1 | %BASIS "aug-cc-pCVQZ" CARTESIAN
|
---|
2 | basis:(
|
---|
3 | %Elements References
|
---|
4 | %-------- ----------
|
---|
5 | % H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
|
---|
6 | % He : D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 100, 2975 (1994).
|
---|
7 | %Li - Ne: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
|
---|
8 | %Na - Mg: D.E. Woon and T.H. Dunning, Jr. (to be published)
|
---|
9 | %Al - Ar: D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993).
|
---|
10 | %Ca : J. Koput and K.A. Peterson, J. Phys. Chem. A, 106, 9595 (2002).
|
---|
11 | %Elements References
|
---|
12 | %-------- ----------
|
---|
13 | % H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
|
---|
14 | %Li - Ne: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989) and D. E. Woon and
|
---|
15 | % T.H. Dunning, Jr. J. Chem. Phys. 103, 4572 (1995).
|
---|
16 | %Al - Ar: K.A. Peterson and T.H. Dunning, Jr. J. Chem. Phys. 117, 10548 (2002)
|
---|
17 | %Ca : J. Koput and K.A. Peterson, J. Phys. Chem. A, 106, 9595 (2002).
|
---|
18 | %Elements References
|
---|
19 | %-------- ---------
|
---|
20 | % H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
|
---|
21 | % He : D.E. Woon and T.H. Dunning, Jr., J. Chem. Phys. 100, 2975 (1994).
|
---|
22 | % B - F: R.A. Kendall, T.H. Dunning, Jr. and R.J. Harrison, J. Chem. Phys. 96,
|
---|
23 | % 6769 (1992).
|
---|
24 | %Al - Cl: D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993).
|
---|
25 | %
|
---|
26 | %
|
---|
27 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
|
---|
28 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f)
|
---|
29 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
30 | boron: "aug-cc-pCVQZ": [
|
---|
31 | (type: [am = s am = s]
|
---|
32 | {exp coef:0 coef:1} = {
|
---|
33 | 23870.000000 0.88000000000E-04 -0.18000000000E-04
|
---|
34 | 3575.0000000 0.68700000000E-03 -0.13900000000E-03
|
---|
35 | 812.80000000 0.36000000000E-02 -0.72500000000E-03
|
---|
36 | 229.70000000 0.14949000000E-01 -0.30630000000E-02
|
---|
37 | 74.690000000 0.51435000000E-01 -0.10581000000E-01
|
---|
38 | 26.810000000 0.14330200000 -0.31365000000E-01
|
---|
39 | 10.320000000 0.30093500000 -0.71012000000E-01
|
---|
40 | 4.1780000000 0.40352600000 -0.13210300000
|
---|
41 | 1.7270000000 0.22534000000 -0.12307200000
|
---|
42 | })
|
---|
43 | (type: [am = s]
|
---|
44 | {exp coef:0} = {
|
---|
45 | 0.47040000000 1.0000000000
|
---|
46 | })
|
---|
47 | (type: [am = s]
|
---|
48 | {exp coef:0} = {
|
---|
49 | 0.18960000000 1.0000000000
|
---|
50 | })
|
---|
51 | (type: [am = s]
|
---|
52 | {exp coef:0} = {
|
---|
53 | 0.73940000000E-01 1.0000000000
|
---|
54 | })
|
---|
55 | (type: [am = s]
|
---|
56 | {exp coef:0} = {
|
---|
57 | 4.8640000000 1.0000000000
|
---|
58 | })
|
---|
59 | (type: [am = s]
|
---|
60 | {exp coef:0} = {
|
---|
61 | 13.288000000 1.0000000000
|
---|
62 | })
|
---|
63 | (type: [am = s]
|
---|
64 | {exp coef:0} = {
|
---|
65 | 36.304000000 1.0000000000
|
---|
66 | })
|
---|
67 | (type: [am = s]
|
---|
68 | {exp coef:0} = {
|
---|
69 | 0.27210000000E-01 1.0000000000
|
---|
70 | })
|
---|
71 | (type: [am = p]
|
---|
72 | {exp coef:0} = {
|
---|
73 | 22.260000000 0.50950000000E-02
|
---|
74 | 5.0580000000 0.33206000000E-01
|
---|
75 | 1.4870000000 0.13231400000
|
---|
76 | })
|
---|
77 | (type: [am = p]
|
---|
78 | {exp coef:0} = {
|
---|
79 | 0.50710000000 1.0000000000
|
---|
80 | })
|
---|
81 | (type: [am = p]
|
---|
82 | {exp coef:0} = {
|
---|
83 | 0.18120000000 1.0000000000
|
---|
84 | })
|
---|
85 | (type: [am = p]
|
---|
86 | {exp coef:0} = {
|
---|
87 | 0.64630000000E-01 1.0000000000
|
---|
88 | })
|
---|
89 | (type: [am = p]
|
---|
90 | {exp coef:0} = {
|
---|
91 | 5.4890000000 1.0000000000
|
---|
92 | })
|
---|
93 | (type: [am = p]
|
---|
94 | {exp coef:0} = {
|
---|
95 | 16.302000000 1.0000000000
|
---|
96 | })
|
---|
97 | (type: [am = p]
|
---|
98 | {exp coef:0} = {
|
---|
99 | 48.418000000 1.0000000000
|
---|
100 | })
|
---|
101 | (type: [am = p]
|
---|
102 | {exp coef:0} = {
|
---|
103 | 0.18780000000E-01 1.0000000000
|
---|
104 | })
|
---|
105 | (type: [(am = d puream = 1)]
|
---|
106 | {exp coef:0} = {
|
---|
107 | 1.1100000000 1.0000000000
|
---|
108 | })
|
---|
109 | (type: [(am = d puream = 1)]
|
---|
110 | {exp coef:0} = {
|
---|
111 | 0.40200000000 1.0000000000
|
---|
112 | })
|
---|
113 | (type: [(am = d puream = 1)]
|
---|
114 | {exp coef:0} = {
|
---|
115 | 0.14500000000 1.0000000000
|
---|
116 | })
|
---|
117 | (type: [(am = d puream = 1)]
|
---|
118 | {exp coef:0} = {
|
---|
119 | 6.6400000000 1.0000000000
|
---|
120 | })
|
---|
121 | (type: [(am = d puream = 1)]
|
---|
122 | {exp coef:0} = {
|
---|
123 | 24.462000000 1.0000000000
|
---|
124 | })
|
---|
125 | (type: [(am = d puream = 1)]
|
---|
126 | {exp coef:0} = {
|
---|
127 | 0.46600000000E-01 1.0000000000
|
---|
128 | })
|
---|
129 | (type: [(am = f puream = 1)]
|
---|
130 | {exp coef:0} = {
|
---|
131 | 0.88200000000 1.0000000000
|
---|
132 | })
|
---|
133 | (type: [(am = f puream = 1)]
|
---|
134 | {exp coef:0} = {
|
---|
135 | 0.31100000000 1.0000000000
|
---|
136 | })
|
---|
137 | (type: [(am = f puream = 1)]
|
---|
138 | {exp coef:0} = {
|
---|
139 | 18.794000000 1.0000000000
|
---|
140 | })
|
---|
141 | (type: [(am = f puream = 1)]
|
---|
142 | {exp coef:0} = {
|
---|
143 | 0.11300000000 1.0000000000
|
---|
144 | })
|
---|
145 | (type: [(am = g puream = 1)]
|
---|
146 | {exp coef:0} = {
|
---|
147 | 0.67300000000 1.0000000000
|
---|
148 | })
|
---|
149 | (type: [(am = g puream = 1)]
|
---|
150 | {exp coef:0} = {
|
---|
151 | 0.27300000000 1.0000000000
|
---|
152 | })
|
---|
153 | ]
|
---|
154 | %
|
---|
155 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
|
---|
156 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f)
|
---|
157 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
158 | carbon: "aug-cc-pCVQZ": [
|
---|
159 | (type: [am = s am = s]
|
---|
160 | {exp coef:0 coef:1} = {
|
---|
161 | 33980.000000 0.91000000000E-04 -0.19000000000E-04
|
---|
162 | 5089.0000000 0.70400000000E-03 -0.15100000000E-03
|
---|
163 | 1157.0000000 0.36930000000E-02 -0.78500000000E-03
|
---|
164 | 326.60000000 0.15360000000E-01 -0.33240000000E-02
|
---|
165 | 106.10000000 0.52929000000E-01 -0.11512000000E-01
|
---|
166 | 38.110000000 0.14704300000 -0.34160000000E-01
|
---|
167 | 14.750000000 0.30563100000 -0.77173000000E-01
|
---|
168 | 6.0350000000 0.39934500000 -0.14149300000
|
---|
169 | 2.5300000000 0.21705100000 -0.11801900000
|
---|
170 | })
|
---|
171 | (type: [am = s]
|
---|
172 | {exp coef:0} = {
|
---|
173 | 0.73550000000 1.0000000000
|
---|
174 | })
|
---|
175 | (type: [am = s]
|
---|
176 | {exp coef:0} = {
|
---|
177 | 0.29050000000 1.0000000000
|
---|
178 | })
|
---|
179 | (type: [am = s]
|
---|
180 | {exp coef:0} = {
|
---|
181 | 0.11110000000 1.0000000000
|
---|
182 | })
|
---|
183 | (type: [am = s]
|
---|
184 | {exp coef:0} = {
|
---|
185 | 7.2160000000 1.0000000000
|
---|
186 | })
|
---|
187 | (type: [am = s]
|
---|
188 | {exp coef:0} = {
|
---|
189 | 19.570000000 1.0000000000
|
---|
190 | })
|
---|
191 | (type: [am = s]
|
---|
192 | {exp coef:0} = {
|
---|
193 | 53.073000000 1.0000000000
|
---|
194 | })
|
---|
195 | (type: [am = s]
|
---|
196 | {exp coef:0} = {
|
---|
197 | 0.41450000000E-01 1.0000000000
|
---|
198 | })
|
---|
199 | (type: [am = p]
|
---|
200 | {exp coef:0} = {
|
---|
201 | 34.510000000 0.53780000000E-02
|
---|
202 | 7.9150000000 0.36132000000E-01
|
---|
203 | 2.3680000000 0.14249300000
|
---|
204 | })
|
---|
