|
| 38 | })
|
---|
| 39 | (type: [am = s]
|
---|
| 40 | {exp coef:0} = {
|
---|
| 41 | 0.13804600000 1.0000000000
|
---|
| 42 | })
|
---|
| 43 | (type: [am = s]
|
---|
| 44 | {exp coef:0} = {
|
---|
| 45 | 0.62157000000E-01 1.0000000000
|
---|
| 46 | })
|
---|
| 47 | (type: [am = s]
|
---|
| 48 | {exp coef:0} = {
|
---|
| 49 | 0.18900000000E-01 1.0000000000
|
---|
| 50 | })
|
---|
| 51 | (type: [am = p]
|
---|
| 52 | {exp coef:0} = {
|
---|
| 53 | 8.6490000000 1.0000000000
|
---|
| 54 | })
|
---|
| 55 | (type: [am = p]
|
---|
| 56 | {exp coef:0} = {
|
---|
| 57 | 3.4300000000 1.0000000000
|
---|
| 58 | })
|
---|
| 59 | (type: [am = p]
|
---|
| 60 | {exp coef:0} = {
|
---|
| 61 | 1.3600000000 1.0000000000
|
---|
| 62 | })
|
---|
| 63 | (type: [am = p]
|
---|
| 64 | {exp coef:0} = {
|
---|
| 65 | 0.53900000000 1.0000000000
|
---|
| 66 | })
|
---|
| 67 | (type: [am = p]
|
---|
| 68 | {exp coef:0} = {
|
---|
| 69 | 0.21400000000 1.0000000000
|
---|
| 70 | })
|
---|
| 71 | (type: [am = p]
|
---|
| 72 | {exp coef:0} = {
|
---|
| 73 | 0.67000000000E-01 1.0000000000
|
---|
| 74 | })
|
---|
| 75 | (type: [(am = d puream = 1)]
|
---|
| 76 | {exp coef:0} = {
|
---|
| 77 | 4.4530000000 1.0000000000
|
---|
| 78 | })
|
---|
| 79 | (type: [(am = d puream = 1)]
|
---|
| 80 | {exp coef:0} = {
|
---|
| 81 | 1.9580000000 1.0000000000
|
---|
| 82 | })
|
---|
| 83 | (type: [(am = d puream = 1)]
|
---|
| 84 | {exp coef:0} = {
|
---|
| 85 | 0.86100000000 1.0000000000
|
---|
| 86 | })
|
---|
| 87 | (type: [(am = d puream = 1)]
|
---|
| 88 | {exp coef:0} = {
|
---|
| 89 | 0.37800000000 1.0000000000
|
---|
| 90 | })
|
---|
| 91 | (type: [(am = d puream = 1)]
|
---|
| 92 | {exp coef:0} = {
|
---|
| 93 | 0.12600000000 1.0000000000
|
---|
| 94 | })
|
---|
| 95 | (type: [(am = f puream = 1)]
|
---|
| 96 | {exp coef:0} = {
|
---|
| 97 | 4.1000000000 1.0000000000
|
---|
| 98 | })
|
---|
| 99 | (type: [(am = f puream = 1)]
|
---|
| 100 | {exp coef:0} = {
|
---|
| 101 | 1.7800000000 1.0000000000
|
---|
| 102 | })
|
---|
| 103 | (type: [(am = f puream = 1)]
|
---|
| 104 | {exp coef:0} = {
|
---|
| 105 | 0.77300000000 1.0000000000
|
---|
| 106 | })
|
---|
| 107 | (type: [(am = f puream = 1)]
|
---|
| 108 | {exp coef:0} = {
|
---|
| 109 | 0.24500000000 1.0000000000
|
---|
| 110 | })
|
---|
| 111 | (type: [(am = g puream = 1)]
|
---|
| 112 | {exp coef:0} = {
|
---|
| 113 | 3.1990000000 1.0000000000
|
---|
| 114 | })
|
---|
| 115 | (type: [(am = g puream = 1)]
|
---|
| 116 | {exp coef:0} = {
|
---|
| 117 | 1.3260000000 1.0000000000
|
---|
| 118 | })
|
---|
| 119 | (type: [(am = g puream = 1)]
|
---|
| 120 | {exp coef:0} = {
|
---|
| 121 | 0.40700000000 1.0000000000
|
---|
| 122 | })
|
---|
| 123 | (type: [(am = h puream = 1)]
|
---|
| 124 | {exp coef:0} = {
|
---|
| 125 | 2.6530000000 1.0000000000
|
---|
| 126 | })
|
---|
| 127 | (type: [(am = h puream = 1)]
|
---|
| 128 | {exp coef:0} = {
|
---|
| 129 | 0.68200000000 1.0000000000
|
---|
| 130 | })
|
---|
| 131 | ]
|
---|
| 132 | %
|
---|
| 133 | % BASIS SET: (10s,5p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
|
---|
| 134 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
| 135 | helium: "aug-cc-pV6Z": [
|
---|
| 136 | (type: [am = s]
|
---|
| 137 | {exp coef:0} = {
|
---|
| 138 | 4785.0000000 0.60000000000E-06
|
---|
| 139 | 717.00000000 0.47000000000E-05
|
---|
| 140 | 163.20000000 0.24400000000E-04
|
---|
| 141 | 46.260000000 0.10120000000E-03
|
---|
| 142 | 15.100000000 0.34860000000E-03
|
---|
| 143 | })
|
---|
| 144 | (type: [am = s]
|
---|
| 145 | {exp coef:0} = {
|
---|
| 146 | 5.4370000000 1.0000000000
|
---|
| 147 | })
|
---|
| 148 | (type: [am = s]
|
---|
| 149 | {exp coef:0} = {
|
---|
| 150 | 2.0880000000 1.0000000000
|
---|
| 151 | })
|
---|
| 152 | (type: [am = s]
|
---|
| 153 | {exp coef:0} = {
|
---|
| 154 | 0.82970000000 1.0000000000
|
---|
| 155 | })
|
---|
| 156 | (type: [am = s]
|
---|
| 157 | {exp coef:0} = {
|
---|
| 158 | 0.33660000000 1.0000000000
|
---|
| 159 | })
|
---|
| 160 | (type: [am = s]
|
---|
| 161 | {exp coef:0} = {
|
---|
| 162 | 0.13690000000 1.0000000000
|
---|
| 163 | })
|
---|
| 164 | (type: [am = s]
|
---|
| 165 | {exp coef:0} = {
|
---|
| 166 | 0.44730000000E-01 1.0000000000
|
---|
| 167 | })
|
---|
| 168 | (type: [am = p]
|
---|
| 169 | {exp coef:0} = {
|
---|
| 170 | 0.38700000000 1.0000000000
|
---|
| 171 | })
|
---|
| 172 | (type: [am = p]
|
---|
| 173 | {exp coef:0} = {
|
---|
| 174 | 0.98400000000 1.0000000000
|
---|
| 175 | })
|
---|
| 176 | (type: [am = p]
|
---|
| 177 | {exp coef:0} = {
|
---|
| 178 | 2.4980000000 1.0000000000
|
---|
| 179 | })
|
---|
| 180 | (type: [am = p]
|
---|
| 181 | {exp coef:0} = {
|
---|
| 182 | 6.3420000000 1.0000000000
|
---|
| 183 | })
|
---|
| 184 | (type: [am = p]
|
---|
| 185 | {exp coef:0} = {
|
---|
| 186 | 16.104000000 1.0000000000
|
---|
| 187 | })
|
---|
| 188 | (type: [am = p]
|
---|
| 189 | {exp coef:0} = {
|
---|
| 190 | 0.12800000000 1.0000000000
|
---|
| 191 | })
|
---|
| 192 | (type: [(am = d puream = 1)]
|
---|
| 193 | {exp coef:0} = {
|
---|
| 194 | 0.74700000000 1.0000000000
|
---|
| 195 | })
|
---|
| 196 | (type: [(am = d puream = 1)]
|
---|
| 197 | {exp coef:0} = {
|
---|
| 198 | 1.9100000000 1.0000000000
|
---|
| 199 | })
|
---|
| 200 | (type: [(am = d puream = 1)]
|
---|
| 201 | {exp coef:0} = {
|
---|
| 202 | 4.8860000000 1.0000000000
|
---|
| 203 | })
|
---|
| 204 | (type: [(am = d puream = 1)]
|
---|
| 205 | {exp coef:0} = {
|
---|
| 206 | 12.498000000 1.0000000000
|
---|
| 207 | })
|
---|
| 208 | (type: [(am = d puream = 1)]
|
---|
| 209 | {exp coef:0} = {
|
---|
| 210 | 0.24100000000 1.0000000000
|
---|
| 211 | })
|
---|
| 212 | (type: [(am = f puream = 1)]
|
---|
| 213 | {exp coef:0} = {
|
---|
| 214 | 1.2920000000 1.0000000000
|
---|
| 215 | })
|
---|
| 216 | (type: [(am = f puream = 1)]
|
---|
| 217 | {exp coef:0} = {
|
---|
| 218 | 3.4620000000 1.0000000000
|
---|
| 219 | })
|
---|
| 220 | (type: [(am = f puream = 1)]
|
---|
| 221 | {exp coef:0} = {
|
---|
| 222 | 9.2760000000 1.0000000000
|
---|
| 223 | })
|
---|
| 224 | (type: [(am = f puream = 1)]
|
---|
| 225 | {exp coef:0} = {
|
---|
| 226 | 0.40700000000 1.0000000000
|
---|
| 227 | })
|
---|
| 228 | (type: [(am = g puream = 1)]
|
---|
| 229 | {exp coef:0} = {
|
---|
| 230 | 2.2360000000 1.0000000000
|
---|
| 231 | })
|
---|
| 232 | (type: [(am = g puream = 1)]
|
---|
| 233 | {exp coef:0} = {
|
---|
| 234 | 6.5860000000 1.0000000000
|
---|
| 235 | })
|
---|
| 236 | (type: [(am = g puream = 1)]
|
---|
| 237 | {exp coef:0} = {
|
---|
| 238 | 0.68600000000 1.0000000000
|
---|
| 239 | })
|
---|
| 240 | (type: [(am = h puream = 1)]
|
---|
| 241 | {exp coef:0} = {
|
---|
| 242 | 4.1590000000 1.0000000000
|
---|
| 243 | })
|
---|
| 244 | (type: [(am = h puream = 1)]
|
---|
| 245 | {exp coef:0} = {
|
---|
| 246 | 1.0160000000 1.0000000000
|
---|
| 247 | })
|
---|
| 248 | ]
|
---|
| 249 | %
|
---|
| 250 | % BASIS SET: (16s,10p,5d,4f,3g,2h,1i) -> [7s,6p,5d,4f,3g,2h,1i]
|
---|
| 251 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h,1i)
|
---|
| 252 | boron: "aug-cc-pV6Z": [
|
---|
| 253 | (type: [am = s am = s]
|
---|
| 254 | {exp coef:0 coef:1} = {
|
---|
| 255 | 210400.00000 0.58300000000E-05 -0.11800000000E-05
|
---|
| 256 | 31500.000000 0.45320000000E-04 -0.91500000000E-05
|
---|
| 257 | 7169.0000000 0.23838000000E-03 -0.48190000000E-04
|
---|
| 258 | 2030.0000000 0.10057000000E-02 -0.20306000000E-03
|
---|
| 259 | 662.50000000 0.36449600000E-02 -0.73917000000E-03
|
---|
| 260 | 239.20000000 0.11736280000E-01 -0.23860300000E-02
|
---|
| 261 | 93.260000000 0.33807020000E-01 -0.69865400000E-02
|
---|
| 262 | 38.640000000 0.85565930000E-01 -0.18115940000E-01
|
---|
| 263 | 16.780000000 0.18260322000 -0.41231290000E-01
|
---|
| 264 | 7.5410000000 0.30583760000 -0.77813530000E-01
|
---|
| 265 | 3.4820000000 0.34080347000 -0.12123181000
|
---|
| 266 | })
|
---|
| 267 | (type: [am = s]
|
---|
| 268 | {exp coef:0} = {
|
---|
| 269 | 1.6180000000 1.0000000000
|
---|
| 270 | })
|
---|
| 271 | (type: [am = s]
|
---|
| 272 | {exp coef:0} = {
|
---|
| 273 | 0.62700000000 1.0000000000
|
---|
| 274 | })
|
---|
| 275 | (type: [am = s]
|
---|
| 276 | {exp coef:0} = {
|
---|
| 277 | 0.29340000000 1.0000000000
|
---|
| 278 | })
|
---|
| 279 | (type: [am = s]
|
---|
| 280 | {exp coef:0} = {
|
---|
| 281 | 0.13100000000 1.0000000000
|
---|
| 282 | })
|
---|
| 283 | (type: [am = s]
|
---|
| 284 | {exp coef:0} = {
|
---|
| 285 | 0.58150000000E-01 1.0000000000
|
---|
| 286 | })
|
---|
| 287 | (type: [am = s]
|
---|
| 288 | {exp coef:0} = {
|
---|
| 289 | 0.23000000000E-01 1.0000000000
|
---|
| 290 | })
|
---|
| 291 | (type: [am = p]
|
---|
| 292 | {exp coef:0} = {
|
---|
| 293 | 192.50000000 0.13490000000E-03
|
---|
| 294 | 45.640000000 0.11474100000E-02
|
---|
| 295 | 14.750000000 0.58479300000E-02
|
---|
| 296 | 5.5030000000 0.21170910000E-01
|
---|
| 297 | 2.2220000000 0.62668720000E-01
|
---|
| 298 | })
|
---|
| 299 | (type: [am = p]
|
---|
| 300 | {exp coef:0} = {
|
---|
| 301 | 0.95900000000 1.0000000000
|
---|
| 302 | })
|
---|
| 303 | (type: [am = p]
|
---|
| 304 | {exp coef:0} = {
|
---|
| 305 | 0.43140000000 1.0000000000
|
---|
| 306 | })
|
---|
| 307 | (type: [am = p]
|
---|
| 308 | {exp coef:0} = {
|
---|
| 309 | 0.19690000000 1.0000000000
|
---|
| 310 | })
|
---|
| 311 | (type: [am = p]
|
---|
| 312 | {exp coef:0} = {
|
---|
| 313 | 0.90330000000E-01 1.0000000000
|
---|
| 314 | })
|
---|
| 315 | (type: [am = p]
|
---|
| 316 | {exp coef:0} = {
|
---|
| 317 | 0.40660000000E-01 1.0000000000
|
---|
| 318 | })
|
---|
| 319 | (type: [am = p]
|
---|
| 320 | {exp coef:0} = {
|
---|
| 321 | 0.13650000000E-01 1.0000000000
|
---|
| 322 | })
|
---|
| 323 | (type: [(am = d puream = 1)]
|
---|
| 324 | {exp coef:0} = {
|
---|
| 325 | 2.8860000000 1.0000000000
|
---|
| 326 | })
|
---|
| 327 | (type: [(am = d puream = 1)]
|
---|
| 328 | {exp coef:0} = {
|
---|
| 329 | 1.2670000000 1.0000000000
|
---|
| 330 | })
|
---|
| 331 | (type: [(am = d puream = 1)]
|
---|
