source: ThirdParty/mpqc_open/lib/basis/aug-cc-pv6z.kv

Candidate_v1.6.1
Last change on this file was 860145, checked in by Frederik Heber <heber@…>, 8 years ago

Merge commit '0b990dfaa8c6007a996d030163a25f7f5fc8a7e7' as 'ThirdParty/mpqc_open'

  • Property mode set to 100644
File size: 60.2 KB
Line 
1%BASIS "aug-cc-pV6Z" CARTESIAN
2basis:(
3%Elements References
4%-------- ----------
5%H: K.A. Peterson, D.E. Woon and T. H. Dunning, Jr., (to be published).
6%B - Ne: A. K. Wilson, T. v. Mourik and T. H. Dunning, Jr., J. Mol. Struct.
7% (THEOCHEM) 388, 339 (1997).
8%Elements References
9%-------- ---------
10%H : K.A. Peterson, D.E. Woon (unpublished)
11%B - O: A.K. Wilson, T. van Mourik and T.H. Dunning, Jr. J. Mol. Struct.
12% (THEOCHEM) 388, 339 (1997).
13%Cl:
14%
15%
16% BASIS SET: (10s,5p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
17% AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
18 hydrogen: "aug-cc-pV6Z": [
19 (type: [am = s]
20 {exp coef:0} = {
21 1776.7755600 0.44000000000E-04
22 254.01771200 0.37200000000E-03
23 54.698039000 0.20940000000E-02
24 15.018344000 0.88630000000E-02
25 4.9150780000 0.30540000000E-01
26 })
27 (type: [am = s]
28 {exp coef:0} = {
29 1.7949240000 1.0000000000
30 })
31 (type: [am = s]
32 {exp coef:0} = {
33 0.71071600000 1.0000000000
34 })
35 (type: [am = s]
36 {exp coef:0} = {
37 0.30480200000 1.0000000000
38 })
39 (type: [am = s]
40 {exp coef:0} = {
41 0.13804600000 1.0000000000
42 })
43 (type: [am = s]
44 {exp coef:0} = {
45 0.62157000000E-01 1.0000000000
46 })
47 (type: [am = s]
48 {exp coef:0} = {
49 0.18900000000E-01 1.0000000000
50 })
51 (type: [am = p]
52 {exp coef:0} = {
53 8.6490000000 1.0000000000
54 })
55 (type: [am = p]
56 {exp coef:0} = {
57 3.4300000000 1.0000000000
58 })
59 (type: [am = p]
60 {exp coef:0} = {
61 1.3600000000 1.0000000000
62 })
63 (type: [am = p]
64 {exp coef:0} = {
65 0.53900000000 1.0000000000
66 })
67 (type: [am = p]
68 {exp coef:0} = {
69 0.21400000000 1.0000000000
70 })
71 (type: [am = p]
72 {exp coef:0} = {
73 0.67000000000E-01 1.0000000000
74 })
75 (type: [(am = d puream = 1)]
76 {exp coef:0} = {
77 4.4530000000 1.0000000000
78 })
79 (type: [(am = d puream = 1)]
80 {exp coef:0} = {
81 1.9580000000 1.0000000000
82 })
83 (type: [(am = d puream = 1)]
84 {exp coef:0} = {
85 0.86100000000 1.0000000000
86 })
87 (type: [(am = d puream = 1)]
88 {exp coef:0} = {
89 0.37800000000 1.0000000000
90 })
91 (type: [(am = d puream = 1)]
92 {exp coef:0} = {
93 0.12600000000 1.0000000000
94 })
95 (type: [(am = f puream = 1)]
96 {exp coef:0} = {
97 4.1000000000 1.0000000000
98 })
99 (type: [(am = f puream = 1)]
100 {exp coef:0} = {
101 1.7800000000 1.0000000000
102 })
103 (type: [(am = f puream = 1)]
104 {exp coef:0} = {
105 0.77300000000 1.0000000000
106 })
107 (type: [(am = f puream = 1)]
108 {exp coef:0} = {
109 0.24500000000 1.0000000000
110 })
111 (type: [(am = g puream = 1)]
112 {exp coef:0} = {
113 3.1990000000 1.0000000000
114 })
115 (type: [(am = g puream = 1)]
116 {exp coef:0} = {
117 1.3260000000 1.0000000000
118 })
119 (type: [(am = g puream = 1)]
120 {exp coef:0} = {
121 0.40700000000 1.0000000000
122 })
123 (type: [(am = h puream = 1)]
124 {exp coef:0} = {
125 2.6530000000 1.0000000000
126 })
127 (type: [(am = h puream = 1)]
128 {exp coef:0} = {
129 0.68200000000 1.0000000000
130 })
131 ]
132%
133% BASIS SET: (10s,5p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
134% AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
135 helium: "aug-cc-pV6Z": [
136 (type: [am = s]
137 {exp coef:0} = {
138 4785.0000000 0.60000000000E-06
139 717.00000000 0.47000000000E-05
140 163.20000000 0.24400000000E-04
141 46.260000000 0.10120000000E-03
142 15.100000000 0.34860000000E-03
143 })
144 (type: [am = s]
145 {exp coef:0} = {
146 5.4370000000 1.0000000000
147 })
148 (type: [am = s]
149 {exp coef:0} = {
150 2.0880000000 1.0000000000
151 })
152 (type: [am = s]
153 {exp coef:0} = {
154 0.82970000000 1.0000000000
155 })
156 (type: [am = s]
157 {exp coef:0} = {
158 0.33660000000 1.0000000000
159 })
160 (type: [am = s]
161 {exp coef:0} = {
162 0.13690000000 1.0000000000
163 })
164 (type: [am = s]
165 {exp coef:0} = {
166 0.44730000000E-01 1.0000000000
167 })
168 (type: [am = p]
169 {exp coef:0} = {
170 0.38700000000 1.0000000000
171 })
172 (type: [am = p]
173 {exp coef:0} = {
174 0.98400000000 1.0000000000
175 })
176 (type: [am = p]
177 {exp coef:0} = {
178 2.4980000000 1.0000000000
179 })
180 (type: [am = p]
181 {exp coef:0} = {
182 6.3420000000 1.0000000000
183 })
184 (type: [am = p]
185 {exp coef:0} = {
186 16.104000000 1.0000000000
187 })
188 (type: [am = p]
189 {exp coef:0} = {
190 0.12800000000 1.0000000000
191 })
192 (type: [(am = d puream = 1)]
193 {exp coef:0} = {
194 0.74700000000 1.0000000000
195 })
196 (type: [(am = d puream = 1)]
197 {exp coef:0} = {
198 1.9100000000 1.0000000000
199 })
200 (type: [(am = d puream = 1)]
201 {exp coef:0} = {
202 4.8860000000 1.0000000000
203 })
204 (type: [(am = d puream = 1)]
205 {exp coef:0} = {
206 12.498000000 1.0000000000
207 })
208 (type: [(am = d puream = 1)]
209 {exp coef:0} = {
210 0.24100000000 1.0000000000
211 })
212 (type: [(am = f puream = 1)]
213 {exp coef:0} = {
214 1.2920000000 1.0000000000
215 })
216 (type: [(am = f puream = 1)]
217 {exp coef:0} = {
218 3.4620000000 1.0000000000
219 })
220 (type: [(am = f puream = 1)]
221 {exp coef:0} = {
222 9.2760000000 1.0000000000
223 })
224 (type: [(am = f puream = 1)]
225 {exp coef:0} = {
226 0.40700000000 1.0000000000
227 })
228 (type: [(am = g puream = 1)]
229 {exp coef:0} = {
230 2.2360000000 1.0000000000
231 })
232 (type: [(am = g puream = 1)]
233 {exp coef:0} = {
234 6.5860000000 1.0000000000
235 })
236 (type: [(am = g puream = 1)]
237 {exp coef:0} = {
238 0.68600000000 1.0000000000
239 })
240 (type: [(am = h puream = 1)]
241 {exp coef:0} = {
242 4.1590000000 1.0000000000
243 })
244 (type: [(am = h puream = 1)]
245 {exp coef:0} = {
246 1.0160000000 1.0000000000
247 })
248 ]
249%
250% BASIS SET: (16s,10p,5d,4f,3g,2h,1i) -> [7s,6p,5d,4f,3g,2h,1i]
251% AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h,1i)
252 boron: "aug-cc-pV6Z": [
253 (type: [am = s am = s]
254 {exp coef:0 coef:1} = {
255 210400.00000 0.58300000000E-05 -0.11800000000E-05
256 31500.000000 0.45320000000E-04 -0.91500000000E-05
257 7169.0000000 0.23838000000E-03 -0.48190000000E-04
258 2030.0000000 0.10057000000E-02 -0.20306000000E-03
259 662.50000000 0.36449600000E-02 -0.73917000000E-03
260 239.20000000 0.11736280000E-01 -0.23860300000E-02
261 93.260000000 0.33807020000E-01 -0.69865400000E-02
262 38.640000000 0.85565930000E-01 -0.18115940000E-01
263 16.780000000 0.18260322000 -0.41231290000E-01
264 7.5410000000 0.30583760000 -0.77813530000E-01
265 3.4820000000 0.34080347000 -0.12123181000
266 })
267 (type: [am = s]
268 {exp coef:0} = {
269 1.6180000000 1.0000000000
270 })
271 (type: [am = s]
272 {exp coef:0} = {
273 0.62700000000 1.0000000000
274 })
275 (type: [am = s]
276 {exp coef:0} = {
277 0.29340000000 1.0000000000
278 })
279 (type: [am = s]
280 {exp coef:0} = {
281 0.13100000000 1.0000000000
282 })
283 (type: [am = s]
284 {exp coef:0} = {
285 0.58150000000E-01 1.0000000000
286 })
287 (type: [am = s]
288 {exp coef:0} = {
289 0.23000000000E-01 1.0000000000
290 })
291 (type: [am = p]
292 {exp coef:0} = {