205 | (type: [am = p]
|
---|
206 | {exp coef:0} = {
|
---|
207 | 0.81320000000 1.0000000000
|
---|
208 | })
|
---|
209 | (type: [am = p]
|
---|
210 | {exp coef:0} = {
|
---|
211 | 0.28900000000 1.0000000000
|
---|
212 | })
|
---|
213 | (type: [am = p]
|
---|
214 | {exp coef:0} = {
|
---|
215 | 0.10070000000 1.0000000000
|
---|
216 | })
|
---|
217 | (type: [am = p]
|
---|
218 | {exp coef:0} = {
|
---|
219 | 8.1820000000 1.0000000000
|
---|
220 | })
|
---|
221 | (type: [am = p]
|
---|
222 | {exp coef:0} = {
|
---|
223 | 24.186000000 1.0000000000
|
---|
224 | })
|
---|
225 | (type: [am = p]
|
---|
226 | {exp coef:0} = {
|
---|
227 | 71.494000000 1.0000000000
|
---|
228 | })
|
---|
229 | (type: [am = p]
|
---|
230 | {exp coef:0} = {
|
---|
231 | 0.32180000000E-01 1.0000000000
|
---|
232 | })
|
---|
233 | (type: [(am = d puream = 1)]
|
---|
234 | {exp coef:0} = {
|
---|
235 | 1.8480000000 1.0000000000
|
---|
236 | })
|
---|
237 | (type: [(am = d puream = 1)]
|
---|
238 | {exp coef:0} = {
|
---|
239 | 0.64900000000 1.0000000000
|
---|
240 | })
|
---|
241 | (type: [(am = d puream = 1)]
|
---|
242 | {exp coef:0} = {
|
---|
243 | 0.22800000000 1.0000000000
|
---|
244 | })
|
---|
245 | (type: [(am = d puream = 1)]
|
---|
246 | {exp coef:0} = {
|
---|
247 | 8.6560000000 1.0000000000
|
---|
248 | })
|
---|
249 | (type: [(am = d puream = 1)]
|
---|
250 | {exp coef:0} = {
|
---|
251 | 33.213000000 1.0000000000
|
---|
252 | })
|
---|
253 | (type: [(am = d puream = 1)]
|
---|
254 | {exp coef:0} = {
|
---|
255 | 0.76600000000E-01 1.0000000000
|
---|
256 | })
|
---|
257 | (type: [(am = f puream = 1)]
|
---|
258 | {exp coef:0} = {
|
---|
259 | 1.4190000000 1.0000000000
|
---|
260 | })
|
---|
261 | (type: [(am = f puream = 1)]
|
---|
262 | {exp coef:0} = {
|
---|
263 | 0.48500000000 1.0000000000
|
---|
264 | })
|
---|
265 | (type: [(am = f puream = 1)]
|
---|
266 | {exp coef:0} = {
|
---|
267 | 24.694000000 1.0000000000
|
---|
268 | })
|
---|
269 | (type: [(am = f puream = 1)]
|
---|
270 | {exp coef:0} = {
|
---|
271 | 0.18700000000 1.0000000000
|
---|
272 | })
|
---|
273 | (type: [(am = g puream = 1)]
|
---|
274 | {exp coef:0} = {
|
---|
275 | 1.0110000000 1.0000000000
|
---|
276 | })
|
---|
277 | (type: [(am = g puream = 1)]
|
---|
278 | {exp coef:0} = {
|
---|
279 | 0.42400000000 1.0000000000
|
---|
280 | })
|
---|
281 | ]
|
---|
282 | %
|
---|
283 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
|
---|
284 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f)
|
---|
285 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
286 | nitrogen: "aug-cc-pCVQZ": [
|
---|
287 | (type: [am = s am = s]
|
---|
288 | {exp coef:0 coef:1} = {
|
---|
289 | 45840.000000 0.92000000000E-04 -0.20000000000E-04
|
---|
290 | 6868.0000000 0.71700000000E-03 -0.15900000000E-03
|
---|
291 | 1563.0000000 0.37490000000E-02 -0.82400000000E-03
|
---|
292 | 442.40000000 0.15532000000E-01 -0.34780000000E-02
|
---|
293 | 144.30000000 0.53146000000E-01 -0.11966000000E-01
|
---|
294 | 52.180000000 0.14678700000 -0.35388000000E-01
|
---|
295 | 20.340000000 0.30466300000 -0.80077000000E-01
|
---|
296 | 8.3810000000 0.39768400000 -0.14672200000
|
---|
297 | 3.5290000000 0.21764100000 -0.11636000000
|
---|
298 | })
|
---|
299 | (type: [am = s]
|
---|
300 | {exp coef:0} = {
|
---|
301 | 1.0540000000 1.0000000000
|
---|
302 | })
|
---|
303 | (type: [am = s]
|
---|
304 | {exp coef:0} = {
|
---|
305 | 0.41180000000 1.0000000000
|
---|
306 | })
|
---|
307 | (type: [am = s]
|
---|
308 | {exp coef:0} = {
|
---|
309 | 0.15520000000 1.0000000000
|
---|
310 | })
|
---|
311 | (type: [am = s]
|
---|
312 | {exp coef:0} = {
|
---|
313 | 9.8620000000 1.0000000000
|
---|
314 | })
|
---|
315 | (type: [am = s]
|
---|
316 | {exp coef:0} = {
|
---|
317 | 26.627000000 1.0000000000
|
---|
318 | })
|
---|
319 | (type: [am = s]
|
---|
320 | {exp coef:0} = {
|
---|
321 | 71.894000000 1.0000000000
|
---|
322 | })
|
---|
323 | (type: [am = s]
|
---|
324 | {exp coef:0} = {
|
---|
325 | 0.54640000000E-01 1.0000000000
|
---|
326 | })
|
---|
327 | (type: [am = p]
|
---|
328 | {exp coef:0} = {
|
---|
329 | 49.330000000 0.55330000000E-02
|
---|
330 | 11.370000000 0.37962000000E-01
|
---|
331 | 3.4350000000 0.14902800000
|
---|
332 | })
|
---|
333 | (type: [am = p]
|
---|
334 | {exp coef:0} = {
|
---|
335 | 1.1820000000 1.0000000000
|
---|
336 | })
|
---|
337 | (type: [am = p]
|
---|
338 | {exp coef:0} = {
|
---|
339 | 0.41730000000 1.0000000000
|
---|
340 | })
|
---|
341 | (type: [am = p]
|
---|
342 | {exp coef:0} = {
|
---|
343 | 0.14280000000 1.0000000000
|
---|
344 | })
|
---|
345 | (type: [am = p]
|
---|
346 | {exp coef:0} = {
|
---|
347 | 11.320000000 1.0000000000
|
---|
348 | })
|
---|
349 | (type: [am = p]
|
---|
350 | {exp coef:0} = {
|
---|
351 | 33.349000000 1.0000000000
|
---|
352 | })
|
---|
353 | (type: [am = p]
|
---|
354 | {exp coef:0} = {
|
---|
355 | 98.245000000 1.0000000000
|
---|
356 | })
|
---|
357 | (type: [am = p]
|
---|
358 | {exp coef:0} = {
|
---|
359 | 0.44020000000E-01 1.0000000000
|
---|
360 | })
|
---|
361 | (type: [(am = d puream = 1)]
|
---|
362 | {exp coef:0} = {
|
---|
363 | 2.8370000000 1.0000000000
|
---|
364 | })
|
---|
365 | (type: [(am = d puream = 1)]
|
---|
366 | {exp coef:0} = {
|
---|
367 | 0.96800000000 1.0000000000
|
---|
368 | })
|
---|
369 | (type: [(am = d puream = 1)]
|
---|
370 | {exp coef:0} = {
|
---|
371 | 0.33500000000 1.0000000000
|
---|
372 | })
|
---|
373 | (type: [(am = d puream = 1)]
|
---|
374 | {exp coef:0} = {
|
---|
375 | 11.828000000 1.0000000000
|
---|
376 | })
|
---|
377 | (type: [(am = d puream = 1)]
|
---|
378 | {exp coef:0} = {
|
---|
379 | 45.218000000 1.0000000000
|
---|
380 | })
|
---|
381 | (type: [(am = d puream = 1)]
|
---|
382 | {exp coef:0} = {
|
---|
383 | 0.11100000000 1.0000000000
|
---|
384 | })
|
---|
385 | (type: [(am = f puream = 1)]
|
---|
386 | {exp coef:0} = {
|
---|
387 | 2.0270000000 1.0000000000
|
---|
388 | })
|
---|
389 | (type: [(am = f puream = 1)]
|
---|
390 | {exp coef:0} = {
|
---|
391 | 0.68500000000 1.0000000000
|
---|
392 | })
|
---|
393 | (type: [(am = f puream = 1)]
|
---|
394 | {exp coef:0} = {
|
---|
395 | 28.364000000 1.0000000000
|
---|
396 | })
|
---|
397 | (type: [(am = f puream = 1)]
|
---|
398 | {exp coef:0} = {
|
---|
399 | 0.24500000000 1.0000000000
|
---|
400 | })
|
---|
401 | (type: [(am = g puream = 1)]
|
---|
402 | {exp coef:0} = {
|
---|
403 | 1.4270000000 1.0000000000
|
---|
404 | })
|
---|
405 | (type: [(am = g puream = 1)]
|
---|
406 | {exp coef:0} = {
|
---|
407 | 0.55900000000 1.0000000000
|
---|
408 | })
|
---|
409 | ]
|
---|
410 | %
|
---|
411 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
|
---|
412 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f)
|
---|
413 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
414 | oxygen: "aug-cc-pCVQZ": [
|
---|
415 | (type: [am = s am = s]
|
---|
416 | {exp coef:0 coef:1} = {
|
---|
417 | 61420.000000 0.90000000000E-04 -0.20000000000E-04
|
---|
418 | 9199.0000000 0.69800000000E-03 -0.15900000000E-03
|
---|
419 | 2091.0000000 0.36640000000E-02 -0.82900000000E-03
|
---|
420 | 590.90000000 0.15218000000E-01 -0.35080000000E-02
|
---|
421 | 192.30000000 0.52423000000E-01 -0.12156000000E-01
|
---|
422 | 69.320000000 0.14592100000 -0.36261000000E-01
|
---|
423 | 26.970000000 0.30525800000 -0.82992000000E-01
|
---|
424 | 11.100000000 0.39850800000 -0.15209000000
|
---|
425 | 4.6820000000 0.21698000000 -0.11533100000
|
---|
426 | })
|
---|
427 | (type: [am = s]
|
---|
428 | {exp coef:0} = {
|
---|
429 | 1.4280000000 1.0000000000
