source: ThirdParty/mpqc_open/lib/basis/aug-cc-pcvqz.kv

Candidate_v1.6.1
Last change on this file was 860145, checked in by Frederik Heber <heber@…>, 8 years ago

Merge commit '0b990dfaa8c6007a996d030163a25f7f5fc8a7e7' as 'ThirdParty/mpqc_open'

  • Property mode set to 100644
File size: 47.5 KB
Line 
1%BASIS "aug-cc-pCVQZ" CARTESIAN
2basis:(
3%Elements References
4%-------- ----------
5% H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
6% He : D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 100, 2975 (1994).
7%Li - Ne: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
8%Na - Mg: D.E. Woon and T.H. Dunning, Jr. (to be published)
9%Al - Ar: D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993).
10%Ca : J. Koput and K.A. Peterson, J. Phys. Chem. A, 106, 9595 (2002).
11%Elements References
12%-------- ----------
13% H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
14%Li - Ne: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989) and D. E. Woon and
15% T.H. Dunning, Jr. J. Chem. Phys. 103, 4572 (1995).
16%Al - Ar: K.A. Peterson and T.H. Dunning, Jr. J. Chem. Phys. 117, 10548 (2002)
17%Ca : J. Koput and K.A. Peterson, J. Phys. Chem. A, 106, 9595 (2002).
18%Elements References
19%-------- ---------
20% H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
21% He : D.E. Woon and T.H. Dunning, Jr., J. Chem. Phys. 100, 2975 (1994).
22% B - F: R.A. Kendall, T.H. Dunning, Jr. and R.J. Harrison, J. Chem. Phys. 96,
23% 6769 (1992).
24%Al - Cl: D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993).
25%
26%
27% BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
28% AUGMENTING FUNCTIONS: Tight (s,p,d,f)
29% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
30 boron: "aug-cc-pCVQZ": [
31 (type: [am = s am = s]
32 {exp coef:0 coef:1} = {
33 23870.000000 0.88000000000E-04 -0.18000000000E-04
34 3575.0000000 0.68700000000E-03 -0.13900000000E-03
35 812.80000000 0.36000000000E-02 -0.72500000000E-03
36 229.70000000 0.14949000000E-01 -0.30630000000E-02
37 74.690000000 0.51435000000E-01 -0.10581000000E-01
38 26.810000000 0.14330200000 -0.31365000000E-01
39 10.320000000 0.30093500000 -0.71012000000E-01
40 4.1780000000 0.40352600000 -0.13210300000
41 1.7270000000 0.22534000000 -0.12307200000
42 })
43 (type: [am = s]
44 {exp coef:0} = {
45 0.47040000000 1.0000000000
46 })
47 (type: [am = s]
48 {exp coef:0} = {
49 0.18960000000 1.0000000000
50 })
51 (type: [am = s]
52 {exp coef:0} = {
53 0.73940000000E-01 1.0000000000
54 })
55 (type: [am = s]
56 {exp coef:0} = {
57 4.8640000000 1.0000000000
58 })
59 (type: [am = s]
60 {exp coef:0} = {
61 13.288000000 1.0000000000
62 })
63 (type: [am = s]
64 {exp coef:0} = {
65 36.304000000 1.0000000000
66 })
67 (type: [am = s]
68 {exp coef:0} = {
69 0.27210000000E-01 1.0000000000
70 })
71 (type: [am = p]
72 {exp coef:0} = {
73 22.260000000 0.50950000000E-02
74 5.0580000000 0.33206000000E-01
75 1.4870000000 0.13231400000
76 })
77 (type: [am = p]
78 {exp coef:0} = {
79 0.50710000000 1.0000000000
80 })
81 (type: [am = p]
82 {exp coef:0} = {
83 0.18120000000 1.0000000000
84 })
85 (type: [am = p]
86 {exp coef:0} = {
87 0.64630000000E-01 1.0000000000
88 })
89 (type: [am = p]
90 {exp coef:0} = {
91 5.4890000000 1.0000000000
92 })
93 (type: [am = p]
94 {exp coef:0} = {
95 16.302000000 1.0000000000
96 })
97 (type: [am = p]
98 {exp coef:0} = {
99 48.418000000 1.0000000000
100 })
101 (type: [am = p]
102 {exp coef:0} = {
103 0.18780000000E-01 1.0000000000
104 })
105 (type: [(am = d puream = 1)]
106 {exp coef:0} = {
107 1.1100000000 1.0000000000
108 })
109 (type: [(am = d puream = 1)]
110 {exp coef:0} = {
111 0.40200000000 1.0000000000
112 })
113 (type: [(am = d puream = 1)]
114 {exp coef:0} = {
115 0.14500000000 1.0000000000
116 })
117 (type: [(am = d puream = 1)]
118 {exp coef:0} = {
119 6.6400000000 1.0000000000
120 })
121 (type: [(am = d puream = 1)]
122 {exp coef:0} = {
123 24.462000000 1.0000000000
124 })
125 (type: [(am = d puream = 1)]
126 {exp coef:0} = {
127 0.46600000000E-01 1.0000000000
128 })
129 (type: [(am = f puream = 1)]
130 {exp coef:0} = {
131 0.88200000000 1.0000000000
132 })
133 (type: [(am = f puream = 1)]
134 {exp coef:0} = {
135 0.31100000000 1.0000000000
136 })
137 (type: [(am = f puream = 1)]
138 {exp coef:0} = {
139 18.794000000 1.0000000000
140 })
141 (type: [(am = f puream = 1)]
142 {exp coef:0} = {
143 0.11300000000 1.0000000000
144 })
145 (type: [(am = g puream = 1)]
146 {exp coef:0} = {
147 0.67300000000 1.0000000000
148 })
149 (type: [(am = g puream = 1)]
150 {exp coef:0} = {
151 0.27300000000 1.0000000000
152 })
153 ]
154%
155% BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
156% AUGMENTING FUNCTIONS: Tight (s,p,d,f)
157% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
158 carbon: "aug-cc-pCVQZ": [
159 (type: [am = s am = s]
160 {exp coef:0 coef:1} = {
161 33980.000000 0.91000000000E-04 -0.19000000000E-04
162 5089.0000000 0.70400000000E-03 -0.15100000000E-03
163 1157.0000000 0.36930000000E-02 -0.78500000000E-03
164 326.60000000 0.15360000000E-01 -0.33240000000E-02
165 106.10000000 0.52929000000E-01 -0.11512000000E-01
166 38.110000000 0.14704300000 -0.34160000000E-01
167 14.750000000 0.30563100000 -0.77173000000E-01
168 6.0350000000 0.39934500000 -0.14149300000
169 2.5300000000 0.21705100000 -0.11801900000
170 })
171 (type: [am = s]
172 {exp coef:0} = {
173 0.73550000000 1.0000000000
174 })
175 (type: [am = s]
176 {exp coef:0} = {
177 0.29050000000 1.0000000000
178 })
179 (type: [am = s]
180 {exp coef:0} = {
181 0.11110000000 1.0000000000
182 })
183 (type: [am = s]
184 {exp coef:0} = {
185 7.2160000000 1.0000000000
186 })
187 (type: [am = s]
188 {exp coef:0} = {
189 19.570000000 1.0000000000
190 })
191 (type: [am = s]