293 192.50000000 0.13490000000E-03
294 45.640000000 0.11474100000E-02
295 14.750000000 0.58479300000E-02
296 5.5030000000 0.21170910000E-01
297 2.2220000000 0.62668720000E-01
298 })
299 (type: [am = p]
300 {exp coef:0} = {
301 0.95900000000 1.0000000000
302 })
303 (type: [am = p]
304 {exp coef:0} = {
305 0.43140000000 1.0000000000
306 })
307 (type: [am = p]
308 {exp coef:0} = {
309 0.19690000000 1.0000000000
310 })
311 (type: [am = p]
312 {exp coef:0} = {
313 0.90330000000E-01 1.0000000000
314 })
315 (type: [am = p]
316 {exp coef:0} = {
317 0.40660000000E-01 1.0000000000
318 })
319 (type: [am = p]
320 {exp coef:0} = {
321 0.13650000000E-01 1.0000000000
322 })
323 (type: [(am = d puream = 1)]
324 {exp coef:0} = {
325 2.8860000000 1.0000000000
326 })
327 (type: [(am = d puream = 1)]
328 {exp coef:0} = {
329 1.2670000000 1.0000000000
330 })
331 (type: [(am = d puream = 1)]
332 {exp coef:0} = {
333 0.55600000000 1.0000000000
334 })
335 (type: [(am = d puream = 1)]
336 {exp coef:0} = {
337 0.24400000000 1.0000000000
338 })
339 (type: [(am = d puream = 1)]
340 {exp coef:0} = {
341 0.10700000000 1.0000000000
342 })
343 (type: [(am = d puream = 1)]
344 {exp coef:0} = {
345 0.39200000000E-01 1.0000000000
346 })
347 (type: [(am = f puream = 1)]
348 {exp coef:0} = {
349 1.6510000000 1.0000000000
350 })
351 (type: [(am = f puream = 1)]
352 {exp coef:0} = {
353 0.80020000000 1.0000000000
354 })
355 (type: [(am = f puream = 1)]
356 {exp coef:0} = {
357 0.38780000000 1.0000000000
358 })
359 (type: [(am = f puream = 1)]
360 {exp coef:0} = {
361 0.18800000000 1.0000000000
362 })
363 (type: [(am = f puream = 1)]
364 {exp coef:0} = {
365 0.73300000000E-01 1.0000000000
366 })
367 (type: [(am = g puream = 1)]
368 {exp coef:0} = {
369 1.6469000000 1.0000000000
370 })
371 (type: [(am = g puream = 1)]
372 {exp coef:0} = {
373 0.78890000000 1.0000000000
374 })
375 (type: [(am = g puream = 1)]
376 {exp coef:0} = {
377 0.37790000000 1.0000000000
378 })
379 (type: [(am = g puream = 1)]
380 {exp coef:0} = {
381 0.16200000000 1.0000000000
382 })
383 (type: [(am = h puream = 1)]
384 {exp coef:0} = {
385 1.3120000000 1.0000000000
386 })
387 (type: [(am = h puream = 1)]
388 {exp coef:0} = {
389 0.58060000000 1.0000000000
390 })
391 (type: [(am = h puream = 1)]
392 {exp coef:0} = {
393 0.28800000000 1.0000000000
394 })
395 (type: [(am = i puream = 1)]
396 {exp coef:0} = {
397 0.98470000000 1.0000000000
398 })
399 (type: [(am = i puream = 1)]
400 {exp coef:0} = {
401 0.50000000000 1.0000000000
402 })
403 ]
404%
405% BASIS SET: (16s,10p,5d,4f,3g,2h,1i) -> [7s,6p,5d,4f,3g,2h,1i]
406% AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h,1i)
407 carbon: "aug-cc-pV6Z": [
408 (type: [am = s am = s]
409 {exp coef:0 coef:1} = {
410 312100.00000 0.56700000000E-05 -0.12100000000E-05
411 46740.000000 0.44100000000E-04 -0.93900000000E-05
412 10640.000000 0.23190000000E-03 -0.49470000000E-04
413 3013.0000000 0.97897000000E-03 -0.20857000000E-03
414 982.80000000 0.35516300000E-02 -0.76015000000E-03
415 354.80000000 0.11440610000E-01 -0.24546900000E-02
416 138.40000000 0.32998550000E-01 -0.72015300000E-02
417 57.350000000 0.84053470000E-01 -0.18807420000E-01
418 24.920000000 0.18067613000 -0.43250010000E-01
419 11.230000000 0.30491140000 -0.82597330000E-01
420 5.2010000000 0.34141570000 -0.12857592000
421 })
422 (type: [am = s]
423 {exp coef:0} = {
424 2.4260000000 1.0000000000
425 })
426 (type: [am = s]
427 {exp coef:0} = {
428 0.96730000000 1.0000000000
429 })
430 (type: [am = s]
431 {exp coef:0} = {
432 0.44560000000 1.0000000000
433 })
434 (type: [am = s]
435 {exp coef:0} = {
436 0.19710000000 1.0000000000
437 })
438 (type: [am = s]
439 {exp coef:0} = {
440 0.86350000000E-01 1.0000000000
441 })
442 (type: [am = s]
443 {exp coef:0} = {
444 0.35400000000E-01 1.0000000000
445 })
446 (type: [am = p]
447 {exp coef:0} = {
448 295.20000000 0.14249000000E-03
449 69.980000000 0.12201000000E-02
450 22.640000000 0.63369600000E-02
451 8.4850000000 0.23518750000E-01
452 3.4590000000 0.69904470000E-01
453 })
454 (type: [am = p]
455 {exp coef:0} = {
456 1.5040000000 1.0000000000
457 })
458 (type: [am = p]
459 {exp coef:0} = {
460 0.67830000000 1.0000000000
461 })
462 (type: [am = p]
463 {exp coef:0} = {
464 0.30870000000 1.0000000000
465 })
466 (type: [am = p]
467 {exp coef:0} = {
468 0.14000000000 1.0000000000
469 })
470 (type: [am = p]
471 {exp coef:0} = {
472 0.61780000000E-01 1.0000000000
473 })
474 (type: [am = p]
475 {exp coef:0} = {
476 0.23760000000E-01 1.0000000000
477 })
478 (type: [(am = d puream = 1)]
479 {exp coef:0} = {
480 4.5420000000 1.0000000000
481 })
482 (type: [(am = d puream = 1)]
483 {exp coef:0} = {
484 1.9790000000 1.0000000000
485 })
486 (type: [(am = d puream = 1)]
487 {exp coef:0} = {
488 0.86210000000 1.0000000000
489 })
490 (type: [(am = d puream = 1)]
491 {exp coef:0} = {
492 0.37560000000 1.0000000000
493 })
494 (type: [(am = d puream = 1)]
495 {exp coef:0} = {
496 0.16360000000 1.0000000000
497 })
498 (type: [(am = d puream = 1)]
499 {exp coef:0} = {
500 0.63600000000E-01 1.0000000000
501 })
502 (type: [(am = f puream = 1)]
503 {exp coef:0} = {
504 2.6310000000 1.0000000000
505 })
506 (type: [(am = f puream = 1)]
507 {exp coef:0} = {
508 1.2550000000 1.0000000000
509 })
510 (type: [(am = f puream = 1)]
511 {exp coef:0} = {
512 0.59880000000 1.0000000000
513 })
514 (type: [(am = f puream = 1)]
515 {exp coef:0} = {
516 0.28570000000 1.0000000000
517 })
518 (type: [(am = f puream = 1)]
519 {exp coef:0} = {
520 0.11800000000 1.0000000000
521 })
522 (type: [(am = g puream = 1)]
523 {exp coef:0} = {
524 2.6520000000 1.0000000000
525 })
526 (type: [(am = g puream = 1)]
527 {exp coef:0} = {
528 1.2040000000 1.0000000000
529 })
530 (type: [(am = g puream = 1)]
531 {exp coef:0} = {
532 0.54700000000 1.0000000000
533 })
534 (type: [(am = g puream = 1)]
535 {exp coef:0} = {
536 0.25400000000 1.0000000000
537 })
538 (type: [(am = h puream = 1)]
539 {exp coef:0} = {
540 2.0300000000 1.0000000000
541 })
542 (type: [(am = h puream = 1)]
543 {exp coef:0} = {
544 0.85110000000 1.0000000000
545 })
546 (type: [(am = h puream = 1)]
547 {exp coef:0} = {
548 0.45100000000 1.0000000000
549 })
550 (type: [(am = i puream = 1)]
551 {exp coef:0} = {
552 1.4910000000 1.0000000000
553 })
554 (type: [(am = i puream = 1)]
555 {exp coef:0} = {
556 0.77600000000 1.0000000000
557 })
558 ]
559%
560% BASIS SET: (16s,10p,5d,4f,3g,2h,1i) -> [7s,6p,5d,4f,3g,2h,1i]
561% AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h,1i)
562 nitrogen: "aug-cc-pV6Z": [
563 (type: [am = s am = s]
564 {exp coef:0 coef:1} = {
565 432300.00000 0.55900000000E-05 -0.12300000000E-05
566 64700.000000 0.43510000000E-04 -0.95800000000E-05
567 14720.000000 0.22893000000E-03 -0.50510000000E-04
568 4170.0000000 0.96502000000E-03 -0.21264000000E-03
569 1361.0000000 0.35021900000E-02 -0.77534000000E-03
570 491.20000000 0.11292120000E-01 -0.25062400000E-02
571 191.60000000 0.32612830000E-01 -0.73652900000E-02
572 79.410000000 0.83297270000E-01 -0.19301670000E-01
573 34.530000000 0.17998566000 -0.44717380000E-01
574 15.580000000 0.30500351000 -0.86066470000E-01
575 7.2320000000 0.34115932000 -0.13329627000
576 })
577 (type: [am = s]
578 {exp coef:0} = {
579 3.3820000000 1.0000000000
580 })
581 (type: [am = s]
582 {exp coef:0} = {