|
---|
430 | })
|
---|
431 | (type: [am = s]
|
---|
432 | {exp coef:0} = {
|
---|
433 | 0.55470000000 1.0000000000
|
---|
434 | })
|
---|
435 | (type: [am = s]
|
---|
436 | {exp coef:0} = {
|
---|
437 | 0.20670000000 1.0000000000
|
---|
438 | })
|
---|
439 | (type: [am = s]
|
---|
440 | {exp coef:0} = {
|
---|
441 | 12.974000000 1.0000000000
|
---|
442 | })
|
---|
443 | (type: [am = s]
|
---|
444 | {exp coef:0} = {
|
---|
445 | 34.900000000 1.0000000000
|
---|
446 | })
|
---|
447 | (type: [am = s]
|
---|
448 | {exp coef:0} = {
|
---|
449 | 93.881000000 1.0000000000
|
---|
450 | })
|
---|
451 | (type: [am = s]
|
---|
452 | {exp coef:0} = {
|
---|
453 | 0.69590000000E-01 1.0000000000
|
---|
454 | })
|
---|
455 | (type: [am = p]
|
---|
456 | {exp coef:0} = {
|
---|
457 | 63.420000000 0.60440000000E-02
|
---|
458 | 14.660000000 0.41799000000E-01
|
---|
459 | 4.4590000000 0.16114300000
|
---|
460 | })
|
---|
461 | (type: [am = p]
|
---|
462 | {exp coef:0} = {
|
---|
463 | 1.5310000000 1.0000000000
|
---|
464 | })
|
---|
465 | (type: [am = p]
|
---|
466 | {exp coef:0} = {
|
---|
467 | 0.53020000000 1.0000000000
|
---|
468 | })
|
---|
469 | (type: [am = p]
|
---|
470 | {exp coef:0} = {
|
---|
471 | 0.17500000000 1.0000000000
|
---|
472 | })
|
---|
473 | (type: [am = p]
|
---|
474 | {exp coef:0} = {
|
---|
475 | 14.475000000 1.0000000000
|
---|
476 | })
|
---|
477 | (type: [am = p]
|
---|
478 | {exp coef:0} = {
|
---|
479 | 42.730000000 1.0000000000
|
---|
480 | })
|
---|
481 | (type: [am = p]
|
---|
482 | {exp coef:0} = {
|
---|
483 | 126.14000000 1.0000000000
|
---|
484 | })
|
---|
485 | (type: [am = p]
|
---|
486 | {exp coef:0} = {
|
---|
487 | 0.53480000000E-01 1.0000000000
|
---|
488 | })
|
---|
489 | (type: [(am = d puream = 1)]
|
---|
490 | {exp coef:0} = {
|
---|
491 | 3.7750000000 1.0000000000
|
---|
492 | })
|
---|
493 | (type: [(am = d puream = 1)]
|
---|
494 | {exp coef:0} = {
|
---|
495 | 1.3000000000 1.0000000000
|
---|
496 | })
|
---|
497 | (type: [(am = d puream = 1)]
|
---|
498 | {exp coef:0} = {
|
---|
499 | 0.44400000000 1.0000000000
|
---|
500 | })
|
---|
501 | (type: [(am = d puream = 1)]
|
---|
502 | {exp coef:0} = {
|
---|
503 | 14.927000000 1.0000000000
|
---|
504 | })
|
---|
505 | (type: [(am = d puream = 1)]
|
---|
506 | {exp coef:0} = {
|
---|
507 | 57.544000000 1.0000000000
|
---|
508 | })
|
---|
509 | (type: [(am = d puream = 1)]
|
---|
510 | {exp coef:0} = {
|
---|
511 | 0.15400000000 1.0000000000
|
---|
512 | })
|
---|
513 | (type: [(am = f puream = 1)]
|
---|
514 | {exp coef:0} = {
|
---|
515 | 2.6660000000 1.0000000000
|
---|
516 | })
|
---|
517 | (type: [(am = f puream = 1)]
|
---|
518 | {exp coef:0} = {
|
---|
519 | 0.85900000000 1.0000000000
|
---|
520 | })
|
---|
521 | (type: [(am = f puream = 1)]
|
---|
522 | {exp coef:0} = {
|
---|
523 | 26.483000000 1.0000000000
|
---|
524 | })
|
---|
525 | (type: [(am = f puream = 1)]
|
---|
526 | {exp coef:0} = {
|
---|
527 | 0.32400000000 1.0000000000
|
---|
528 | })
|
---|
529 | (type: [(am = g puream = 1)]
|
---|
530 | {exp coef:0} = {
|
---|
531 | 1.8460000000 1.0000000000
|
---|
532 | })
|
---|
533 | (type: [(am = g puream = 1)]
|
---|
534 | {exp coef:0} = {
|
---|
535 | 0.71400000000 1.0000000000
|
---|
536 | })
|
---|
537 | ]
|
---|
538 | %
|
---|
539 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
|
---|
540 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f)
|
---|
541 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
542 | fluorine: "aug-cc-pCVQZ": [
|
---|
543 | (type: [am = s am = s]
|
---|
544 | {exp coef:0 coef:1} = {
|
---|
545 | 74530.000000 0.95000000000E-04 -0.22000000000E-04
|
---|
546 | 11170.000000 0.73800000000E-03 -0.17200000000E-03
|
---|
547 | 2543.0000000 0.38580000000E-02 -0.89100000000E-03
|
---|
548 | 721.00000000 0.15926000000E-01 -0.37480000000E-02
|
---|
549 | 235.90000000 0.54289000000E-01 -0.12862000000E-01
|
---|
550 | 85.600000000 0.14951300000 -0.38061000000E-01
|
---|
551 | 33.550000000 0.30825200000 -0.86239000000E-01
|
---|
552 | 13.930000000 0.39485300000 -0.15586500000
|
---|
553 | 5.9150000000 0.21103100000 -0.11091400000
|
---|
554 | })
|
---|
555 | (type: [am = s]
|
---|
556 | {exp coef:0} = {
|
---|
557 | 1.8430000000 1.0000000000
|
---|
558 | })
|
---|
559 | (type: [am = s]
|
---|
560 | {exp coef:0} = {
|
---|
561 | 0.71240000000 1.0000000000
|
---|
562 | })
|
---|
563 | (type: [am = s]
|
---|
564 | {exp coef:0} = {
|
---|
565 | 0.26370000000 1.0000000000
|
---|
566 | })
|
---|
567 | (type: [am = s]
|
---|
568 | {exp coef:0} = {
|
---|
569 | 16.319000000 1.0000000000
|
---|
570 | })
|
---|
571 | (type: [am = s]
|
---|
572 | {exp coef:0} = {
|
---|
573 | 43.784000000 1.0000000000
|
---|
574 | })
|
---|
575 | (type: [am = s]
|
---|
576 | {exp coef:0} = {
|
---|
577 | 117.47200000 1.0000000000
|
---|
578 | })
|
---|
579 | (type: [am = s]
|
---|
580 | {exp coef:0} = {
|
---|
581 | 0.85940000000E-01 1.0000000000
|
---|
582 | })
|
---|
583 | (type: [am = p]
|
---|
584 | {exp coef:0} = {
|
---|
585 | 80.390000000 0.63470000000E-02
|
---|
586 | 18.630000000 0.44204000000E-01
|
---|
587 | 5.6940000000 0.16851400000
|
---|
588 | })
|
---|
589 | (type: [am = p]
|
---|
590 | {exp coef:0} = {
|
---|
591 | 1.9530000000 1.0000000000
|
---|
592 | })
|
---|
593 | (type: [am = p]
|
---|
594 | {exp coef:0} = {
|
---|
595 | 0.67020000000 1.0000000000
|
---|
596 | })
|
---|
597 | (type: [am = p]
|
---|
598 | {exp coef:0} = {
|
---|
599 | 0.21660000000 1.0000000000
|
---|
600 | })
|
---|
601 | (type: [am = p]
|
---|
602 | {exp coef:0} = {
|
---|
603 | 18.119000000 1.0000000000
|
---|
604 | })
|
---|
605 | (type: [am = p]
|
---|
606 | {exp coef:0} = {
|
---|
607 | 53.505000000 1.0000000000
|
---|
608 | })
|
---|
609 | (type: [am = p]
|
---|
610 | {exp coef:0} = {
|
---|
611 | 158.00100000 1.0000000000
|
---|
612 | })
|
---|
613 | (type: [am = p]
|
---|
614 | {exp coef:0} = {
|
---|
615 | 0.65680000000E-01 1.0000000000
|
---|
616 | })
|
---|
617 | (type: [(am = d puream = 1)]
|
---|
618 | {exp coef:0} = {
|
---|
619 | 5.0140000000 1.0000000000
|
---|
620 | })
|
---|
621 | (type: [(am = d puream = 1)]
|
---|
622 | {exp coef:0} = {
|
---|
623 | 1.7250000000 1.0000000000
|
---|
624 | })
|
---|
625 | (type: [(am = d puream = 1)]
|
---|
626 | {exp coef:0} = {
|
---|
627 | 0.58600000000 1.0000000000
|
---|
628 | })
|
---|
629 | (type: [(am = d puream = 1)]
|
---|
630 | {exp coef:0} = {
|
---|
631 | 18.943000000 1.0000000000
|
---|
632 | })
|
---|
633 | (type: [(am = d puream = 1)]
|
---|
634 | {exp coef:0} = {
|
---|
635 | 72.798000000 1.0000000000
|
---|
636 | })
|
---|
637 | (type: [(am = d puream = 1)]
|
---|
638 | {exp coef:0} = {
|
---|
639 | 0.20700000000 1.0000000000
|
---|
640 | })
|
---|
641 | (type: [(am = f puream = 1)]
|
---|
642 | {exp coef:0} = {
|
---|
643 | 3.5620000000 1.0000000000
|
---|
644 | })
|
---|
645 | (type: [(am = f puream = 1)]
|
---|
646 | {exp coef:0} = {
|
---|
647 | 1.1480000000 1.0000000000
|
---|
648 | })
|
---|
649 | (type: [(am = f puream = 1)]
|
---|
650 | {exp coef:0} = {
|
---|
651 | 25.161000000 1.0000000000
|
---|
652 | })
|
---|
653 | (type: [(am = f puream = 1)]
|
---|
654 | {exp coef:0} = {
|
---|
655 | 0.46000000000 1.0000000000
|
---|
656 | })
|
---|
657 | (type: [(am = g puream = 1)]
|
---|
658 | {exp coef:0} = {
|
---|
659 | 2.3760000000 1.0000000000
|
---|
660 | })
|
---|
661 | (type: [(am = g puream = 1)]
|
---|
662 | {exp coef:0} = {
|
---|
663 | 0.92400000000 1.0000000000
|
---|
664 | })
|
---|
665 | ]
|
---|
666 | %
|
---|
667 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