| 332 | {exp coef:0} = {
|
---|
| 333 | 0.55600000000 1.0000000000
|
---|
| 334 | })
|
---|
| 335 | (type: [(am = d puream = 1)]
|
---|
| 336 | {exp coef:0} = {
|
---|
| 337 | 0.24400000000 1.0000000000
|
---|
| 338 | })
|
---|
| 339 | (type: [(am = d puream = 1)]
|
---|
| 340 | {exp coef:0} = {
|
---|
| 341 | 0.10700000000 1.0000000000
|
---|
| 342 | })
|
---|
| 343 | (type: [(am = d puream = 1)]
|
---|
| 344 | {exp coef:0} = {
|
---|
| 345 | 0.39200000000E-01 1.0000000000
|
---|
| 346 | })
|
---|
| 347 | (type: [(am = f puream = 1)]
|
---|
| 348 | {exp coef:0} = {
|
---|
| 349 | 1.6510000000 1.0000000000
|
---|
| 350 | })
|
---|
| 351 | (type: [(am = f puream = 1)]
|
---|
| 352 | {exp coef:0} = {
|
---|
| 353 | 0.80020000000 1.0000000000
|
---|
| 354 | })
|
---|
| 355 | (type: [(am = f puream = 1)]
|
---|
| 356 | {exp coef:0} = {
|
---|
| 357 | 0.38780000000 1.0000000000
|
---|
| 358 | })
|
---|
| 359 | (type: [(am = f puream = 1)]
|
---|
| 360 | {exp coef:0} = {
|
---|
| 361 | 0.18800000000 1.0000000000
|
---|
| 362 | })
|
---|
| 363 | (type: [(am = f puream = 1)]
|
---|
| 364 | {exp coef:0} = {
|
---|
| 365 | 0.73300000000E-01 1.0000000000
|
---|
| 366 | })
|
---|
| 367 | (type: [(am = g puream = 1)]
|
---|
| 368 | {exp coef:0} = {
|
---|
| 369 | 1.6469000000 1.0000000000
|
---|
| 370 | })
|
---|
| 371 | (type: [(am = g puream = 1)]
|
---|
| 372 | {exp coef:0} = {
|
---|
| 373 | 0.78890000000 1.0000000000
|
---|
| 374 | })
|
---|
| 375 | (type: [(am = g puream = 1)]
|
---|
| 376 | {exp coef:0} = {
|
---|
| 377 | 0.37790000000 1.0000000000
|
---|
| 378 | })
|
---|
| 379 | (type: [(am = g puream = 1)]
|
---|
| 380 | {exp coef:0} = {
|
---|
| 381 | 0.16200000000 1.0000000000
|
---|
| 382 | })
|
---|
| 383 | (type: [(am = h puream = 1)]
|
---|
| 384 | {exp coef:0} = {
|
---|
| 385 | 1.3120000000 1.0000000000
|
---|
| 386 | })
|
---|
| 387 | (type: [(am = h puream = 1)]
|
---|
| 388 | {exp coef:0} = {
|
---|
| 389 | 0.58060000000 1.0000000000
|
---|
| 390 | })
|
---|
| 391 | (type: [(am = h puream = 1)]
|
---|
| 392 | {exp coef:0} = {
|
---|
| 393 | 0.28800000000 1.0000000000
|
---|
| 394 | })
|
---|
| 395 | (type: [(am = i puream = 1)]
|
---|
| 396 | {exp coef:0} = {
|
---|
| 397 | 0.98470000000 1.0000000000
|
---|
| 398 | })
|
---|
| 399 | (type: [(am = i puream = 1)]
|
---|
| 400 | {exp coef:0} = {
|
---|
| 401 | 0.50000000000 1.0000000000
|
---|
| 402 | })
|
---|
| 403 | ]
|
---|
| 404 | %
|
---|
| 405 | % BASIS SET: (16s,10p,5d,4f,3g,2h,1i) -> [7s,6p,5d,4f,3g,2h,1i]
|
---|
| 406 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h,1i)
|
---|
| 407 | carbon: "aug-cc-pV6Z": [
|
---|
| 408 | (type: [am = s am = s]
|
---|
| 409 | {exp coef:0 coef:1} = {
|
---|
| 410 | 312100.00000 0.56700000000E-05 -0.12100000000E-05
|
---|
| 411 | 46740.000000 0.44100000000E-04 -0.93900000000E-05
|
---|
| 412 | 10640.000000 0.23190000000E-03 -0.49470000000E-04
|
---|
| 413 | 3013.0000000 0.97897000000E-03 -0.20857000000E-03
|
---|
| 414 | 982.80000000 0.35516300000E-02 -0.76015000000E-03
|
---|
| 415 | 354.80000000 0.11440610000E-01 -0.24546900000E-02
|
---|
| 416 | 138.40000000 0.32998550000E-01 -0.72015300000E-02
|
---|
| 417 | 57.350000000 0.84053470000E-01 -0.18807420000E-01
|
---|
| 418 | 24.920000000 0.18067613000 -0.43250010000E-01
|
---|
| 419 | 11.230000000 0.30491140000 -0.82597330000E-01
|
---|
| 420 | 5.2010000000 0.34141570000 -0.12857592000
|
---|
| 421 | })
|
---|
| 422 | (type: [am = s]
|
---|
| 423 | {exp coef:0} = {
|
---|
| 424 | 2.4260000000 1.0000000000
|
---|
| 425 | })
|
---|
| 426 | (type: [am = s]
|
---|
| 427 | {exp coef:0} = {
|
---|
| 428 | 0.96730000000 1.0000000000
|
---|
| 429 | })
|
---|
| 430 | (type: [am = s]
|
---|
| 431 | {exp coef:0} = {
|
---|
| 432 | 0.44560000000 1.0000000000
|
---|
| 433 | })
|
---|
| 434 | (type: [am = s]
|
---|
| 435 | {exp coef:0} = {
|
---|
| 436 | 0.19710000000 1.0000000000
|
---|
| 437 | })
|
---|
| 438 | (type: [am = s]
|
---|
| 439 | {exp coef:0} = {
|
---|
| 440 | 0.86350000000E-01 1.0000000000
|
---|
| 441 | })
|
---|
| 442 | (type: [am = s]
|
---|
| 443 | {exp coef:0} = {
|
---|
| 444 | 0.35400000000E-01 1.0000000000
|
---|
| 445 | })
|
---|
| 446 | (type: [am = p]
|
---|
| 447 | {exp coef:0} = {
|
---|
| 448 | 295.20000000 0.14249000000E-03
|
---|
| 449 | 69.980000000 0.12201000000E-02
|
---|
| 450 | 22.640000000 0.63369600000E-02
|
---|
| 451 | 8.4850000000 0.23518750000E-01
|
---|
| 452 | 3.4590000000 0.69904470000E-01
|
---|
| 453 | })
|
---|
| 454 | (type: [am = p]
|
---|
| 455 | {exp coef:0} = {
|
---|
| 456 | 1.5040000000 1.0000000000
|
---|
| 457 | })
|
---|
| 458 | (type: [am = p]
|
---|
| 459 | {exp coef:0} = {
|
---|
| 460 | 0.67830000000 1.0000000000
|
---|
| 461 | })
|
---|
| 462 | (type: [am = p]
|
---|
| 463 | {exp coef:0} = {
|
---|
| 464 | 0.30870000000 1.0000000000
|
---|
| 465 | })
|
---|
| 466 | (type: [am = p]
|
---|
| 467 | {exp coef:0} = {
|
---|
| 468 | 0.14000000000 1.0000000000
|
---|
| 469 | })
|
---|
| 470 | (type: [am = p]
|
---|
| 471 | {exp coef:0} = {
|
---|
| 472 | 0.61780000000E-01 1.0000000000
|
---|
| 473 | })
|
---|
| 474 | (type: [am = p]
|
---|
| 475 | {exp coef:0} = {
|
---|
| 476 | 0.23760000000E-01 1.0000000000
|
---|
| 477 | })
|
---|
| 478 | (type: [(am = d puream = 1)]
|
---|
| 479 | {exp coef:0} = {
|
---|
| 480 | 4.5420000000 1.0000000000
|
---|
| 481 | })
|
---|
| 482 | (type: [(am = d puream = 1)]
|
---|
| 483 | {exp coef:0} = {
|
---|
| 484 | 1.9790000000 1.0000000000
|
---|
| 485 | })
|
---|
| 486 | (type: [(am = d puream = 1)]
|
---|
| 487 | {exp coef:0} = {
|
---|
| 488 | 0.86210000000 1.0000000000
|
---|
| 489 | })
|
---|
| 490 | (type: [(am = d puream = 1)]
|
---|
| 491 | {exp coef:0} = {
|
---|
| 492 | 0.37560000000 1.0000000000
|
---|
| 493 | })
|
---|
| 494 | (type: [(am = d puream = 1)]
|
---|
| 495 | {exp coef:0} = {
|
---|
| 496 | 0.16360000000 1.0000000000
|
---|
| 497 | })
|
---|
| 498 | (type: [(am = d puream = 1)]
|
---|
| 499 | {exp coef:0} = {
|
---|
| 500 | 0.63600000000E-01 1.0000000000
|
---|
| 501 | })
|
---|
| 502 | (type: [(am = f puream = 1)]
|
---|
| 503 | {exp coef:0} = {
|
---|
| 504 | 2.6310000000 1.0000000000
|
---|
| 505 | })
|
---|
| 506 | (type: [(am = f puream = 1)]
|
---|
| 507 | {exp coef:0} = {
|
---|
| 508 | 1.2550000000 1.0000000000
|
---|
| 509 | })
|
---|
| 510 | (type: [(am = f puream = 1)]
|
---|
| 511 | {exp coef:0} = {
|
---|
| 512 | 0.59880000000 1.0000000000
|
---|
| 513 | })
|
---|
| 514 | (type: [(am = f puream = 1)]
|
---|
| 515 | {exp coef:0} = {
|
---|
| 516 | 0.28570000000 1.0000000000
|
---|
| 517 | })
|
---|
| 518 | (type: [(am = f puream = 1)]
|
---|
| 519 | {exp coef:0} = {
|
---|
| 520 | 0.11800000000 1.0000000000
|
---|
| 521 | })
|
---|
| 522 | (type: [(am = g puream = 1)]
|
---|
| 523 | {exp coef:0} = {
|
---|
| 524 | 2.6520000000 1.0000000000
|
---|
| 525 | })
|
---|
| 526 | (type: [(am = g puream = 1)]
|
---|
| 527 | {exp coef:0} = {
|
---|
| 528 | 1.2040000000 1.0000000000
|
---|
| 529 | })
|
---|
| 530 | (type: [(am = g puream = 1)]
|
---|
| 531 | {exp coef:0} = {
|
---|
| 532 | 0.54700000000 1.0000000000
|
---|
| 533 | })
|
---|
| 534 | (type: [(am = g puream = 1)]
|
---|
| 535 | {exp coef:0} = {
|
---|
| 536 | 0.25400000000 1.0000000000
|
---|
| 537 | })
|
---|
| 538 | (type: [(am = h puream = 1)]
|
---|
| 539 | {exp coef:0} = {
|
---|
| 540 | 2.0300000000 1.0000000000
|
---|
| 541 | })
|
---|
| 542 | (type: [(am = h puream = 1)]
|
---|
| 543 | {exp coef:0} = {
|
---|
| 544 | 0.85110000000 1.0000000000
|
---|
| 545 | })
|
---|
| 546 | (type: [(am = h puream = 1)]
|
---|
| 547 | {exp coef:0} = {
|
---|
| 548 | 0.45100000000 1.0000000000
|
---|
| 549 | })
|
---|
| 550 | (type: [(am = i puream = 1)]
|
---|
| 551 | {exp coef:0} = {
|
---|
| 552 | 1.4910000000 1.0000000000
|
---|
| 553 | })
|
---|
| 554 | (type: [(am = i puream = 1)]
|
---|
| 555 | {exp coef:0} = {
|
---|
| 556 | 0.77600000000 1.0000000000
|
---|
| 557 | })
|
---|
| 558 | ]
|
---|
| 559 | %
|
---|
| 560 | % BASIS SET: (16s,10p,5d,4f,3g,2h,1i) -> [7s,6p,5d,4f,3g,2h,1i]
|
---|
| 561 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h,1i)
|
---|
| 562 | nitrogen: "aug-cc-pV6Z": [
|
---|
| 563 | (type: [am = s am = s]
|
---|
| 564 | {exp coef:0 coef:1} = {
|
---|
| 565 | 432300.00000 0.55900000000E-05 -0.12300000000E-05
|
---|
| 566 | 64700.000000 0.43510000000E-04 -0.95800000000E-05
|
---|
| 567 | 14720.000000 0.22893000000E-03 -0.50510000000E-04
|
---|
| 568 | 4170.0000000 0.96502000000E-03 -0.21264000000E-03
|
---|
| 569 | 1361.0000000 0.35021900000E-02 -0.77534000000E-03
|
---|
| 570 | 491.20000000 0.11292120000E-01 -0.25062400000E-02
|
---|
| 571 | 191.60000000 0.32612830000E-01 -0.73652900000E-02
|
---|
| 572 | 79.410000000 0.83297270000E-01 -0.19301670000E-01
|
---|
| 573 | 34.530000000 0.17998566000 -0.44717380000E-01
|
---|
| 574 | 15.580000000 0.30500351000 -0.86066470000E-01
|
---|
| 575 | 7.2320000000 0.34115932000 -0.13329627000
|
---|
| 576 | })
|
---|
| 577 | (type: [am = s]
|
---|
| 578 | {exp coef:0} = {
|
---|
| 579 | 3.3820000000 1.0000000000
|
---|
| 580 | })
|
---|
| 581 | (type: [am = s]
|
---|
| 582 | {exp coef:0} = {
|
---|
| 583 | 1.3690000000 1.0000000000
|
---|
| 584 | })
|
---|
| 585 | (type: [am = s]
|
---|
| 586 | {exp coef:0} = {
|
---|
| 587 | 0.62480000000 1.0000000000
|
---|
| 588 | })
|
---|
| 589 | (type: [am = s]
|
---|
| 590 | {exp coef:0} = {
|
---|
| 591 | 0.27470000000 1.0000000000
|
---|
| 592 | })
|
---|
| 593 | (type: [am = s]
|
---|
| 594 | {exp coef:0} = {
|
---|
| 595 | 0.11920000000 1.0000000000
|
---|
| 596 | })
|
---|
| 597 | (type: [am = s]
|
---|
| 598 | {exp coef:0} = {
|
---|
| 599 | 0.47140000000E-01 1.0000000000
|
---|
| 600 | })
|
---|
| 601 | (type: [am = p]
|
---|
| 602 | {exp coef:0} = {
|
---|
| 603 | 415.90000000 0.14841000000E-03
|
---|
| 604 | 98.610000000 0.12763400000E-02
|
---|
| 605 | 31.920000000 0.67024200000E-02
|
---|
| 606 | 12.000000000 0.25261700000E-01
|
---|
| 607 | 4.9190000000 0.75189430000E-01
|
---|
| 608 | })
|
---|