583 1.3690000000 1.0000000000
584 })
585 (type: [am = s]
586 {exp coef:0} = {
587 0.62480000000 1.0000000000
588 })
589 (type: [am = s]
590 {exp coef:0} = {
591 0.27470000000 1.0000000000
592 })
593 (type: [am = s]
594 {exp coef:0} = {
595 0.11920000000 1.0000000000
596 })
597 (type: [am = s]
598 {exp coef:0} = {
599 0.47140000000E-01 1.0000000000
600 })
601 (type: [am = p]
602 {exp coef:0} = {
603 415.90000000 0.14841000000E-03
604 98.610000000 0.12763400000E-02
605 31.920000000 0.67024200000E-02
606 12.000000000 0.25261700000E-01
607 4.9190000000 0.75189430000E-01
608 })
609 (type: [am = p]
610 {exp coef:0} = {
611 2.1480000000 1.0000000000
612 })
613 (type: [am = p]
614 {exp coef:0} = {
615 0.96960000000 1.0000000000
616 })
617 (type: [am = p]
618 {exp coef:0} = {
619 0.43990000000 1.0000000000
620 })
621 (type: [am = p]
622 {exp coef:0} = {
623 0.19780000000 1.0000000000
624 })
625 (type: [am = p]
626 {exp coef:0} = {
627 0.86030000000E-01 1.0000000000
628 })
629 (type: [am = p]
630 {exp coef:0} = {
631 0.31500000000E-01 1.0000000000
632 })
633 (type: [(am = d puream = 1)]
634 {exp coef:0} = {
635 6.7170000000 1.0000000000
636 })
637 (type: [(am = d puream = 1)]
638 {exp coef:0} = {
639 2.8960000000 1.0000000000
640 })
641 (type: [(am = d puream = 1)]
642 {exp coef:0} = {
643 1.2490000000 1.0000000000
644 })
645 (type: [(am = d puream = 1)]
646 {exp coef:0} = {
647 0.53800000000 1.0000000000
648 })
649 (type: [(am = d puream = 1)]
650 {exp coef:0} = {
651 0.23200000000 1.0000000000
652 })
653 (type: [(am = d puream = 1)]
654 {exp coef:0} = {
655 0.87400000000E-01 1.0000000000
656 })
657 (type: [(am = f puream = 1)]
658 {exp coef:0} = {
659 3.8290000000 1.0000000000
660 })
661 (type: [(am = f puream = 1)]
662 {exp coef:0} = {
663 1.7950000000 1.0000000000
664 })
665 (type: [(am = f puream = 1)]
666 {exp coef:0} = {
667 0.84100000000 1.0000000000
668 })
669 (type: [(am = f puream = 1)]
670 {exp coef:0} = {
671 0.39400000000 1.0000000000
672 })
673 (type: [(am = f puream = 1)]
674 {exp coef:0} = {
675 0.15100000000 1.0000000000
676 })
677 (type: [(am = g puream = 1)]
678 {exp coef:0} = {
679 3.8560000000 1.0000000000
680 })
681 (type: [(am = g puream = 1)]
682 {exp coef:0} = {
683 1.7020000000 1.0000000000
684 })
685 (type: [(am = g puream = 1)]
686 {exp coef:0} = {
687 0.75100000000 1.0000000000
688 })
689 (type: [(am = g puream = 1)]
690 {exp coef:0} = {
691 0.32600000000 1.0000000000
692 })
693 (type: [(am = h puream = 1)]
694 {exp coef:0} = {
695 2.8750000000 1.0000000000
696 })
697 (type: [(am = h puream = 1)]
698 {exp coef:0} = {
699 1.1700000000 1.0000000000
700 })
701 (type: [(am = h puream = 1)]
702 {exp coef:0} = {
703 0.58700000000 1.0000000000
704 })
705 (type: [(am = i puream = 1)]
706 {exp coef:0} = {
707 2.0990000000 1.0000000000
708 })
709 (type: [(am = i puream = 1)]
710 {exp coef:0} = {
711 1.0410000000 1.0000000000
712 })
713 ]
714%
715% BASIS SET: (16s,10p,5d,4f,3g,2h,1i) -> [7s,6p,5d,4f,3g,2h,1i]
716% AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h,1i)
717 oxygen: "aug-cc-pV6Z": [
718 (type: [am = s am = s]
719 {exp coef:0 coef:1} = {
720 570800.00000 0.55500000000E-05 -0.12600000000E-05
721 85480.000000 0.43110000000E-04 -0.97700000000E-05
722 19460.000000 0.22667000000E-03 -0.51480000000E-04
723 5512.0000000 0.95637000000E-03 -0.21696000000E-03
724 1798.0000000 0.34732000000E-02 -0.79162000000E-03
725 648.90000000 0.11197780000E-01 -0.25590000000E-02
726 253.10000000 0.32387660000E-01 -0.75331300000E-02
727 104.90000000 0.82859770000E-01 -0.19788970000E-01
728 45.650000000 0.17958381000 -0.46062880000E-01
729 20.620000000 0.30522110000 -0.89195600000E-01
730 9.5870000000 0.34089349000 -0.13754216000
731 })
732 (type: [am = s]
733 {exp coef:0} = {
734 4.4930000000 1.0000000000
735 })
736 (type: [am = s]
737 {exp coef:0} = {
738 1.8370000000 1.0000000000
739 })
740 (type: [am = s]
741 {exp coef:0} = {
742 0.83490000000 1.0000000000
743 })
744 (type: [am = s]
745 {exp coef:0} = {
746 0.36580000000 1.0000000000
747 })
748 (type: [am = s]
749 {exp coef:0} = {
750 0.15700000000 1.0000000000
751 })
752 (type: [am = s]
753 {exp coef:0} = {
754 0.59350000000E-01 1.0000000000
755 })
756 (type: [am = p]
757 {exp coef:0} = {
758 525.60000000 0.16664000000E-03
759 124.60000000 0.14333600000E-02
760 40.340000000 0.75476200000E-02
761 15.180000000 0.28594560000E-01
762 6.2450000000 0.84388580000E-01
763 })
764 (type: [am = p]
765 {exp coef:0} = {
766 2.7320000000 1.0000000000
767 })
768 (type: [am = p]
769 {exp coef:0} = {
770 1.2270000000 1.0000000000
771 })
772 (type: [am = p]
773 {exp coef:0} = {
774 0.54920000000 1.0000000000
775 })
776 (type: [am = p]
777 {exp coef:0} = {
778 0.24180000000 1.0000000000
779 })
780 (type: [am = p]
781 {exp coef:0} = {
782 0.10250000000 1.0000000000
783 })
784 (type: [am = p]
785 {exp coef:0} = {
786 0.33800000000E-01 1.0000000000
787 })
788 (type: [(am = d puream = 1)]
789 {exp coef:0} = {
790 8.2530000000 1.0000000000
791 })
792 (type: [(am = d puream = 1)]
793 {exp coef:0} = {
794 3.5970000000 1.0000000000
795 })
796 (type: [(am = d puream = 1)]
797 {exp coef:0} = {
798 1.5680000000 1.0000000000
799 })
800 (type: [(am = d puream = 1)]
801 {exp coef:0} = {
802 0.68400000000 1.0000000000
803 })
804 (type: [(am = d puream = 1)]
805 {exp coef:0} = {
806 0.29800000000 1.0000000000
807 })
808 (type: [(am = d puream = 1)]
809 {exp coef:0} = {
810 0.11500000000 1.0000000000
811 })
812 (type: [(am = f puream = 1)]
813 {exp coef:0} = {
814 5.4300000000 1.0000000000
815 })
816 (type: [(am = f puream = 1)]
817 {exp coef:0} = {
818 2.4160000000 1.0000000000
819 })
820 (type: [(am = f puream = 1)]
821 {exp coef:0} = {
822 1.0750000000 1.0000000000
823 })
824 (type: [(am = f puream = 1)]
825 {exp coef:0} = {
826 0.47800000000 1.0000000000
827 })
828 (type: [(am = f puream = 1)]
829 {exp coef:0} = {
830 0.19500000000 1.0000000000
831 })
832 (type: [(am = g puream = 1)]
833 {exp coef:0} = {
834 5.2110000000 1.0000000000
835 })
836 (type: [(am = g puream = 1)]
837 {exp coef:0} = {
838 2.1900000000 1.0000000000
839 })
840 (type: [(am = g puream = 1)]
841 {exp coef:0} = {
842 0.92000000000 1.0000000000
843 })
844 (type: [(am = g puream = 1)]
845 {exp coef:0} = {
846 0.40600000000 1.0000000000
847 })
848 (type: [(am = h puream = 1)]
849 {exp coef:0} = {
850 3.8720000000 1.0000000000
851 })
852 (type: [(am = h puream = 1)]
853 {exp coef:0} = {
854 1.5050000000 1.0000000000
855 })
856 (type: [(am = h puream = 1)]
857 {exp coef:0} = {
858 0.74800000000 1.0000000000
859 })
860 (type: [(am = i puream = 1)]
861 {exp coef:0} = {
862 2.7730000000 1.0000000000
863 })
864 (type: [(am = i puream = 1)]
865 {exp coef:0} = {
866 1.3450000000 1.0000000000
867 })
868 ]
869%
870% BASIS SET: (16s,10p,5d,4f,3g,2h,1i) -> [7s,6p,5d,4f,3g,2h,1i]
871% AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h,1i)
872 fluorine: "aug-cc-pV6Z": [
873 (type: [am = s am = s]
874 {exp coef:0 coef:1} = {
875 723500.00000 0.55600000000E-05 -0.12900000000E-05
876 108400.00000 0.43180000000E-04 -0.99900000000E-05
877 24680.000000 0.22700000000E-03 -0.52600000000E-04
878 6990.0000000 0.95803000000E-03 -0.22172000000E-03
879 2282.0000000 0.34701500000E-02 -0.80692000000E-03
880 824.60000000 0.11185260000E-01 -0.26081700000E-02