|
---|
668 | % AUGMENTING FUNCTIONS: Tight (s,p,d)
|
---|
669 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
670 | neon: "aug-cc-pCVQZ": [
|
---|
671 | (type: [am = s am = s]
|
---|
672 | {exp coef:0 coef:1} = {
|
---|
673 | 99920.000000 0.86000000000E-04 -0.20000000000E-04
|
---|
674 | 14960.000000 0.66900000000E-03 -0.15800000000E-03
|
---|
675 | 3399.0000000 0.35180000000E-02 -0.82400000000E-03
|
---|
676 | 958.90000000 0.14667000000E-01 -0.35000000000E-02
|
---|
677 | 311.20000000 0.50962000000E-01 -0.12233000000E-01
|
---|
678 | 111.70000000 0.14374400000 -0.37017000000E-01
|
---|
679 | 43.320000000 0.30456200000 -0.86113000000E-01
|
---|
680 | 17.800000000 0.40010500000 -0.15838100000
|
---|
681 | 7.5030000000 0.21864400000 -0.11428800000
|
---|
682 | })
|
---|
683 | (type: [am = s]
|
---|
684 | {exp coef:0} = {
|
---|
685 | 2.3370000000 1.0000000000
|
---|
686 | })
|
---|
687 | (type: [am = s]
|
---|
688 | {exp coef:0} = {
|
---|
689 | 0.90010000000 1.0000000000
|
---|
690 | })
|
---|
691 | (type: [am = s]
|
---|
692 | {exp coef:0} = {
|
---|
693 | 0.33010000000 1.0000000000
|
---|
694 | })
|
---|
695 | (type: [am = s]
|
---|
696 | {exp coef:0} = {
|
---|
697 | 20.180000000 1.0000000000
|
---|
698 | })
|
---|
699 | (type: [am = s]
|
---|
700 | {exp coef:0} = {
|
---|
701 | 54.042000000 1.0000000000
|
---|
702 | })
|
---|
703 | (type: [am = s]
|
---|
704 | {exp coef:0} = {
|
---|
705 | 144.72500000 1.0000000000
|
---|
706 | })
|
---|
707 | (type: [am = s]
|
---|
708 | {exp coef:0} = {
|
---|
709 | 0.10540000000 1.0000000000
|
---|
710 | })
|
---|
711 | (type: [am = p]
|
---|
712 | {exp coef:0} = {
|
---|
713 | 99.680000000 0.65660000000E-02
|
---|
714 | 23.150000000 0.45979000000E-01
|
---|
715 | 7.1080000000 0.17341900000
|
---|
716 | })
|
---|
717 | (type: [am = p]
|
---|
718 | {exp coef:0} = {
|
---|
719 | 2.4410000000 1.0000000000
|
---|
720 | })
|
---|
721 | (type: [am = p]
|
---|
722 | {exp coef:0} = {
|
---|
723 | 0.83390000000 1.0000000000
|
---|
724 | })
|
---|
725 | (type: [am = p]
|
---|
726 | {exp coef:0} = {
|
---|
727 | 0.26620000000 1.0000000000
|
---|
728 | })
|
---|
729 | (type: [am = p]
|
---|
730 | {exp coef:0} = {
|
---|
731 | 22.222000000 1.0000000000
|
---|
732 | })
|
---|
733 | (type: [am = p]
|
---|
734 | {exp coef:0} = {
|
---|
735 | 65.622000000 1.0000000000
|
---|
736 | })
|
---|
737 | (type: [am = p]
|
---|
738 | {exp coef:0} = {
|
---|
739 | 193.78000000 1.0000000000
|
---|
740 | })
|
---|
741 | (type: [am = p]
|
---|
742 | {exp coef:0} = {
|
---|
743 | 0.81780000000E-01 1.0000000000
|
---|
744 | })
|
---|
745 | (type: [(am = d puream = 1)]
|
---|
746 | {exp coef:0} = {
|
---|
747 | 6.4710000000 1.0000000000
|
---|
748 | })
|
---|
749 | (type: [(am = d puream = 1)]
|
---|
750 | {exp coef:0} = {
|
---|
751 | 2.2130000000 1.0000000000
|
---|
752 | })
|
---|
753 | (type: [(am = d puream = 1)]
|
---|
754 | {exp coef:0} = {
|
---|
755 | 0.74700000000 1.0000000000
|
---|
756 | })
|
---|
757 | (type: [(am = d puream = 1)]
|
---|
758 | {exp coef:0} = {
|
---|
759 | 23.613000000 1.0000000000
|
---|
760 | })
|
---|
761 | (type: [(am = d puream = 1)]
|
---|
762 | {exp coef:0} = {
|
---|
763 | 90.107000000 1.0000000000
|
---|
764 | })
|
---|
765 | (type: [(am = d puream = 1)]
|
---|
766 | {exp coef:0} = {
|
---|
767 | 0.27300000000 1.0000000000
|
---|
768 | })
|
---|
769 | (type: [(am = f puream = 1)]
|
---|
770 | {exp coef:0} = {
|
---|
771 | 4.6570000000 1.0000000000
|
---|
772 | })
|
---|
773 | (type: [(am = f puream = 1)]
|
---|
774 | {exp coef:0} = {
|
---|
775 | 1.5240000000 1.0000000000
|
---|
776 | })
|
---|
777 | (type: [(am = f puream = 1)]
|
---|
778 | {exp coef:0} = {
|
---|
779 | 28.830000000 1.0000000000
|
---|
780 | })
|
---|
781 | (type: [(am = f puream = 1)]
|
---|
782 | {exp coef:0} = {
|
---|
783 | 0.68900000000 1.0000000000
|
---|
784 | })
|
---|
785 | (type: [(am = g puream = 1)]
|
---|
786 | {exp coef:0} = {
|
---|
787 | 2.9830000000 1.0000000000
|
---|
788 | })
|
---|
789 | (type: [(am = g puream = 1)]
|
---|
790 | {exp coef:0} = {
|
---|
791 | 1.2240000000 1.0000000000
|
---|
792 | })
|
---|
793 | ]
|
---|
794 | %
|
---|
795 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
|
---|
796 | % AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g)
|
---|
797 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
798 | aluminum: "aug-cc-pCVQZ": [
|
---|
799 | (type: [am = s am = s am = s]
|
---|
800 | {exp coef:0 coef:1 coef:2} = {
|
---|
801 | 419600.00000 0.27821900000E-04 -0.72375400000E-05 0.16715000000E-05
|
---|
802 | 62830.000000 0.21633000000E-03 -0.56173300000E-04 0.12964100000E-04
|
---|
803 | 14290.000000 0.11375400000E-02 -0.29652800000E-03 0.68510100000E-04
|
---|
804 | 4038.0000000 0.47963500000E-02 -0.12491300000E-02 0.28827400000E-03
|
---|
805 | 1312.0000000 0.17238900000E-01 -0.45510100000E-02 0.10527600000E-02
|
---|
806 | 470.50000000 0.53806600000E-01 -0.14439300000E-01 0.33387800000E-02
|
---|
807 | 181.80000000 0.14132600000 -0.40346400000E-01 0.93921700000E-02
|
---|
808 | 74.460000000 0.28926800000 -0.92261800000E-01 0.21604700000E-01
|
---|
809 | 31.900000000 0.38482500000 -0.16451000000 0.39587300000E-01
|
---|
810 | 13.960000000 0.23285200000 -0.14129600000 0.34918000000E-01
|
---|
811 | 5.1800000000 0.29333000000E-01 0.19536500000 -0.52841500000E-01
|
---|
812 | 2.2650000000 -0.30057400000E-02 0.57247500000 -0.19187800000
|
---|
813 | 0.96640000000 0.16667300000E-02 0.37404100000 -0.25411500000
|
---|
814 | })
|
---|
815 | (type: [am = s]
|
---|
816 | {exp coef:0} = {
|
---|
817 | 0.24470000000 1.0000000000
|
---|
818 | })
|
---|
819 | (type: [am = s]
|
---|
820 | {exp coef:0} = {
|
---|
821 | 0.11840000000 1.0000000000
|
---|
822 | })
|
---|
823 | (type: [am = s]
|
---|
824 | {exp coef:0} = {
|
---|
825 | 0.50210000000E-01 1.0000000000
|
---|
826 | })
|
---|
827 | (type: [am = s]
|
---|
828 | {exp coef:0} = {
|
---|
829 | 9.7290000000 1.0000000000
|
---|
830 | })
|
---|
831 | (type: [am = s]
|
---|
832 | {exp coef:0} = {
|
---|
833 | 4.8700000000 1.0000000000
|
---|
834 | })
|
---|
835 | (type: [am = s]
|
---|
836 | {exp coef:0} = {
|
---|
837 | 2.4370000000 1.0000000000
|
---|
838 | })
|
---|
839 | (type: [am = s]
|
---|
840 | {exp coef:0} = {
|
---|
841 | 0.18300000000E-01 1.0000000000
|
---|
842 | })
|
---|
843 | (type: [am = p am = p]
|
---|
844 | {exp coef:0 coef:1} = {
|
---|
845 | 891.30000000 0.49175500000E-03 -0.88869500000E-04
|
---|
846 | 211.30000000 0.41584300000E-02 -0.74582300000E-03
|
---|
847 | 68.280000000 0.21253800000E-01 -0.38702500000E-02
|
---|
848 | 25.700000000 0.76405800000E-01 -0.13935000000E-01
|
---|
849 | 10.630000000 0.19427700000 -0.36686000000E-01
|
---|
850 | 4.6020000000 0.33442800000 -0.62779700000E-01
|
---|
851 | 2.0150000000 0.37502600000 -0.78960200000E-01
|
---|
852 | 0.87060000000 0.20404100000 -0.28858900000E-01
|
---|
853 | })
|
---|
854 | (type: [am = p]
|
---|
855 | {exp coef:0} = {
|
---|
856 | 0.29720000000 1.0000000000
|
---|
857 | })
|
---|
858 | (type: [am = p]
|
---|
859 | {exp coef:0} = {
|
---|
860 | 0.11000000000 1.0000000000
|
---|
861 | })
|
---|
862 | (type: [am = p]
|
---|
863 | {exp coef:0} = {
|
---|
864 | 0.39890000000E-01 1.0000000000
|
---|
865 | })
|
---|
866 | (type: [am = p]
|
---|
867 | {exp coef:0} = {
|
---|
868 | 10.000000000 1.0000000000
|
---|
869 | })
|
---|
870 | (type: [am = p]
|
---|
871 | {exp coef:0} = {
|
---|
872 | 4.5140000000 1.0000000000
|
---|
873 | })
|
---|
874 | (type: [am = p]
|
---|
875 | {exp coef:0} = {
|
---|