192 {exp coef:0} = {
193 53.073000000 1.0000000000
194 })
195 (type: [am = s]
196 {exp coef:0} = {
197 0.41450000000E-01 1.0000000000
198 })
199 (type: [am = p]
200 {exp coef:0} = {
201 34.510000000 0.53780000000E-02
202 7.9150000000 0.36132000000E-01
203 2.3680000000 0.14249300000
204 })
205 (type: [am = p]
206 {exp coef:0} = {
207 0.81320000000 1.0000000000
208 })
209 (type: [am = p]
210 {exp coef:0} = {
211 0.28900000000 1.0000000000
212 })
213 (type: [am = p]
214 {exp coef:0} = {
215 0.10070000000 1.0000000000
216 })
217 (type: [am = p]
218 {exp coef:0} = {
219 8.1820000000 1.0000000000
220 })
221 (type: [am = p]
222 {exp coef:0} = {
223 24.186000000 1.0000000000
224 })
225 (type: [am = p]
226 {exp coef:0} = {
227 71.494000000 1.0000000000
228 })
229 (type: [am = p]
230 {exp coef:0} = {
231 0.32180000000E-01 1.0000000000
232 })
233 (type: [(am = d puream = 1)]
234 {exp coef:0} = {
235 1.8480000000 1.0000000000
236 })
237 (type: [(am = d puream = 1)]
238 {exp coef:0} = {
239 0.64900000000 1.0000000000
240 })
241 (type: [(am = d puream = 1)]
242 {exp coef:0} = {
243 0.22800000000 1.0000000000
244 })
245 (type: [(am = d puream = 1)]
246 {exp coef:0} = {
247 8.6560000000 1.0000000000
248 })
249 (type: [(am = d puream = 1)]
250 {exp coef:0} = {
251 33.213000000 1.0000000000
252 })
253 (type: [(am = d puream = 1)]
254 {exp coef:0} = {
255 0.76600000000E-01 1.0000000000
256 })
257 (type: [(am = f puream = 1)]
258 {exp coef:0} = {
259 1.4190000000 1.0000000000
260 })
261 (type: [(am = f puream = 1)]
262 {exp coef:0} = {
263 0.48500000000 1.0000000000
264 })
265 (type: [(am = f puream = 1)]
266 {exp coef:0} = {
267 24.694000000 1.0000000000
268 })
269 (type: [(am = f puream = 1)]
270 {exp coef:0} = {
271 0.18700000000 1.0000000000
272 })
273 (type: [(am = g puream = 1)]
274 {exp coef:0} = {
275 1.0110000000 1.0000000000
276 })
277 (type: [(am = g puream = 1)]
278 {exp coef:0} = {
279 0.42400000000 1.0000000000
280 })
281 ]
282%
283% BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
284% AUGMENTING FUNCTIONS: Tight (s,p,d,f)
285% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
286 nitrogen: "aug-cc-pCVQZ": [
287 (type: [am = s am = s]
288 {exp coef:0 coef:1} = {
289 45840.000000 0.92000000000E-04 -0.20000000000E-04
290 6868.0000000 0.71700000000E-03 -0.15900000000E-03
291 1563.0000000 0.37490000000E-02 -0.82400000000E-03
292 442.40000000 0.15532000000E-01 -0.34780000000E-02
293 144.30000000 0.53146000000E-01 -0.11966000000E-01
294 52.180000000 0.14678700000 -0.35388000000E-01
295 20.340000000 0.30466300000 -0.80077000000E-01
296 8.3810000000 0.39768400000 -0.14672200000
297 3.5290000000 0.21764100000 -0.11636000000
298 })
299 (type: [am = s]
300 {exp coef:0} = {
301 1.0540000000 1.0000000000
302 })
303 (type: [am = s]
304 {exp coef:0} = {
305 0.41180000000 1.0000000000
306 })
307 (type: [am = s]
308 {exp coef:0} = {
309 0.15520000000 1.0000000000
310 })
311 (type: [am = s]
312 {exp coef:0} = {
313 9.8620000000 1.0000000000
314 })
315 (type: [am = s]
316 {exp coef:0} = {
317 26.627000000 1.0000000000
318 })
319 (type: [am = s]
320 {exp coef:0} = {
321 71.894000000 1.0000000000
322 })
323 (type: [am = s]
324 {exp coef:0} = {
325 0.54640000000E-01 1.0000000000
326 })
327 (type: [am = p]
328 {exp coef:0} = {
329 49.330000000 0.55330000000E-02
330 11.370000000 0.37962000000E-01
331 3.4350000000 0.14902800000
332 })
333 (type: [am = p]
334 {exp coef:0} = {
335 1.1820000000 1.0000000000
336 })
337 (type: [am = p]
338 {exp coef:0} = {
339 0.41730000000 1.0000000000
340 })
341 (type: [am = p]
342 {exp coef:0} = {
343 0.14280000000 1.0000000000
344 })
345 (type: [am = p]
346 {exp coef:0} = {
347 11.320000000 1.0000000000
348 })
349 (type: [am = p]
350 {exp coef:0} = {
351 33.349000000 1.0000000000
352 })
353 (type: [am = p]
354 {exp coef:0} = {
355 98.245000000 1.0000000000
356 })
357 (type: [am = p]
358 {exp coef:0} = {
359 0.44020000000E-01 1.0000000000
360 })
361 (type: [(am = d puream = 1)]
362 {exp coef:0} = {
363 2.8370000000 1.0000000000
364 })
365 (type: [(am = d puream = 1)]
366 {exp coef:0} = {
367 0.96800000000 1.0000000000
368 })
369 (type: [(am = d puream = 1)]
370 {exp coef:0} = {
371 0.33500000000 1.0000000000
372 })
373 (type: [(am = d puream = 1)]
374 {exp coef:0} = {
375 11.828000000 1.0000000000
376 })
377 (type: [(am = d puream = 1)]
378 {exp coef:0} = {
379 45.218000000 1.0000000000
380 })
381 (type: [(am = d puream = 1)]
382 {exp coef:0} = {
383 0.11100000000 1.0000000000
384 })
385 (type: [(am = f puream = 1)]
386 {exp coef:0} = {
387 2.0270000000 1.0000000000
388 })
389 (type: [(am = f puream = 1)]
390 {exp coef:0} = {
391 0.68500000000 1.0000000000
392 })
393 (type: [(am = f puream = 1)]
394 {exp coef:0} = {
395 28.364000000 1.0000000000
396 })
397 (type: [(am = f puream = 1)]
398 {exp coef:0} = {
399 0.24500000000 1.0000000000
400 })
401 (type: [(am = g puream = 1)]
402 {exp coef:0} = {
403 1.4270000000 1.0000000000
404 })
405 (type: [(am = g puream = 1)]
406 {exp coef:0} = {
407 0.55900000000 1.0000000000
408 })
409 ]
410%
411% BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
412% AUGMENTING FUNCTIONS: Tight (s,p,d,f)
413% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
414 oxygen: "aug-cc-pCVQZ": [
415 (type: [am = s am = s]
416 {exp coef:0 coef:1} = {
417 61420.000000 0.90000000000E-04 -0.20000000000E-04
418 9199.0000000 0.69800000000E-03 -0.15900000000E-03
419 2091.0000000 0.36640000000E-02 -0.82900000000E-03
420 590.90000000 0.15218000000E-01 -0.35080000000E-02
421 192.30000000 0.52423000000E-01 -0.12156000000E-01
422 69.320000000 0.14592100000 -0.36261000000E-01
423 26.970000000 0.30525800000 -0.82992000000E-01
424 11.100000000 0.39850800000 -0.15209000000