881 321.80000000 0.32328800000E-01 -0.76740200000E-02
882 133.50000000 0.82795450000E-01 -0.20193530000E-01
883 58.110000000 0.17988024000 -0.47187520000E-01
884 26.280000000 0.30557831000 -0.91580090000E-01
885 12.240000000 0.34026839000 -0.14048558000
886 })
887 (type: [am = s]
888 {exp coef:0} = {
889 5.7470000000 1.0000000000
890 })
891 (type: [am = s]
892 {exp coef:0} = {
893 2.3650000000 1.0000000000
894 })
895 (type: [am = s]
896 {exp coef:0} = {
897 1.0710000000 1.0000000000
898 })
899 (type: [am = s]
900 {exp coef:0} = {
901 0.46810000000 1.0000000000
902 })
903 (type: [am = s]
904 {exp coef:0} = {
905 0.19940000000 1.0000000000
906 })
907 (type: [am = s]
908 {exp coef:0} = {
909 0.73150000000E-01 1.0000000000
910 })
911 (type: [am = p]
912 {exp coef:0} = {
913 660.00000000 0.17721000000E-03
914 156.40000000 0.15269100000E-02
915 50.640000000 0.80720700000E-02
916 19.080000000 0.30740210000E-01
917 7.8720000000 0.90119140000E-01
918 })
919 (type: [am = p]
920 {exp coef:0} = {
921 3.4490000000 1.0000000000
922 })
923 (type: [am = p]
924 {exp coef:0} = {
925 1.5450000000 1.0000000000
926 })
927 (type: [am = p]
928 {exp coef:0} = {
929 0.68640000000 1.0000000000
930 })
931 (type: [am = p]
932 {exp coef:0} = {
933 0.29860000000 1.0000000000
934 })
935 (type: [am = p]
936 {exp coef:0} = {
937 0.12450000000 1.0000000000
938 })
939 (type: [am = p]
940 {exp coef:0} = {
941 0.47600000000E-01 1.0000000000
942 })
943 (type: [(am = d puream = 1)]
944 {exp coef:0} = {
945 10.573000000 1.0000000000
946 })
947 (type: [(am = d puream = 1)]
948 {exp coef:0} = {
949 4.6130000000 1.0000000000
950 })
951 (type: [(am = d puream = 1)]
952 {exp coef:0} = {
953 2.0130000000 1.0000000000
954 })
955 (type: [(am = d puream = 1)]
956 {exp coef:0} = {
957 0.87800000000 1.0000000000
958 })
959 (type: [(am = d puream = 1)]
960 {exp coef:0} = {
961 0.38300000000 1.0000000000
962 })
963 (type: [(am = d puream = 1)]
964 {exp coef:0} = {
965 0.15100000000 1.0000000000
966 })
967 (type: [(am = f puream = 1)]
968 {exp coef:0} = {
969 7.5630000000 1.0000000000
970 })
971 (type: [(am = f puream = 1)]
972 {exp coef:0} = {
973 3.3300000000 1.0000000000
974 })
975 (type: [(am = f puream = 1)]
976 {exp coef:0} = {
977 1.4660000000 1.0000000000
978 })
979 (type: [(am = f puream = 1)]
980 {exp coef:0} = {
981 0.64500000000 1.0000000000
982 })
983 (type: [(am = f puream = 1)]
984 {exp coef:0} = {
985 0.27200000000 1.0000000000
986 })
987 (type: [(am = g puream = 1)]
988 {exp coef:0} = {
989 6.7350000000 1.0000000000
990 })
991 (type: [(am = g puream = 1)]
992 {exp coef:0} = {
993 2.7830000000 1.0000000000
994 })
995 (type: [(am = g puream = 1)]
996 {exp coef:0} = {
997 1.1500000000 1.0000000000
998 })
999 (type: [(am = g puream = 1)]
1000 {exp coef:0} = {
1001 0.52000000000 1.0000000000
1002 })
1003 (type: [(am = h puream = 1)]
1004 {exp coef:0} = {
1005 5.0880000000 1.0000000000
1006 })
1007 (type: [(am = h puream = 1)]
1008 {exp coef:0} = {
1009 1.9370000000 1.0000000000
1010 })
1011 (type: [(am = h puream = 1)]
1012 {exp coef:0} = {
1013 0.98500000000 1.0000000000
1014 })
1015 (type: [(am = i puream = 1)]
1016 {exp coef:0} = {
1017 3.5810000000 1.0000000000
1018 })
1019 (type: [(am = i puream = 1)]
1020 {exp coef:0} = {
1021 1.7390000000 1.0000000000
1022 })
1023 ]
1024%
1025% BASIS SET: (16s,10p,5d,4f,3g,2h,1i) -> [7s,6p,5d,4f,3g,2h,1i]
1026% AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h,1i)
1027 neon: "aug-cc-pV6Z": [
1028 (type: [am = s am = s]
1029 {exp coef:0 coef:1} = {
1030 902400.00000 0.55100000000E-05 -0.12900000000E-05
1031 135100.00000 0.42820000000E-04 -0.10050000000E-04
1032 30750.000000 0.22514000000E-03 -0.52930000000E-04
1033 8710.0000000 0.95016000000E-03 -0.22312000000E-03
1034 2842.0000000 0.34471900000E-02 -0.81338000000E-03
1035 1026.0000000 0.11125450000E-01 -0.26323000000E-02
1036 400.10000000 0.32205680000E-01 -0.77591000000E-02
1037 165.90000000 0.82598910000E-01 -0.20452770000E-01
1038 72.210000000 0.17990564000 -0.47975050000E-01
1039 32.660000000 0.30605208000 -0.93400860000E-01
1040 15.220000000 0.34012559000 -0.14277215000
1041 })
1042 (type: [am = s]
1043 {exp coef:0} = {
1044 7.1490000000 1.0000000000
1045 })
1046 (type: [am = s]
1047 {exp coef:0} = {
1048 2.9570000000 1.0000000000
1049 })
1050 (type: [am = s]
1051 {exp coef:0} = {
1052 1.3350000000 1.0000000000
1053 })
1054 (type: [am = s]
1055 {exp coef:0} = {
1056 0.58160000000 1.0000000000
1057 })
1058 (type: [am = s]
1059 {exp coef:0} = {
1060 0.24630000000 1.0000000000
1061 })
1062 (type: [am = s]
1063 {exp coef:0} = {
1064 0.86900000000E-01 1.0000000000
1065 })
1066 (type: [am = p]
1067 {exp coef:0} = {
1068 815.60000000 0.18376000000E-03
1069 193.30000000 0.15850900000E-02
1070 62.600000000 0.84146400000E-02
1071 23.610000000 0.32200330000E-01
1072 9.7620000000 0.93963900000E-01
1073 })
1074 (type: [am = p]
1075 {exp coef:0} = {
1076 4.2810000000 1.0000000000
1077 })
1078 (type: [am = p]
1079 {exp coef:0} = {
1080 1.9150000000 1.0000000000
1081 })
1082 (type: [am = p]
1083 {exp coef:0} = {
1084 0.84760000000 1.0000000000
1085 })
1086 (type: [am = p]
1087 {exp coef:0} = {
1088 0.36600000000 1.0000000000
1089 })
1090 (type: [am = p]
1091 {exp coef:0} = {
1092 0.15100000000 1.0000000000
1093 })
1094 (type: [am = p]
1095 {exp coef:0} = {
1096 0.56600000000E-01 1.0000000000
1097 })
1098 (type: [(am = d puream = 1)]
1099 {exp coef:0} = {
1100 13.317000000 1.0000000000
1101 })
1102 (type: [(am = d puream = 1)]
1103 {exp coef:0} = {
1104 5.8030000000 1.0000000000
1105 })
1106 (type: [(am = d puream = 1)]
1107 {exp coef:0} = {
1108 2.5290000000 1.0000000000
1109 })
1110 (type: [(am = d puream = 1)]
1111 {exp coef:0} = {
1112 1.1020000000 1.0000000000
1113 })
1114 (type: [(am = d puream = 1)]
1115 {exp coef:0} = {
1116 0.48000000000 1.0000000000
1117 })
1118 (type: [(am = d puream = 1)]
1119 {exp coef:0} = {
1120 0.18700000000 1.0000000000
1121 })
1122 (type: [(am = f puream = 1)]
1123 {exp coef:0} = {
1124 10.356000000 1.0000000000
1125 })
1126 (type: [(am = f puream = 1)]
1127 {exp coef:0} = {
1128 4.5380000000 1.0000000000
1129 })
1130 (type: [(am = f puream = 1)]
1131 {exp coef:0} = {
1132 1.9890000000 1.0000000000
1133 })
1134 (type: [(am = f puream = 1)]
1135 {exp coef:0} = {
1136 0.87100000000 1.0000000000
1137 })
1138 (type: [(am = f puream = 1)]
1139 {exp coef:0} = {
1140 0.34920000000 1.0000000000
1141 })
1142 (type: [(am = g puream = 1)]
1143 {exp coef:0} = {
1144 8.3450000000 1.0000000000
1145 })
1146 (type: [(am = g puream = 1)]
1147 {exp coef:0} = {
1148 3.4170000000 1.0000000000
1149 })
1150 (type: [(am = g puream = 1)]
1151 {exp coef:0} = {
1152 1.3990000000 1.0000000000
1153 })
1154 (type: [(am = g puream = 1)]
1155 {exp coef:0} = {
1156 0.63450000000 1.0000000000
1157 })
1158 (type: [(am = h puream = 1)]
1159 {exp coef:0} = {
1160 6.5190000000 1.0000000000
1161 })
1162 (type: [(am = h puream = 1)]
1163 {exp coef:0} = {
1164 2.4470000000 1.0000000000
1165 })
1166 (type: [(am = h puream = 1)]
1167 {exp coef:0} = {
1168 1.2093000000 1.0000000000
1169 })
1170 (type: [(am = i puream = 1)]
1171 {exp coef:0} = {
1172 4.4890000000 1.0000000000
1173 })
1174 (type: [(am = i puream = 1)]
1175 {exp coef:0} = {
1176 2.1215000000 1.0000000000
1177 })
1178 ]
1179% AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h,1i)