876 | 2.0380000000 1.0000000000
|
---|
877 | })
|
---|
878 | (type: [am = p]
|
---|
879 | {exp coef:0} = {
|
---|
880 | 0.12100000000E-01 1.0000000000
|
---|
881 | })
|
---|
882 | (type: [(am = d puream = 1)]
|
---|
883 | {exp coef:0} = {
|
---|
884 | 0.80400000000E-01 1.0000000000
|
---|
885 | })
|
---|
886 | (type: [(am = d puream = 1)]
|
---|
887 | {exp coef:0} = {
|
---|
888 | 0.19900000000 1.0000000000
|
---|
889 | })
|
---|
890 | (type: [(am = d puream = 1)]
|
---|
891 | {exp coef:0} = {
|
---|
892 | 0.49400000000 1.0000000000
|
---|
893 | })
|
---|
894 | (type: [(am = d puream = 1)]
|
---|
895 | {exp coef:0} = {
|
---|
896 | 14.835000000 1.0000000000
|
---|
897 | })
|
---|
898 | (type: [(am = d puream = 1)]
|
---|
899 | {exp coef:0} = {
|
---|
900 | 5.6370000000 1.0000000000
|
---|
901 | })
|
---|
902 | (type: [(am = d puream = 1)]
|
---|
903 | {exp coef:0} = {
|
---|
904 | 2.1420000000 1.0000000000
|
---|
905 | })
|
---|
906 | (type: [(am = d puream = 1)]
|
---|
907 | {exp coef:0} = {
|
---|
908 | 0.28200000000E-01 1.0000000000
|
---|
909 | })
|
---|
910 | (type: [(am = f puream = 1)]
|
---|
911 | {exp coef:0} = {
|
---|
912 | 0.15400000000 1.0000000000
|
---|
913 | })
|
---|
914 | (type: [(am = f puream = 1)]
|
---|
915 | {exp coef:0} = {
|
---|
916 | 0.40100000000 1.0000000000
|
---|
917 | })
|
---|
918 | (type: [(am = f puream = 1)]
|
---|
919 | {exp coef:0} = {
|
---|
920 | 9.8530000000 1.0000000000
|
---|
921 | })
|
---|
922 | (type: [(am = f puream = 1)]
|
---|
923 | {exp coef:0} = {
|
---|
924 | 3.5250000000 1.0000000000
|
---|
925 | })
|
---|
926 | (type: [(am = f puream = 1)]
|
---|
927 | {exp coef:0} = {
|
---|
928 | 0.58200000000E-01 1.0000000000
|
---|
929 | })
|
---|
930 | (type: [(am = g puream = 1)]
|
---|
931 | {exp coef:0} = {
|
---|
932 | 0.35700000000 1.0000000000
|
---|
933 | })
|
---|
934 | (type: [(am = g puream = 1)]
|
---|
935 | {exp coef:0} = {
|
---|
936 | 6.8940000000 1.0000000000
|
---|
937 | })
|
---|
938 | (type: [(am = g puream = 1)]
|
---|
939 | {exp coef:0} = {
|
---|
940 | 0.15300000000 1.0000000000
|
---|
941 | })
|
---|
942 | ]
|
---|
943 | %
|
---|
944 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
|
---|
945 | % AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g)
|
---|
946 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
947 | silicon: "aug-cc-pCVQZ": [
|
---|
948 | (type: [am = s am = s am = s]
|
---|
949 | {exp coef:0 coef:1 coef:2} = {
|
---|
950 | 513000.00000 0.26092000000E-04 -0.69488000000E-05 0.17806800000E-05
|
---|
951 | 76820.000000 0.20290500000E-03 -0.53964100000E-04 0.13814800000E-04
|
---|
952 | 17470.000000 0.10671500000E-02 -0.28471600000E-03 0.73000500000E-04
|
---|
953 | 4935.0000000 0.45059700000E-02 -0.12020300000E-02 0.30766600000E-03
|
---|
954 | 1602.0000000 0.16235900000E-01 -0.43839700000E-02 0.11256300000E-02
|
---|
955 | 574.10000000 0.50891300000E-01 -0.13977600000E-01 0.35843500000E-02
|
---|
956 | 221.50000000 0.13515500000 -0.39351600000E-01 0.10172800000E-01
|
---|
957 | 90.540000000 0.28129200000 -0.91428300000E-01 0.23752000000E-01
|
---|
958 | 38.740000000 0.38533600000 -0.16560900000 0.44348300000E-01
|
---|
959 | 16.950000000 0.24565100000 -0.15250500000 0.41904100000E-01
|
---|
960 | 6.4520000000 0.34314500000E-01 0.16852400000 -0.50250400000E-01
|
---|
961 | 2.8740000000 -0.33488400000E-02 0.56928400000 -0.21657800000
|
---|
962 | 1.2500000000 0.18762500000E-02 0.39805600000 -0.28644800000
|
---|
963 | })
|
---|
964 | (type: [am = s]
|
---|
965 | {exp coef:0} = {
|
---|
966 | 0.35990000000 1.0000000000
|
---|
967 | })
|
---|
968 | (type: [am = s]
|
---|
969 | {exp coef:0} = {
|
---|
970 | 0.16990000000 1.0000000000
|
---|
971 | })
|
---|
972 | (type: [am = s]
|
---|
973 | {exp coef:0} = {
|
---|
974 | 0.70660000000E-01 1.0000000000
|
---|
975 | })
|
---|
976 | (type: [am = s]
|
---|
977 | {exp coef:0} = {
|
---|
978 | 12.164000000 1.0000000000
|
---|
979 | })
|
---|
980 | (type: [am = s]
|
---|
981 | {exp coef:0} = {
|
---|
982 | 6.1870000000 1.0000000000
|
---|
983 | })
|
---|
984 | (type: [am = s]
|
---|
985 | {exp coef:0} = {
|
---|
986 | 3.1470000000 1.0000000000
|
---|
987 | })
|
---|
988 | (type: [am = s]
|
---|
989 | {exp coef:0} = {
|
---|
990 | 0.27500000000E-01 1.0000000000
|
---|
991 | })
|
---|
992 | (type: [am = p am = p]
|
---|
993 | {exp coef:0 coef:1} = {
|
---|
994 | 1122.0000000 0.44814300000E-03 -0.96488300000E-04
|
---|
995 | 266.00000000 0.38163900000E-02 -0.81197100000E-03
|
---|
996 | 85.920000000 0.19810500000E-01 -0.43008700000E-02
|
---|
997 | 32.330000000 0.72701700000E-01 -0.15750200000E-01
|
---|
998 | 13.370000000 0.18983900000 -0.42954100000E-01
|
---|
999 | 5.8000000000 0.33567200000 -0.75257400000E-01
|
---|
1000 | 2.5590000000 0.37936500000 -0.97144600000E-01
|
---|
1001 | 1.1240000000 0.20119300000 -0.22750700000E-01
|
---|
1002 | })
|
---|
1003 | (type: [am = p]
|
---|
1004 | {exp coef:0} = {
|
---|
1005 | 0.39880000000 1.0000000000
|
---|
1006 | })
|
---|
1007 | (type: [am = p]
|
---|
1008 | {exp coef:0} = {
|
---|
1009 | 0.15330000000 1.0000000000
|
---|
1010 | })
|
---|
1011 | (type: [am = p]
|
---|
1012 | {exp coef:0} = {
|
---|
1013 | 0.57280000000E-01 1.0000000000
|
---|
1014 | })
|
---|
1015 | (type: [am = p]
|
---|
1016 | {exp coef:0} = {
|
---|
1017 | 12.646000000 1.0000000000
|
---|
1018 | })
|
---|
1019 | (type: [am = p]
|
---|
1020 | {exp coef:0} = {
|
---|
1021 | 5.7470000000 1.0000000000
|
---|
1022 | })
|
---|
1023 | (type: [am = p]
|
---|
1024 | {exp coef:0} = {
|
---|
1025 | 2.6120000000 1.0000000000
|
---|
1026 | })
|
---|
1027 | (type: [am = p]
|
---|
1028 | {exp coef:0} = {
|
---|
1029 | 0.20000000000E-01 1.0000000000
|
---|
1030 | })
|
---|
1031 | (type: [(am = d puream = 1)]
|
---|
1032 | {exp coef:0} = {
|
---|
1033 | 0.12000000000 1.0000000000
|
---|
1034 | })
|
---|
1035 | (type: [(am = d puream = 1)]
|
---|
1036 | {exp coef:0} = {
|
---|
1037 | 0.30200000000 1.0000000000
|
---|
1038 | })
|
---|
1039 | (type: [(am = d puream = 1)]
|
---|
1040 | {exp coef:0} = {
|
---|
1041 | 0.76000000000 1.0000000000
|
---|
1042 | })
|
---|
1043 | (type: [(am = d puream = 1)]
|
---|
1044 | {exp coef:0} = {
|
---|
1045 | 19.015000000 1.0000000000
|
---|
1046 | })
|
---|
1047 | (type: [(am = d puream = 1)]
|
---|
1048 | {exp coef:0} = {
|
---|
1049 | 7.4010000000 1.0000000000
|
---|
1050 | })
|
---|
1051 | (type: [(am = d puream = 1)]
|
---|
1052 | {exp coef:0} = {
|
---|
1053 | 2.8810000000 1.0000000000
|
---|
1054 | })
|
---|
1055 | (type: [(am = d puream = 1)]
|
---|
1056 | {exp coef:0} = {
|
---|
1057 | 0.43500000000E-01 1.0000000000
|
---|
1058 | })
|
---|
1059 | (type: [(am = f puream = 1)]
|
---|
1060 | {exp coef:0} = {
|
---|
1061 | 0.21200000000 1.0000000000
|
---|
1062 | })
|
---|
1063 | (type: [(am = f puream = 1)]
|
---|
1064 | {exp coef:0} = {
|
---|
1065 | 0.54100000000 1.0000000000
|
---|
1066 | })
|
---|
1067 | (type: [(am = f puream = 1)]
|
---|
1068 | {exp coef:0} = {
|
---|
1069 | 11.925000000 1.0000000000
|
---|
1070 | })
|
---|
1071 | (type: [(am = f puream = 1)]
|
---|
1072 | {exp coef:0} = {
|
---|
1073 | 4.3040000000 1.0000000000
|
---|
1074 | })
|
---|
1075 | (type: [(am = f puream = 1)]
|
---|
1076 | {exp coef:0} = {
|
---|
1077 | 0.84600000000E-01 1.0000000000
|
---|
1078 | })
|
---|
1079 | (type: [(am = g puream = 1)]
|
---|
1080 | {exp coef:0} = {
|
---|
1081 | 0.46100000000 1.0000000000
|
---|
1082 | })
|
---|
1083 | (type: [(am = g puream = 1)]
|
---|
1084 | {exp coef:0} = {
|
---|
1085 | 8.5770000000 1.0000000000
|
---|
1086 | })
|
---|
