[0b990d] | 1 | %BASIS "aug-cc-pCVQZ" CARTESIAN
|
---|
| 2 | basis:(
|
---|
| 3 | %Elements References
|
---|
| 4 | %-------- ----------
|
---|
| 5 | % H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
|
---|
| 6 | % He : D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 100, 2975 (1994).
|
---|
| 7 | %Li - Ne: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
|
---|
| 8 | %Na - Mg: D.E. Woon and T.H. Dunning, Jr. (to be published)
|
---|
| 9 | %Al - Ar: D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993).
|
---|
| 10 | %Ca : J. Koput and K.A. Peterson, J. Phys. Chem. A, 106, 9595 (2002).
|
---|
| 11 | %Elements References
|
---|
| 12 | %-------- ----------
|
---|
| 13 | % H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
|
---|
| 14 | %Li - Ne: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989) and D. E. Woon and
|
---|
| 15 | % T.H. Dunning, Jr. J. Chem. Phys. 103, 4572 (1995).
|
---|
| 16 | %Al - Ar: K.A. Peterson and T.H. Dunning, Jr. J. Chem. Phys. 117, 10548 (2002)
|
---|
| 17 | %Ca : J. Koput and K.A. Peterson, J. Phys. Chem. A, 106, 9595 (2002).
|
---|
| 18 | %Elements References
|
---|
| 19 | %-------- ---------
|
---|
| 20 | % H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
|
---|
| 21 | % He : D.E. Woon and T.H. Dunning, Jr., J. Chem. Phys. 100, 2975 (1994).
|
---|
| 22 | % B - F: R.A. Kendall, T.H. Dunning, Jr. and R.J. Harrison, J. Chem. Phys. 96,
|
---|
| 23 | % 6769 (1992).
|
---|
| 24 | %Al - Cl: D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993).
|
---|
| 25 | %
|
---|
| 26 | %
|
---|
| 27 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
|
---|
| 28 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f)
|
---|
| 29 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
| 30 | boron: "aug-cc-pCVQZ": [
|
---|
| 31 | (type: [am = s am = s]
|
---|
| 32 | {exp coef:0 coef:1} = {
|
---|
| 33 | 23870.000000 0.88000000000E-04 -0.18000000000E-04
|
---|
| 34 | 3575.0000000 0.68700000000E-03 -0.13900000000E-03
|
---|
| 35 | 812.80000000 0.36000000000E-02 -0.72500000000E-03
|
---|
| 36 | 229.70000000 0.14949000000E-01 -0.30630000000E-02
|
---|
| 37 | 74.690000000 0.51435000000E-01 -0.10581000000E-01
|
---|
| 38 | 26.810000000 0.14330200000 -0.31365000000E-01
|
---|
| 39 | 10.320000000 0.30093500000 -0.71012000000E-01
|
---|
| 40 | 4.1780000000 0.40352600000 -0.13210300000
|
---|
| 41 | 1.7270000000 0.22534000000 -0.12307200000
|
---|
| 42 | })
|
---|
| 43 | (type: [am = s]
|
---|
| 44 | {exp coef:0} = {
|
---|
| 45 | 0.47040000000 1.0000000000
|
---|
| 46 | })
|
---|
| 47 | (type: [am = s]
|
---|
| 48 | {exp coef:0} = {
|
---|
| 49 | 0.18960000000 1.0000000000
|
---|
| 50 | })
|
---|
| 51 | (type: [am = s]
|
---|
| 52 | {exp coef:0} = {
|
---|
| 53 | 0.73940000000E-01 1.0000000000
|
---|
| 54 | })
|
---|
| 55 | (type: [am = s]
|
---|
| 56 | {exp coef:0} = {
|
---|
| 57 | 4.8640000000 1.0000000000
|
---|
| 58 | })
|
---|
| 59 | (type: [am = s]
|
---|
| 60 | {exp coef:0} = {
|
---|
| 61 | 13.288000000 1.0000000000
|
---|
| 62 | })
|
---|
| 63 | (type: [am = s]
|
---|
| 64 | {exp coef:0} = {
|
---|
| 65 | 36.304000000 1.0000000000
|
---|
| 66 | })
|
---|
| 67 | (type: [am = s]
|
---|
| 68 | {exp coef:0} = {
|