425 4.6820000000 0.21698000000 -0.11533100000
426 })
427 (type: [am = s]
428 {exp coef:0} = {
429 1.4280000000 1.0000000000
430 })
431 (type: [am = s]
432 {exp coef:0} = {
433 0.55470000000 1.0000000000
434 })
435 (type: [am = s]
436 {exp coef:0} = {
437 0.20670000000 1.0000000000
438 })
439 (type: [am = s]
440 {exp coef:0} = {
441 12.974000000 1.0000000000
442 })
443 (type: [am = s]
444 {exp coef:0} = {
445 34.900000000 1.0000000000
446 })
447 (type: [am = s]
448 {exp coef:0} = {
449 93.881000000 1.0000000000
450 })
451 (type: [am = s]
452 {exp coef:0} = {
453 0.69590000000E-01 1.0000000000
454 })
455 (type: [am = p]
456 {exp coef:0} = {
457 63.420000000 0.60440000000E-02
458 14.660000000 0.41799000000E-01
459 4.4590000000 0.16114300000
460 })
461 (type: [am = p]
462 {exp coef:0} = {
463 1.5310000000 1.0000000000
464 })
465 (type: [am = p]
466 {exp coef:0} = {
467 0.53020000000 1.0000000000
468 })
469 (type: [am = p]
470 {exp coef:0} = {
471 0.17500000000 1.0000000000
472 })
473 (type: [am = p]
474 {exp coef:0} = {
475 14.475000000 1.0000000000
476 })
477 (type: [am = p]
478 {exp coef:0} = {
479 42.730000000 1.0000000000
480 })
481 (type: [am = p]
482 {exp coef:0} = {
483 126.14000000 1.0000000000
484 })
485 (type: [am = p]
486 {exp coef:0} = {
487 0.53480000000E-01 1.0000000000
488 })
489 (type: [(am = d puream = 1)]
490 {exp coef:0} = {
491 3.7750000000 1.0000000000
492 })
493 (type: [(am = d puream = 1)]
494 {exp coef:0} = {
495 1.3000000000 1.0000000000
496 })
497 (type: [(am = d puream = 1)]
498 {exp coef:0} = {
499 0.44400000000 1.0000000000
500 })
501 (type: [(am = d puream = 1)]
502 {exp coef:0} = {
503 14.927000000 1.0000000000
504 })
505 (type: [(am = d puream = 1)]
506 {exp coef:0} = {
507 57.544000000 1.0000000000
508 })
509 (type: [(am = d puream = 1)]
510 {exp coef:0} = {
511 0.15400000000 1.0000000000
512 })
513 (type: [(am = f puream = 1)]
514 {exp coef:0} = {
515 2.6660000000 1.0000000000
516 })
517 (type: [(am = f puream = 1)]
518 {exp coef:0} = {
519 0.85900000000 1.0000000000
520 })
521 (type: [(am = f puream = 1)]
522 {exp coef:0} = {
523 26.483000000 1.0000000000
524 })
525 (type: [(am = f puream = 1)]
526 {exp coef:0} = {
527 0.32400000000 1.0000000000
528 })
529 (type: [(am = g puream = 1)]
530 {exp coef:0} = {
531 1.8460000000 1.0000000000
532 })
533 (type: [(am = g puream = 1)]
534 {exp coef:0} = {
535 0.71400000000 1.0000000000
536 })
537 ]
538%
539% BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
540% AUGMENTING FUNCTIONS: Tight (s,p,d,f)
541% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
542 fluorine: "aug-cc-pCVQZ": [
543 (type: [am = s am = s]
544 {exp coef:0 coef:1} = {
545 74530.000000 0.95000000000E-04 -0.22000000000E-04
546 11170.000000 0.73800000000E-03 -0.17200000000E-03
547 2543.0000000 0.38580000000E-02 -0.89100000000E-03
548 721.00000000 0.15926000000E-01 -0.37480000000E-02
549 235.90000000 0.54289000000E-01 -0.12862000000E-01
550 85.600000000 0.14951300000 -0.38061000000E-01
551 33.550000000 0.30825200000 -0.86239000000E-01
552 13.930000000 0.39485300000 -0.15586500000
553 5.9150000000 0.21103100000 -0.11091400000
554 })
555 (type: [am = s]
556 {exp coef:0} = {
557 1.8430000000 1.0000000000
558 })
559 (type: [am = s]
560 {exp coef:0} = {
561 0.71240000000 1.0000000000
562 })
563 (type: [am = s]
564 {exp coef:0} = {
565 0.26370000000 1.0000000000
566 })
567 (type: [am = s]
568 {exp coef:0} = {
569 16.319000000 1.0000000000
570 })
571 (type: [am = s]
572 {exp coef:0} = {
573 43.784000000 1.0000000000
574 })
575 (type: [am = s]
576 {exp coef:0} = {
577 117.47200000 1.0000000000
578 })
579 (type: [am = s]
580 {exp coef:0} = {
581 0.85940000000E-01 1.0000000000
582 })
583 (type: [am = p]
584 {exp coef:0} = {
585 80.390000000 0.63470000000E-02
586 18.630000000 0.44204000000E-01
587 5.6940000000 0.16851400000
588 })
589 (type: [am = p]
590 {exp coef:0} = {
591 1.9530000000 1.0000000000
592 })
593 (type: [am = p]
594 {exp coef:0} = {
595 0.67020000000 1.0000000000
596 })
597 (type: [am = p]
598 {exp coef:0} = {
599 0.21660000000 1.0000000000
600 })
601 (type: [am = p]
602 {exp coef:0} = {
603 18.119000000 1.0000000000
604 })
605 (type: [am = p]
606 {exp coef:0} = {
607 53.505000000 1.0000000000
608 })
609 (type: [am = p]
610 {exp coef:0} = {
611 158.00100000 1.0000000000
612 })
613 (type: [am = p]
614 {exp coef:0} = {
615 0.65680000000E-01 1.0000000000
616 })
617 (type: [(am = d puream = 1)]
618 {exp coef:0} = {
619 5.0140000000 1.0000000000
620 })
621 (type: [(am = d puream = 1)]
622 {exp coef:0} = {
623 1.7250000000 1.0000000000
624 })
625 (type: [(am = d puream = 1)]
626 {exp coef:0} = {
627 0.58600000000 1.0000000000
628 })
629 (type: [(am = d puream = 1)]
630 {exp coef:0} = {
631 18.943000000 1.0000000000
632 })
633 (type: [(am = d puream = 1)]
634 {exp coef:0} = {
635 72.798000000 1.0000000000
636 })
637 (type: [(am = d puream = 1)]
638 {exp coef:0} = {
639 0.20700000000 1.0000000000
640 })
641 (type: [(am = f puream = 1)]
642 {exp coef:0} = {
643 3.5620000000 1.0000000000
644 })
645 (type: [(am = f puream = 1)]
646 {exp coef:0} = {
647 1.1480000000 1.0000000000
648 })
649 (type: [(am = f puream = 1)]
650 {exp coef:0} = {
651 25.161000000 1.0000000000
652 })
653 (type: [(am = f puream = 1)]
654 {exp coef:0} = {
655 0.46000000000 1.0000000000
656 })
657 (type: [(am = g puream = 1)]
658 {exp coef:0} = {
659 2.3760000000 1.0000000000
660 })
661 (type: [(am = g puream = 1)]
662 {exp coef:0} = {
663 0.92400000000 1.0000000000
664 })
665 ]
666%
667% BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
668% AUGMENTING FUNCTIONS: Tight (s,p,d)
669% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
670 neon: "aug-cc-pCVQZ": [
671 (type: [am = s am = s]