1087 | (type: [(am = g puream = 1)]
|
---|
1088 | {exp coef:0} = {
|
---|
1089 | 0.21200000000 1.0000000000
|
---|
1090 | })
|
---|
1091 | ]
|
---|
1092 | %
|
---|
1093 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
|
---|
1094 | % AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g)
|
---|
1095 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
1096 | phosphorus: "aug-cc-pCVQZ": [
|
---|
1097 | (type: [am = s am = s am = s]
|
---|
1098 | {exp coef:0 coef:1 coef:2} = {
|
---|
1099 | 615200.00000 0.24745000000E-04 -0.67220500000E-05 0.18474000000E-05
|
---|
1100 | 92120.000000 0.19246500000E-03 -0.52231100000E-04 0.14338000000E-04
|
---|
1101 | 20950.000000 0.10120200000E-02 -0.27536100000E-03 0.75722800000E-04
|
---|
1102 | 5920.0000000 0.42726100000E-02 -0.11630700000E-02 0.31920500000E-03
|
---|
1103 | 1922.0000000 0.15416100000E-01 -0.42428100000E-02 0.11685100000E-02
|
---|
1104 | 688.00000000 0.48597600000E-01 -0.13611400000E-01 0.37426700000E-02
|
---|
1105 | 265.00000000 0.13006000000 -0.38511400000E-01 0.10681700000E-01
|
---|
1106 | 108.20000000 0.27451400000 -0.90664300000E-01 0.25265700000E-01
|
---|
1107 | 46.220000000 0.38540200000 -0.16658400000 0.47928300000E-01
|
---|
1108 | 20.230000000 0.25593400000 -0.16144700000 0.47709600000E-01
|
---|
1109 | 7.8590000000 0.39123700000E-01 0.14678100000 -0.46652500000E-01
|
---|
1110 | 3.5470000000 -0.36801000000E-02 0.56668200000 -0.23496800000
|
---|
1111 | 1.5640000000 0.20821100000E-02 0.41643300000 -0.31133700000
|
---|
1112 | })
|
---|
1113 | (type: [am = s]
|
---|
1114 | {exp coef:0} = {
|
---|
1115 | 0.48880000000 1.0000000000
|
---|
1116 | })
|
---|
1117 | (type: [am = s]
|
---|
1118 | {exp coef:0} = {
|
---|
1119 | 0.22660000000 1.0000000000
|
---|
1120 | })
|
---|
1121 | (type: [am = s]
|
---|
1122 | {exp coef:0} = {
|
---|
1123 | 0.93310000000E-01 1.0000000000
|
---|
1124 | })
|
---|
1125 | (type: [am = s]
|
---|
1126 | {exp coef:0} = {
|
---|
1127 | 14.831000000 1.0000000000
|
---|
1128 | })
|
---|
1129 | (type: [am = s]
|
---|
1130 | {exp coef:0} = {
|
---|
1131 | 7.6400000000 1.0000000000
|
---|
1132 | })
|
---|
1133 | (type: [am = s]
|
---|
1134 | {exp coef:0} = {
|
---|
1135 | 3.9350000000 1.0000000000
|
---|
1136 | })
|
---|
1137 | (type: [am = s]
|
---|
1138 | {exp coef:0} = {
|
---|
1139 | 0.35400000000E-01 1.0000000000
|
---|
1140 | })
|
---|
1141 | (type: [am = p am = p]
|
---|
1142 | {exp coef:0 coef:1} = {
|
---|
1143 | 1367.0000000 0.42101500000E-03 -0.10082700000E-03
|
---|
1144 | 324.00000000 0.36098500000E-02 -0.85449900000E-03
|
---|
1145 | 104.60000000 0.18921700000E-01 -0.45711600000E-02
|
---|
1146 | 39.370000000 0.70556000000E-01 -0.17032700000E-01
|
---|
1147 | 16.260000000 0.18815700000 -0.47520400000E-01
|
---|
1148 | 7.0560000000 0.33870900000 -0.85278600000E-01
|
---|
1149 | 3.1300000000 0.38194300000 -0.10967600000
|
---|
1150 | 1.3940000000 0.19526100000 -0.16118100000E-01
|
---|
1151 | })
|
---|
1152 | (type: [am = p]
|
---|
1153 | {exp coef:0} = {
|
---|
1154 | 0.51790000000 1.0000000000
|
---|
1155 | })
|
---|
1156 | (type: [am = p]
|
---|
1157 | {exp coef:0} = {
|
---|
1158 | 0.20320000000 1.0000000000
|
---|
1159 | })
|
---|
1160 | (type: [am = p]
|
---|
1161 | {exp coef:0} = {
|
---|
1162 | 0.76980000000E-01 1.0000000000
|
---|
1163 | })
|
---|
1164 | (type: [am = p]
|
---|
1165 | {exp coef:0} = {
|
---|
1166 | 15.523000000 1.0000000000
|
---|
1167 | })
|
---|
1168 | (type: [am = p]
|
---|
1169 | {exp coef:0} = {
|
---|
1170 | 7.0730000000 1.0000000000
|
---|
1171 | })
|
---|
1172 | (type: [am = p]
|
---|
1173 | {exp coef:0} = {
|
---|
1174 | 3.2230000000 1.0000000000
|
---|
1175 | })
|
---|
1176 | (type: [am = p]
|
---|
1177 | {exp coef:0} = {
|
---|
1178 | 0.27200000000E-01 1.0000000000
|
---|
1179 | })
|
---|
1180 | (type: [(am = d puream = 1)]
|
---|
1181 | {exp coef:0} = {
|
---|
1182 | 0.16500000000 1.0000000000
|
---|
1183 | })
|
---|
1184 | (type: [(am = d puream = 1)]
|
---|
1185 | {exp coef:0} = {
|
---|
1186 | 0.41300000000 1.0000000000
|
---|
1187 | })
|
---|
1188 | (type: [(am = d puream = 1)]
|
---|
1189 | {exp coef:0} = {
|
---|
1190 | 1.0360000000 1.0000000000
|
---|
1191 | })
|
---|
1192 | (type: [(am = d puream = 1)]
|
---|
1193 | {exp coef:0} = {
|
---|
1194 | 23.417000000 1.0000000000
|
---|
1195 | })
|
---|
1196 | (type: [(am = d puream = 1)]
|
---|
1197 | {exp coef:0} = {
|
---|
1198 | 9.2500000000 1.0000000000
|
---|
1199 | })
|
---|
1200 | (type: [(am = d puream = 1)]
|
---|
1201 | {exp coef:0} = {
|
---|
1202 | 3.6540000000 1.0000000000
|
---|
1203 | })
|
---|
1204 | (type: [(am = d puream = 1)]
|
---|
1205 | {exp coef:0} = {
|
---|
1206 | 0.59400000000E-01 1.0000000000
|
---|
1207 | })
|
---|
1208 | (type: [(am = f puream = 1)]
|
---|
1209 | {exp coef:0} = {
|
---|
1210 | 0.28000000000 1.0000000000
|
---|
1211 | })
|
---|
1212 | (type: [(am = f puream = 1)]
|
---|
1213 | {exp coef:0} = {
|
---|
1214 | 0.70300000000 1.0000000000
|
---|
1215 | })
|
---|
1216 | (type: [(am = f puream = 1)]
|
---|
1217 | {exp coef:0} = {
|
---|
1218 | 14.207000000 1.0000000000
|
---|
1219 | })
|
---|
1220 | (type: [(am = f puream = 1)]
|
---|
1221 | {exp coef:0} = {
|
---|
1222 | 5.1610000000 1.0000000000
|
---|
1223 | })
|
---|
1224 | (type: [(am = f puream = 1)]
|
---|
1225 | {exp coef:0} = {
|
---|
1226 | 0.10900000000 1.0000000000
|
---|
1227 | })
|
---|
1228 | (type: [(am = g puream = 1)]
|
---|
1229 | {exp coef:0} = {
|
---|
1230 | 0.59700000000 1.0000000000
|
---|
1231 | })
|
---|
1232 | (type: [(am = g puream = 1)]
|
---|
1233 | {exp coef:0} = {
|
---|
1234 | 10.448000000 1.0000000000
|
---|
1235 | })
|
---|
1236 | (type: [(am = g puream = 1)]
|
---|
1237 | {exp coef:0} = {
|
---|
1238 | 0.25000000000 1.0000000000
|
---|
1239 | })
|
---|
1240 | ]
|
---|
1241 | %
|
---|
1242 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
|
---|
1243 | % AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g)
|
---|
1244 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
1245 | sulfur: "aug-cc-pCVQZ": [
|
---|
1246 | (type: [am = s am = s am = s]
|
---|
1247 | {exp coef:0 coef:1 coef:2} = {
|
---|
1248 | 727800.00000 0.23602500000E-04 -0.65217900000E-05 0.18940600000E-05
|
---|
1249 | 109000.00000 0.18348200000E-03 -0.50663100000E-04 0.14694800000E-04
|
---|
1250 | 24800.000000 0.96427800000E-03 -0.26683300000E-03 0.77546000000E-04
|
---|
1251 | 7014.0000000 0.40653700000E-02 -0.11260100000E-02 0.32650900000E-03
|
---|
1252 | 2278.0000000 0.14697300000E-01 -0.41118600000E-02 0.11968600000E-02
|
---|
1253 | 814.70000000 0.46508100000E-01 -0.13245400000E-01 0.38479900000E-02
|
---|
1254 | 313.40000000 0.12550800000 -0.37700400000E-01 0.11053900000E-01
|
---|
1255 | 127.70000000 0.26843300000 -0.89855400000E-01 0.26464500000E-01
|
---|
1256 | 54.480000000 0.38480900000 -0.16709800000 0.50877100000E-01
|
---|
1257 | 23.850000000 0.26537200000 -0.16935400000 0.53003000000E-01
|
---|
1258 | 9.4280000000 0.43732600000E-01 0.12782400000 -0.42551800000E-01
|
---|
1259 | 4.2900000000 -0.37880700000E-02 0.56486200000 -0.25085300000
|
---|
1260 | 1.9090000000 0.21808300000E-02 0.43176700000 -0.33315200000
|
---|
1261 | })
|
---|
1262 | (type: [am = s]
|
---|
1263 | {exp coef:0} = {
|
---|
1264 | 0.62700000000 1.0000000000
|
---|
1265 | })
|
---|
1266 | (type: [am = s]
|
---|
1267 | {exp coef:0} = {
|
---|
1268 | 0.28730000000 1.0000000000
|
---|
1269 | })
|
---|
1270 | (type: [am = s]
|
---|
1271 | {exp coef:0} = {
|
---|
1272 | 0.11720000000 1.0000000000
|
---|
1273 | })
|
---|
1274 | (type: [am = s]
|
---|