---|
| 69 | 0.27210000000E-01 1.0000000000
|
---|
| 70 | })
|
---|
| 71 | (type: [am = p]
|
---|
| 72 | {exp coef:0} = {
|
---|
| 73 | 22.260000000 0.50950000000E-02
|
---|
| 74 | 5.0580000000 0.33206000000E-01
|
---|
| 75 | 1.4870000000 0.13231400000
|
---|
| 76 | })
|
---|
| 77 | (type: [am = p]
|
---|
| 78 | {exp coef:0} = {
|
---|
| 79 | 0.50710000000 1.0000000000
|
---|
| 80 | })
|
---|
| 81 | (type: [am = p]
|
---|
| 82 | {exp coef:0} = {
|
---|
| 83 | 0.18120000000 1.0000000000
|
---|
| 84 | })
|
---|
| 85 | (type: [am = p]
|
---|
| 86 | {exp coef:0} = {
|
---|
| 87 | 0.64630000000E-01 1.0000000000
|
---|
| 88 | })
|
---|
| 89 | (type: [am = p]
|
---|
| 90 | {exp coef:0} = {
|
---|
| 91 | 5.4890000000 1.0000000000
|
---|
| 92 | })
|
---|
| 93 | (type: [am = p]
|
---|
| 94 | {exp coef:0} = {
|
---|
| 95 | 16.302000000 1.0000000000
|
---|
| 96 | })
|
---|
| 97 | (type: [am = p]
|
---|
| 98 | {exp coef:0} = {
|
---|
| 99 | 48.418000000 1.0000000000
|
---|
| 100 | })
|
---|
| 101 | (type: [am = p]
|
---|
| 102 | {exp coef:0} = {
|
---|
| 103 | 0.18780000000E-01 1.0000000000
|
---|
| 104 | })
|
---|
| 105 | (type: [(am = d puream = 1)]
|
---|
| 106 | {exp coef:0} = {
|
---|
| 107 | 1.1100000000 1.0000000000
|
---|
| 108 | })
|
---|
| 109 | (type: [(am = d puream = 1)]
|
---|
| 110 | {exp coef:0} = {
|
---|
| 111 | 0.40200000000 1.0000000000
|
---|
| 112 | })
|
---|
| 113 | (type: [(am = d puream = 1)]
|
---|
| 114 | {exp coef:0} = {
|
---|
| 115 | 0.14500000000 1.0000000000
|
---|
| 116 | })
|
---|
| 117 | (type: [(am = d puream = 1)]
|
---|
| 118 | {exp coef:0} = {
|
---|
| 119 | 6.6400000000 1.0000000000
|
---|
| 120 | })
|
---|
| 121 | (type: [(am = d puream = 1)]
|
---|
| 122 | {exp coef:0} = {
|
---|
| 123 | 24.462000000 1.0000000000
|
---|
| 124 | })
|
---|
| 125 | (type: [(am = d puream = 1)]
|
---|
| 126 | {exp coef:0} = {
|
---|
| 127 | 0.46600000000E-01 1.0000000000
|
---|
| 128 | })
|
---|
| 129 | (type: [(am = f puream = 1)]
|
---|
| 130 | {exp coef:0} = {
|
---|
| 131 | 0.88200000000 1.0000000000
|
---|
| 132 | })
|
---|
| 133 | (type: [(am = f puream = 1)]
|
---|
| 134 | {exp coef:0} = {
|
---|
| 135 | 0.31100000000 1.0000000000
|
---|
| 136 | })
|
---|
| 137 | (type: [(am = f puream = 1)]
|
---|
| 138 | {exp coef:0} = {
|
---|
| 139 | 18.794000000 1.0000000000
|
---|
| 140 | })
|
---|
| 141 | (type: [(am = f puream = 1)]
|
---|
| 142 | {exp coef:0} = {
|
---|
| 143 | 0.11300000000 1.0000000000
|
---|
| 144 | })
|
---|
| 145 | (type: [(am = g puream = 1)]
|
---|
| 146 | {exp coef:0} = {
|
---|
| 147 | 0.67300000000 1.0000000000
|
---|
| 148 | })
|
---|
| 149 | (type: [(am = g puream = 1)]
|
---|
| 150 | {exp coef:0} = {
|
---|
| 151 | 0.27300000000 1.0000000000
|
---|
| 152 | })
|
---|
| 153 | ]
|
---|
| 154 | %
|
---|
| 155 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
|
---|
| 156 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f)
|
---|
| 157 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
| 158 | carbon: "aug-cc-pCVQZ": [
|
---|
| 159 | (type: [am = s am = s]
|
---|
| 160 | {exp coef:0 coef:1} = {
|
---|
| 161 | 33980.000000 0.91000000000E-04 -0.19000000000E-04
|
---|
| 162 | 5089.0000000 0.70400000000E-03 -0.15100000000E-03