672 {exp coef:0 coef:1} = {
673 99920.000000 0.86000000000E-04 -0.20000000000E-04
674 14960.000000 0.66900000000E-03 -0.15800000000E-03
675 3399.0000000 0.35180000000E-02 -0.82400000000E-03
676 958.90000000 0.14667000000E-01 -0.35000000000E-02
677 311.20000000 0.50962000000E-01 -0.12233000000E-01
678 111.70000000 0.14374400000 -0.37017000000E-01
679 43.320000000 0.30456200000 -0.86113000000E-01
680 17.800000000 0.40010500000 -0.15838100000
681 7.5030000000 0.21864400000 -0.11428800000
682 })
683 (type: [am = s]
684 {exp coef:0} = {
685 2.3370000000 1.0000000000
686 })
687 (type: [am = s]
688 {exp coef:0} = {
689 0.90010000000 1.0000000000
690 })
691 (type: [am = s]
692 {exp coef:0} = {
693 0.33010000000 1.0000000000
694 })
695 (type: [am = s]
696 {exp coef:0} = {
697 20.180000000 1.0000000000
698 })
699 (type: [am = s]
700 {exp coef:0} = {
701 54.042000000 1.0000000000
702 })
703 (type: [am = s]
704 {exp coef:0} = {
705 144.72500000 1.0000000000
706 })
707 (type: [am = s]
708 {exp coef:0} = {
709 0.10540000000 1.0000000000
710 })
711 (type: [am = p]
712 {exp coef:0} = {
713 99.680000000 0.65660000000E-02
714 23.150000000 0.45979000000E-01
715 7.1080000000 0.17341900000
716 })
717 (type: [am = p]
718 {exp coef:0} = {
719 2.4410000000 1.0000000000
720 })
721 (type: [am = p]
722 {exp coef:0} = {
723 0.83390000000 1.0000000000
724 })
725 (type: [am = p]
726 {exp coef:0} = {
727 0.26620000000 1.0000000000
728 })
729 (type: [am = p]
730 {exp coef:0} = {
731 22.222000000 1.0000000000
732 })
733 (type: [am = p]
734 {exp coef:0} = {
735 65.622000000 1.0000000000
736 })
737 (type: [am = p]
738 {exp coef:0} = {
739 193.78000000 1.0000000000
740 })
741 (type: [am = p]
742 {exp coef:0} = {
743 0.81780000000E-01 1.0000000000
744 })
745 (type: [(am = d puream = 1)]
746 {exp coef:0} = {
747 6.4710000000 1.0000000000
748 })
749 (type: [(am = d puream = 1)]
750 {exp coef:0} = {
751 2.2130000000 1.0000000000
752 })
753 (type: [(am = d puream = 1)]
754 {exp coef:0} = {
755 0.74700000000 1.0000000000
756 })
757 (type: [(am = d puream = 1)]
758 {exp coef:0} = {
759 23.613000000 1.0000000000
760 })
761 (type: [(am = d puream = 1)]
762 {exp coef:0} = {
763 90.107000000 1.0000000000
764 })
765 (type: [(am = d puream = 1)]
766 {exp coef:0} = {
767 0.27300000000 1.0000000000
768 })
769 (type: [(am = f puream = 1)]
770 {exp coef:0} = {
771 4.6570000000 1.0000000000
772 })
773 (type: [(am = f puream = 1)]
774 {exp coef:0} = {
775 1.5240000000 1.0000000000
776 })
777 (type: [(am = f puream = 1)]
778 {exp coef:0} = {
779 28.830000000 1.0000000000
780 })
781 (type: [(am = f puream = 1)]
782 {exp coef:0} = {
783 0.68900000000 1.0000000000
784 })
785 (type: [(am = g puream = 1)]
786 {exp coef:0} = {
787 2.9830000000 1.0000000000
788 })
789 (type: [(am = g puream = 1)]
790 {exp coef:0} = {
791 1.2240000000 1.0000000000
792 })
793 ]
794%
795% BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
796% AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g)
797% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
798 aluminum: "aug-cc-pCVQZ": [
799 (type: [am = s am = s am = s]
800 {exp coef:0 coef:1 coef:2} = {
801 419600.00000 0.27821900000E-04 -0.72375400000E-05 0.16715000000E-05
802 62830.000000 0.21633000000E-03 -0.56173300000E-04 0.12964100000E-04
803 14290.000000 0.11375400000E-02 -0.29652800000E-03 0.68510100000E-04
804 4038.0000000 0.47963500000E-02 -0.12491300000E-02 0.28827400000E-03
805 1312.0000000 0.17238900000E-01 -0.45510100000E-02 0.10527600000E-02
806 470.50000000 0.53806600000E-01 -0.14439300000E-01 0.33387800000E-02
807 181.80000000 0.14132600000 -0.40346400000E-01 0.93921700000E-02
808 74.460000000 0.28926800000 -0.92261800000E-01 0.21604700000E-01
809 31.900000000 0.38482500000 -0.16451000000 0.39587300000E-01
810 13.960000000 0.23285200000 -0.14129600000 0.34918000000E-01
811 5.1800000000 0.29333000000E-01 0.19536500000 -0.52841500000E-01
812 2.2650000000 -0.30057400000E-02 0.57247500000 -0.19187800000
813 0.96640000000 0.16667300000E-02 0.37404100000 -0.25411500000
814 })
815 (type: [am = s]
816 {exp coef:0} = {
817 0.24470000000 1.0000000000
818 })
819 (type: [am = s]
820 {exp coef:0} = {
821 0.11840000000 1.0000000000
822 })
823 (type: [am = s]
824 {exp coef:0} = {
825 0.50210000000E-01 1.0000000000
826 })
827 (type: [am = s]
828 {exp coef:0} = {
829 9.7290000000 1.0000000000
830 })
831 (type: [am = s]
832 {exp coef:0} = {
833 4.8700000000 1.0000000000
834 })
835 (type: [am = s]
836 {exp coef:0} = {
837 2.4370000000 1.0000000000
838 })
839 (type: [am = s]
840 {exp coef:0} = {
841 0.18300000000E-01 1.0000000000
842 })
843 (type: [am = p am = p]
844 {exp coef:0 coef:1} = {
845 891.30000000 0.49175500000E-03 -0.88869500000E-04
846 211.30000000 0.41584300000E-02 -0.74582300000E-03
847 68.280000000 0.21253800000E-01 -0.38702500000E-02
848 25.700000000 0.76405800000E-01 -0.13935000000E-01
849 10.630000000 0.19427700000 -0.36686000000E-01
850 4.6020000000 0.33442800000 -0.62779700000E-01
851 2.0150000000 0.37502600000 -0.78960200000E-01
852 0.87060000000 0.20404100000 -0.28858900000E-01
853 })
854 (type: [am = p]
855 {exp coef:0} = {
856 0.29720000000 1.0000000000
857 })
858 (type: [am = p]
859 {exp coef:0} = {
860 0.11000000000 1.0000000000
861 })
862 (type: [am = p]
863 {exp coef:0} = {
864 0.39890000000E-01 1.0000000000
865 })
866 (type: [am = p]
867 {exp coef:0} = {
868 10.000000000 1.0000000000
869 })
870 (type: [am = p]
871 {exp coef:0} = {
872 4.5140000000 1.0000000000
873 })
874 (type: [am = p]
875 {exp coef:0} = {
876 2.0380000000 1.0000000000
877 })
878 (type: [am = p]
879 {exp coef:0} = {
880 0.12100000000E-01 1.0000000000
881 })
882 (type: [(am = d puream = 1)]
883 {exp coef:0} = {
884 0.80400000000E-01 1.0000000000