1275 | {exp coef:0} = {
|
---|
1276 | 17.599000000 1.0000000000
|
---|
1277 | })
|
---|
1278 | (type: [am = s]
|
---|
1279 | {exp coef:0} = {
|
---|
1280 | 9.1860000000 1.0000000000
|
---|
1281 | })
|
---|
1282 | (type: [am = s]
|
---|
1283 | {exp coef:0} = {
|
---|
1284 | 4.7950000000 1.0000000000
|
---|
1285 | })
|
---|
1286 | (type: [am = s]
|
---|
1287 | {exp coef:0} = {
|
---|
1288 | 0.42800000000E-01 1.0000000000
|
---|
1289 | })
|
---|
1290 | (type: [am = p am = p]
|
---|
1291 | {exp coef:0 coef:1} = {
|
---|
1292 | 1546.0000000 0.44118300000E-03 -0.11311000000E-03
|
---|
1293 | 366.40000000 0.37757100000E-02 -0.95858100000E-03
|
---|
1294 | 118.40000000 0.19836000000E-01 -0.51347100000E-02
|
---|
1295 | 44.530000000 0.74206300000E-01 -0.19264100000E-01
|
---|
1296 | 18.380000000 0.19732700000 -0.53598000000E-01
|
---|
1297 | 7.9650000000 0.35185100000 -0.96033300000E-01
|
---|
1298 | 3.5410000000 0.37868700000 -0.11818300000
|
---|
1299 | 1.5910000000 0.17093100000 0.92319400000E-02
|
---|
1300 | })
|
---|
1301 | (type: [am = p]
|
---|
1302 | {exp coef:0} = {
|
---|
1303 | 0.62050000000 1.0000000000
|
---|
1304 | })
|
---|
1305 | (type: [am = p]
|
---|
1306 | {exp coef:0} = {
|
---|
1307 | 0.24200000000 1.0000000000
|
---|
1308 | })
|
---|
1309 | (type: [am = p]
|
---|
1310 | {exp coef:0} = {
|
---|
1311 | 0.90140000000E-01 1.0000000000
|
---|
1312 | })
|
---|
1313 | (type: [am = p]
|
---|
1314 | {exp coef:0} = {
|
---|
1315 | 18.127000000 1.0000000000
|
---|
1316 | })
|
---|
1317 | (type: [am = p]
|
---|
1318 | {exp coef:0} = {
|
---|
1319 | 8.2190000000 1.0000000000
|
---|
1320 | })
|
---|
1321 | (type: [am = p]
|
---|
1322 | {exp coef:0} = {
|
---|
1323 | 3.7260000000 1.0000000000
|
---|
1324 | })
|
---|
1325 | (type: [am = p]
|
---|
1326 | {exp coef:0} = {
|
---|
1327 | 0.31700000000E-01 1.0000000000
|
---|
1328 | })
|
---|
1329 | (type: [(am = d puream = 1)]
|
---|
1330 | {exp coef:0} = {
|
---|
1331 | 0.20300000000 1.0000000000
|
---|
1332 | })
|
---|
1333 | (type: [(am = d puream = 1)]
|
---|
1334 | {exp coef:0} = {
|
---|
1335 | 0.50400000000 1.0000000000
|
---|
1336 | })
|
---|
1337 | (type: [(am = d puream = 1)]
|
---|
1338 | {exp coef:0} = {
|
---|
1339 | 1.2500000000 1.0000000000
|
---|
1340 | })
|
---|
1341 | (type: [(am = d puream = 1)]
|
---|
1342 | {exp coef:0} = {
|
---|
1343 | 27.417000000 1.0000000000
|
---|
1344 | })
|
---|
1345 | (type: [(am = d puream = 1)]
|
---|
1346 | {exp coef:0} = {
|
---|
1347 | 10.893000000 1.0000000000
|
---|
1348 | })
|
---|
1349 | (type: [(am = d puream = 1)]
|
---|
1350 | {exp coef:0} = {
|
---|
1351 | 4.3190000000 1.0000000000
|
---|
1352 | })
|
---|
1353 | (type: [(am = d puream = 1)]
|
---|
1354 | {exp coef:0} = {
|
---|
1355 | 0.74800000000E-01 1.0000000000
|
---|
1356 | })
|
---|
1357 | (type: [(am = f puream = 1)]
|
---|
1358 | {exp coef:0} = {
|
---|
1359 | 0.33500000000 1.0000000000
|
---|
1360 | })
|
---|
1361 | (type: [(am = f puream = 1)]
|
---|
1362 | {exp coef:0} = {
|
---|
1363 | 0.86900000000 1.0000000000
|
---|
1364 | })
|
---|
1365 | (type: [(am = f puream = 1)]
|
---|
1366 | {exp coef:0} = {
|
---|
1367 | 16.535000000 1.0000000000
|
---|
1368 | })
|
---|
1369 | (type: [(am = f puream = 1)]
|
---|
1370 | {exp coef:0} = {
|
---|
1371 | 6.0080000000 1.0000000000
|
---|
1372 | })
|
---|
1373 | (type: [(am = f puream = 1)]
|
---|
1374 | {exp coef:0} = {
|
---|
1375 | 0.14000000000 1.0000000000
|
---|
1376 | })
|
---|
1377 | (type: [(am = g puream = 1)]
|
---|
1378 | {exp coef:0} = {
|
---|
1379 | 0.68300000000 1.0000000000
|
---|
1380 | })
|
---|
1381 | (type: [(am = g puream = 1)]
|
---|
1382 | {exp coef:0} = {
|
---|
1383 | 12.518000000 1.0000000000
|
---|
1384 | })
|
---|
1385 | (type: [(am = g puream = 1)]
|
---|
1386 | {exp coef:0} = {
|
---|
1387 | 0.29700000000 1.0000000000
|
---|
1388 | })
|
---|
1389 | ]
|
---|
1390 | %
|
---|
1391 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
|
---|
1392 | % AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g)
|
---|
1393 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
1394 | chlorine: "aug-cc-pCVQZ": [
|
---|
1395 | (type: [am = s am = s am = s]
|
---|
1396 | {exp coef:0 coef:1 coef:2} = {
|
---|
1397 | 834900.00000 0.23168800000E-04 -0.64964900000E-05 0.19664500000E-05
|
---|
1398 | 125000.00000 0.18015400000E-03 -0.50489500000E-04 0.15262000000E-04
|
---|
1399 | 28430.000000 0.94778200000E-03 -0.26611300000E-03 0.80608600000E-04
|
---|
1400 | 8033.0000000 0.40013900000E-02 -0.11249900000E-02 0.33996000000E-03
|
---|
1401 | 2608.0000000 0.14462900000E-01 -0.41049700000E-02 0.12455100000E-02
|
---|
1402 | 933.90000000 0.45658600000E-01 -0.13198700000E-01 0.39961200000E-02
|
---|
1403 | 360.00000000 0.12324800000 -0.37534200000E-01 0.11475100000E-01
|
---|
1404 | 147.00000000 0.26436900000 -0.89723300000E-01 0.27550400000E-01
|
---|
1405 | 62.880000000 0.38298900000 -0.16767100000 0.53291700000E-01
|
---|
1406 | 27.600000000 0.27093400000 -0.17476300000 0.57124600000E-01
|
---|
1407 | 11.080000000 0.47140400000E-01 0.11490900000 -0.39520100000E-01
|
---|
1408 | 5.0750000000 -0.37176600000E-02 0.56361800000 -0.26434300000
|
---|
1409 | 2.2780000000 0.21915800000E-02 0.44160600000 -0.34929100000
|
---|
1410 | })
|
---|
1411 | (type: [am = s]
|
---|
1412 | {exp coef:0} = {
|
---|
1413 | 0.77750000000 1.0000000000
|
---|
1414 | })
|
---|
1415 | (type: [am = s]
|
---|
1416 | {exp coef:0} = {
|
---|
1417 | 0.35270000000 1.0000000000
|
---|
1418 | })
|
---|
1419 | (type: [am = s]
|
---|
1420 | {exp coef:0} = {
|
---|
1421 | 0.14310000000 1.0000000000
|
---|
1422 | })
|
---|
1423 | (type: [am = s]
|
---|
1424 | {exp coef:0} = {
|
---|
1425 | 20.689000000 1.0000000000
|
---|
1426 | })
|
---|
1427 | (type: [am = s]
|
---|
1428 | {exp coef:0} = {
|
---|
1429 | 10.880000000 1.0000000000
|
---|
1430 | })
|
---|
1431 | (type: [am = s]
|
---|
1432 | {exp coef:0} = {
|
---|
1433 | 5.7220000000 1.0000000000
|
---|
1434 | })
|
---|
1435 | (type: [am = s]
|
---|
1436 | {exp coef:0} = {
|
---|
1437 | 0.51900000000E-01 1.0000000000
|
---|
1438 | })
|
---|
1439 | (type: [am = p am = p]
|
---|
1440 | {exp coef:0 coef:1} = {
|
---|
1441 | 1703.0000000 0.47403900000E-03 -0.12826600000E-03
|
---|
1442 | 403.60000000 0.40641200000E-02 -0.10935600000E-02
|
---|
1443 | 130.30000000 0.21335500000E-01 -0.58342900000E-02
|
---|
1444 | 49.050000000 0.79461100000E-01 -0.21925800000E-01
|
---|
1445 | 20.260000000 0.20892700000 -0.60138500000E-01
|
---|
1446 | 8.7870000000 0.36494500000 -0.10692900000
|
---|
1447 | 3.9190000000 0.37172500000 -0.12245400000
|
---|
1448 | 1.7650000000 0.14629200000 0.38361900000E-01
|
---|
1449 | })
|
---|
1450 | (type: [am = p]
|
---|
1451 | {exp coef:0} = {
|
---|
1452 | 0.72070000000 1.0000000000
|
---|
1453 | })
|
---|
1454 | (type: [am = p]
|
---|
1455 | {exp coef:0} = {
|
---|
1456 | 0.28390000000 1.0000000000
|
---|
1457 | })
|
---|
1458 | (type: [am = p]
|
---|
1459 | {exp coef:0} = {
|
---|
1460 | 0.10600000000 1.0000000000
|
---|
1461 | })
|
---|
1462 | (type: [am = p]
|
---|
1463 | {exp coef:0} = {
|
---|
1464 | 20.784000000 1.0000000000
|
---|
1465 | })
|
---|
1466 | (type: [am = p]
|
---|
1467 | {exp coef:0} = {
|
---|
1468 | 9.3790000000 1.0000000000
|
---|
1469 | })
|
---|
1470 | (type: [am = p]
|
---|
1471 | {exp coef:0} = {
|
---|
1472 | 4.2320000000 1.0000000000
|
---|
1473 | })
|
---|
1474 | (type: [am = p]
|
---|
1475 | {exp coef:0} = {
|
---|
1476 | 0.37600000000E-01 1.0000000000
|
---|
1477 | })
|
---|
1478 | (type: [(am = d puream = 1)]
|
---|
1479 | {exp coef:0} = {