|
---|
| 163 | 1157.0000000 0.36930000000E-02 -0.78500000000E-03
|
---|
| 164 | 326.60000000 0.15360000000E-01 -0.33240000000E-02
|
---|
| 165 | 106.10000000 0.52929000000E-01 -0.11512000000E-01
|
---|
| 166 | 38.110000000 0.14704300000 -0.34160000000E-01
|
---|
| 167 | 14.750000000 0.30563100000 -0.77173000000E-01
|
---|
| 168 | 6.0350000000 0.39934500000 -0.14149300000
|
---|
| 169 | 2.5300000000 0.21705100000 -0.11801900000
|
---|
| 170 | })
|
---|
| 171 | (type: [am = s]
|
---|
| 172 | {exp coef:0} = {
|
---|
| 173 | 0.73550000000 1.0000000000
|
---|
| 174 | })
|
---|
| 175 | (type: [am = s]
|
---|
| 176 | {exp coef:0} = {
|
---|
| 177 | 0.29050000000 1.0000000000
|
---|
| 178 | })
|
---|
| 179 | (type: [am = s]
|
---|
| 180 | {exp coef:0} = {
|
---|
| 181 | 0.11110000000 1.0000000000
|
---|
| 182 | })
|
---|
| 183 | (type: [am = s]
|
---|
| 184 | {exp coef:0} = {
|
---|
| 185 | 7.2160000000 1.0000000000
|
---|
| 186 | })
|
---|
| 187 | (type: [am = s]
|
---|
| 188 | {exp coef:0} = {
|
---|
| 189 | 19.570000000 1.0000000000
|
---|
| 190 | })
|
---|
| 191 | (type: [am = s]
|
---|
| 192 | {exp coef:0} = {
|
---|
| 193 | 53.073000000 1.0000000000
|
---|
| 194 | })
|
---|
| 195 | (type: [am = s]
|
---|
| 196 | {exp coef:0} = {
|
---|
| 197 | 0.41450000000E-01 1.0000000000
|
---|
| 198 | })
|
---|
| 199 | (type: [am = p]
|
---|
| 200 | {exp coef:0} = {
|
---|
| 201 | 34.510000000 0.53780000000E-02
|
---|
| 202 | 7.9150000000 0.36132000000E-01
|
---|
| 203 | 2.3680000000 0.14249300000
|
---|
| 204 | })
|
---|
| 205 | (type: [am = p]
|
---|
| 206 | {exp coef:0} = {
|
---|
| 207 | 0.81320000000 1.0000000000
|
---|
| 208 | })
|
---|
| 209 | (type: [am = p]
|
---|
| 210 | {exp coef:0} = {
|
---|
| 211 | 0.28900000000 1.0000000000
|
---|
| 212 | })
|
---|
| 213 | (type: [am = p]
|
---|
| 214 | {exp coef:0} = {
|
---|
| 215 | 0.10070000000 1.0000000000
|
---|
| 216 | })
|
---|
| 217 | (type: [am = p]
|
---|
| 218 | {exp coef:0} = {
|
---|
| 219 | 8.1820000000 1.0000000000
|
---|
| 220 | })
|
---|
| 221 | (type: [am = p]
|
---|
| 222 | {exp coef:0} = {
|
---|
| 223 | 24.186000000 1.0000000000
|
---|
| 224 | })
|
---|
| 225 | (type: [am = p]
|
---|
| 226 | {exp coef:0} = {
|
---|
| 227 | 71.494000000 1.0000000000
|
---|
| 228 | })
|
---|
| 229 | (type: [am = p]
|
---|
| 230 | {exp coef:0} = {
|
---|
| 231 | 0.32180000000E-01 1.0000000000
|
---|
| 232 | })
|
---|
| 233 | (type: [(am = d puream = 1)]
|
---|
| 234 | {exp coef:0} = {
|
---|
| 235 | 1.8480000000 1.0000000000
|
---|
| 236 | })
|
---|
| 237 | (type: [(am = d puream = 1)]
|
---|
| 238 | {exp coef:0} = {
|
---|
| 239 | 0.64900000000 1.0000000000
|
---|
| 240 | })
|
---|
| 241 | (type: [(am = d puream = 1)]
|
---|
| 242 | {exp coef:0} = {
|
---|
| 243 | 0.22800000000 1.0000000000
|
---|
| 244 | })
|
---|
| 245 | (type: [(am = d puream = 1)]
|
---|
| 246 | {exp coef:0} = {
|
---|
| 247 | 8.6560000000 1.0000000000
|
---|
| 248 | })
|
---|
| 249 | (type: [(am = d puream = 1)]
|
---|
| 250 | {exp coef:0} = {
|
---|
| 251 | 33.213000000 1.0000000000
|
---|
| 252 | })
|
---|
| 253 | (type: [(am = d puream = 1)]
|
---|
| 254 | {exp coef:0} = {
|
---|
| 255 | 0.76600000000E-01 1.0000000000
|
---|
| 256 | })
|
---|