| 609 | (type: [am = p]
|
---|
| 610 | {exp coef:0} = {
|
---|
| 611 | 2.1480000000 1.0000000000
|
---|
| 612 | })
|
---|
| 613 | (type: [am = p]
|
---|
| 614 | {exp coef:0} = {
|
---|
| 615 | 0.96960000000 1.0000000000
|
---|
| 616 | })
|
---|
| 617 | (type: [am = p]
|
---|
| 618 | {exp coef:0} = {
|
---|
| 619 | 0.43990000000 1.0000000000
|
---|
| 620 | })
|
---|
| 621 | (type: [am = p]
|
---|
| 622 | {exp coef:0} = {
|
---|
| 623 | 0.19780000000 1.0000000000
|
---|
| 624 | })
|
---|
| 625 | (type: [am = p]
|
---|
| 626 | {exp coef:0} = {
|
---|
| 627 | 0.86030000000E-01 1.0000000000
|
---|
| 628 | })
|
---|
| 629 | (type: [am = p]
|
---|
| 630 | {exp coef:0} = {
|
---|
| 631 | 0.31500000000E-01 1.0000000000
|
---|
| 632 | })
|
---|
| 633 | (type: [(am = d puream = 1)]
|
---|
| 634 | {exp coef:0} = {
|
---|
| 635 | 6.7170000000 1.0000000000
|
---|
| 636 | })
|
---|
| 637 | (type: [(am = d puream = 1)]
|
---|
| 638 | {exp coef:0} = {
|
---|
| 639 | 2.8960000000 1.0000000000
|
---|
| 640 | })
|
---|
| 641 | (type: [(am = d puream = 1)]
|
---|
| 642 | {exp coef:0} = {
|
---|
| 643 | 1.2490000000 1.0000000000
|
---|
| 644 | })
|
---|
| 645 | (type: [(am = d puream = 1)]
|
---|
| 646 | {exp coef:0} = {
|
---|
| 647 | 0.53800000000 1.0000000000
|
---|
| 648 | })
|
---|
| 649 | (type: [(am = d puream = 1)]
|
---|
| 650 | {exp coef:0} = {
|
---|
| 651 | 0.23200000000 1.0000000000
|
---|
| 652 | })
|
---|
| 653 | (type: [(am = d puream = 1)]
|
---|
| 654 | {exp coef:0} = {
|
---|
| 655 | 0.87400000000E-01 1.0000000000
|
---|
| 656 | })
|
---|
| 657 | (type: [(am = f puream = 1)]
|
---|
| 658 | {exp coef:0} = {
|
---|
| 659 | 3.8290000000 1.0000000000
|
---|
| 660 | })
|
---|
| 661 | (type: [(am = f puream = 1)]
|
---|
| 662 | {exp coef:0} = {
|
---|
| 663 | 1.7950000000 1.0000000000
|
---|
| 664 | })
|
---|
| 665 | (type: [(am = f puream = 1)]
|
---|
| 666 | {exp coef:0} = {
|
---|
| 667 | 0.84100000000 1.0000000000
|
---|
| 668 | })
|
---|
| 669 | (type: [(am = f puream = 1)]
|
---|
| 670 | {exp coef:0} = {
|
---|
| 671 | 0.39400000000 1.0000000000
|
---|
| 672 | })
|
---|
| 673 | (type: [(am = f puream = 1)]
|
---|
| 674 | {exp coef:0} = {
|
---|
| 675 | 0.15100000000 1.0000000000
|
---|
| 676 | })
|
---|
| 677 | (type: [(am = g puream = 1)]
|
---|
| 678 | {exp coef:0} = {
|
---|
| 679 | 3.8560000000 1.0000000000
|
---|
| 680 | })
|
---|
| 681 | (type: [(am = g puream = 1)]
|
---|
| 682 | {exp coef:0} = {
|
---|
| 683 | 1.7020000000 1.0000000000
|
---|
| 684 | })
|
---|
| 685 | (type: [(am = g puream = 1)]
|
---|
| 686 | {exp coef:0} = {
|
---|
| 687 | 0.75100000000 1.0000000000
|
---|
| 688 | })
|
---|
| 689 | (type: [(am = g puream = 1)]
|
---|
| 690 | {exp coef:0} = {
|
---|
| 691 | 0.32600000000 1.0000000000
|
---|
| 692 | })
|
---|
| 693 | (type: [(am = h puream = 1)]
|
---|
| 694 | {exp coef:0} = {
|
---|
| 695 | 2.8750000000 1.0000000000
|
---|
| 696 | })
|
---|
| 697 | (type: [(am = h puream = 1)]
|
---|
| 698 | {exp coef:0} = {
|
---|
| 699 | 1.1700000000 1.0000000000
|
---|
| 700 | })
|
---|
| 701 | (type: [(am = h puream = 1)]
|
---|
| 702 | {exp coef:0} = {
|
---|
| 703 | 0.58700000000 1.0000000000
|
---|
| 704 | })
|
---|
| 705 | (type: [(am = i puream = 1)]
|
---|
| 706 | {exp coef:0} = {
|
---|
| 707 | 2.0990000000 1.0000000000
|
---|
| 708 | })
|
---|
| 709 | (type: [(am = i puream = 1)]
|
---|
| 710 | {exp coef:0} = {
|
---|
| 711 | 1.0410000000 1.0000000000
|
---|
| 712 | })
|
---|
| 713 | ]
|
---|
| 714 | %
|
---|
| 715 | % BASIS SET: (16s,10p,5d,4f,3g,2h,1i) -> [7s,6p,5d,4f,3g,2h,1i]
|
---|
| 716 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h,1i)
|
---|
| 717 | oxygen: "aug-cc-pV6Z": [
|
---|
| 718 | (type: [am = s am = s]
|
---|
| 719 | {exp coef:0 coef:1} = {
|
---|
| 720 | 570800.00000 0.55500000000E-05 -0.12600000000E-05
|
---|
| 721 | 85480.000000 0.43110000000E-04 -0.97700000000E-05
|
---|
| 722 | 19460.000000 0.22667000000E-03 -0.51480000000E-04
|
---|
| 723 | 5512.0000000 0.95637000000E-03 -0.21696000000E-03
|
---|
| 724 | 1798.0000000 0.34732000000E-02 -0.79162000000E-03
|
---|
| 725 | 648.90000000 0.11197780000E-01 -0.25590000000E-02
|
---|
| 726 | 253.10000000 0.32387660000E-01 -0.75331300000E-02
|
---|
| 727 | 104.90000000 0.82859770000E-01 -0.19788970000E-01
|
---|
| 728 | 45.650000000 0.17958381000 -0.46062880000E-01
|
---|
| 729 | 20.620000000 0.30522110000 -0.89195600000E-01
|
---|
| 730 | 9.5870000000 0.34089349000 -0.13754216000
|
---|
| 731 | })
|
---|
| 732 | (type: [am = s]
|
---|
| 733 | {exp coef:0} = {
|
---|
| 734 | 4.4930000000 1.0000000000
|
---|
| 735 | })
|
---|
| 736 | (type: [am = s]
|
---|
| 737 | {exp coef:0} = {
|
---|
| 738 | 1.8370000000 1.0000000000
|
---|
| 739 | })
|
---|
| 740 | (type: [am = s]
|
---|
| 741 | {exp coef:0} = {
|
---|
| 742 | 0.83490000000 1.0000000000
|
---|
| 743 | })
|
---|
| 744 | (type: [am = s]
|
---|
| 745 | {exp coef:0} = {
|
---|
| 746 | 0.36580000000 1.0000000000
|
---|
| 747 | })
|
---|
| 748 | (type: [am = s]
|
---|
| 749 | {exp coef:0} = {
|
---|
| 750 | 0.15700000000 1.0000000000
|
---|
| 751 | })
|
---|
| 752 | (type: [am = s]
|
---|
| 753 | {exp coef:0} = {
|
---|
| 754 | 0.59350000000E-01 1.0000000000
|
---|
| 755 | })
|
---|
| 756 | (type: [am = p]
|
---|
| 757 | {exp coef:0} = {
|
---|
| 758 | 525.60000000 0.16664000000E-03
|
---|
| 759 | 124.60000000 0.14333600000E-02
|
---|
| 760 | 40.340000000 0.75476200000E-02
|
---|
| 761 | 15.180000000 0.28594560000E-01
|
---|
| 762 | 6.2450000000 0.84388580000E-01
|
---|
| 763 | })
|
---|
| 764 | (type: [am = p]
|
---|
| 765 | {exp coef:0} = {
|
---|
| 766 | 2.7320000000 1.0000000000
|
---|
| 767 | })
|
---|
| 768 | (type: [am = p]
|
---|
| 769 | {exp coef:0} = {
|
---|
| 770 | 1.2270000000 1.0000000000
|
---|
| 771 | })
|
---|
| 772 | (type: [am = p]
|
---|
| 773 | {exp coef:0} = {
|
---|
| 774 | 0.54920000000 1.0000000000
|
---|
| 775 | })
|
---|
| 776 | (type: [am = p]
|
---|
| 777 | {exp coef:0} = {
|
---|
| 778 | 0.24180000000 1.0000000000
|
---|
| 779 | })
|
---|
| 780 | (type: [am = p]
|
---|
| 781 | {exp coef:0} = {
|
---|
| 782 | 0.10250000000 1.0000000000
|
---|
| 783 | })
|
---|
| 784 | (type: [am = p]
|
---|
| 785 | {exp coef:0} = {
|
---|
| 786 | 0.33800000000E-01 1.0000000000
|
---|
| 787 | })
|
---|
| 788 | (type: [(am = d puream = 1)]
|
---|
| 789 | {exp coef:0} = {
|
---|
| 790 | 8.2530000000 1.0000000000
|
---|
| 791 | })
|
---|
| 792 | (type: [(am = d puream = 1)]
|
---|
| 793 | {exp coef:0} = {
|
---|
| 794 | 3.5970000000 1.0000000000
|
---|
| 795 | })
|
---|
| 796 | (type: [(am = d puream = 1)]
|
---|
| 797 | {exp coef:0} = {
|
---|
| 798 | 1.5680000000 1.0000000000
|
---|
| 799 | })
|
---|
| 800 | (type: [(am = d puream = 1)]
|
---|
| 801 | {exp coef:0} = {
|
---|
| 802 | 0.68400000000 1.0000000000
|
---|
| 803 | })
|
---|
| 804 | (type: [(am = d puream = 1)]
|
---|
| 805 | {exp coef:0} = {
|
---|
| 806 | 0.29800000000 1.0000000000
|
---|
| 807 | })
|
---|
| 808 | (type: [(am = d puream = 1)]
|
---|
| 809 | {exp coef:0} = {
|
---|
| 810 | 0.11500000000 1.0000000000
|
---|
| 811 | })
|
---|
| 812 | (type: [(am = f puream = 1)]
|
---|
| 813 | {exp coef:0} = {
|
---|
| 814 | 5.4300000000 1.0000000000
|
---|
| 815 | })
|
---|
| 816 | (type: [(am = f puream = 1)]
|
---|
| 817 | {exp coef:0} = {
|
---|
| 818 | 2.4160000000 1.0000000000
|
---|
| 819 | })
|
---|
| 820 | (type: [(am = f puream = 1)]
|
---|
| 821 | {exp coef:0} = {
|
---|
| 822 | 1.0750000000 1.0000000000
|
---|
| 823 | })
|
---|
| 824 | (type: [(am = f puream = 1)]
|
---|
| 825 | {exp coef:0} = {
|
---|
| 826 | 0.47800000000 1.0000000000
|
---|
| 827 | })
|
---|
| 828 | (type: [(am = f puream = 1)]
|
---|
| 829 | {exp coef:0} = {
|
---|
| 830 | 0.19500000000 1.0000000000
|
---|
| 831 | })
|
---|
| 832 | (type: [(am = g puream = 1)]
|
---|
| 833 | {exp coef:0} = {
|
---|
| 834 | 5.2110000000 1.0000000000
|
---|
| 835 | })
|
---|
| 836 | (type: [(am = g puream = 1)]
|
---|
| 837 | {exp coef:0} = {
|
---|
| 838 | 2.1900000000 1.0000000000
|
---|
| 839 | })
|
---|
| 840 | (type: [(am = g puream = 1)]
|
---|
| 841 | {exp coef:0} = {
|
---|
| 842 | 0.92000000000 1.0000000000
|
---|
| 843 | })
|
---|
| 844 | (type: [(am = g puream = 1)]
|
---|
| 845 | {exp coef:0} = {
|
---|
| 846 | 0.40600000000 1.0000000000
|
---|
| 847 | })
|
---|
| 848 | (type: [(am = h puream = 1)]
|
---|
| 849 | {exp coef:0} = {
|
---|
| 850 | 3.8720000000 1.0000000000
|
---|
| 851 | })
|
---|
| 852 | (type: [(am = h puream = 1)]
|
---|
| 853 | {exp coef:0} = {
|
---|
| 854 | 1.5050000000 1.0000000000
|
---|
| 855 | })
|
---|
| 856 | (type: [(am = h puream = 1)]
|
---|
| 857 | {exp coef:0} = {
|
---|
| 858 | 0.74800000000 1.0000000000
|
---|
| 859 | })
|
---|
| 860 | (type: [(am = i puream = 1)]
|
---|
| 861 | {exp coef:0} = {
|
---|
| 862 | 2.7730000000 1.0000000000
|
---|
| 863 | })
|
---|
| 864 | (type: [(am = i puream = 1)]
|
---|
| 865 | {exp coef:0} = {
|
---|
| 866 | 1.3450000000 1.0000000000
|
---|
| 867 | })
|
---|
| 868 | ]
|
---|
| 869 | %
|
---|
| 870 | % BASIS SET: (16s,10p,5d,4f,3g,2h,1i) -> [7s,6p,5d,4f,3g,2h,1i]
|
---|
| 871 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h,1i)
|
---|
| 872 | fluorine: "aug-cc-pV6Z": [
|
---|
| 873 | (type: [am = s am = s]
|
---|
| 874 | {exp coef:0 coef:1} = {
|
---|
| 875 | 723500.00000 0.55600000000E-05 -0.12900000000E-05
|
---|
| 876 | 108400.00000 0.43180000000E-04 -0.99900000000E-05
|
---|
| 877 | 24680.000000 0.22700000000E-03 -0.52600000000E-04
|
---|
| 878 | 6990.0000000 0.95803000000E-03 -0.22172000000E-03
|
---|
| 879 | 2282.0000000 0.34701500000E-02 -0.80692000000E-03
|
---|
| 880 | 824.60000000 0.11185260000E-01 -0.26081700000E-02
|
---|
| 881 | 321.80000000 0.32328800000E-01 -0.76740200000E-02
|
---|
| 882 | 133.50000000 0.82795450000E-01 -0.20193530000E-01
|
---|
| 883 | 58.110000000 0.17988024000 -0.47187520000E-01
|
---|
| 884 | 26.280000000 0.30557831000 -0.91580090000E-01
|
---|
| 885 | 12.240000000 0.34026839000 -0.14048558000
|
---|
| 886 | })
|
---|
| 887 | (type: [am = s]