885 })
886 (type: [(am = d puream = 1)]
887 {exp coef:0} = {
888 0.19900000000 1.0000000000
889 })
890 (type: [(am = d puream = 1)]
891 {exp coef:0} = {
892 0.49400000000 1.0000000000
893 })
894 (type: [(am = d puream = 1)]
895 {exp coef:0} = {
896 14.835000000 1.0000000000
897 })
898 (type: [(am = d puream = 1)]
899 {exp coef:0} = {
900 5.6370000000 1.0000000000
901 })
902 (type: [(am = d puream = 1)]
903 {exp coef:0} = {
904 2.1420000000 1.0000000000
905 })
906 (type: [(am = d puream = 1)]
907 {exp coef:0} = {
908 0.28200000000E-01 1.0000000000
909 })
910 (type: [(am = f puream = 1)]
911 {exp coef:0} = {
912 0.15400000000 1.0000000000
913 })
914 (type: [(am = f puream = 1)]
915 {exp coef:0} = {
916 0.40100000000 1.0000000000
917 })
918 (type: [(am = f puream = 1)]
919 {exp coef:0} = {
920 9.8530000000 1.0000000000
921 })
922 (type: [(am = f puream = 1)]
923 {exp coef:0} = {
924 3.5250000000 1.0000000000
925 })
926 (type: [(am = f puream = 1)]
927 {exp coef:0} = {
928 0.58200000000E-01 1.0000000000
929 })
930 (type: [(am = g puream = 1)]
931 {exp coef:0} = {
932 0.35700000000 1.0000000000
933 })
934 (type: [(am = g puream = 1)]
935 {exp coef:0} = {
936 6.8940000000 1.0000000000
937 })
938 (type: [(am = g puream = 1)]
939 {exp coef:0} = {
940 0.15300000000 1.0000000000
941 })
942 ]
943%
944% BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
945% AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g)
946% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
947 silicon: "aug-cc-pCVQZ": [
948 (type: [am = s am = s am = s]
949 {exp coef:0 coef:1 coef:2} = {
950 513000.00000 0.26092000000E-04 -0.69488000000E-05 0.17806800000E-05
951 76820.000000 0.20290500000E-03 -0.53964100000E-04 0.13814800000E-04
952 17470.000000 0.10671500000E-02 -0.28471600000E-03 0.73000500000E-04
953 4935.0000000 0.45059700000E-02 -0.12020300000E-02 0.30766600000E-03
954 1602.0000000 0.16235900000E-01 -0.43839700000E-02 0.11256300000E-02
955 574.10000000 0.50891300000E-01 -0.13977600000E-01 0.35843500000E-02
956 221.50000000 0.13515500000 -0.39351600000E-01 0.10172800000E-01
957 90.540000000 0.28129200000 -0.91428300000E-01 0.23752000000E-01
958 38.740000000 0.38533600000 -0.16560900000 0.44348300000E-01
959 16.950000000 0.24565100000 -0.15250500000 0.41904100000E-01
960 6.4520000000 0.34314500000E-01 0.16852400000 -0.50250400000E-01
961 2.8740000000 -0.33488400000E-02 0.56928400000 -0.21657800000
962 1.2500000000 0.18762500000E-02 0.39805600000 -0.28644800000
963 })
964 (type: [am = s]
965 {exp coef:0} = {
966 0.35990000000 1.0000000000
967 })
968 (type: [am = s]
969 {exp coef:0} = {
970 0.16990000000 1.0000000000
971 })
972 (type: [am = s]
973 {exp coef:0} = {
974 0.70660000000E-01 1.0000000000
975 })
976 (type: [am = s]
977 {exp coef:0} = {
978 12.164000000 1.0000000000
979 })
980 (type: [am = s]
981 {exp coef:0} = {
982 6.1870000000 1.0000000000
983 })
984 (type: [am = s]
985 {exp coef:0} = {
986 3.1470000000 1.0000000000
987 })
988 (type: [am = s]
989 {exp coef:0} = {
990 0.27500000000E-01 1.0000000000
991 })
992 (type: [am = p am = p]
993 {exp coef:0 coef:1} = {
994 1122.0000000 0.44814300000E-03 -0.96488300000E-04
995 266.00000000 0.38163900000E-02 -0.81197100000E-03
996 85.920000000 0.19810500000E-01 -0.43008700000E-02
997 32.330000000 0.72701700000E-01 -0.15750200000E-01
998 13.370000000 0.18983900000 -0.42954100000E-01
999 5.8000000000 0.33567200000 -0.75257400000E-01
1000 2.5590000000 0.37936500000 -0.97144600000E-01
1001 1.1240000000 0.20119300000 -0.22750700000E-01
1002 })
1003 (type: [am = p]
1004 {exp coef:0} = {
1005 0.39880000000 1.0000000000
1006 })
1007 (type: [am = p]
1008 {exp coef:0} = {
1009 0.15330000000 1.0000000000
1010 })
1011 (type: [am = p]
1012 {exp coef:0} = {
1013 0.57280000000E-01 1.0000000000
1014 })
1015 (type: [am = p]
1016 {exp coef:0} = {
1017 12.646000000 1.0000000000
1018 })
1019 (type: [am = p]
1020 {exp coef:0} = {
1021 5.7470000000 1.0000000000
1022 })
1023 (type: [am = p]
1024 {exp coef:0} = {
1025 2.6120000000 1.0000000000
1026 })
1027 (type: [am = p]
1028 {exp coef:0} = {
1029 0.20000000000E-01 1.0000000000
1030 })
1031 (type: [(am = d puream = 1)]
1032 {exp coef:0} = {
1033 0.12000000000 1.0000000000
1034 })
1035 (type: [(am = d puream = 1)]
1036 {exp coef:0} = {
1037 0.30200000000 1.0000000000
1038 })
1039 (type: [(am = d puream = 1)]
1040 {exp coef:0} = {
1041 0.76000000000 1.0000000000
1042 })
1043 (type: [(am = d puream = 1)]
1044 {exp coef:0} = {
1045 19.015000000 1.0000000000
1046 })
1047 (type: [(am = d puream = 1)]
1048 {exp coef:0} = {
1049 7.4010000000 1.0000000000
1050 })
1051 (type: [(am = d puream = 1)]
1052 {exp coef:0} = {
1053 2.8810000000 1.0000000000
1054 })
1055 (type: [(am = d puream = 1)]
1056 {exp coef:0} = {
1057 0.43500000000E-01 1.0000000000
1058 })
1059 (type: [(am = f puream = 1)]
1060 {exp coef:0} = {
1061 0.21200000000 1.0000000000
1062 })
1063 (type: [(am = f puream = 1)]
1064 {exp coef:0} = {
1065 0.54100000000 1.0000000000
1066 })
1067 (type: [(am = f puream = 1)]
1068 {exp coef:0} = {
1069 11.925000000 1.0000000000
1070 })
1071 (type: [(am = f puream = 1)]
1072 {exp coef:0} = {
1073 4.3040000000 1.0000000000
1074 })
1075 (type: [(am = f puream = 1)]
1076 {exp coef:0} = {
1077 0.84600000000E-01 1.0000000000
1078 })
1079 (type: [(am = g puream = 1)]
1080 {exp coef:0} = {
1081 0.46100000000 1.0000000000
1082 })
1083 (type: [(am = g puream = 1)]
1084 {exp coef:0} = {
1085 8.5770000000 1.0000000000
1086 })
1087 (type: [(am = g puream = 1)]
1088 {exp coef:0} = {
1089 0.21200000000 1.0000000000
1090 })
1091 ]
1092%
1093% BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
1094% AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g)