1180 aluminum: "aug-cc-pV6Z": [
1181 (type: [am = s am = s am = s]
1182 {exp coef:0 coef:1 coef:2} = {
1183 3652000.0000 0.19000000000E-05 -0.50000000000E-06 0.10000000000E-06
1184 546800.00000 0.14500000000E-04 -0.38000000000E-05 0.90000000000E-06
1185 124500.00000 0.76200000000E-04 -0.19800000000E-04 0.46000000000E-05
1186 35440.000000 0.31580000000E-03 -0.82100000000E-04 0.19000000000E-04
1187 11840.000000 0.10974000000E-02 -0.28580000000E-03 0.65900000000E-04
1188 4434.0000000 0.33697000000E-02 -0.87850000000E-03 0.20310000000E-03
1189 1812.0000000 0.93222000000E-02 -0.24482000000E-02 0.56470000000E-03
1190 791.50000000 0.23799200000E-01 -0.63100000000E-02 0.14620000000E-02
1191 361.00000000 0.56819100000E-01 -0.15485400000E-01 0.35794000000E-02
1192 169.50000000 0.12246800000 -0.34958900000E-01 0.81516000000E-02
1193 81.680000000 0.22389700000 -0.70772900000E-01 0.16527600000E-01
1194 40.280000000 0.31344600000 -0.11942300000 0.28546700000E-01
1195 20.250000000 0.27497500000 -0.14884200000 0.36148400000E-01
1196 10.230000000 0.11056400000 -0.59046500000E-01 0.15380400000E-01
1197 4.8020000000 0.11921500000E-01 0.21669300000 -0.61214100000E-01
1198 2.3390000000 0.65280000000E-03 0.47655700000 -0.15126300000
1199 })
1200 (type: [am = s]
1201 {exp coef:0} = {
1202 1.1630000000 1.0000000000
1203 })
1204 (type: [am = s]
1205 {exp coef:0} = {
1206 0.58820000000 1.0000000000
1207 })
1208 (type: [am = s]
1209 {exp coef:0} = {
1210 0.23110000000 1.0000000000
1211 })
1212 (type: [am = s]
1213 {exp coef:0} = {
1214 0.10270000000 1.0000000000
1215 })
1216 (type: [am = s]
1217 {exp coef:0} = {
1218 0.45210000000E-01 1.0000000000
1219 })
1220 (type: [am = s]
1221 {exp coef:0} = {
1222 0.17370000000E-01 1.0000000000
1223 })
1224 (type: [am = p am = p]
1225 {exp coef:0 coef:1} = {
1226 2884.0000000 0.63800000000E-04 -0.80000000000E-05
1227 683.20000000 0.56310000000E-03 -0.65100000000E-04
1228 222.00000000 0.31691000000E-02 -0.39990000000E-03
1229 84.820000000 0.13240100000E-01 -0.15369000000E-02
1230 35.810000000 0.43340300000E-01 -0.55644000000E-02
1231 16.220000000 0.11195000000 -0.13110600000E-01
1232 7.7020000000 0.21779600000 -0.29720000000E-01
1233 3.7410000000 0.31167500000 -0.34719500000E-01
1234 1.8310000000 0.31672200000 -0.55162100000E-01
1235 })
1236 (type: [am = p]
1237 {exp coef:0} = {
1238 0.88780000000 1.0000000000
1239 })
1240 (type: [am = p]
1241 {exp coef:0} = {
1242 0.39890000000 1.0000000000
1243 })
1244 (type: [am = p]
1245 {exp coef:0} = {
1246 0.17180000000 1.0000000000
1247 })
1248 (type: [am = p]
1249 {exp coef:0} = {
1250 0.72980000000E-01 1.0000000000
1251 })
1252 (type: [am = p]
1253 {exp coef:0} = {
1254 0.30690000000E-01 1.0000000000
1255 })
1256 (type: [am = p]
1257 {exp coef:0} = {
1258 0.10210000000E-01 1.0000000000
1259 })
1260 (type: [(am = d puream = 1)]
1261 {exp coef:0} = {
1262 2.2143000000 1.0000000000
1263 })
1264 (type: [(am = d puream = 1)]
1265 {exp coef:0} = {
1266 0.94490000000 1.0000000000
1267 })
1268 (type: [(am = d puream = 1)]
1269 {exp coef:0} = {
1270 0.40320000000 1.0000000000
1271 })
1272 (type: [(am = d puream = 1)]
1273 {exp coef:0} = {
1274 0.17210000000 1.0000000000
1275 })
1276 (type: [(am = d puream = 1)]
1277 {exp coef:0} = {
1278 0.73430000000E-01 1.0000000000
1279 })
1280 (type: [(am = d puream = 1)]
1281 {exp coef:0} = {
1282 0.26660000000E-01 1.0000000000
1283 })
1284 (type: [(am = f puream = 1)]
1285 {exp coef:0} = {
1286 0.87560000000 1.0000000000
1287 })
1288 (type: [(am = f puream = 1)]
1289 {exp coef:0} = {
1290 0.44720000000 1.0000000000
1291 })
1292 (type: [(am = f puream = 1)]
1293 {exp coef:0} = {
1294 0.22840000000 1.0000000000
1295 })
1296 (type: [(am = f puream = 1)]
1297 {exp coef:0} = {
1298 0.11670000000 1.0000000000
1299 })
1300 (type: [(am = f puream = 1)]
1301 {exp coef:0} = {
1302 0.46250000000E-01 1.0000000000
1303 })
1304 (type: [(am = g puream = 1)]
1305 {exp coef:0} = {
1306 0.69520000000 1.0000000000
1307 })
1308 (type: [(am = g puream = 1)]
1309 {exp coef:0} = {
1310 0.37710000000 1.0000000000
1311 })
1312 (type: [(am = g puream = 1)]
1313 {exp coef:0} = {
1314 0.20460000000 1.0000000000
1315 })
1316 (type: [(am = g puream = 1)]
1317 {exp coef:0} = {
1318 0.85450000000E-01 1.0000000000
1319 })
1320 (type: [(am = h puream = 1)]
1321 {exp coef:0} = {
1322 0.65600000000 1.0000000000
1323 })
1324 (type: [(am = h puream = 1)]
1325 {exp coef:0} = {
1326 0.33000000000 1.0000000000
1327 })
1328 (type: [(am = h puream = 1)]
1329 {exp coef:0} = {
1330 0.16550000000 1.0000000000
1331 })
1332 (type: [(am = i puream = 1)]
1333 {exp coef:0} = {
1334 0.53020000000 1.0000000000
1335 })
1336 (type: [(am = i puream = 1)]
1337 {exp coef:0} = {
1338 0.29900000000 1.0000000000
1339 })
1340 ]
1341%
1342% BASIS SET: (21s,14p,5d,4f,3g,2h,1i) -> [8s,7p,5d,4f,3g,2h,1i]
1343% AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h,1i)
1344 silicon: "aug-cc-pV6Z": [
1345 (type: [am = s am = s am = s]
1346 {exp coef:0 coef:1 coef:2} = {
1347 4465000.0000 0.17000000000E-05 -0.50000000000E-06 0.10000000000E-06
1348 668500.00000 0.13600000000E-04 -0.36000000000E-05 0.90000000000E-06
1349 152200.00000 0.71400000000E-04 -0.19000000000E-04 0.49000000000E-05
1350 43300.000000 0.29730000000E-03 -0.79100000000E-04 0.20300000000E-04
1351 14410.000000 0.10383000000E-02 -0.27690000000E-03 0.70900000000E-04
1352 5394.0000000 0.31747000000E-02 -0.84720000000E-03 0.21720000000E-03
1353 2212.0000000 0.87324000000E-02 -0.23478000000E-02 0.60130000000E-03
1354 968.10000000 0.22383000000E-01 -0.60705000000E-02 0.15591000000E-02
1355 441.20000000 0.53727300000E-01 -0.14971100000E-01 0.38443000000E-02
1356 207.10000000 0.11664900000 -0.33972900000E-01 0.87797000000E-02
1357 99.800000000 0.21597800000 -0.69458400000E-01 0.18038800000E-01
1358 49.240000000 0.30956600000 -0.11900100000 0.31522400000E-01
1359 24.740000000 0.28394500000 -0.15364500000 0.41690500000E-01
1360 12.470000000 0.12223200000 -0.70468400000E-01 0.20097300000E-01
1361 5.7950000000 0.14195200000E-01 0.21314900000 -0.66748400000E-01
1362 2.8300000000 0.31210000000E-03 0.49159600000 -0.18190600000
1363 })
1364 (type: [am = s]
1365 {exp coef:0} = {
1366 1.4070000000 1.0000000000
1367 })
1368 (type: [am = s]
1369 {exp coef:0} = {
1370 0.69950000000 1.0000000000
1371 })
1372 (type: [am = s]
1373 {exp coef:0} = {
1374 0.30830000000 1.0000000000
1375 })
1376 (type: [am = s]
1377 {exp coef:0} = {
1378 0.13850000000 1.0000000000
1379 })
1380 (type: [am = s]
1381 {exp coef:0} = {
1382 0.61450000000E-01 1.0000000000
1383 })
1384 (type: [am = s]
1385 {exp coef:0} = {
1386 0.25390000000E-01 1.0000000000
1387 })
1388 (type: [am = p am = p]
1389 {exp coef:0 coef:1} = {
1390 3572.0000000 0.59900000000E-04 -0.12800000000E-04
1391 846.00000000 0.52960000000E-03 -0.11260000000E-03
1392 274.80000000 0.29958000000E-02 -0.64020000000E-03
1393 105.00000000 0.12633500000E-01 -0.27029000000E-02
1394 44.350000000 0.41904400000E-01 -0.90789000000E-02
1395 20.080000000 0.11025900000 -0.24234800000E-01
1396 9.5300000000 0.21883100000 -0.49346000000E-01
1397 4.6340000000 0.31782800000 -0.72585900000E-01
1398 2.2800000000 0.31942500000 -0.80425800000E-01
1399 })
1400 (type: [am = p]
1401 {exp coef:0} = {
1402 1.1160000000 1.0000000000
1403 })