|
---|
| 888 | {exp coef:0} = {
|
---|
| 889 | 5.7470000000 1.0000000000
|
---|
| 890 | })
|
---|
| 891 | (type: [am = s]
|
---|
| 892 | {exp coef:0} = {
|
---|
| 893 | 2.3650000000 1.0000000000
|
---|
| 894 | })
|
---|
| 895 | (type: [am = s]
|
---|
| 896 | {exp coef:0} = {
|
---|
| 897 | 1.0710000000 1.0000000000
|
---|
| 898 | })
|
---|
| 899 | (type: [am = s]
|
---|
| 900 | {exp coef:0} = {
|
---|
| 901 | 0.46810000000 1.0000000000
|
---|
| 902 | })
|
---|
| 903 | (type: [am = s]
|
---|
| 904 | {exp coef:0} = {
|
---|
| 905 | 0.19940000000 1.0000000000
|
---|
| 906 | })
|
---|
| 907 | (type: [am = s]
|
---|
| 908 | {exp coef:0} = {
|
---|
| 909 | 0.73150000000E-01 1.0000000000
|
---|
| 910 | })
|
---|
| 911 | (type: [am = p]
|
---|
| 912 | {exp coef:0} = {
|
---|
| 913 | 660.00000000 0.17721000000E-03
|
---|
| 914 | 156.40000000 0.15269100000E-02
|
---|
| 915 | 50.640000000 0.80720700000E-02
|
---|
| 916 | 19.080000000 0.30740210000E-01
|
---|
| 917 | 7.8720000000 0.90119140000E-01
|
---|
| 918 | })
|
---|
| 919 | (type: [am = p]
|
---|
| 920 | {exp coef:0} = {
|
---|
| 921 | 3.4490000000 1.0000000000
|
---|
| 922 | })
|
---|
| 923 | (type: [am = p]
|
---|
| 924 | {exp coef:0} = {
|
---|
| 925 | 1.5450000000 1.0000000000
|
---|
| 926 | })
|
---|
| 927 | (type: [am = p]
|
---|
| 928 | {exp coef:0} = {
|
---|
| 929 | 0.68640000000 1.0000000000
|
---|
| 930 | })
|
---|
| 931 | (type: [am = p]
|
---|
| 932 | {exp coef:0} = {
|
---|
| 933 | 0.29860000000 1.0000000000
|
---|
| 934 | })
|
---|
| 935 | (type: [am = p]
|
---|
| 936 | {exp coef:0} = {
|
---|
| 937 | 0.12450000000 1.0000000000
|
---|
| 938 | })
|
---|
| 939 | (type: [am = p]
|
---|
| 940 | {exp coef:0} = {
|
---|
| 941 | 0.47600000000E-01 1.0000000000
|
---|
| 942 | })
|
---|
| 943 | (type: [(am = d puream = 1)]
|
---|
| 944 | {exp coef:0} = {
|
---|
| 945 | 10.573000000 1.0000000000
|
---|
| 946 | })
|
---|
| 947 | (type: [(am = d puream = 1)]
|
---|
| 948 | {exp coef:0} = {
|
---|
| 949 | 4.6130000000 1.0000000000
|
---|
| 950 | })
|
---|
| 951 | (type: [(am = d puream = 1)]
|
---|
| 952 | {exp coef:0} = {
|
---|
| 953 | 2.0130000000 1.0000000000
|
---|
| 954 | })
|
---|
| 955 | (type: [(am = d puream = 1)]
|
---|
| 956 | {exp coef:0} = {
|
---|
| 957 | 0.87800000000 1.0000000000
|
---|
| 958 | })
|
---|
| 959 | (type: [(am = d puream = 1)]
|
---|
| 960 | {exp coef:0} = {
|
---|
| 961 | 0.38300000000 1.0000000000
|
---|
| 962 | })
|
---|
| 963 | (type: [(am = d puream = 1)]
|
---|
| 964 | {exp coef:0} = {
|
---|
| 965 | 0.15100000000 1.0000000000
|
---|
| 966 | })
|
---|
| 967 | (type: [(am = f puream = 1)]
|
---|
| 968 | {exp coef:0} = {
|
---|
| 969 | 7.5630000000 1.0000000000
|
---|
| 970 | })
|
---|
| 971 | (type: [(am = f puream = 1)]
|
---|
| 972 | {exp coef:0} = {
|
---|
| 973 | 3.3300000000 1.0000000000
|
---|
| 974 | })
|
---|
| 975 | (type: [(am = f puream = 1)]
|
---|
| 976 | {exp coef:0} = {
|
---|
| 977 | 1.4660000000 1.0000000000
|
---|
| 978 | })
|
---|
| 979 | (type: [(am = f puream = 1)]
|
---|
| 980 | {exp coef:0} = {
|
---|
| 981 | 0.64500000000 1.0000000000
|
---|
| 982 | })
|
---|
| 983 | (type: [(am = f puream = 1)]
|
---|
| 984 | {exp coef:0} = {
|
---|
| 985 | 0.27200000000 1.0000000000
|
---|
| 986 | })
|
---|
| 987 | (type: [(am = g puream = 1)]
|
---|
| 988 | {exp coef:0} = {
|
---|
| 989 | 6.7350000000 1.0000000000
|
---|
| 990 | })
|
---|
| 991 | (type: [(am = g puream = 1)]
|
---|
| 992 | {exp coef:0} = {
|
---|
| 993 | 2.7830000000 1.0000000000
|
---|
| 994 | })
|
---|
| 995 | (type: [(am = g puream = 1)]
|
---|
| 996 | {exp coef:0} = {
|
---|
| 997 | 1.1500000000 1.0000000000
|
---|
| 998 | })
|
---|
| 999 | (type: [(am = g puream = 1)]
|
---|
| 1000 | {exp coef:0} = {
|
---|
| 1001 | 0.52000000000 1.0000000000
|
---|
| 1002 | })
|
---|
| 1003 | (type: [(am = h puream = 1)]
|
---|
| 1004 | {exp coef:0} = {
|
---|
| 1005 | 5.0880000000 1.0000000000
|
---|
| 1006 | })
|
---|
| 1007 | (type: [(am = h puream = 1)]
|
---|
| 1008 | {exp coef:0} = {
|
---|
| 1009 | 1.9370000000 1.0000000000
|
---|
| 1010 | })
|
---|
| 1011 | (type: [(am = h puream = 1)]
|
---|
| 1012 | {exp coef:0} = {
|
---|
| 1013 | 0.98500000000 1.0000000000
|
---|
| 1014 | })
|
---|
| 1015 | (type: [(am = i puream = 1)]
|
---|
| 1016 | {exp coef:0} = {
|
---|
| 1017 | 3.5810000000 1.0000000000
|
---|
| 1018 | })
|
---|
| 1019 | (type: [(am = i puream = 1)]
|
---|
| 1020 | {exp coef:0} = {
|
---|
| 1021 | 1.7390000000 1.0000000000
|
---|
| 1022 | })
|
---|
| 1023 | ]
|
---|
| 1024 | %
|
---|
| 1025 | % BASIS SET: (16s,10p,5d,4f,3g,2h,1i) -> [7s,6p,5d,4f,3g,2h,1i]
|
---|
| 1026 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h,1i)
|
---|
| 1027 | neon: "aug-cc-pV6Z": [
|
---|
| 1028 | (type: [am = s am = s]
|
---|
| 1029 | {exp coef:0 coef:1} = {
|
---|
| 1030 | 902400.00000 0.55100000000E-05 -0.12900000000E-05
|
---|
| 1031 | 135100.00000 0.42820000000E-04 -0.10050000000E-04
|
---|
| 1032 | 30750.000000 0.22514000000E-03 -0.52930000000E-04
|
---|
| 1033 | 8710.0000000 0.95016000000E-03 -0.22312000000E-03
|
---|
| 1034 | 2842.0000000 0.34471900000E-02 -0.81338000000E-03
|
---|
| 1035 | 1026.0000000 0.11125450000E-01 -0.26323000000E-02
|
---|
| 1036 | 400.10000000 0.32205680000E-01 -0.77591000000E-02
|
---|
| 1037 | 165.90000000 0.82598910000E-01 -0.20452770000E-01
|
---|
| 1038 | 72.210000000 0.17990564000 -0.47975050000E-01
|
---|
| 1039 | 32.660000000 0.30605208000 -0.93400860000E-01
|
---|
| 1040 | 15.220000000 0.34012559000 -0.14277215000
|
---|
| 1041 | })
|
---|
| 1042 | (type: [am = s]
|
---|
| 1043 | {exp coef:0} = {
|
---|
| 1044 | 7.1490000000 1.0000000000
|
---|
| 1045 | })
|
---|
| 1046 | (type: [am = s]
|
---|
| 1047 | {exp coef:0} = {
|
---|
| 1048 | 2.9570000000 1.0000000000
|
---|
| 1049 | })
|
---|
| 1050 | (type: [am = s]
|
---|
| 1051 | {exp coef:0} = {
|
---|
| 1052 | 1.3350000000 1.0000000000
|
---|
| 1053 | })
|
---|
| 1054 | (type: [am = s]
|
---|
| 1055 | {exp coef:0} = {
|
---|
| 1056 | 0.58160000000 1.0000000000
|
---|
| 1057 | })
|
---|
| 1058 | (type: [am = s]
|
---|
| 1059 | {exp coef:0} = {
|
---|
| 1060 | 0.24630000000 1.0000000000
|
---|
| 1061 | })
|
---|
| 1062 | (type: [am = s]
|
---|
| 1063 | {exp coef:0} = {
|
---|
| 1064 | 0.86900000000E-01 1.0000000000
|
---|
| 1065 | })
|
---|
| 1066 | (type: [am = p]
|
---|
| 1067 | {exp coef:0} = {
|
---|
| 1068 | 815.60000000 0.18376000000E-03
|
---|
| 1069 | 193.30000000 0.15850900000E-02
|
---|
| 1070 | 62.600000000 0.84146400000E-02
|
---|
| 1071 | 23.610000000 0.32200330000E-01
|
---|
| 1072 | 9.7620000000 0.93963900000E-01
|
---|
| 1073 | })
|
---|
| 1074 | (type: [am = p]
|
---|
| 1075 | {exp coef:0} = {
|
---|
| 1076 | 4.2810000000 1.0000000000
|
---|
| 1077 | })
|
---|
| 1078 | (type: [am = p]
|
---|
| 1079 | {exp coef:0} = {
|
---|
| 1080 | 1.9150000000 1.0000000000
|
---|
| 1081 | })
|
---|
| 1082 | (type: [am = p]
|
---|
| 1083 | {exp coef:0} = {
|
---|
| 1084 | 0.84760000000 1.0000000000
|
---|
| 1085 | })
|
---|
| 1086 | (type: [am = p]
|
---|
| 1087 | {exp coef:0} = {
|
---|
| 1088 | 0.36600000000 1.0000000000
|
---|
| 1089 | })
|
---|
| 1090 | (type: [am = p]
|
---|
| 1091 | {exp coef:0} = {
|
---|
| 1092 | 0.15100000000 1.0000000000
|
---|
| 1093 | })
|
---|
| 1094 | (type: [am = p]
|
---|
| 1095 | {exp coef:0} = {
|
---|
| 1096 | 0.56600000000E-01 1.0000000000
|
---|
| 1097 | })
|
---|
| 1098 | (type: [(am = d puream = 1)]
|
---|
| 1099 | {exp coef:0} = {
|
---|
| 1100 | 13.317000000 1.0000000000
|
---|
| 1101 | })
|
---|
| 1102 | (type: [(am = d puream = 1)]
|
---|
| 1103 | {exp coef:0} = {
|
---|
| 1104 | 5.8030000000 1.0000000000
|
---|
| 1105 | })
|
---|
| 1106 | (type: [(am = d puream = 1)]
|
---|
| 1107 | {exp coef:0} = {
|
---|
| 1108 | 2.5290000000 1.0000000000
|
---|
| 1109 | })
|
---|
| 1110 | (type: [(am = d puream = 1)]
|
---|
| 1111 | {exp coef:0} = {
|
---|
| 1112 | 1.1020000000 1.0000000000
|
---|
| 1113 | })
|
---|
| 1114 | (type: [(am = d puream = 1)]
|
---|
| 1115 | {exp coef:0} = {
|
---|
| 1116 | 0.48000000000 1.0000000000
|
---|
| 1117 | })
|
---|
| 1118 | (type: [(am = d puream = 1)]
|
---|
| 1119 | {exp coef:0} = {
|
---|
| 1120 | 0.18700000000 1.0000000000
|
---|
| 1121 | })
|
---|
| 1122 | (type: [(am = f puream = 1)]
|
---|
| 1123 | {exp coef:0} = {
|
---|
| 1124 | 10.356000000 1.0000000000
|
---|
| 1125 | })
|
---|
| 1126 | (type: [(am = f puream = 1)]
|
---|
| 1127 | {exp coef:0} = {
|
---|
| 1128 | 4.5380000000 1.0000000000
|
---|
| 1129 | })
|
---|
| 1130 | (type: [(am = f puream = 1)]
|
---|
| 1131 | {exp coef:0} = {
|
---|
| 1132 | 1.9890000000 1.0000000000
|
---|
| 1133 | })
|
---|
| 1134 | (type: [(am = f puream = 1)]
|
---|
| 1135 | {exp coef:0} = {
|
---|
| 1136 | 0.87100000000 1.0000000000
|
---|
| 1137 | })
|
---|
| 1138 | (type: [(am = f puream = 1)]
|
---|
| 1139 | {exp coef:0} = {
|
---|
| 1140 | 0.34920000000 1.0000000000
|
---|
| 1141 | })
|
---|
| 1142 | (type: [(am = g puream = 1)]
|
---|
| 1143 | {exp coef:0} = {
|
---|
| 1144 | 8.3450000000 1.0000000000
|
---|
| 1145 | })
|
---|
| 1146 | (type: [(am = g puream = 1)]
|
---|
| 1147 | {exp coef:0} = {
|
---|
| 1148 | 3.4170000000 1.0000000000
|
---|
| 1149 | })
|
---|
| 1150 | (type: [(am = g puream = 1)]
|
---|
| 1151 | {exp coef:0} = {
|
---|
| 1152 | 1.3990000000 1.0000000000
|
---|
| 1153 | })
|
---|
| 1154 | (type: [(am = g puream = 1)]
|
---|
| 1155 | {exp coef:0} = {
|
---|
| 1156 | 0.63450000000 1.0000000000
|
---|
| 1157 | })
|
---|
| 1158 | (type: [(am = h puream = 1)]
|
---|
| 1159 | {exp coef:0} = {
|
---|
| 1160 | 6.5190000000 1.0000000000
|
---|
| 1161 | })
|
---|
| 1162 | (type: [(am = h puream = 1)]
|
---|
| 1163 | {exp coef:0} = {
|
---|
| 1164 | 2.4470000000 1.0000000000
|
---|
| 1165 | })
|
---|
| 1166 | (type: [(am = h puream = 1)]
|
---|
| 1167 | {exp coef:0} = {
|
---|
| 1168 | 1.2093000000 1.0000000000
|
---|
| 1169 | })
|
---|
| 1170 | (type: [(am = i puream = 1)]
|
---|
| 1171 | {exp coef:0} = {
|
---|
| 1172 | 4.4890000000 1.0000000000
|
---|