1095% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
1096 phosphorus: "aug-cc-pCVQZ": [
1097 (type: [am = s am = s am = s]
1098 {exp coef:0 coef:1 coef:2} = {
1099 615200.00000 0.24745000000E-04 -0.67220500000E-05 0.18474000000E-05
1100 92120.000000 0.19246500000E-03 -0.52231100000E-04 0.14338000000E-04
1101 20950.000000 0.10120200000E-02 -0.27536100000E-03 0.75722800000E-04
1102 5920.0000000 0.42726100000E-02 -0.11630700000E-02 0.31920500000E-03
1103 1922.0000000 0.15416100000E-01 -0.42428100000E-02 0.11685100000E-02
1104 688.00000000 0.48597600000E-01 -0.13611400000E-01 0.37426700000E-02
1105 265.00000000 0.13006000000 -0.38511400000E-01 0.10681700000E-01
1106 108.20000000 0.27451400000 -0.90664300000E-01 0.25265700000E-01
1107 46.220000000 0.38540200000 -0.16658400000 0.47928300000E-01
1108 20.230000000 0.25593400000 -0.16144700000 0.47709600000E-01
1109 7.8590000000 0.39123700000E-01 0.14678100000 -0.46652500000E-01
1110 3.5470000000 -0.36801000000E-02 0.56668200000 -0.23496800000
1111 1.5640000000 0.20821100000E-02 0.41643300000 -0.31133700000
1112 })
1113 (type: [am = s]
1114 {exp coef:0} = {
1115 0.48880000000 1.0000000000
1116 })
1117 (type: [am = s]
1118 {exp coef:0} = {
1119 0.22660000000 1.0000000000
1120 })
1121 (type: [am = s]
1122 {exp coef:0} = {
1123 0.93310000000E-01 1.0000000000
1124 })
1125 (type: [am = s]
1126 {exp coef:0} = {
1127 14.831000000 1.0000000000
1128 })
1129 (type: [am = s]
1130 {exp coef:0} = {
1131 7.6400000000 1.0000000000
1132 })
1133 (type: [am = s]
1134 {exp coef:0} = {
1135 3.9350000000 1.0000000000
1136 })
1137 (type: [am = s]
1138 {exp coef:0} = {
1139 0.35400000000E-01 1.0000000000
1140 })
1141 (type: [am = p am = p]
1142 {exp coef:0 coef:1} = {
1143 1367.0000000 0.42101500000E-03 -0.10082700000E-03
1144 324.00000000 0.36098500000E-02 -0.85449900000E-03
1145 104.60000000 0.18921700000E-01 -0.45711600000E-02
1146 39.370000000 0.70556000000E-01 -0.17032700000E-01
1147 16.260000000 0.18815700000 -0.47520400000E-01
1148 7.0560000000 0.33870900000 -0.85278600000E-01
1149 3.1300000000 0.38194300000 -0.10967600000
1150 1.3940000000 0.19526100000 -0.16118100000E-01
1151 })
1152 (type: [am = p]
1153 {exp coef:0} = {
1154 0.51790000000 1.0000000000
1155 })
1156 (type: [am = p]
1157 {exp coef:0} = {
1158 0.20320000000 1.0000000000
1159 })
1160 (type: [am = p]
1161 {exp coef:0} = {
1162 0.76980000000E-01 1.0000000000
1163 })
1164 (type: [am = p]
1165 {exp coef:0} = {
1166 15.523000000 1.0000000000
1167 })
1168 (type: [am = p]
1169 {exp coef:0} = {
1170 7.0730000000 1.0000000000
1171 })
1172 (type: [am = p]
1173 {exp coef:0} = {
1174 3.2230000000 1.0000000000
1175 })
1176 (type: [am = p]
1177 {exp coef:0} = {
1178 0.27200000000E-01 1.0000000000
1179 })
1180 (type: [(am = d puream = 1)]
1181 {exp coef:0} = {
1182 0.16500000000 1.0000000000
1183 })
1184 (type: [(am = d puream = 1)]
1185 {exp coef:0} = {
1186 0.41300000000 1.0000000000
1187 })
1188 (type: [(am = d puream = 1)]
1189 {exp coef:0} = {
1190 1.0360000000 1.0000000000
1191 })
1192 (type: [(am = d puream = 1)]
1193 {exp coef:0} = {
1194 23.417000000 1.0000000000
1195 })
1196 (type: [(am = d puream = 1)]
1197 {exp coef:0} = {
1198 9.2500000000 1.0000000000
1199 })
1200 (type: [(am = d puream = 1)]
1201 {exp coef:0} = {
1202 3.6540000000 1.0000000000
1203 })
1204 (type: [(am = d puream = 1)]
1205 {exp coef:0} = {
1206 0.59400000000E-01 1.0000000000
1207 })
1208 (type: [(am = f puream = 1)]
1209 {exp coef:0} = {
1210 0.28000000000 1.0000000000
1211 })
1212 (type: [(am = f puream = 1)]
1213 {exp coef:0} = {
1214 0.70300000000 1.0000000000
1215 })
1216 (type: [(am = f puream = 1)]
1217 {exp coef:0} = {
1218 14.207000000 1.0000000000
1219 })
1220 (type: [(am = f puream = 1)]
1221 {exp coef:0} = {
1222 5.1610000000 1.0000000000
1223 })
1224 (type: [(am = f puream = 1)]
1225 {exp coef:0} = {
1226 0.10900000000 1.0000000000
1227 })
1228 (type: [(am = g puream = 1)]
1229 {exp coef:0} = {
1230 0.59700000000 1.0000000000
1231 })
1232 (type: [(am = g puream = 1)]
1233 {exp coef:0} = {
1234 10.448000000 1.0000000000
1235 })
1236 (type: [(am = g puream = 1)]
1237 {exp coef:0} = {
1238 0.25000000000 1.0000000000
1239 })
1240 ]
1241%
1242% BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
1243% AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g)
1244% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
1245 sulfur: "aug-cc-pCVQZ": [
1246 (type: [am = s am = s am = s]
1247 {exp coef:0 coef:1 coef:2} = {
1248 727800.00000 0.23602500000E-04 -0.65217900000E-05 0.18940600000E-05
1249 109000.00000 0.18348200000E-03 -0.50663100000E-04 0.14694800000E-04
1250 24800.000000 0.96427800000E-03 -0.26683300000E-03 0.77546000000E-04
1251 7014.0000000 0.40653700000E-02 -0.11260100000E-02 0.32650900000E-03
1252 2278.0000000 0.14697300000E-01 -0.41118600000E-02 0.11968600000E-02
1253 814.70000000 0.46508100000E-01 -0.13245400000E-01 0.38479900000E-02
1254 313.40000000 0.12550800000 -0.37700400000E-01 0.11053900000E-01
1255 127.70000000 0.26843300000 -0.89855400000E-01 0.26464500000E-01
1256 54.480000000 0.38480900000 -0.16709800000 0.50877100000E-01
1257 23.850000000 0.26537200000 -0.16935400000 0.53003000000E-01
1258 9.4280000000 0.43732600000E-01 0.12782400000 -0.42551800000E-01
1259 4.2900000000 -0.37880700000E-02 0.56486200000 -0.25085300000
1260 1.9090000000 0.21808300000E-02 0.43176700000 -0.33315200000
1261 })
1262 (type: [am = s]
1263 {exp coef:0} = {
1264 0.62700000000 1.0000000000
1265 })
1266 (type: [am = s]
1267 {exp coef:0} = {
1268 0.28730000000 1.0000000000
1269 })
1270 (type: [am = s]
1271 {exp coef:0} = {
1272 0.11720000000 1.0000000000
1273 })
1274 (type: [am = s]
1275 {exp coef:0} = {
1276 17.599000000 1.0000000000
1277 })