1404 (type: [am = p]
1405 {exp coef:0} = {
1406 0.49910000000 1.0000000000
1407 })
1408 (type: [am = p]
1409 {exp coef:0} = {
1410 0.22540000000 1.0000000000
1411 })
1412 (type: [am = p]
1413 {exp coef:0} = {
1414 0.10010000000 1.0000000000
1415 })
1416 (type: [am = p]
1417 {exp coef:0} = {
1418 0.43320000000E-01 1.0000000000
1419 })
1420 (type: [am = p]
1421 {exp coef:0} = {
1422 0.16940000000E-01 1.0000000000
1423 })
1424 (type: [(am = d puream = 1)]
1425 {exp coef:0} = {
1426 3.2386000000 1.0000000000
1427 })
1428 (type: [(am = d puream = 1)]
1429 {exp coef:0} = {
1430 1.3767000000 1.0000000000
1431 })
1432 (type: [(am = d puream = 1)]
1433 {exp coef:0} = {
1434 0.58530000000 1.0000000000
1435 })
1436 (type: [(am = d puream = 1)]
1437 {exp coef:0} = {
1438 0.24880000000 1.0000000000
1439 })
1440 (type: [(am = d puream = 1)]
1441 {exp coef:0} = {
1442 0.10580000000 1.0000000000
1443 })
1444 (type: [(am = d puream = 1)]
1445 {exp coef:0} = {
1446 0.41390000000E-01 1.0000000000
1447 })
1448 (type: [(am = f puream = 1)]
1449 {exp coef:0} = {
1450 1.3510000000 1.0000000000
1451 })
1452 (type: [(am = f puream = 1)]
1453 {exp coef:0} = {
1454 0.66000000000 1.0000000000
1455 })
1456 (type: [(am = f puream = 1)]
1457 {exp coef:0} = {
1458 0.32250000000 1.0000000000
1459 })
1460 (type: [(am = f puream = 1)]
1461 {exp coef:0} = {
1462 0.15750000000 1.0000000000
1463 })
1464 (type: [(am = f puream = 1)]
1465 {exp coef:0} = {
1466 0.68840000000E-01 1.0000000000
1467 })
1468 (type: [(am = g puream = 1)]
1469 {exp coef:0} = {
1470 0.85280000000 1.0000000000
1471 })
1472 (type: [(am = g puream = 1)]
1473 {exp coef:0} = {
1474 0.46310000000 1.0000000000
1475 })
1476 (type: [(am = g puream = 1)]
1477 {exp coef:0} = {
1478 0.25150000000 1.0000000000
1479 })
1480 (type: [(am = g puream = 1)]
1481 {exp coef:0} = {
1482 0.11640000000 1.0000000000
1483 })
1484 (type: [(am = h puream = 1)]
1485 {exp coef:0} = {
1486 0.85570000000 1.0000000000
1487 })
1488 (type: [(am = h puream = 1)]
1489 {exp coef:0} = {
1490 0.42310000000 1.0000000000
1491 })
1492 (type: [(am = h puream = 1)]
1493 {exp coef:0} = {
1494 0.23510000000 1.0000000000
1495 })
1496 (type: [(am = i puream = 1)]
1497 {exp coef:0} = {
1498 0.69460000000 1.0000000000
1499 })
1500 (type: [(am = i puream = 1)]
1501 {exp coef:0} = {
1502 0.42710000000 1.0000000000
1503 })
1504 ]
1505%
1506% BASIS SET: (21s,14p,5d,4f,3g,2h,1i) -> [8s,7p,5d,4f,3g,2h,1i]
1507% AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h,1i)
1508 phosphorus: "aug-cc-pV6Z": [
1509 (type: [am = s am = s am = s]
1510 {exp coef:0 coef:1 coef:2} = {
1511 5384000.0000 0.16000000000E-05 -0.40000000000E-06 0.10000000000E-06
1512 806200.00000 0.12800000000E-04 -0.35000000000E-05 0.10000000000E-05
1513 183600.00000 0.67200000000E-04 -0.18300000000E-04 0.50000000000E-05
1514 52250.000000 0.27970000000E-03 -0.75900000000E-04 0.20900000000E-04
1515 17390.000000 0.97670000000E-03 -0.26570000000E-03 0.73000000000E-04
1516 6523.0000000 0.29684000000E-02 -0.80800000000E-03 0.22210000000E-03
1517 2687.0000000 0.81240000000E-02 -0.22273000000E-02 0.61220000000E-03
1518 1178.0000000 0.20920000000E-01 -0.57833000000E-02 0.15918000000E-02
1519 536.20000000 0.50559000000E-01 -0.14343800000E-01 0.39534000000E-02
1520 251.50000000 0.11047900000 -0.32706100000E-01 0.90572000000E-02
1521 121.30000000 0.20695700000 -0.67371600000E-01 0.18790900000E-01
1522 59.880000000 0.30473700000 -0.11764700000 0.33383100000E-01
1523 30.050000000 0.29295200000 -0.15728000000 0.45948400000E-01
1524 15.120000000 0.13556100000 -0.83854400000E-01 0.25524000000E-01
1525 7.0100000000 0.17320800000E-01 0.19971800000 -0.66949600000E-01
1526 3.4410000000 -0.35200000000E-04 0.49860500000 -0.20364500000
1527 })
1528 (type: [am = s]
1529 {exp coef:0} = {
1530 1.7120000000 1.0000000000
1531 })
1532 (type: [am = s]
1533 {exp coef:0} = {
1534 0.83370000000 1.0000000000
1535 })
1536 (type: [am = s]
1537 {exp coef:0} = {
1538 0.39120000000 1.0000000000
1539 })
1540 (type: [am = s]
1541 {exp coef:0} = {
1542 0.17770000000 1.0000000000
1543 })
1544 (type: [am = s]
1545 {exp coef:0} = {
1546 0.79390000000E-01 1.0000000000
1547 })
1548 (type: [am = s]
1549 {exp coef:0} = {
1550 0.32280000000E-01 1.0000000000
1551 })
1552 (type: [am = p am = p]
1553 {exp coef:0 coef:1} = {
1554 4552.0000000 0.52000000000E-04 -0.12400000000E-04
1555 1078.0000000 0.46040000000E-03 -0.10940000000E-03
1556 350.10000000 0.26208000000E-02 -0.62560000000E-03
1557 133.80000000 0.11187300000E-01 -0.26734000000E-02
1558 56.520000000 0.37822900000E-01 -0.91552000000E-02
1559 25.580000000 0.10211600000 -0.25099300000E-01
1560 12.140000000 0.21031400000 -0.53181000000E-01
1561 5.9020000000 0.31738300000 -0.81588800000E-01
1562 2.9100000000 0.32716500000 -0.91972500000E-01
1563 })
1564 (type: [am = p]
1565 {exp coef:0} = {
1566 1.4350000000 1.0000000000
1567 })
1568 (type: [am = p]
1569 {exp coef:0} = {
1570 0.65700000000 1.0000000000
1571 })
1572 (type: [am = p]
1573 {exp coef:0} = {
1574 0.30050000000 1.0000000000
1575 })
1576 (type: [am = p]
1577 {exp coef:0} = {
1578 0.13400000000 1.0000000000
1579 })
1580 (type: [am = p]
1581 {exp coef:0} = {
1582 0.57830000000E-01 1.0000000000
1583 })
1584 (type: [am = p]
1585 {exp coef:0} = {
1586 0.21970000000E-01 1.0000000000
1587 })
1588 (type: [(am = d puream = 1)]
1589 {exp coef:0} = {
1590 4.3008000000 1.0000000000
1591 })
1592 (type: [(am = d puream = 1)]
1593 {exp coef:0} = {
1594 1.8346000000 1.0000000000
1595 })
1596 (type: [(am = d puream = 1)]
1597 {exp coef:0} = {
1598 0.78260000000 1.0000000000
1599 })
1600 (type: [(am = d puream = 1)]
1601 {exp coef:0} = {
1602 0.33390000000 1.0000000000
1603 })
1604 (type: [(am = d puream = 1)]
1605 {exp coef:0} = {
1606 0.14240000000 1.0000000000
1607 })
1608 (type: [(am = d puream = 1)]
1609 {exp coef:0} = {
1610 0.54920000000E-01 1.0000000000
1611 })
1612 (type: [(am = f puream = 1)]
1613 {exp coef:0} = {
1614 1.8160000000 1.0000000000
1615 })
1616 (type: [(am = f puream = 1)]
1617 {exp coef:0} = {
1618 0.88060000000 1.0000000000
1619 })
1620 (type: [(am = f puream = 1)]
1621 {exp coef:0} = {
1622 0.42700000000 1.0000000000
1623 })
1624 (type: [(am = f puream = 1)]
1625 {exp coef:0} = {
1626 0.20700000000 1.0000000000
1627 })
1628 (type: [(am = f puream = 1)]
1629 {exp coef:0} = {
1630 0.87100000000E-01 1.0000000000
1631 })
1632 (type: [(am = g puream = 1)]
1633 {exp coef:0} = {
1634 1.0616000000 1.0000000000
1635 })
1636 (type: [(am = g puream = 1)]
1637 {exp coef:0} = {
1638 0.57910000000 1.0000000000
1639 })
1640 (type: [(am = g puream = 1)]
1641 {exp coef:0} = {
1642 0.31590000000 1.0000000000
1643 })
1644 (type: [(am = g puream = 1)]
1645 {exp coef:0} = {
1646 0.14700000000 1.0000000000
1647 })
1648 (type: [(am = h puream = 1)]
1649 {exp coef:0} = {
1650 1.0850000000 1.0000000000
1651 })
1652 (type: [(am = h puream = 1)]
1653 {exp coef:0} = {
1654 0.52770000000 1.0000000000
1655 })
1656 (type: [(am = h puream = 1)]
1657 {exp coef:0} = {
1658 0.28740000000 1.0000000000
1659 })
1660 (type: [(am = i puream = 1)]
1661 {exp coef:0} = {
1662 0.88900000000 1.0000000000
1663 })
1664 (type: [(am = i puream = 1)]
1665 {exp coef:0} = {
1666 0.51510000000 1.0000000000
1667 })
1668 ]
1669%
1670% BASIS SET: (21s,14p,5d,4f,3g,2h,1i) -> [8s,7p,5d,4f,3g,2h,1i]