| 1173 | })
|
---|
| 1174 | (type: [(am = i puream = 1)]
|
---|
| 1175 | {exp coef:0} = {
|
---|
| 1176 | 2.1215000000 1.0000000000
|
---|
| 1177 | })
|
---|
| 1178 | ]
|
---|
| 1179 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h,1i)
|
---|
| 1180 | aluminum: "aug-cc-pV6Z": [
|
---|
| 1181 | (type: [am = s am = s am = s]
|
---|
| 1182 | {exp coef:0 coef:1 coef:2} = {
|
---|
| 1183 | 3652000.0000 0.19000000000E-05 -0.50000000000E-06 0.10000000000E-06
|
---|
| 1184 | 546800.00000 0.14500000000E-04 -0.38000000000E-05 0.90000000000E-06
|
---|
| 1185 | 124500.00000 0.76200000000E-04 -0.19800000000E-04 0.46000000000E-05
|
---|
| 1186 | 35440.000000 0.31580000000E-03 -0.82100000000E-04 0.19000000000E-04
|
---|
| 1187 | 11840.000000 0.10974000000E-02 -0.28580000000E-03 0.65900000000E-04
|
---|
| 1188 | 4434.0000000 0.33697000000E-02 -0.87850000000E-03 0.20310000000E-03
|
---|
| 1189 | 1812.0000000 0.93222000000E-02 -0.24482000000E-02 0.56470000000E-03
|
---|
| 1190 | 791.50000000 0.23799200000E-01 -0.63100000000E-02 0.14620000000E-02
|
---|
| 1191 | 361.00000000 0.56819100000E-01 -0.15485400000E-01 0.35794000000E-02
|
---|
| 1192 | 169.50000000 0.12246800000 -0.34958900000E-01 0.81516000000E-02
|
---|
| 1193 | 81.680000000 0.22389700000 -0.70772900000E-01 0.16527600000E-01
|
---|
| 1194 | 40.280000000 0.31344600000 -0.11942300000 0.28546700000E-01
|
---|
| 1195 | 20.250000000 0.27497500000 -0.14884200000 0.36148400000E-01
|
---|
| 1196 | 10.230000000 0.11056400000 -0.59046500000E-01 0.15380400000E-01
|
---|
| 1197 | 4.8020000000 0.11921500000E-01 0.21669300000 -0.61214100000E-01
|
---|
| 1198 | 2.3390000000 0.65280000000E-03 0.47655700000 -0.15126300000
|
---|
| 1199 | })
|
---|
| 1200 | (type: [am = s]
|
---|
| 1201 | {exp coef:0} = {
|
---|
| 1202 | 1.1630000000 1.0000000000
|
---|
| 1203 | })
|
---|
| 1204 | (type: [am = s]
|
---|
| 1205 | {exp coef:0} = {
|
---|
| 1206 | 0.58820000000 1.0000000000
|
---|
| 1207 | })
|
---|
| 1208 | (type: [am = s]
|
---|
| 1209 | {exp coef:0} = {
|
---|
| 1210 | 0.23110000000 1.0000000000
|
---|
| 1211 | })
|
---|
| 1212 | (type: [am = s]
|
---|
| 1213 | {exp coef:0} = {
|
---|
| 1214 | 0.10270000000 1.0000000000
|
---|
| 1215 | })
|
---|
| 1216 | (type: [am = s]
|
---|
| 1217 | {exp coef:0} = {
|
---|
| 1218 | 0.45210000000E-01 1.0000000000
|
---|
| 1219 | })
|
---|
| 1220 | (type: [am = s]
|
---|
| 1221 | {exp coef:0} = {
|
---|
| 1222 | 0.17370000000E-01 1.0000000000
|
---|
| 1223 | })
|
---|
| 1224 | (type: [am = p am = p]
|
---|
| 1225 | {exp coef:0 coef:1} = {
|
---|
| 1226 | 2884.0000000 0.63800000000E-04 -0.80000000000E-05
|
---|
| 1227 | 683.20000000 0.56310000000E-03 -0.65100000000E-04
|
---|
| 1228 | 222.00000000 0.31691000000E-02 -0.39990000000E-03
|
---|
| 1229 | 84.820000000 0.13240100000E-01 -0.15369000000E-02
|
---|
| 1230 | 35.810000000 0.43340300000E-01 -0.55644000000E-02
|
---|
| 1231 | 16.220000000 0.11195000000 -0.13110600000E-01
|
---|
| 1232 | 7.7020000000 0.21779600000 -0.29720000000E-01
|
---|
| 1233 | 3.7410000000 0.31167500000 -0.34719500000E-01
|
---|
| 1234 | 1.8310000000 0.31672200000 -0.55162100000E-01
|
---|
| 1235 | })
|
---|
| 1236 | (type: [am = p]
|
---|
| 1237 | {exp coef:0} = {
|
---|
| 1238 | 0.88780000000 1.0000000000
|
---|
| 1239 | })
|
---|
| 1240 | (type: [am = p]
|
---|
| 1241 | {exp coef:0} = {
|
---|
| 1242 | 0.39890000000 1.0000000000
|
---|
| 1243 | })
|
---|
| 1244 | (type: [am = p]
|
---|
| 1245 | {exp coef:0} = {
|
---|
| 1246 | 0.17180000000 1.0000000000
|
---|
| 1247 | })
|
---|
| 1248 | (type: [am = p]
|
---|
| 1249 | {exp coef:0} = {
|
---|
| 1250 | 0.72980000000E-01 1.0000000000
|
---|
| 1251 | })
|
---|
| 1252 | (type: [am = p]
|
---|
| 1253 | {exp coef:0} = {
|
---|
| 1254 | 0.30690000000E-01 1.0000000000
|
---|
| 1255 | })
|
---|
| 1256 | (type: [am = p]
|
---|
| 1257 | {exp coef:0} = {
|
---|
| 1258 | 0.10210000000E-01 1.0000000000
|
---|
| 1259 | })
|
---|
| 1260 | (type: [(am = d puream = 1)]
|
---|
| 1261 | {exp coef:0} = {
|
---|
| 1262 | 2.2143000000 1.0000000000
|
---|
| 1263 | })
|
---|
| 1264 | (type: [(am = d puream = 1)]
|
---|
| 1265 | {exp coef:0} = {
|
---|
| 1266 | 0.94490000000 1.0000000000
|
---|
| 1267 | })
|
---|
| 1268 | (type: [(am = d puream = 1)]
|
---|
| 1269 | {exp coef:0} = {
|
---|
| 1270 | 0.40320000000 1.0000000000
|
---|
| 1271 | })
|
---|
| 1272 | (type: [(am = d puream = 1)]
|
---|
| 1273 | {exp coef:0} = {
|
---|
| 1274 | 0.17210000000 1.0000000000
|
---|
| 1275 | })
|
---|
| 1276 | (type: [(am = d puream = 1)]
|
---|
| 1277 | {exp coef:0} = {
|
---|
| 1278 | 0.73430000000E-01 1.0000000000
|
---|
| 1279 | })
|
---|
| 1280 | (type: [(am = d puream = 1)]
|
---|
| 1281 | {exp coef:0} = {
|
---|
| 1282 | 0.26660000000E-01 1.0000000000
|
---|
| 1283 | })
|
---|
| 1284 | (type: [(am = f puream = 1)]
|
---|
| 1285 | {exp coef:0} = {
|
---|
| 1286 | 0.87560000000 1.0000000000
|
---|
| 1287 | })
|
---|
| 1288 | (type: [(am = f puream = 1)]
|
---|
| 1289 | {exp coef:0} = {
|
---|
| 1290 | 0.44720000000 1.0000000000
|
---|
| 1291 | })
|
---|
| 1292 | (type: [(am = f puream = 1)]
|
---|
| 1293 | {exp coef:0} = {
|
---|
| 1294 | 0.22840000000 1.0000000000
|
---|
| 1295 | })
|
---|
| 1296 | (type: [(am = f puream = 1)]
|
---|
| 1297 | {exp coef:0} = {
|
---|
| 1298 | 0.11670000000 1.0000000000
|
---|
| 1299 | })
|
---|
| 1300 | (type: [(am = f puream = 1)]
|
---|
| 1301 | {exp coef:0} = {
|
---|
| 1302 | 0.46250000000E-01 1.0000000000
|
---|
| 1303 | })
|
---|
| 1304 | (type: [(am = g puream = 1)]
|
---|
| 1305 | {exp coef:0} = {
|
---|
| 1306 | 0.69520000000 1.0000000000
|
---|
| 1307 | })
|
---|
| 1308 | (type: [(am = g puream = 1)]
|
---|
| 1309 | {exp coef:0} = {
|
---|
| 1310 | 0.37710000000 1.0000000000
|
---|
| 1311 | })
|
---|
| 1312 | (type: [(am = g puream = 1)]
|
---|
| 1313 | {exp coef:0} = {
|
---|
| 1314 | 0.20460000000 1.0000000000
|
---|
| 1315 | })
|
---|
| 1316 | (type: [(am = g puream = 1)]
|
---|
| 1317 | {exp coef:0} = {
|
---|
| 1318 | 0.85450000000E-01 1.0000000000
|
---|
| 1319 | })
|
---|
| 1320 | (type: [(am = h puream = 1)]
|
---|
| 1321 | {exp coef:0} = {
|
---|
| 1322 | 0.65600000000 1.0000000000
|
---|
| 1323 | })
|
---|
| 1324 | (type: [(am = h puream = 1)]
|
---|
| 1325 | {exp coef:0} = {
|
---|
| 1326 | 0.33000000000 1.0000000000
|
---|
| 1327 | })
|
---|
| 1328 | (type: [(am = h puream = 1)]
|
---|
| 1329 | {exp coef:0} = {
|
---|
| 1330 | 0.16550000000 1.0000000000
|
---|
| 1331 | })
|
---|
| 1332 | (type: [(am = i puream = 1)]
|
---|
| 1333 | {exp coef:0} = {
|
---|
| 1334 | 0.53020000000 1.0000000000
|
---|
| 1335 | })
|
---|
| 1336 | (type: [(am = i puream = 1)]
|
---|
| 1337 | {exp coef:0} = {
|
---|
| 1338 | 0.29900000000 1.0000000000
|
---|
| 1339 | })
|
---|
| 1340 | ]
|
---|
| 1341 | %
|
---|
| 1342 | % BASIS SET: (21s,14p,5d,4f,3g,2h,1i) -> [8s,7p,5d,4f,3g,2h,1i]
|
---|
| 1343 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h,1i)
|
---|
| 1344 | silicon: "aug-cc-pV6Z": [
|
---|
| 1345 | (type: [am = s am = s am = s]
|
---|
| 1346 | {exp coef:0 coef:1 coef:2} = {
|
---|
| 1347 | 4465000.0000 0.17000000000E-05 -0.50000000000E-06 0.10000000000E-06
|
---|
| 1348 | 668500.00000 0.13600000000E-04 -0.36000000000E-05 0.90000000000E-06
|
---|
| 1349 | 152200.00000 0.71400000000E-04 -0.19000000000E-04 0.49000000000E-05
|
---|
| 1350 | 43300.000000 0.29730000000E-03 -0.79100000000E-04 0.20300000000E-04
|
---|
| 1351 | 14410.000000 0.10383000000E-02 -0.27690000000E-03 0.70900000000E-04
|
---|
| 1352 | 5394.0000000 0.31747000000E-02 -0.84720000000E-03 0.21720000000E-03
|
---|
| 1353 | 2212.0000000 0.87324000000E-02 -0.23478000000E-02 0.60130000000E-03
|
---|
| 1354 | 968.10000000 0.22383000000E-01 -0.60705000000E-02 0.15591000000E-02
|
---|
| 1355 | 441.20000000 0.53727300000E-01 -0.14971100000E-01 0.38443000000E-02
|
---|
| 1356 | 207.10000000 0.11664900000 -0.33972900000E-01 0.87797000000E-02
|
---|
| 1357 | 99.800000000 0.21597800000 -0.69458400000E-01 0.18038800000E-01
|
---|
| 1358 | 49.240000000 0.30956600000 -0.11900100000 0.31522400000E-01
|
---|
| 1359 | 24.740000000 0.28394500000 -0.15364500000 0.41690500000E-01
|
---|
| 1360 | 12.470000000 0.12223200000 -0.70468400000E-01 0.20097300000E-01
|
---|
| 1361 | 5.7950000000 0.14195200000E-01 0.21314900000 -0.66748400000E-01
|
---|
| 1362 | 2.8300000000 0.31210000000E-03 0.49159600000 -0.18190600000
|
---|
| 1363 | })
|
---|
| 1364 | (type: [am = s]
|
---|
| 1365 | {exp coef:0} = {
|
---|
| 1366 | 1.4070000000 1.0000000000
|
---|
| 1367 | })
|
---|
| 1368 | (type: [am = s]
|
---|
| 1369 | {exp coef:0} = {
|
---|
| 1370 | 0.69950000000 1.0000000000
|
---|
| 1371 | })
|
---|
| 1372 | (type: [am = s]
|
---|
| 1373 | {exp coef:0} = {
|
---|
| 1374 | 0.30830000000 1.0000000000
|
---|
| 1375 | })
|
---|
| 1376 | (type: [am = s]
|
---|
| 1377 | {exp coef:0} = {
|
---|
| 1378 | 0.13850000000 1.0000000000
|
---|
| 1379 | })
|
---|
| 1380 | (type: [am = s]
|
---|
| 1381 | {exp coef:0} = {
|
---|
| 1382 | 0.61450000000E-01 1.0000000000
|
---|
| 1383 | })
|
---|
| 1384 | (type: [am = s]
|
---|
| 1385 | {exp coef:0} = {
|
---|
| 1386 | 0.25390000000E-01 1.0000000000
|
---|
| 1387 | })
|
---|
| 1388 | (type: [am = p am = p]
|
---|
| 1389 | {exp coef:0 coef:1} = {
|
---|
| 1390 | 3572.0000000 0.59900000000E-04 -0.12800000000E-04
|
---|
| 1391 | 846.00000000 0.52960000000E-03 -0.11260000000E-03
|
---|
| 1392 | 274.80000000 0.29958000000E-02 -0.64020000000E-03
|
---|
| 1393 | 105.00000000 0.12633500000E-01 -0.27029000000E-02
|
---|
| 1394 | 44.350000000 0.41904400000E-01 -0.90789000000E-02
|
---|
| 1395 | 20.080000000 0.11025900000 -0.24234800000E-01
|
---|
| 1396 | 9.5300000000 0.21883100000 -0.49346000000E-01
|
---|
| 1397 | 4.6340000000 0.31782800000 -0.72585900000E-01
|
---|
| 1398 | 2.2800000000 0.31942500000 -0.80425800000E-01
|
---|
| 1399 | })
|
---|
| 1400 | (type: [am = p]
|
---|
| 1401 | {exp coef:0} = {
|
---|
| 1402 | 1.1160000000 1.0000000000
|
---|
| 1403 | })
|
---|
| 1404 | (type: [am = p]
|
---|
| 1405 | {exp coef:0} = {