1278 (type: [am = s]
1279 {exp coef:0} = {
1280 9.1860000000 1.0000000000
1281 })
1282 (type: [am = s]
1283 {exp coef:0} = {
1284 4.7950000000 1.0000000000
1285 })
1286 (type: [am = s]
1287 {exp coef:0} = {
1288 0.42800000000E-01 1.0000000000
1289 })
1290 (type: [am = p am = p]
1291 {exp coef:0 coef:1} = {
1292 1546.0000000 0.44118300000E-03 -0.11311000000E-03
1293 366.40000000 0.37757100000E-02 -0.95858100000E-03
1294 118.40000000 0.19836000000E-01 -0.51347100000E-02
1295 44.530000000 0.74206300000E-01 -0.19264100000E-01
1296 18.380000000 0.19732700000 -0.53598000000E-01
1297 7.9650000000 0.35185100000 -0.96033300000E-01
1298 3.5410000000 0.37868700000 -0.11818300000
1299 1.5910000000 0.17093100000 0.92319400000E-02
1300 })
1301 (type: [am = p]
1302 {exp coef:0} = {
1303 0.62050000000 1.0000000000
1304 })
1305 (type: [am = p]
1306 {exp coef:0} = {
1307 0.24200000000 1.0000000000
1308 })
1309 (type: [am = p]
1310 {exp coef:0} = {
1311 0.90140000000E-01 1.0000000000
1312 })
1313 (type: [am = p]
1314 {exp coef:0} = {
1315 18.127000000 1.0000000000
1316 })
1317 (type: [am = p]
1318 {exp coef:0} = {
1319 8.2190000000 1.0000000000
1320 })
1321 (type: [am = p]
1322 {exp coef:0} = {
1323 3.7260000000 1.0000000000
1324 })
1325 (type: [am = p]
1326 {exp coef:0} = {
1327 0.31700000000E-01 1.0000000000
1328 })
1329 (type: [(am = d puream = 1)]
1330 {exp coef:0} = {
1331 0.20300000000 1.0000000000
1332 })
1333 (type: [(am = d puream = 1)]
1334 {exp coef:0} = {
1335 0.50400000000 1.0000000000
1336 })
1337 (type: [(am = d puream = 1)]
1338 {exp coef:0} = {
1339 1.2500000000 1.0000000000
1340 })
1341 (type: [(am = d puream = 1)]
1342 {exp coef:0} = {
1343 27.417000000 1.0000000000
1344 })
1345 (type: [(am = d puream = 1)]
1346 {exp coef:0} = {
1347 10.893000000 1.0000000000
1348 })
1349 (type: [(am = d puream = 1)]
1350 {exp coef:0} = {
1351 4.3190000000 1.0000000000
1352 })
1353 (type: [(am = d puream = 1)]
1354 {exp coef:0} = {
1355 0.74800000000E-01 1.0000000000
1356 })
1357 (type: [(am = f puream = 1)]
1358 {exp coef:0} = {
1359 0.33500000000 1.0000000000
1360 })
1361 (type: [(am = f puream = 1)]
1362 {exp coef:0} = {
1363 0.86900000000 1.0000000000
1364 })
1365 (type: [(am = f puream = 1)]
1366 {exp coef:0} = {
1367 16.535000000 1.0000000000
1368 })
1369 (type: [(am = f puream = 1)]
1370 {exp coef:0} = {
1371 6.0080000000 1.0000000000
1372 })
1373 (type: [(am = f puream = 1)]
1374 {exp coef:0} = {
1375 0.14000000000 1.0000000000
1376 })
1377 (type: [(am = g puream = 1)]
1378 {exp coef:0} = {
1379 0.68300000000 1.0000000000
1380 })
1381 (type: [(am = g puream = 1)]
1382 {exp coef:0} = {
1383 12.518000000 1.0000000000
1384 })
1385 (type: [(am = g puream = 1)]
1386 {exp coef:0} = {
1387 0.29700000000 1.0000000000
1388 })
1389 ]
1390%
1391% BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
1392% AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g)
1393% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
1394 chlorine: "aug-cc-pCVQZ": [
1395 (type: [am = s am = s am = s]
1396 {exp coef:0 coef:1 coef:2} = {
1397 834900.00000 0.23168800000E-04 -0.64964900000E-05 0.19664500000E-05
1398 125000.00000 0.18015400000E-03 -0.50489500000E-04 0.15262000000E-04
1399 28430.000000 0.94778200000E-03 -0.26611300000E-03 0.80608600000E-04
1400 8033.0000000 0.40013900000E-02 -0.11249900000E-02 0.33996000000E-03
1401 2608.0000000 0.14462900000E-01 -0.41049700000E-02 0.12455100000E-02
1402 933.90000000 0.45658600000E-01 -0.13198700000E-01 0.39961200000E-02
1403 360.00000000 0.12324800000 -0.37534200000E-01 0.11475100000E-01
1404 147.00000000 0.26436900000 -0.89723300000E-01 0.27550400000E-01
1405 62.880000000 0.38298900000 -0.16767100000 0.53291700000E-01
1406 27.600000000 0.27093400000 -0.17476300000 0.57124600000E-01
1407 11.080000000 0.47140400000E-01 0.11490900000 -0.39520100000E-01
1408 5.0750000000 -0.37176600000E-02 0.56361800000 -0.26434300000
1409 2.2780000000 0.21915800000E-02 0.44160600000 -0.34929100000
1410 })
1411 (type: [am = s]
1412 {exp coef:0} = {
1413 0.77750000000 1.0000000000
1414 })
1415 (type: [am = s]
1416 {exp coef:0} = {
1417 0.35270000000 1.0000000000
1418 })
1419 (type: [am = s]
1420 {exp coef:0} = {
1421 0.14310000000 1.0000000000
1422 })
1423 (type: [am = s]
1424 {exp coef:0} = {
1425 20.689000000 1.0000000000
1426 })
1427 (type: [am = s]
1428 {exp coef:0} = {
1429 10.880000000 1.0000000000
1430 })
1431 (type: [am = s]
1432 {exp coef:0} = {
1433 5.7220000000 1.0000000000
1434 })
1435 (type: [am = s]
1436 {exp coef:0} = {
1437 0.51900000000E-01 1.0000000000
1438 })
1439 (type: [am = p am = p]
1440 {exp coef:0 coef:1} = {
1441 1703.0000000 0.47403900000E-03 -0.12826600000E-03
1442 403.60000000 0.40641200000E-02 -0.10935600000E-02
1443 130.30000000 0.21335500000E-01 -0.58342900000E-02
1444 49.050000000 0.79461100000E-01 -0.21925800000E-01
1445 20.260000000 0.20892700000 -0.60138500000E-01
1446 8.7870000000 0.36494500000 -0.10692900000
1447 3.9190000000 0.37172500000 -0.12245400000
1448 1.7650000000 0.14629200000 0.38361900000E-01
1449 })
1450 (type: [am = p]
1451 {exp coef:0} = {
1452 0.72070000000 1.0000000000
1453 })
1454 (type: [am = p]
1455 {exp coef:0} = {
1456 0.28390000000 1.0000000000
1457 })
1458 (type: [am = p]
1459 {exp coef:0} = {
1460 0.10600000000 1.0000000000
1461 })
1462 (type: [am = p]
1463 {exp coef:0} = {
1464 20.784000000 1.0000000000
1465 })
1466 (type: [am = p]
1467 {exp coef:0} = {
1468 9.3790000000 1.0000000000
1469 })
1470 (type: [am = p]
1471 {exp coef:0} = {
1472 4.2320000000 1.0000000000
1473 })
1474 (type: [am = p]
1475 {exp coef:0} = {
1476 0.37600000000E-01 1.0000000000
1477 })
1478 (type: [(am = d puream = 1)]
1479 {exp coef:0} = {
1480 0.25400000000 1.0000000000