1671% AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h,1i)
1672 sulfur: "aug-cc-pV6Z": [
1673 (type: [am = s am = s am = s]
1674 {exp coef:0 coef:1 coef:2} = {
1675 6297000.0000 0.16000000000E-05 -0.40000000000E-06 0.10000000000E-06
1676 943100.00000 0.12400000000E-04 -0.34000000000E-05 0.10000000000E-05
1677 214900.00000 0.64900000000E-04 -0.17900000000E-04 0.52000000000E-05
1678 61250.000000 0.26930000000E-03 -0.74400000000E-04 0.21600000000E-04
1679 20450.000000 0.93470000000E-03 -0.25870000000E-03 0.75100000000E-04
1680 7719.0000000 0.28083000000E-02 -0.77770000000E-03 0.22580000000E-03
1681 3198.0000000 0.76740000000E-02 -0.21396000000E-02 0.62170000000E-03
1682 1402.0000000 0.19889800000E-01 -0.55906000000E-02 0.16251000000E-02
1683 637.20000000 0.48258900000E-01 -0.13907600000E-01 0.40535000000E-02
1684 298.90000000 0.10575700000 -0.31768900000E-01 0.92902000000E-02
1685 144.30000000 0.20022300000 -0.65930200000E-01 0.19456100000E-01
1686 71.210000000 0.30072800000 -0.11683200000 0.35004000000E-01
1687 35.730000000 0.29868800000 -0.15978700000 0.49489700000E-01
1688 17.970000000 0.14634700000 -0.94532200000E-01 0.30344300000E-01
1689 8.3410000000 0.20115900000E-01 0.18782800000 -0.66366100000E-01
1690 4.1120000000 -0.24880000000E-03 0.50468300000 -0.22315400000
1691 })
1692 (type: [am = s]
1693 {exp coef:0} = {
1694 2.0450000000 1.0000000000
1695 })
1696 (type: [am = s]
1697 {exp coef:0} = {
1698 0.97700000000 1.0000000000
1699 })
1700 (type: [am = s]
1701 {exp coef:0} = {
1702 0.47660000000 1.0000000000
1703 })
1704 (type: [am = s]
1705 {exp coef:0} = {
1706 0.21850000000 1.0000000000
1707 })
1708 (type: [am = s]
1709 {exp coef:0} = {
1710 0.97590000000E-01 1.0000000000
1711 })
1712 (type: [am = s]
1713 {exp coef:0} = {
1714 0.38930000000E-01 1.0000000000
1715 })
1716 (type: [am = p am = p]
1717 {exp coef:0 coef:1} = {
1718 5266.0000000 0.52300000000E-04 -0.13300000000E-04
1719 1247.0000000 0.46350000000E-03 -0.11790000000E-03
1720 405.00000000 0.26410000000E-02 -0.67590000000E-03
1721 154.80000000 0.11316900000E-01 -0.28973000000E-02
1722 65.380000000 0.38470400000E-01 -0.99980000000E-02
1723 29.590000000 0.10433900000 -0.27541600000E-01
1724 14.040000000 0.21568400000 -0.58794300000E-01
1725 6.8240000000 0.32526000000 -0.90376100000E-01
1726 3.3690000000 0.32617800000 -0.99989100000E-01
1727 })
1728 (type: [am = p]
1729 {exp coef:0} = {
1730 1.6660000000 1.0000000000
1731 })
1732 (type: [am = p]
1733 {exp coef:0} = {
1734 0.76810000000 1.0000000000
1735 })
1736 (type: [am = p]
1737 {exp coef:0} = {
1738 0.35040000000 1.0000000000
1739 })
1740 (type: [am = p]
1741 {exp coef:0} = {
1742 0.15560000000 1.0000000000
1743 })
1744 (type: [am = p]
1745 {exp coef:0} = {
1746 0.66810000000E-01 1.0000000000
1747 })
1748 (type: [am = p]
1749 {exp coef:0} = {
1750 0.26480000000E-01 1.0000000000
1751 })
1752 (type: [(am = d puream = 1)]
1753 {exp coef:0} = {
1754 5.0755000000 1.0000000000
1755 })
1756 (type: [(am = d puream = 1)]
1757 {exp coef:0} = {
1758 2.1833000000 1.0000000000
1759 })
1760 (type: [(am = d puream = 1)]
1761 {exp coef:0} = {
1762 0.93920000000 1.0000000000
1763 })
1764 (type: [(am = d puream = 1)]
1765 {exp coef:0} = {
1766 0.40400000000 1.0000000000
1767 })
1768 (type: [(am = d puream = 1)]
1769 {exp coef:0} = {
1770 0.17380000000 1.0000000000
1771 })
1772 (type: [(am = d puream = 1)]
1773 {exp coef:0} = {
1774 0.69860000000E-01 1.0000000000
1775 })
1776 (type: [(am = f puream = 1)]
1777 {exp coef:0} = {
1778 1.3222000000 1.0000000000
1779 })
1780 (type: [(am = f puream = 1)]
1781 {exp coef:0} = {
1782 0.73190000000 1.0000000000
1783 })
1784 (type: [(am = f puream = 1)]
1785 {exp coef:0} = {
1786 0.40510000000 1.0000000000
1787 })
1788 (type: [(am = f puream = 1)]
1789 {exp coef:0} = {
1790 0.22430000000 1.0000000000
1791 })
1792 (type: [(am = f puream = 1)]
1793 {exp coef:0} = {
1794 0.11000000000 1.0000000000
1795 })
1796 (type: [(am = g puream = 1)]
1797 {exp coef:0} = {
1798 1.3473000000 1.0000000000
1799 })
1800 (type: [(am = g puream = 1)]
1801 {exp coef:0} = {
1802 0.70090000000 1.0000000000
1803 })
1804 (type: [(am = g puream = 1)]
1805 {exp coef:0} = {
1806 0.36470000000 1.0000000000
1807 })
1808 (type: [(am = g puream = 1)]
1809 {exp coef:0} = {
1810 0.17990000000 1.0000000000
1811 })
1812 (type: [(am = h puream = 1)]
1813 {exp coef:0} = {
1814 1.2861000000 1.0000000000
1815 })
1816 (type: [(am = h puream = 1)]
1817 {exp coef:0} = {
1818 0.61150000000 1.0000000000
1819 })
1820 (type: [(am = h puream = 1)]
1821 {exp coef:0} = {
1822 0.34650000000 1.0000000000
1823 })
1824 (type: [(am = i puream = 1)]
1825 {exp coef:0} = {
1826 1.0409000000 1.0000000000
1827 })
1828 (type: [(am = i puream = 1)]
1829 {exp coef:0} = {
1830 0.62220000000 1.0000000000
1831 })
1832 ]
1833%
1834% BASIS SET: (21s,14p,5d,4f,3g,2h,1i) -> [8s,7p,5d,4f,3g,2h,1i]
1835% AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h,1i)
1836 chlorine: "aug-cc-pV6Z": [
1837 (type: [am = s am = s am = s]
1838 {exp coef:0 coef:1 coef:2} = {
1839 7733000.0000 0.14347400000E-05 -0.40222700000E-06 0.12169600000E-06
1840 1158000.0000 0.11148600000E-04 -0.31244800000E-05 0.94514100000E-06
1841 263700.00000 0.58586500000E-04 -0.16429000000E-04 0.49711900000E-05
1842 75010.000000 0.24451800000E-03 -0.68542100000E-04 0.20732300000E-04
1843 24890.000000 0.85828700000E-03 -0.24100100000E-03 0.72940200000E-04
1844 9318.0000000 0.26101900000E-02 -0.73353800000E-03 0.22189900000E-03
1845 3840.0000000 0.71378400000E-02 -0.20183000000E-02 0.61135500000E-03
1846 1684.0000000 0.18456400000E-01 -0.52610700000E-02 0.15933700000E-02
1847 766.30000000 0.44894400000E-01 -0.13098600000E-01 0.39800100000E-02
1848 359.50000000 0.99382200000E-01 -0.30179400000E-01 0.91937500000E-02
1849 173.40000000 0.19078200000 -0.63188800000E-01 0.19439900000E-01
1850 85.610000000 0.29356500000 -0.11385900000 0.35518700000E-01
1851 42.930000000 0.30647700000 -0.16125100000 0.52067400000E-01
1852 21.550000000 0.16220900000 -0.10923400000 0.36564400000E-01
1853 10.050000000 0.24938300000E-01 0.16299900000 -0.59750000000E-01
1854 4.9780000000 -0.51314200000E-03 0.50141300000 -0.23164100000
1855 })
1856 (type: [am = s]
1857 {exp coef:0} = {
1858 2.4780000000 1.0000000000
1859 })
1860 (type: [am = s]
1861 {exp coef:0} = {
1862 1.1800000000 1.0000000000
1863 })
1864 (type: [am = s]
1865 {exp coef:0} = {
1866 0.58280000000 1.0000000000
1867 })
1868 (type: [am = s]
1869 {exp coef:0} = {
1870 0.26680000000 1.0000000000
1871 })
1872 (type: [am = s]
1873 {exp coef:0} = {
1874 0.11830000000 1.0000000000
1875 })
1876 (type: [am = s]
1877 {exp coef:0} = {
1878 0.46250000000E-01 1.0000000000
1879 })
1880 (type: [am = p am = p]
1881 {exp coef:0 coef:1} = {
1882 6091.0000000 0.51619400000E-04 -0.13925900000E-04
1883 1442.0000000 0.45846800000E-03 -0.12332400000E-03
1884 468.30000000 0.26150900000E-02 -0.70755100000E-03
1885 179.00000000 0.11255400000E-01 -0.30493900000E-02
1886 75.610000000 0.38457700000E-01 -0.10575200000E-01
1887 34.220000000 0.10508100000 -0.29409400000E-01
1888 16.230000000 0.21860300000 -0.63229600000E-01
1889 7.8900000000 0.33087400000 -0.98187000000E-01
1890 3.8980000000 0.32587900000 -0.10587000000
1891 })
1892 (type: [am = p]
1893 {exp coef:0} = {