|
---|
| 1406 | 0.49910000000 1.0000000000
|
---|
| 1407 | })
|
---|
| 1408 | (type: [am = p]
|
---|
| 1409 | {exp coef:0} = {
|
---|
| 1410 | 0.22540000000 1.0000000000
|
---|
| 1411 | })
|
---|
| 1412 | (type: [am = p]
|
---|
| 1413 | {exp coef:0} = {
|
---|
| 1414 | 0.10010000000 1.0000000000
|
---|
| 1415 | })
|
---|
| 1416 | (type: [am = p]
|
---|
| 1417 | {exp coef:0} = {
|
---|
| 1418 | 0.43320000000E-01 1.0000000000
|
---|
| 1419 | })
|
---|
| 1420 | (type: [am = p]
|
---|
| 1421 | {exp coef:0} = {
|
---|
| 1422 | 0.16940000000E-01 1.0000000000
|
---|
| 1423 | })
|
---|
| 1424 | (type: [(am = d puream = 1)]
|
---|
| 1425 | {exp coef:0} = {
|
---|
| 1426 | 3.2386000000 1.0000000000
|
---|
| 1427 | })
|
---|
| 1428 | (type: [(am = d puream = 1)]
|
---|
| 1429 | {exp coef:0} = {
|
---|
| 1430 | 1.3767000000 1.0000000000
|
---|
| 1431 | })
|
---|
| 1432 | (type: [(am = d puream = 1)]
|
---|
| 1433 | {exp coef:0} = {
|
---|
| 1434 | 0.58530000000 1.0000000000
|
---|
| 1435 | })
|
---|
| 1436 | (type: [(am = d puream = 1)]
|
---|
| 1437 | {exp coef:0} = {
|
---|
| 1438 | 0.24880000000 1.0000000000
|
---|
| 1439 | })
|
---|
| 1440 | (type: [(am = d puream = 1)]
|
---|
| 1441 | {exp coef:0} = {
|
---|
| 1442 | 0.10580000000 1.0000000000
|
---|
| 1443 | })
|
---|
| 1444 | (type: [(am = d puream = 1)]
|
---|
| 1445 | {exp coef:0} = {
|
---|
| 1446 | 0.41390000000E-01 1.0000000000
|
---|
| 1447 | })
|
---|
| 1448 | (type: [(am = f puream = 1)]
|
---|
| 1449 | {exp coef:0} = {
|
---|
| 1450 | 1.3510000000 1.0000000000
|
---|
| 1451 | })
|
---|
| 1452 | (type: [(am = f puream = 1)]
|
---|
| 1453 | {exp coef:0} = {
|
---|
| 1454 | 0.66000000000 1.0000000000
|
---|
| 1455 | })
|
---|
| 1456 | (type: [(am = f puream = 1)]
|
---|
| 1457 | {exp coef:0} = {
|
---|
| 1458 | 0.32250000000 1.0000000000
|
---|
| 1459 | })
|
---|
| 1460 | (type: [(am = f puream = 1)]
|
---|
| 1461 | {exp coef:0} = {
|
---|
| 1462 | 0.15750000000 1.0000000000
|
---|
| 1463 | })
|
---|
| 1464 | (type: [(am = f puream = 1)]
|
---|
| 1465 | {exp coef:0} = {
|
---|
| 1466 | 0.68840000000E-01 1.0000000000
|
---|
| 1467 | })
|
---|
| 1468 | (type: [(am = g puream = 1)]
|
---|
| 1469 | {exp coef:0} = {
|
---|
| 1470 | 0.85280000000 1.0000000000
|
---|
| 1471 | })
|
---|
| 1472 | (type: [(am = g puream = 1)]
|
---|
| 1473 | {exp coef:0} = {
|
---|
| 1474 | 0.46310000000 1.0000000000
|
---|
| 1475 | })
|
---|
| 1476 | (type: [(am = g puream = 1)]
|
---|
| 1477 | {exp coef:0} = {
|
---|
| 1478 | 0.25150000000 1.0000000000
|
---|
| 1479 | })
|
---|
| 1480 | (type: [(am = g puream = 1)]
|
---|
| 1481 | {exp coef:0} = {
|
---|
| 1482 | 0.11640000000 1.0000000000
|
---|
| 1483 | })
|
---|
| 1484 | (type: [(am = h puream = 1)]
|
---|
| 1485 | {exp coef:0} = {
|
---|
| 1486 | 0.85570000000 1.0000000000
|
---|
| 1487 | })
|
---|
| 1488 | (type: [(am = h puream = 1)]
|
---|
| 1489 | {exp coef:0} = {
|
---|
| 1490 | 0.42310000000 1.0000000000
|
---|
| 1491 | })
|
---|
| 1492 | (type: [(am = h puream = 1)]
|
---|
| 1493 | {exp coef:0} = {
|
---|
| 1494 | 0.23510000000 1.0000000000
|
---|
| 1495 | })
|
---|
| 1496 | (type: [(am = i puream = 1)]
|
---|
| 1497 | {exp coef:0} = {
|
---|
| 1498 | 0.69460000000 1.0000000000
|
---|
| 1499 | })
|
---|
| 1500 | (type: [(am = i puream = 1)]
|
---|
| 1501 | {exp coef:0} = {
|
---|
| 1502 | 0.42710000000 1.0000000000
|
---|
| 1503 | })
|
---|
| 1504 | ]
|
---|
| 1505 | %
|
---|
| 1506 | % BASIS SET: (21s,14p,5d,4f,3g,2h,1i) -> [8s,7p,5d,4f,3g,2h,1i]
|
---|
| 1507 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h,1i)
|
---|
| 1508 | phosphorus: "aug-cc-pV6Z": [
|
---|
| 1509 | (type: [am = s am = s am = s]
|
---|
| 1510 | {exp coef:0 coef:1 coef:2} = {
|
---|
| 1511 | 5384000.0000 0.16000000000E-05 -0.40000000000E-06 0.10000000000E-06
|
---|
| 1512 | 806200.00000 0.12800000000E-04 -0.35000000000E-05 0.10000000000E-05
|
---|
| 1513 | 183600.00000 0.67200000000E-04 -0.18300000000E-04 0.50000000000E-05
|
---|
| 1514 | 52250.000000 0.27970000000E-03 -0.75900000000E-04 0.20900000000E-04
|
---|
| 1515 | 17390.000000 0.97670000000E-03 -0.26570000000E-03 0.73000000000E-04
|
---|
| 1516 | 6523.0000000 0.29684000000E-02 -0.80800000000E-03 0.22210000000E-03
|
---|
| 1517 | 2687.0000000 0.81240000000E-02 -0.22273000000E-02 0.61220000000E-03
|
---|
| 1518 | 1178.0000000 0.20920000000E-01 -0.57833000000E-02 0.15918000000E-02
|
---|
| 1519 | 536.20000000 0.50559000000E-01 -0.14343800000E-01 0.39534000000E-02
|
---|
| 1520 | 251.50000000 0.11047900000 -0.32706100000E-01 0.90572000000E-02
|
---|
| 1521 | 121.30000000 0.20695700000 -0.67371600000E-01 0.18790900000E-01
|
---|
| 1522 | 59.880000000 0.30473700000 -0.11764700000 0.33383100000E-01
|
---|
| 1523 | 30.050000000 0.29295200000 -0.15728000000 0.45948400000E-01
|
---|
| 1524 | 15.120000000 0.13556100000 -0.83854400000E-01 0.25524000000E-01
|
---|
| 1525 | 7.0100000000 0.17320800000E-01 0.19971800000 -0.66949600000E-01
|
---|
| 1526 | 3.4410000000 -0.35200000000E-04 0.49860500000 -0.20364500000
|
---|
| 1527 | })
|
---|
| 1528 | (type: [am = s]
|
---|
| 1529 | {exp coef:0} = {
|
---|
| 1530 | 1.7120000000 1.0000000000
|
---|
| 1531 | })
|
---|
| 1532 | (type: [am = s]
|
---|
| 1533 | {exp coef:0} = {
|
---|
| 1534 | 0.83370000000 1.0000000000
|
---|
| 1535 | })
|
---|
| 1536 | (type: [am = s]
|
---|
| 1537 | {exp coef:0} = {
|
---|
| 1538 | 0.39120000000 1.0000000000
|
---|
| 1539 | })
|
---|
| 1540 | (type: [am = s]
|
---|
| 1541 | {exp coef:0} = {
|
---|
| 1542 | 0.17770000000 1.0000000000
|
---|
| 1543 | })
|
---|
| 1544 | (type: [am = s]
|
---|
| 1545 | {exp coef:0} = {
|
---|
| 1546 | 0.79390000000E-01 1.0000000000
|
---|
| 1547 | })
|
---|
| 1548 | (type: [am = s]
|
---|
| 1549 | {exp coef:0} = {
|
---|
| 1550 | 0.32280000000E-01 1.0000000000
|
---|
| 1551 | })
|
---|
| 1552 | (type: [am = p am = p]
|
---|
| 1553 | {exp coef:0 coef:1} = {
|
---|
| 1554 | 4552.0000000 0.52000000000E-04 -0.12400000000E-04
|
---|
| 1555 | 1078.0000000 0.46040000000E-03 -0.10940000000E-03
|
---|
| 1556 | 350.10000000 0.26208000000E-02 -0.62560000000E-03
|
---|
| 1557 | 133.80000000 0.11187300000E-01 -0.26734000000E-02
|
---|
| 1558 | 56.520000000 0.37822900000E-01 -0.91552000000E-02
|
---|
| 1559 | 25.580000000 0.10211600000 -0.25099300000E-01
|
---|
| 1560 | 12.140000000 0.21031400000 -0.53181000000E-01
|
---|
| 1561 | 5.9020000000 0.31738300000 -0.81588800000E-01
|
---|
| 1562 | 2.9100000000 0.32716500000 -0.91972500000E-01
|
---|
| 1563 | })
|
---|
| 1564 | (type: [am = p]
|
---|
| 1565 | {exp coef:0} = {
|
---|
| 1566 | 1.4350000000 1.0000000000
|
---|
| 1567 | })
|
---|
| 1568 | (type: [am = p]
|
---|
| 1569 | {exp coef:0} = {
|
---|
| 1570 | 0.65700000000 1.0000000000
|
---|
| 1571 | })
|
---|
| 1572 | (type: [am = p]
|
---|
| 1573 | {exp coef:0} = {
|
---|
| 1574 | 0.30050000000 1.0000000000
|
---|
| 1575 | })
|
---|
| 1576 | (type: [am = p]
|
---|
| 1577 | {exp coef:0} = {
|
---|
| 1578 | 0.13400000000 1.0000000000
|
---|
| 1579 | })
|
---|
| 1580 | (type: [am = p]
|
---|
| 1581 | {exp coef:0} = {
|
---|
| 1582 | 0.57830000000E-01 1.0000000000
|
---|
| 1583 | })
|
---|
| 1584 | (type: [am = p]
|
---|
| 1585 | {exp coef:0} = {
|
---|
| 1586 | 0.21970000000E-01 1.0000000000
|
---|
| 1587 | })
|
---|
| 1588 | (type: [(am = d puream = 1)]
|
---|
| 1589 | {exp coef:0} = {
|
---|
| 1590 | 4.3008000000 1.0000000000
|
---|
| 1591 | })
|
---|
| 1592 | (type: [(am = d puream = 1)]
|
---|
| 1593 | {exp coef:0} = {
|
---|
| 1594 | 1.8346000000 1.0000000000
|
---|
| 1595 | })
|
---|
| 1596 | (type: [(am = d puream = 1)]
|
---|
| 1597 | {exp coef:0} = {
|
---|
| 1598 | 0.78260000000 1.0000000000
|
---|
| 1599 | })
|
---|
| 1600 | (type: [(am = d puream = 1)]
|
---|
| 1601 | {exp coef:0} = {
|
---|
| 1602 | 0.33390000000 1.0000000000
|
---|
| 1603 | })
|
---|
| 1604 | (type: [(am = d puream = 1)]
|
---|
| 1605 | {exp coef:0} = {
|
---|
| 1606 | 0.14240000000 1.0000000000
|
---|
| 1607 | })
|
---|
| 1608 | (type: [(am = d puream = 1)]
|
---|
| 1609 | {exp coef:0} = {
|
---|
| 1610 | 0.54920000000E-01 1.0000000000
|
---|
| 1611 | })
|
---|
| 1612 | (type: [(am = f puream = 1)]
|
---|
| 1613 | {exp coef:0} = {
|
---|
| 1614 | 1.8160000000 1.0000000000
|
---|
| 1615 | })
|
---|
| 1616 | (type: [(am = f puream = 1)]
|
---|
| 1617 | {exp coef:0} = {
|
---|
| 1618 | 0.88060000000 1.0000000000
|
---|
| 1619 | })
|
---|
| 1620 | (type: [(am = f puream = 1)]
|
---|
| 1621 | {exp coef:0} = {
|
---|
| 1622 | 0.42700000000 1.0000000000
|
---|
| 1623 | })
|
---|
| 1624 | (type: [(am = f puream = 1)]
|
---|
| 1625 | {exp coef:0} = {
|
---|
| 1626 | 0.20700000000 1.0000000000
|
---|
| 1627 | })
|
---|
| 1628 | (type: [(am = f puream = 1)]
|
---|
| 1629 | {exp coef:0} = {
|
---|
| 1630 | 0.87100000000E-01 1.0000000000
|
---|
| 1631 | })
|
---|
| 1632 | (type: [(am = g puream = 1)]
|
---|
| 1633 | {exp coef:0} = {
|
---|
| 1634 | 1.0616000000 1.0000000000
|
---|
| 1635 | })
|
---|
| 1636 | (type: [(am = g puream = 1)]
|
---|
| 1637 | {exp coef:0} = {
|
---|
| 1638 | 0.57910000000 1.0000000000
|
---|
| 1639 | })
|
---|
| 1640 | (type: [(am = g puream = 1)]
|
---|
| 1641 | {exp coef:0} = {
|
---|
| 1642 | 0.31590000000 1.0000000000
|
---|
| 1643 | })
|
---|
| 1644 | (type: [(am = g puream = 1)]
|
---|
| 1645 | {exp coef:0} = {
|
---|
| 1646 | 0.14700000000 1.0000000000
|
---|
| 1647 | })
|
---|
| 1648 | (type: [(am = h puream = 1)]
|
---|
| 1649 | {exp coef:0} = {
|
---|
| 1650 | 1.0850000000 1.0000000000
|
---|
| 1651 | })
|
---|
| 1652 | (type: [(am = h puream = 1)]
|
---|
| 1653 | {exp coef:0} = {
|
---|
| 1654 | 0.52770000000 1.0000000000
|
---|
| 1655 | })
|
---|
| 1656 | (type: [(am = h puream = 1)]
|
---|
| 1657 | {exp coef:0} = {
|
---|
| 1658 | 0.28740000000 1.0000000000
|
---|
| 1659 | })
|
---|
| 1660 | (type: [(am = i puream = 1)]
|
---|
| 1661 | {exp coef:0} = {
|
---|
| 1662 | 0.88900000000 1.0000000000
|
---|
| 1663 | })
|
---|
| 1664 | (type: [(am = i puream = 1)]
|
---|
| 1665 | {exp coef:0} = {
|
---|