|
---|
1480 | 0.25400000000 1.0000000000
|
---|
1481 | })
|
---|
1482 | (type: [(am = d puream = 1)]
|
---|
1483 | {exp coef:0} = {
|
---|
1484 | 0.62800000000 1.0000000000
|
---|
1485 | })
|
---|
1486 | (type: [(am = d puream = 1)]
|
---|
1487 | {exp coef:0} = {
|
---|
1488 | 1.5510000000 1.0000000000
|
---|
1489 | })
|
---|
1490 | (type: [(am = d puream = 1)]
|
---|
1491 | {exp coef:0} = {
|
---|
1492 | 32.255000000 1.0000000000
|
---|
1493 | })
|
---|
1494 | (type: [(am = d puream = 1)]
|
---|
1495 | {exp coef:0} = {
|
---|
1496 | 12.888000000 1.0000000000
|
---|
1497 | })
|
---|
1498 | (type: [(am = d puream = 1)]
|
---|
1499 | {exp coef:0} = {
|
---|
1500 | 5.1490000000 1.0000000000
|
---|
1501 | })
|
---|
1502 | (type: [(am = d puream = 1)]
|
---|
1503 | {exp coef:0} = {
|
---|
1504 | 0.95200000000E-01 1.0000000000
|
---|
1505 | })
|
---|
1506 | (type: [(am = f puream = 1)]
|
---|
1507 | {exp coef:0} = {
|
---|
1508 | 0.42300000000 1.0000000000
|
---|
1509 | })
|
---|
1510 | (type: [(am = f puream = 1)]
|
---|
1511 | {exp coef:0} = {
|
---|
1512 | 1.0890000000 1.0000000000
|
---|
1513 | })
|
---|
1514 | (type: [(am = f puream = 1)]
|
---|
1515 | {exp coef:0} = {
|
---|
1516 | 19.107000000 1.0000000000
|
---|
1517 | })
|
---|
1518 | (type: [(am = f puream = 1)]
|
---|
1519 | {exp coef:0} = {
|
---|
1520 | 6.9500000000 1.0000000000
|
---|
1521 | })
|
---|
1522 | (type: [(am = f puream = 1)]
|
---|
1523 | {exp coef:0} = {
|
---|
1524 | 0.21700000000 1.0000000000
|
---|
1525 | })
|
---|
1526 | (type: [(am = g puream = 1)]
|
---|
1527 | {exp coef:0} = {
|
---|
1528 | 0.82700000000 1.0000000000
|
---|
1529 | })
|
---|
1530 | (type: [(am = g puream = 1)]
|
---|
1531 | {exp coef:0} = {
|
---|
1532 | 14.782000000 1.0000000000
|
---|
1533 | })
|
---|
1534 | (type: [(am = g puream = 1)]
|
---|
1535 | {exp coef:0} = {
|
---|
1536 | 0.37800000000 1.0000000000
|
---|
1537 | })
|
---|
1538 | ]
|
---|
1539 | %
|
---|
1540 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
|
---|
1541 | % AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g)
|
---|
1542 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
1543 | argon: "aug-cc-pCVQZ": [
|
---|
1544 | (type: [am = s am = s am = s]
|
---|
1545 | {exp coef:0 coef:1 coef:2} = {
|
---|
1546 | 950600.00000 0.22754500000E-04 -0.64620100000E-05 0.20205600000E-05
|
---|
1547 | 142300.00000 0.17694500000E-03 -0.50234600000E-04 0.15685100000E-04
|
---|
1548 | 32360.000000 0.93128200000E-03 -0.26480400000E-03 0.82861700000E-04
|
---|
1549 | 9145.0000000 0.39286000000E-02 -0.11189500000E-02 0.34926400000E-03
|
---|
1550 | 2970.0000000 0.14206400000E-01 -0.40827600000E-02 0.12797600000E-02
|
---|
1551 | 1064.0000000 0.44811400000E-01 -0.13121600000E-01 0.41036500000E-02
|
---|
1552 | 410.80000000 0.12100100000 -0.37285500000E-01 0.11778900000E-01
|
---|
1553 | 168.00000000 0.26057900000 -0.89470900000E-01 0.28386800000E-01
|
---|
1554 | 71.990000000 0.38136400000 -0.16805400000 0.55240600000E-01
|
---|
1555 | 31.670000000 0.27605800000 -0.17959400000 0.60749200000E-01
|
---|
1556 | 12.890000000 0.50517900000E-01 0.10295300000 -0.36201200000E-01
|
---|
1557 | 5.9290000000 -0.35986600000E-02 0.56263000000 -0.27539800000
|
---|
1558 | 2.6780000000 0.21879800000E-02 0.45035500000 -0.36284500000
|
---|
1559 | })
|
---|
1560 | (type: [am = s]
|
---|
1561 | {exp coef:0} = {
|
---|
1562 | 0.94160000000 1.0000000000
|
---|
1563 | })
|
---|
1564 | (type: [am = s]
|
---|
1565 | {exp coef:0} = {
|
---|
1566 | 0.42390000000 1.0000000000
|
---|
1567 | })
|
---|
1568 | (type: [am = s]
|
---|
1569 | {exp coef:0} = {
|
---|
1570 | 0.17140000000 1.0000000000
|
---|
1571 | })
|
---|
1572 | (type: [am = s]
|
---|
1573 | {exp coef:0} = {
|
---|
1574 | 24.024000000 1.0000000000
|
---|
1575 | })
|
---|
1576 | (type: [am = s]
|
---|
1577 | {exp coef:0} = {
|
---|
1578 | 12.706000000 1.0000000000
|
---|
1579 | })
|
---|
1580 | (type: [am = s]
|
---|
1581 | {exp coef:0} = {
|
---|
1582 | 6.7200000000 1.0000000000
|
---|
1583 | })
|
---|
1584 | (type: [am = s]
|
---|
1585 | {exp coef:0} = {
|
---|
1586 | 0.61000000000E-01 1.0000000000
|
---|
1587 | })
|
---|
1588 | (type: [am = p am = p]
|
---|
1589 | {exp coef:0 coef:1} = {
|
---|
1590 | 1890.0000000 0.49575200000E-03 -0.13886300000E-03
|
---|
1591 | 447.80000000 0.42517200000E-02 -0.11887000000E-02
|
---|
1592 | 144.60000000 0.22327700000E-01 -0.63255300000E-02
|
---|
1593 | 54.460000000 0.83087800000E-01 -0.23881300000E-01
|
---|
1594 | 22.510000000 0.21711000000 -0.64923800000E-01
|
---|
1595 | 9.7740000000 0.37450700000 -0.11544400000
|
---|
1596 | 4.3680000000 0.36644500000 -0.12365100000
|
---|
1597 | 1.9590000000 0.12924500000 0.64905500000E-01
|
---|
1598 | })
|
---|
1599 | (type: [am = p]
|
---|
1600 | {exp coef:0} = {
|
---|
1601 | 0.82600000000 1.0000000000
|
---|
1602 | })
|
---|
1603 | (type: [am = p]
|
---|
1604 | {exp coef:0} = {
|
---|
1605 | 0.32970000000 1.0000000000
|
---|
1606 | })
|
---|
1607 | (type: [am = p]
|
---|
1608 | {exp coef:0} = {
|
---|
1609 | 0.12420000000 1.0000000000
|
---|
1610 | })
|
---|
1611 | (type: [am = p]
|
---|
1612 | {exp coef:0} = {
|
---|
1613 | 23.627000000 1.0000000000
|
---|
1614 | })
|
---|
1615 | (type: [am = p]
|
---|
1616 | {exp coef:0} = {
|
---|
1617 | 10.654000000 1.0000000000
|
---|
1618 | })
|
---|
1619 | (type: [am = p]
|
---|
1620 | {exp coef:0} = {
|
---|
1621 | 4.8040000000 1.0000000000
|
---|
1622 | })
|
---|
1623 | (type: [am = p]
|
---|
1624 | {exp coef:0} = {
|
---|
1625 | 0.43500000000E-01 1.0000000000
|
---|
1626 | })
|
---|
1627 | (type: [(am = d puream = 1)]
|
---|
1628 | {exp coef:0} = {
|
---|
1629 | 0.31100000000 1.0000000000
|
---|
1630 | })
|
---|
1631 | (type: [(am = d puream = 1)]
|
---|
1632 | {exp coef:0} = {
|
---|
1633 | 0.76300000000 1.0000000000
|
---|
1634 | })
|
---|
1635 | (type: [(am = d puream = 1)]
|
---|
1636 | {exp coef:0} = {
|
---|
1637 | 1.8730000000 1.0000000000
|
---|
1638 | })
|
---|
1639 | (type: [(am = d puream = 1)]
|
---|
1640 | {exp coef:0} = {
|
---|
1641 | 37.364000000 1.0000000000
|
---|
1642 | })
|
---|
1643 | (type: [(am = d puream = 1)]
|
---|
1644 | {exp coef:0} = {
|
---|
1645 | 15.013000000 1.0000000000
|
---|
1646 | })
|
---|
1647 | (type: [(am = d puream = 1)]
|
---|
1648 | {exp coef:0} = {
|
---|
1649 | 6.0320000000 1.0000000000
|
---|
1650 | })
|
---|
1651 | (type: [(am = d puream = 1)]
|
---|
1652 | {exp coef:0} = {
|
---|
1653 | 0.11600000000 1.0000000000
|
---|
1654 | })
|
---|
1655 | (type: [(am = f puream = 1)]
|
---|
1656 | {exp coef:0} = {
|
---|
1657 | 0.54300000000 1.0000000000
|
---|
1658 | })
|
---|
1659 | (type: [(am = f puream = 1)]
|
---|
1660 | {exp coef:0} = {
|
---|
1661 | 1.3250000000 1.0000000000
|
---|
1662 | })
|
---|
1663 | (type: [(am = f puream = 1)]
|
---|
1664 | {exp coef:0} = {
|
---|
1665 | 21.884000000 1.0000000000
|
---|
1666 | })
|
---|
1667 | (type: [(am = f puream = 1)]
|
---|
1668 | {exp coef:0} = {
|
---|
1669 | 7.9680000000 1.0000000000
|
---|
1670 | })
|
---|
1671 | (type: [(am = f puream = 1)]
|
---|
1672 | {exp coef:0} = {
|
---|
1673 | 0.29400000000 1.0000000000
|
---|
1674 | })
|
---|
1675 | (type: [(am = g puream = 1)]
|
---|
1676 | {exp coef:0} = {
|
---|
1677 | 1.0070000000 1.0000000000
|
---|
1678 | })
|
---|
1679 | (type: [(am = g puream = 1)]
|
---|
1680 | {exp coef:0} = {
|
---|
1681 | 17.243000000 1.0000000000
|
---|
1682 | })
|
---|
1683 | (type: [(am = g puream = 1)]
|
---|
1684 | {exp coef:0} = {
|
---|
1685 | 0.45900000000 1.0000000000
|
---|
1686 | })
|
---|
1687 | ]
|
---|
1688 | )
|
---|