1894 1.9330000000 1.0000000000
1895 })
1896 (type: [am = p]
1897 {exp coef:0} = {
1898 0.90570000000 1.0000000000
1899 })
1900 (type: [am = p]
1901 {exp coef:0} = {
1902 0.41400000000 1.0000000000
1903 })
1904 (type: [am = p]
1905 {exp coef:0} = {
1906 0.18360000000 1.0000000000
1907 })
1908 (type: [am = p]
1909 {exp coef:0} = {
1910 0.78590000000E-01 1.0000000000
1911 })
1912 (type: [am = p]
1913 {exp coef:0} = {
1914 0.31630000000E-01 1.0000000000
1915 })
1916 (type: [(am = d puream = 1)]
1917 {exp coef:0} = {
1918 6.2428000000 1.0000000000
1919 })
1920 (type: [(am = d puream = 1)]
1921 {exp coef:0} = {
1922 2.6906000000 1.0000000000
1923 })
1924 (type: [(am = d puream = 1)]
1925 {exp coef:0} = {
1926 1.1596000000 1.0000000000
1927 })
1928 (type: [(am = d puream = 1)]
1929 {exp coef:0} = {
1930 0.49980000000 1.0000000000
1931 })
1932 (type: [(am = d puream = 1)]
1933 {exp coef:0} = {
1934 0.21540000000 1.0000000000
1935 })
1936 (type: [(am = d puream = 1)]
1937 {exp coef:0} = {
1938 0.88850000000E-01 1.0000000000
1939 })
1940 (type: [(am = f puream = 1)]
1941 {exp coef:0} = {
1942 2.5327000000 1.0000000000
1943 })
1944 (type: [(am = f puream = 1)]
1945 {exp coef:0} = {
1946 1.2406000000 1.0000000000
1947 })
1948 (type: [(am = f puream = 1)]
1949 {exp coef:0} = {
1950 0.60770000000 1.0000000000
1951 })
1952 (type: [(am = f puream = 1)]
1953 {exp coef:0} = {
1954 0.29770000000 1.0000000000
1955 })
1956 (type: [(am = f puream = 1)]
1957 {exp coef:0} = {
1958 0.14650000000 1.0000000000
1959 })
1960 (type: [(am = g puream = 1)]
1961 {exp coef:0} = {
1962 1.5388000000 1.0000000000
1963 })
1964 (type: [(am = g puream = 1)]
1965 {exp coef:0} = {
1966 0.80500000000 1.0000000000
1967 })
1968 (type: [(am = g puream = 1)]
1969 {exp coef:0} = {
1970 0.42120000000 1.0000000000
1971 })
1972 (type: [(am = g puream = 1)]
1973 {exp coef:0} = {
1974 0.21770000000 1.0000000000
1975 })
1976 (type: [(am = h puream = 1)]
1977 {exp coef:0} = {
1978 1.5613000000 1.0000000000
1979 })
1980 (type: [(am = h puream = 1)]
1981 {exp coef:0} = {
1982 0.73970000000 1.0000000000
1983 })
1984 (type: [(am = h puream = 1)]
1985 {exp coef:0} = {
1986 0.43650000000 1.0000000000
1987 })
1988 (type: [(am = i puream = 1)]
1989 {exp coef:0} = {
1990 1.2572000000 1.0000000000
1991 })
1992 (type: [(am = i puream = 1)]
1993 {exp coef:0} = {
1994 0.80740000000 1.0000000000
1995 })
1996 ]
1997%
1998% BASIS SET: (21s,14p,5d,4f,3g,2h,1i) -> [8s,7p,5d,4f,3g,2h,1i]
1999% AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h,1i)
2000 argon: "aug-cc-pV6Z": [
2001 (type: [am = s am = s am = s]
2002 {exp coef:0 coef:1 coef:2} = {
2003 9149000.0000 0.13000000000E-05 -0.40000000000E-06 0.10000000000E-06
2004 1370000.0000 0.10400000000E-04 -0.30000000000E-05 0.90000000000E-06
2005 311900.00000 0.54900000000E-04 -0.15600000000E-04 0.49000000000E-05
2006 88650.000000 0.22960000000E-03 -0.65200000000E-04 0.20400000000E-04
2007 29330.000000 0.81030000000E-03 -0.23040000000E-03 0.72000000000E-04
2008 10930.000000 0.24853000000E-02 -0.70750000000E-03 0.22100000000E-03
2009 4480.0000000 0.68369000000E-02 -0.19573000000E-02 0.61250000000E-03
2010 1962.0000000 0.17619900000E-01 -0.50856000000E-02 0.15908000000E-02
2011 894.10000000 0.42875200000E-01 -0.12652800000E-01 0.39722000000E-02
2012 419.60000000 0.95485300000E-01 -0.29306500000E-01 0.92204000000E-02
2013 202.30000000 0.18506400000 -0.61771200000E-01 0.19636700000E-01
2014 99.840000000 0.28904200000 -0.11254100000 0.36257000000E-01
2015 50.070000000 0.31016600000 -0.16229300000 0.54172500000E-01
2016 25.140000000 0.17218300000 -0.11841200000 0.40999600000E-01
2017 11.810000000 0.28522700000E-01 0.14614800000 -0.55174400000E-01
2018 5.8820000000 -0.57570000000E-03 0.49775200000 -0.23875400000
2019 })
2020 (type: [am = s]
2021 {exp coef:0} = {
2022 2.9390000000 1.0000000000
2023 })
2024 (type: [am = s]
2025 {exp coef:0} = {
2026 1.4050000000 1.0000000000
2027 })
2028 (type: [am = s]
2029 {exp coef:0} = {
2030 0.69630000000 1.0000000000
2031 })
2032 (type: [am = s]
2033 {exp coef:0} = {
2034 0.31880000000 1.0000000000
2035 })
2036 (type: [am = s]
2037 {exp coef:0} = {
2038 0.14100000000 1.0000000000
2039 })
2040 (type: [am = s]
2041 {exp coef:0} = {
2042 0.53570000000E-01 1.0000000000
2043 })
2044 (type: [am = p am = p]
2045 {exp coef:0 coef:1} = {
2046 7050.0000000 0.50200000000E-04 -0.14000000000E-04
2047 1669.0000000 0.44540000000E-03 -0.12430000000E-03
2048 542.10000000 0.25480000000E-02 -0.71470000000E-03
2049 207.10000000 0.11015500000E-01 -0.30968000000E-02
2050 87.520000000 0.37849000000E-01 -0.10796100000E-01
2051 39.610000000 0.10435500000 -0.30353600000E-01
2052 18.780000000 0.21933500000 -0.65978500000E-01
2053 9.1300000000 0.33461500000 -0.10387700000
2054 4.5160000000 0.32677100000 -0.10995600000
2055 })
2056 (type: [am = p]
2057 {exp coef:0} = {
2058 2.2450000000 1.0000000000
2059 })
2060 (type: [am = p]
2061 {exp coef:0} = {
2062 1.0650000000 1.0000000000
2063 })
2064 (type: [am = p]
2065 {exp coef:0} = {
2066 0.48850000000 1.0000000000
2067 })
2068 (type: [am = p]
2069 {exp coef:0} = {
2070 0.21660000000 1.0000000000
2071 })
2072 (type: [am = p]
2073 {exp coef:0} = {
2074 0.92550000000E-01 1.0000000000
2075 })
2076 (type: [am = p]
2077 {exp coef:0} = {
2078 0.36780000000E-01 1.0000000000
2079 })
2080 (type: [(am = d puream = 1)]
2081 {exp coef:0} = {
2082 7.6327000000 1.0000000000
2083 })
2084 (type: [(am = d puream = 1)]
2085 {exp coef:0} = {
2086 3.2876000000 1.0000000000
2087 })
2088 (type: [(am = d puream = 1)]
2089 {exp coef:0} = {
2090 1.4160000000 1.0000000000
2091 })
2092 (type: [(am = d puream = 1)]
2093 {exp coef:0} = {
2094 0.60990000000 1.0000000000
2095 })
2096 (type: [(am = d puream = 1)]
2097 {exp coef:0} = {
2098 0.26270000000 1.0000000000
2099 })
2100 (type: [(am = d puream = 1)]
2101 {exp coef:0} = {
2102 0.10780000000 1.0000000000
2103 })
2104 (type: [(am = f puream = 1)]
2105 {exp coef:0} = {
2106 3.0582000000 1.0000000000
2107 })
2108 (type: [(am = f puream = 1)]
2109 {exp coef:0} = {
2110 1.5292000000 1.0000000000
2111 })
2112 (type: [(am = f puream = 1)]
2113 {exp coef:0} = {
2114 0.76470000000 1.0000000000
2115 })
2116 (type: [(am = f puream = 1)]
2117 {exp coef:0} = {
2118 0.38240000000 1.0000000000
2119 })
2120 (type: [(am = f puream = 1)]
2121 {exp coef:0} = {
2122 0.18300000000 1.0000000000
2123 })
2124 (type: [(am = g puream = 1)]
2125 {exp coef:0} = {
2126 1.8450000000 1.0000000000
2127 })
2128 (type: [(am = g puream = 1)]
2129 {exp coef:0} = {
2130 0.96570000000 1.0000000000
2131 })
2132 (type: [(am = g puream = 1)]
2133 {exp coef:0} = {
2134 0.50550000000 1.0000000000
2135 })
2136 (type: [(am = g puream = 1)]
2137 {exp coef:0} = {
2138 0.25550000000 1.0000000000
2139 })
2140 (type: [(am = h puream = 1)]
2141 {exp coef:0} = {
2142 1.8743000000 1.0000000000
2143 })
2144 (type: [(am = h puream = 1)]
2145 {exp coef:0} = {
2146 0.88710000000 1.0000000000
2147 })
2148 (type: [(am = h puream = 1)]
2149 {exp coef:0} = {
2150 0.52650000000 1.0000000000
2151 })
2152 (type: [(am = i puream = 1)]
2153 {exp coef:0} = {
2154 1.5066000000 1.0000000000
2155 })
2156 (type: [(am = i puream = 1)]
2157 {exp coef:0} = {
2158 0.99260000000 1.0000000000
2159 })
2160 ]
2161)
Note: See TracBrowser for help on using the repository browser.