| 1666 | 0.51510000000 1.0000000000
|
---|
| 1667 | })
|
---|
| 1668 | ]
|
---|
| 1669 | %
|
---|
| 1670 | % BASIS SET: (21s,14p,5d,4f,3g,2h,1i) -> [8s,7p,5d,4f,3g,2h,1i]
|
---|
| 1671 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h,1i)
|
---|
| 1672 | sulfur: "aug-cc-pV6Z": [
|
---|
| 1673 | (type: [am = s am = s am = s]
|
---|
| 1674 | {exp coef:0 coef:1 coef:2} = {
|
---|
| 1675 | 6297000.0000 0.16000000000E-05 -0.40000000000E-06 0.10000000000E-06
|
---|
| 1676 | 943100.00000 0.12400000000E-04 -0.34000000000E-05 0.10000000000E-05
|
---|
| 1677 | 214900.00000 0.64900000000E-04 -0.17900000000E-04 0.52000000000E-05
|
---|
| 1678 | 61250.000000 0.26930000000E-03 -0.74400000000E-04 0.21600000000E-04
|
---|
| 1679 | 20450.000000 0.93470000000E-03 -0.25870000000E-03 0.75100000000E-04
|
---|
| 1680 | 7719.0000000 0.28083000000E-02 -0.77770000000E-03 0.22580000000E-03
|
---|
| 1681 | 3198.0000000 0.76740000000E-02 -0.21396000000E-02 0.62170000000E-03
|
---|
| 1682 | 1402.0000000 0.19889800000E-01 -0.55906000000E-02 0.16251000000E-02
|
---|
| 1683 | 637.20000000 0.48258900000E-01 -0.13907600000E-01 0.40535000000E-02
|
---|
| 1684 | 298.90000000 0.10575700000 -0.31768900000E-01 0.92902000000E-02
|
---|
| 1685 | 144.30000000 0.20022300000 -0.65930200000E-01 0.19456100000E-01
|
---|
| 1686 | 71.210000000 0.30072800000 -0.11683200000 0.35004000000E-01
|
---|
| 1687 | 35.730000000 0.29868800000 -0.15978700000 0.49489700000E-01
|
---|
| 1688 | 17.970000000 0.14634700000 -0.94532200000E-01 0.30344300000E-01
|
---|
| 1689 | 8.3410000000 0.20115900000E-01 0.18782800000 -0.66366100000E-01
|
---|
| 1690 | 4.1120000000 -0.24880000000E-03 0.50468300000 -0.22315400000
|
---|
| 1691 | })
|
---|
| 1692 | (type: [am = s]
|
---|
| 1693 | {exp coef:0} = {
|
---|
| 1694 | 2.0450000000 1.0000000000
|
---|
| 1695 | })
|
---|
| 1696 | (type: [am = s]
|
---|
| 1697 | {exp coef:0} = {
|
---|
| 1698 | 0.97700000000 1.0000000000
|
---|
| 1699 | })
|
---|
| 1700 | (type: [am = s]
|
---|
| 1701 | {exp coef:0} = {
|
---|
| 1702 | 0.47660000000 1.0000000000
|
---|
| 1703 | })
|
---|
| 1704 | (type: [am = s]
|
---|
| 1705 | {exp coef:0} = {
|
---|
| 1706 | 0.21850000000 1.0000000000
|
---|
| 1707 | })
|
---|
| 1708 | (type: [am = s]
|
---|
| 1709 | {exp coef:0} = {
|
---|
| 1710 | 0.97590000000E-01 1.0000000000
|
---|
| 1711 | })
|
---|
| 1712 | (type: [am = s]
|
---|
| 1713 | {exp coef:0} = {
|
---|
| 1714 | 0.38930000000E-01 1.0000000000
|
---|
| 1715 | })
|
---|
| 1716 | (type: [am = p am = p]
|
---|
| 1717 | {exp coef:0 coef:1} = {
|
---|
| 1718 | 5266.0000000 0.52300000000E-04 -0.13300000000E-04
|
---|
| 1719 | 1247.0000000 0.46350000000E-03 -0.11790000000E-03
|
---|
| 1720 | 405.00000000 0.26410000000E-02 -0.67590000000E-03
|
---|
| 1721 | 154.80000000 0.11316900000E-01 -0.28973000000E-02
|
---|
| 1722 | 65.380000000 0.38470400000E-01 -0.99980000000E-02
|
---|
| 1723 | 29.590000000 0.10433900000 -0.27541600000E-01
|
---|
| 1724 | 14.040000000 0.21568400000 -0.58794300000E-01
|
---|
| 1725 | 6.8240000000 0.32526000000 -0.90376100000E-01
|
---|
| 1726 | 3.3690000000 0.32617800000 -0.99989100000E-01
|
---|
| 1727 | })
|
---|
| 1728 | (type: [am = p]
|
---|
| 1729 | {exp coef:0} = {
|
---|
| 1730 | 1.6660000000 1.0000000000
|
---|
| 1731 | })
|
---|
| 1732 | (type: [am = p]
|
---|
| 1733 | {exp coef:0} = {
|
---|
| 1734 | 0.76810000000 1.0000000000
|
---|
| 1735 | })
|
---|
| 1736 | (type: [am = p]
|
---|
| 1737 | {exp coef:0} = {
|
---|
| 1738 | 0.35040000000 1.0000000000
|
---|
| 1739 | })
|
---|
| 1740 | (type: [am = p]
|
---|
| 1741 | {exp coef:0} = {
|
---|
| 1742 | 0.15560000000 1.0000000000
|
---|
| 1743 | })
|
---|
| 1744 | (type: [am = p]
|
---|
| 1745 | {exp coef:0} = {
|
---|
| 1746 | 0.66810000000E-01 1.0000000000
|
---|
| 1747 | })
|
---|
| 1748 | (type: [am = p]
|
---|
| 1749 | {exp coef:0} = {
|
---|
| 1750 | 0.26480000000E-01 1.0000000000
|
---|
| 1751 | })
|
---|
| 1752 | (type: [(am = d puream = 1)]
|
---|
| 1753 | {exp coef:0} = {
|
---|
| 1754 | 5.0755000000 1.0000000000
|
---|
| 1755 | })
|
---|
| 1756 | (type: [(am = d puream = 1)]
|
---|
| 1757 | {exp coef:0} = {
|
---|
| 1758 | 2.1833000000 1.0000000000
|
---|
| 1759 | })
|
---|
| 1760 | (type: [(am = d puream = 1)]
|
---|
| 1761 | {exp coef:0} = {
|
---|
| 1762 | 0.93920000000 1.0000000000
|
---|
| 1763 | })
|
---|
| 1764 | (type: [(am = d puream = 1)]
|
---|
| 1765 | {exp coef:0} = {
|
---|
| 1766 | 0.40400000000 1.0000000000
|
---|
| 1767 | })
|
---|
| 1768 | (type: [(am = d puream = 1)]
|
---|
| 1769 | {exp coef:0} = {
|
---|
| 1770 | 0.17380000000 1.0000000000
|
---|
| 1771 | })
|
---|
| 1772 | (type: [(am = d puream = 1)]
|
---|
| 1773 | {exp coef:0} = {
|
---|
| 1774 | 0.69860000000E-01 1.0000000000
|
---|
| 1775 | })
|
---|
| 1776 | (type: [(am = f puream = 1)]
|
---|
| 1777 | {exp coef:0} = {
|
---|
| 1778 | 1.3222000000 1.0000000000
|
---|
| 1779 | })
|
---|
| 1780 | (type: [(am = f puream = 1)]
|
---|
| 1781 | {exp coef:0} = {
|
---|
| 1782 | 0.73190000000 1.0000000000
|
---|
| 1783 | })
|
---|
| 1784 | (type: [(am = f puream = 1)]
|
---|
| 1785 | {exp coef:0} = {
|
---|
| 1786 | 0.40510000000 1.0000000000
|
---|
| 1787 | })
|
---|
| 1788 | (type: [(am = f puream = 1)]
|
---|
| 1789 | {exp coef:0} = {
|
---|
| 1790 | 0.22430000000 1.0000000000
|
---|
| 1791 | })
|
---|
| 1792 | (type: [(am = f puream = 1)]
|
---|
| 1793 | {exp coef:0} = {
|
---|
| 1794 | 0.11000000000 1.0000000000
|
---|
| 1795 | })
|
---|
| 1796 | (type: [(am = g puream = 1)]
|
---|
| 1797 | {exp coef:0} = {
|
---|
| 1798 | 1.3473000000 1.0000000000
|
---|
| 1799 | })
|
---|
| 1800 | (type: [(am = g puream = 1)]
|
---|
| 1801 | {exp coef:0} = {
|
---|
| 1802 | 0.70090000000 1.0000000000
|
---|
| 1803 | })
|
---|
| 1804 | (type: [(am = g puream = 1)]
|
---|
| 1805 | {exp coef:0} = {
|
---|
| 1806 | 0.36470000000 1.0000000000
|
---|
| 1807 | })
|
---|
| 1808 | (type: [(am = g puream = 1)]
|
---|
| 1809 | {exp coef:0} = {
|
---|
| 1810 | 0.17990000000 1.0000000000
|
---|
| 1811 | })
|
---|
| 1812 | (type: [(am = h puream = 1)]
|
---|
| 1813 | {exp coef:0} = {
|
---|
| 1814 | 1.2861000000 1.0000000000
|
---|
| 1815 | })
|
---|
| 1816 | (type: [(am = h puream = 1)]
|
---|
| 1817 | {exp coef:0} = {
|
---|
| 1818 | 0.61150000000 1.0000000000
|
---|
| 1819 | })
|
---|
| 1820 | (type: [(am = h puream = 1)]
|
---|
| 1821 | {exp coef:0} = {
|
---|
| 1822 | 0.34650000000 1.0000000000
|
---|
| 1823 | })
|
---|
| 1824 | (type: [(am = i puream = 1)]
|
---|
| 1825 | {exp coef:0} = {
|
---|
| 1826 | 1.0409000000 1.0000000000
|
---|
| 1827 | })
|
---|
| 1828 | (type: [(am = i puream = 1)]
|
---|
| 1829 | {exp coef:0} = {
|
---|
| 1830 | 0.62220000000 1.0000000000
|
---|
| 1831 | })
|
---|
| 1832 | ]
|
---|
| 1833 | %
|
---|
| 1834 | % BASIS SET: (21s,14p,5d,4f,3g,2h,1i) -> [8s,7p,5d,4f,3g,2h,1i]
|
---|
| 1835 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h,1i)
|
---|
| 1836 | chlorine: "aug-cc-pV6Z": [
|
---|
| 1837 | (type: [am = s am = s am = s]
|
---|
| 1838 | {exp coef:0 coef:1 coef:2} = {
|
---|
| 1839 | 7733000.0000 0.14347400000E-05 -0.40222700000E-06 0.12169600000E-06
|
---|
| 1840 | 1158000.0000 0.11148600000E-04 -0.31244800000E-05 0.94514100000E-06
|
---|
| 1841 | 263700.00000 0.58586500000E-04 -0.16429000000E-04 0.49711900000E-05
|
---|
| 1842 | 75010.000000 0.24451800000E-03 -0.68542100000E-04 0.20732300000E-04
|
---|
| 1843 | 24890.000000 0.85828700000E-03 -0.24100100000E-03 0.72940200000E-04
|
---|
| 1844 | 9318.0000000 0.26101900000E-02 -0.73353800000E-03 0.22189900000E-03
|
---|
| 1845 | 3840.0000000 0.71378400000E-02 -0.20183000000E-02 0.61135500000E-03
|
---|
| 1846 | 1684.0000000 0.18456400000E-01 -0.52610700000E-02 0.15933700000E-02
|
---|
| 1847 | 766.30000000 0.44894400000E-01 -0.13098600000E-01 0.39800100000E-02
|
---|
| 1848 | 359.50000000 0.99382200000E-01 -0.30179400000E-01 0.91937500000E-02
|
---|
| 1849 | 173.40000000 0.19078200000 -0.63188800000E-01 0.19439900000E-01
|
---|
| 1850 | 85.610000000 0.29356500000 -0.11385900000 0.35518700000E-01
|
---|
| 1851 | 42.930000000 0.30647700000 -0.16125100000 0.52067400000E-01
|
---|
| 1852 | 21.550000000 0.16220900000 -0.10923400000 0.36564400000E-01
|
---|
| 1853 | 10.050000000 0.24938300000E-01 0.16299900000 -0.59750000000E-01
|
---|
| 1854 | 4.9780000000 -0.51314200000E-03 0.50141300000 -0.23164100000
|
---|
| 1855 | })
|
---|
| 1856 | (type: [am = s]
|
---|
| 1857 | {exp coef:0} = {
|
---|
| 1858 | 2.4780000000 1.0000000000
|
---|
| 1859 | })
|
---|
| 1860 | (type: [am = s]
|
---|
| 1861 | {exp coef:0} = {
|
---|
| 1862 | 1.1800000000 1.0000000000
|
---|
| 1863 | })
|
---|
| 1864 | (type: [am = s]
|
---|
| 1865 | {exp coef:0} = {
|
---|
| 1866 | 0.58280000000 1.0000000000
|
---|
| 1867 | })
|
---|
| 1868 | (type: [am = s]
|
---|
| 1869 | {exp coef:0} = {
|
---|
| 1870 | 0.26680000000 1.0000000000
|
---|
| 1871 | })
|
---|
| 1872 | (type: [am = s]
|
---|
| 1873 | {exp coef:0} = {
|
---|
| 1874 | 0.11830000000 1.0000000000
|
---|
| 1875 | })
|
---|
| 1876 | (type: [am = s]
|
---|
| 1877 | {exp coef:0} = {
|
---|
| 1878 | 0.46250000000E-01 1.0000000000
|
---|
| 1879 | })
|
---|
| 1880 | (type: [am = p am = p]
|
---|
| 1881 | {exp coef:0 coef:1} = {
|
---|
| 1882 | 6091.0000000 0.51619400000E-04 -0.13925900000E-04
|
---|
| 1883 | 1442.0000000 0.45846800000E-03 -0.12332400000E-03
|
---|
| 1884 | 468.30000000 0.26150900000E-02 -0.70755100000E-03
|
---|
| 1885 | 179.00000000 0.11255400000E-01 -0.30493900000E-02
|
---|
| 1886 | 75.610000000 0.38457700000E-01 -0.10575200000E-01
|
---|
| 1887 | 34.220000000 0.10508100000 -0.29409400000E-01
|
---|
| 1888 | 16.230000000 0.21860300000 -0.63229600000E-01
|
---|
| 1889 | 7.8900000000 0.33087400000 -0.98187000000E-01
|
---|
| 1890 | 3.8980000000 0.32587900000 -0.10587000000
|
---|
| 1891 | })
|
---|
| 1892 | (type: [am = p]
|
---|
| 1893 | {exp coef:0} = {
|
---|
| 1894 | 1.9330000000 1.0000000000
|
---|
| 1895 | })
|
---|
| 1896 | (type: [am = p]
|
---|
| 1897 | {exp coef:0} = {
|
---|
| 1898 | 0.90570000000 1.0000000000