1481 })
1482 (type: [(am = d puream = 1)]
1483 {exp coef:0} = {
1484 0.62800000000 1.0000000000
1485 })
1486 (type: [(am = d puream = 1)]
1487 {exp coef:0} = {
1488 1.5510000000 1.0000000000
1489 })
1490 (type: [(am = d puream = 1)]
1491 {exp coef:0} = {
1492 32.255000000 1.0000000000
1493 })
1494 (type: [(am = d puream = 1)]
1495 {exp coef:0} = {
1496 12.888000000 1.0000000000
1497 })
1498 (type: [(am = d puream = 1)]
1499 {exp coef:0} = {
1500 5.1490000000 1.0000000000
1501 })
1502 (type: [(am = d puream = 1)]
1503 {exp coef:0} = {
1504 0.95200000000E-01 1.0000000000
1505 })
1506 (type: [(am = f puream = 1)]
1507 {exp coef:0} = {
1508 0.42300000000 1.0000000000
1509 })
1510 (type: [(am = f puream = 1)]
1511 {exp coef:0} = {
1512 1.0890000000 1.0000000000
1513 })
1514 (type: [(am = f puream = 1)]
1515 {exp coef:0} = {
1516 19.107000000 1.0000000000
1517 })
1518 (type: [(am = f puream = 1)]
1519 {exp coef:0} = {
1520 6.9500000000 1.0000000000
1521 })
1522 (type: [(am = f puream = 1)]
1523 {exp coef:0} = {
1524 0.21700000000 1.0000000000
1525 })
1526 (type: [(am = g puream = 1)]
1527 {exp coef:0} = {
1528 0.82700000000 1.0000000000
1529 })
1530 (type: [(am = g puream = 1)]
1531 {exp coef:0} = {
1532 14.782000000 1.0000000000
1533 })
1534 (type: [(am = g puream = 1)]
1535 {exp coef:0} = {
1536 0.37800000000 1.0000000000
1537 })
1538 ]
1539%
1540% BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
1541% AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g)
1542% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
1543 argon: "aug-cc-pCVQZ": [
1544 (type: [am = s am = s am = s]
1545 {exp coef:0 coef:1 coef:2} = {
1546 950600.00000 0.22754500000E-04 -0.64620100000E-05 0.20205600000E-05
1547 142300.00000 0.17694500000E-03 -0.50234600000E-04 0.15685100000E-04
1548 32360.000000 0.93128200000E-03 -0.26480400000E-03 0.82861700000E-04
1549 9145.0000000 0.39286000000E-02 -0.11189500000E-02 0.34926400000E-03
1550 2970.0000000 0.14206400000E-01 -0.40827600000E-02 0.12797600000E-02
1551 1064.0000000 0.44811400000E-01 -0.13121600000E-01 0.41036500000E-02
1552 410.80000000 0.12100100000 -0.37285500000E-01 0.11778900000E-01
1553 168.00000000 0.26057900000 -0.89470900000E-01 0.28386800000E-01
1554 71.990000000 0.38136400000 -0.16805400000 0.55240600000E-01
1555 31.670000000 0.27605800000 -0.17959400000 0.60749200000E-01
1556 12.890000000 0.50517900000E-01 0.10295300000 -0.36201200000E-01
1557 5.9290000000 -0.35986600000E-02 0.56263000000 -0.27539800000
1558 2.6780000000 0.21879800000E-02 0.45035500000 -0.36284500000
1559 })
1560 (type: [am = s]
1561 {exp coef:0} = {
1562 0.94160000000 1.0000000000
1563 })
1564 (type: [am = s]
1565 {exp coef:0} = {
1566 0.42390000000 1.0000000000
1567 })
1568 (type: [am = s]
1569 {exp coef:0} = {
1570 0.17140000000 1.0000000000
1571 })
1572 (type: [am = s]
1573 {exp coef:0} = {
1574 24.024000000 1.0000000000
1575 })
1576 (type: [am = s]
1577 {exp coef:0} = {
1578 12.706000000 1.0000000000
1579 })
1580 (type: [am = s]
1581 {exp coef:0} = {
1582 6.7200000000 1.0000000000
1583 })
1584 (type: [am = s]
1585 {exp coef:0} = {
1586 0.61000000000E-01 1.0000000000
1587 })
1588 (type: [am = p am = p]
1589 {exp coef:0 coef:1} = {
1590 1890.0000000 0.49575200000E-03 -0.13886300000E-03
1591 447.80000000 0.42517200000E-02 -0.11887000000E-02
1592 144.60000000 0.22327700000E-01 -0.63255300000E-02
1593 54.460000000 0.83087800000E-01 -0.23881300000E-01
1594 22.510000000 0.21711000000 -0.64923800000E-01
1595 9.7740000000 0.37450700000 -0.11544400000
1596 4.3680000000 0.36644500000 -0.12365100000
1597 1.9590000000 0.12924500000 0.64905500000E-01
1598 })
1599 (type: [am = p]
1600 {exp coef:0} = {
1601 0.82600000000 1.0000000000
1602 })
1603 (type: [am = p]
1604 {exp coef:0} = {
1605 0.32970000000 1.0000000000
1606 })
1607 (type: [am = p]
1608 {exp coef:0} = {
1609 0.12420000000 1.0000000000
1610 })
1611 (type: [am = p]
1612 {exp coef:0} = {
1613 23.627000000 1.0000000000
1614 })
1615 (type: [am = p]
1616 {exp coef:0} = {
1617 10.654000000 1.0000000000
1618 })
1619 (type: [am = p]
1620 {exp coef:0} = {
1621 4.8040000000 1.0000000000
1622 })
1623 (type: [am = p]
1624 {exp coef:0} = {
1625 0.43500000000E-01 1.0000000000
1626 })
1627 (type: [(am = d puream = 1)]
1628 {exp coef:0} = {
1629 0.31100000000 1.0000000000
1630 })
1631 (type: [(am = d puream = 1)]
1632 {exp coef:0} = {
1633 0.76300000000 1.0000000000
1634 })
1635 (type: [(am = d puream = 1)]
1636 {exp coef:0} = {
1637 1.8730000000 1.0000000000
1638 })
1639 (type: [(am = d puream = 1)]
1640 {exp coef:0} = {
1641 37.364000000 1.0000000000
1642 })
1643 (type: [(am = d puream = 1)]
1644 {exp coef:0} = {
1645 15.013000000 1.0000000000
1646 })
1647 (type: [(am = d puream = 1)]
1648 {exp coef:0} = {
1649 6.0320000000 1.0000000000
1650 })
1651 (type: [(am = d puream = 1)]
1652 {exp coef:0} = {
1653 0.11600000000 1.0000000000
1654 })
1655 (type: [(am = f puream = 1)]
1656 {exp coef:0} = {
1657 0.54300000000 1.0000000000
1658 })
1659 (type: [(am = f puream = 1)]
1660 {exp coef:0} = {
1661 1.3250000000 1.0000000000
1662 })
1663 (type: [(am = f puream = 1)]
1664 {exp coef:0} = {
1665 21.884000000 1.0000000000
1666 })
1667 (type: [(am = f puream = 1)]
1668 {exp coef:0} = {
1669 7.9680000000 1.0000000000
1670 })
1671 (type: [(am = f puream = 1)]
1672 {exp coef:0} = {
1673 0.29400000000 1.0000000000
1674 })
1675 (type: [(am = g puream = 1)]
1676 {exp coef:0} = {
1677 1.0070000000 1.0000000000
1678 })
1679 (type: [(am = g puream = 1)]
1680 {exp coef:0} = {
1681 17.243000000 1.0000000000
1682 })
1683 (type: [(am = g puream = 1)]
1684 {exp coef:0} = {
1685 0.45900000000 1.0000000000
1686 })
1687 ]
1688)
Note: See TracBrowser for help on using the repository browser.