|
---|
| 1899 | })
|
---|
| 1900 | (type: [am = p]
|
---|
| 1901 | {exp coef:0} = {
|
---|
| 1902 | 0.41400000000 1.0000000000
|
---|
| 1903 | })
|
---|
| 1904 | (type: [am = p]
|
---|
| 1905 | {exp coef:0} = {
|
---|
| 1906 | 0.18360000000 1.0000000000
|
---|
| 1907 | })
|
---|
| 1908 | (type: [am = p]
|
---|
| 1909 | {exp coef:0} = {
|
---|
| 1910 | 0.78590000000E-01 1.0000000000
|
---|
| 1911 | })
|
---|
| 1912 | (type: [am = p]
|
---|
| 1913 | {exp coef:0} = {
|
---|
| 1914 | 0.31630000000E-01 1.0000000000
|
---|
| 1915 | })
|
---|
| 1916 | (type: [(am = d puream = 1)]
|
---|
| 1917 | {exp coef:0} = {
|
---|
| 1918 | 6.2428000000 1.0000000000
|
---|
| 1919 | })
|
---|
| 1920 | (type: [(am = d puream = 1)]
|
---|
| 1921 | {exp coef:0} = {
|
---|
| 1922 | 2.6906000000 1.0000000000
|
---|
| 1923 | })
|
---|
| 1924 | (type: [(am = d puream = 1)]
|
---|
| 1925 | {exp coef:0} = {
|
---|
| 1926 | 1.1596000000 1.0000000000
|
---|
| 1927 | })
|
---|
| 1928 | (type: [(am = d puream = 1)]
|
---|
| 1929 | {exp coef:0} = {
|
---|
| 1930 | 0.49980000000 1.0000000000
|
---|
| 1931 | })
|
---|
| 1932 | (type: [(am = d puream = 1)]
|
---|
| 1933 | {exp coef:0} = {
|
---|
| 1934 | 0.21540000000 1.0000000000
|
---|
| 1935 | })
|
---|
| 1936 | (type: [(am = d puream = 1)]
|
---|
| 1937 | {exp coef:0} = {
|
---|
| 1938 | 0.88850000000E-01 1.0000000000
|
---|
| 1939 | })
|
---|
| 1940 | (type: [(am = f puream = 1)]
|
---|
| 1941 | {exp coef:0} = {
|
---|
| 1942 | 2.5327000000 1.0000000000
|
---|
| 1943 | })
|
---|
| 1944 | (type: [(am = f puream = 1)]
|
---|
| 1945 | {exp coef:0} = {
|
---|
| 1946 | 1.2406000000 1.0000000000
|
---|
| 1947 | })
|
---|
| 1948 | (type: [(am = f puream = 1)]
|
---|
| 1949 | {exp coef:0} = {
|
---|
| 1950 | 0.60770000000 1.0000000000
|
---|
| 1951 | })
|
---|
| 1952 | (type: [(am = f puream = 1)]
|
---|
| 1953 | {exp coef:0} = {
|
---|
| 1954 | 0.29770000000 1.0000000000
|
---|
| 1955 | })
|
---|
| 1956 | (type: [(am = f puream = 1)]
|
---|
| 1957 | {exp coef:0} = {
|
---|
| 1958 | 0.14650000000 1.0000000000
|
---|
| 1959 | })
|
---|
| 1960 | (type: [(am = g puream = 1)]
|
---|
| 1961 | {exp coef:0} = {
|
---|
| 1962 | 1.5388000000 1.0000000000
|
---|
| 1963 | })
|
---|
| 1964 | (type: [(am = g puream = 1)]
|
---|
| 1965 | {exp coef:0} = {
|
---|
| 1966 | 0.80500000000 1.0000000000
|
---|
| 1967 | })
|
---|
| 1968 | (type: [(am = g puream = 1)]
|
---|
| 1969 | {exp coef:0} = {
|
---|
| 1970 | 0.42120000000 1.0000000000
|
---|
| 1971 | })
|
---|
| 1972 | (type: [(am = g puream = 1)]
|
---|
| 1973 | {exp coef:0} = {
|
---|
| 1974 | 0.21770000000 1.0000000000
|
---|
| 1975 | })
|
---|
| 1976 | (type: [(am = h puream = 1)]
|
---|
| 1977 | {exp coef:0} = {
|
---|
| 1978 | 1.5613000000 1.0000000000
|
---|
| 1979 | })
|
---|
| 1980 | (type: [(am = h puream = 1)]
|
---|
| 1981 | {exp coef:0} = {
|
---|
| 1982 | 0.73970000000 1.0000000000
|
---|
| 1983 | })
|
---|
| 1984 | (type: [(am = h puream = 1)]
|
---|
| 1985 | {exp coef:0} = {
|
---|
| 1986 | 0.43650000000 1.0000000000
|
---|
| 1987 | })
|
---|
| 1988 | (type: [(am = i puream = 1)]
|
---|
| 1989 | {exp coef:0} = {
|
---|
| 1990 | 1.2572000000 1.0000000000
|
---|
| 1991 | })
|
---|
| 1992 | (type: [(am = i puream = 1)]
|
---|
| 1993 | {exp coef:0} = {
|
---|
| 1994 | 0.80740000000 1.0000000000
|
---|
| 1995 | })
|
---|
| 1996 | ]
|
---|
| 1997 | %
|
---|
| 1998 | % BASIS SET: (21s,14p,5d,4f,3g,2h,1i) -> [8s,7p,5d,4f,3g,2h,1i]
|
---|
| 1999 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h,1i)
|
---|
| 2000 | argon: "aug-cc-pV6Z": [
|
---|
| 2001 | (type: [am = s am = s am = s]
|
---|
| 2002 | {exp coef:0 coef:1 coef:2} = {
|
---|
| 2003 | 9149000.0000 0.13000000000E-05 -0.40000000000E-06 0.10000000000E-06
|
---|
| 2004 | 1370000.0000 0.10400000000E-04 -0.30000000000E-05 0.90000000000E-06
|
---|
| 2005 | 311900.00000 0.54900000000E-04 -0.15600000000E-04 0.49000000000E-05
|
---|
| 2006 | 88650.000000 0.22960000000E-03 -0.65200000000E-04 0.20400000000E-04
|
---|
| 2007 | 29330.000000 0.81030000000E-03 -0.23040000000E-03 0.72000000000E-04
|
---|
| 2008 | 10930.000000 0.24853000000E-02 -0.70750000000E-03 0.22100000000E-03
|
---|
| 2009 | 4480.0000000 0.68369000000E-02 -0.19573000000E-02 0.61250000000E-03
|
---|
| 2010 | 1962.0000000 0.17619900000E-01 -0.50856000000E-02 0.15908000000E-02
|
---|
| 2011 | 894.10000000 0.42875200000E-01 -0.12652800000E-01 0.39722000000E-02
|
---|
| 2012 | 419.60000000 0.95485300000E-01 -0.29306500000E-01 0.92204000000E-02
|
---|
| 2013 | 202.30000000 0.18506400000 -0.61771200000E-01 0.19636700000E-01
|
---|
| 2014 | 99.840000000 0.28904200000 -0.11254100000 0.36257000000E-01
|
---|
| 2015 | 50.070000000 0.31016600000 -0.16229300000 0.54172500000E-01
|
---|
| 2016 | 25.140000000 0.17218300000 -0.11841200000 0.40999600000E-01
|
---|
| 2017 | 11.810000000 0.28522700000E-01 0.14614800000 -0.55174400000E-01
|
---|
| 2018 | 5.8820000000 -0.57570000000E-03 0.49775200000 -0.23875400000
|
---|
| 2019 | })
|
---|
| 2020 | (type: [am = s]
|
---|
| 2021 | {exp coef:0} = {
|
---|
| 2022 | 2.9390000000 1.0000000000
|
---|
| 2023 | })
|
---|
| 2024 | (type: [am = s]
|
---|
| 2025 | {exp coef:0} = {
|
---|
| 2026 | 1.4050000000 1.0000000000
|
---|
| 2027 | })
|
---|
| 2028 | (type: [am = s]
|
---|
| 2029 | {exp coef:0} = {
|
---|
| 2030 | 0.69630000000 1.0000000000
|
---|
| 2031 | })
|
---|
| 2032 | (type: [am = s]
|
---|
| 2033 | {exp coef:0} = {
|
---|
| 2034 | 0.31880000000 1.0000000000
|
---|
| 2035 | })
|
---|
| 2036 | (type: [am = s]
|
---|
| 2037 | {exp coef:0} = {
|
---|
| 2038 | 0.14100000000 1.0000000000
|
---|
| 2039 | })
|
---|
| 2040 | (type: [am = s]
|
---|
| 2041 | {exp coef:0} = {
|
---|
| 2042 | 0.53570000000E-01 1.0000000000
|
---|
| 2043 | })
|
---|
| 2044 | (type: [am = p am = p]
|
---|
| 2045 | {exp coef:0 coef:1} = {
|
---|
| 2046 | 7050.0000000 0.50200000000E-04 -0.14000000000E-04
|
---|
| 2047 | 1669.0000000 0.44540000000E-03 -0.12430000000E-03
|
---|
| 2048 | 542.10000000 0.25480000000E-02 -0.71470000000E-03
|
---|
| 2049 | 207.10000000 0.11015500000E-01 -0.30968000000E-02
|
---|
| 2050 | 87.520000000 0.37849000000E-01 -0.10796100000E-01
|
---|
| 2051 | 39.610000000 0.10435500000 -0.30353600000E-01
|
---|
| 2052 | 18.780000000 0.21933500000 -0.65978500000E-01
|
---|
| 2053 | 9.1300000000 0.33461500000 -0.10387700000
|
---|
| 2054 | 4.5160000000 0.32677100000 -0.10995600000
|
---|
| 2055 | })
|
---|
| 2056 | (type: [am = p]
|
---|
| 2057 | {exp coef:0} = {
|
---|
| 2058 | 2.2450000000 1.0000000000
|
---|
| 2059 | })
|
---|
| 2060 | (type: [am = p]
|
---|
| 2061 | {exp coef:0} = {
|
---|
| 2062 | 1.0650000000 1.0000000000
|
---|
| 2063 | })
|
---|
| 2064 | (type: [am = p]
|
---|
| 2065 | {exp coef:0} = {
|
---|
| 2066 | 0.48850000000 1.0000000000
|
---|
| 2067 | })
|
---|
| 2068 | (type: [am = p]
|
---|
| 2069 | {exp coef:0} = {
|
---|
| 2070 | 0.21660000000 1.0000000000
|
---|
| 2071 | })
|
---|
| 2072 | (type: [am = p]
|
---|
| 2073 | {exp coef:0} = {
|
---|
| 2074 | 0.92550000000E-01 1.0000000000
|
---|
| 2075 | })
|
---|
| 2076 | (type: [am = p]
|
---|
| 2077 | {exp coef:0} = {
|
---|
| 2078 | 0.36780000000E-01 1.0000000000
|
---|
| 2079 | })
|
---|
| 2080 | (type: [(am = d puream = 1)]
|
---|
| 2081 | {exp coef:0} = {
|
---|
| 2082 | 7.6327000000 1.0000000000
|
---|
| 2083 | })
|
---|
| 2084 | (type: [(am = d puream = 1)]
|
---|
| 2085 | {exp coef:0} = {
|
---|
| 2086 | 3.2876000000 1.0000000000
|
---|
| 2087 | })
|
---|
| 2088 | (type: [(am = d puream = 1)]
|
---|
| 2089 | {exp coef:0} = {
|
---|
| 2090 | 1.4160000000 1.0000000000
|
---|
| 2091 | })
|
---|
| 2092 | (type: [(am = d puream = 1)]
|
---|
| 2093 | {exp coef:0} = {
|
---|
| 2094 | 0.60990000000 1.0000000000
|
---|
| 2095 | })
|
---|
| 2096 | (type: [(am = d puream = 1)]
|
---|
| 2097 | {exp coef:0} = {
|
---|
| 2098 | 0.26270000000 1.0000000000
|
---|
| 2099 | })
|
---|
| 2100 | (type: [(am = d puream = 1)]
|
---|
| 2101 | {exp coef:0} = {
|
---|
| 2102 | 0.10780000000 1.0000000000
|
---|
| 2103 | })
|
---|
| 2104 | (type: [(am = f puream = 1)]
|
---|
| 2105 | {exp coef:0} = {
|
---|
| 2106 | 3.0582000000 1.0000000000
|
---|
| 2107 | })
|
---|
| 2108 | (type: [(am = f puream = 1)]
|
---|
| 2109 | {exp coef:0} = {
|
---|
| 2110 | 1.5292000000 1.0000000000
|
---|
| 2111 | })
|
---|
| 2112 | (type: [(am = f puream = 1)]
|
---|
| 2113 | {exp coef:0} = {
|
---|
| 2114 | 0.76470000000 1.0000000000
|
---|
| 2115 | })
|
---|
| 2116 | (type: [(am = f puream = 1)]
|
---|
| 2117 | {exp coef:0} = {
|
---|
| 2118 | 0.38240000000 1.0000000000
|
---|
| 2119 | })
|
---|
| 2120 | (type: [(am = f puream = 1)]
|
---|
| 2121 | {exp coef:0} = {
|
---|
| 2122 | 0.18300000000 1.0000000000
|
---|
| 2123 | })
|
---|
| 2124 | (type: [(am = g puream = 1)]
|
---|
| 2125 | {exp coef:0} = {
|
---|
| 2126 | 1.8450000000 1.0000000000
|
---|
| 2127 | })
|
---|
| 2128 | (type: [(am = g puream = 1)]
|
---|
| 2129 | {exp coef:0} = {
|
---|
| 2130 | 0.96570000000 1.0000000000
|
---|
| 2131 | })
|
---|
| 2132 | (type: [(am = g puream = 1)]
|
---|
| 2133 | {exp coef:0} = {
|
---|
| 2134 | 0.50550000000 1.0000000000
|
---|
| 2135 | })
|
---|
| 2136 | (type: [(am = g puream = 1)]
|
---|
| 2137 | {exp coef:0} = {
|
---|
| 2138 | 0.25550000000 1.0000000000
|
---|
| 2139 | })
|
---|
| 2140 | (type: [(am = h puream = 1)]
|
---|
| 2141 | {exp coef:0} = {
|
---|
| 2142 | 1.8743000000 1.0000000000
|
---|
| 2143 | })
|
---|
| 2144 | (type: [(am = h puream = 1)]
|
---|
| 2145 | {exp coef:0} = {
|
---|
| 2146 | 0.88710000000 1.0000000000
|
---|
| 2147 | })
|
---|
| 2148 | (type: [(am = h puream = 1)]
|
---|
| 2149 | {exp coef:0} = {
|
---|
| 2150 | 0.52650000000 1.0000000000
|
---|
| 2151 | })
|
---|
| 2152 | (type: [(am = i puream = 1)]
|
---|
| 2153 | {exp coef:0} = {
|
---|
| 2154 | 1.5066000000 1.0000000000
|
---|
| 2155 | })
|
---|
| 2156 | (type: [(am = i puream = 1)]
|
---|
| 2157 | {exp coef:0} = {
|
---|
| 2158 | 0.99260000000 1.0000000000
|
---|
| 2159 | })
|
---|
| 2160 | ]
|
---|
| 2161 | )
|
---|