| 257 | (type: [(am = f puream = 1)]
|
---|
| 258 | {exp coef:0} = {
|
---|
| 259 | 1.4190000000 1.0000000000
|
---|
| 260 | })
|
---|
| 261 | (type: [(am = f puream = 1)]
|
---|
| 262 | {exp coef:0} = {
|
---|
| 263 | 0.48500000000 1.0000000000
|
---|
| 264 | })
|
---|
| 265 | (type: [(am = f puream = 1)]
|
---|
| 266 | {exp coef:0} = {
|
---|
| 267 | 24.694000000 1.0000000000
|
---|
| 268 | })
|
---|
| 269 | (type: [(am = f puream = 1)]
|
---|
| 270 | {exp coef:0} = {
|
---|
| 271 | 0.18700000000 1.0000000000
|
---|
| 272 | })
|
---|
| 273 | (type: [(am = g puream = 1)]
|
---|
| 274 | {exp coef:0} = {
|
---|
| 275 | 1.0110000000 1.0000000000
|
---|
| 276 | })
|
---|
| 277 | (type: [(am = g puream = 1)]
|
---|
| 278 | {exp coef:0} = {
|
---|
| 279 | 0.42400000000 1.0000000000
|
---|
| 280 | })
|
---|
| 281 | ]
|
---|
| 282 | %
|
---|
| 283 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
|
---|
| 284 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f)
|
---|
| 285 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
| 286 | nitrogen: "aug-cc-pCVQZ": [
|
---|
| 287 | (type: [am = s am = s]
|
---|
| 288 | {exp coef:0 coef:1} = {
|
---|
| 289 | 45840.000000 0.92000000000E-04 -0.20000000000E-04
|
---|
| 290 | 6868.0000000 0.71700000000E-03 -0.15900000000E-03
|
---|
| 291 | 1563.0000000 0.37490000000E-02 -0.82400000000E-03
|
---|
| 292 | 442.40000000 0.15532000000E-01 -0.34780000000E-02
|
---|
| 293 | 144.30000000 0.53146000000E-01 -0.11966000000E-01
|
---|
| 294 | 52.180000000 0.14678700000 -0.35388000000E-01
|
---|
| 295 | 20.340000000 0.30466300000 -0.80077000000E-01
|
---|
| 296 | 8.3810000000 0.39768400000 -0.14672200000
|
---|
| 297 | 3.5290000000 0.21764100000 -0.11636000000
|
---|
| 298 | })
|
---|
| 299 | (type: [am = s]
|
---|
| 300 | {exp coef:0} = {
|
---|
| 301 | 1.0540000000 1.0000000000
|
---|
| 302 | })
|
---|
| 303 | (type: [am = s]
|
---|
| 304 | {exp coef:0} = {
|
---|
| 305 | 0.41180000000 1.0000000000
|
---|
| 306 | })
|
---|
| 307 | (type: [am = s]
|
---|
| 308 | {exp coef:0} = {
|
---|
| 309 | 0.15520000000 1.0000000000
|
---|
| 310 | })
|
---|
| 311 | (type: [am = s]
|
---|
| 312 | {exp coef:0} = {
|
---|
| 313 | 9.8620000000 1.0000000000
|
---|
| 314 | })
|
---|
| 315 | (type: [am = s]
|
---|
| 316 | {exp coef:0} = {
|
---|
| 317 | 26.627000000 1.0000000000
|
---|
| 318 | })
|
---|
| 319 | (type: [am = s]
|
---|
| 320 | {exp coef:0} = {
|
---|
| 321 | 71.894000000 1.0000000000
|
---|
| 322 | })
|
---|
| 323 | (type: [am = s]
|
---|
| 324 | {exp coef:0} = {
|
---|
| 325 | 0.54640000000E-01 1.0000000000
|
---|
| 326 | })
|
---|
| 327 | (type: [am = p]
|
---|
| 328 | {exp coef:0} = {
|
---|
| 329 | 49.330000000 0.55330000000E-02
|
---|
| 330 | 11.370000000 0.37962000000E-01
|
---|
| 331 | 3.4350000000 0.14902800000
|
---|
| 332 | })
|
---|
| 333 | (type: [am = p]
|
---|
| 334 | {exp coef:0} = {
|
---|
| 335 | 1.1820000000 1.0000000000
|
---|
| 336 | })
|
---|
| 337 | (type: [am = p]
|
---|
| 338 | {exp coef:0} = {
|
---|
| 339 | 0.41730000000 1.0000000000
|
---|
| 340 | })
|
---|
| 341 | (type: [am = p]
|
---|
| 342 | {exp coef:0} = {
|
---|
| 343 | 0.14280000000 1.0000000000
|
---|
| 344 | })
|
---|
| 345 | (type: [am = p]
|
---|
| 346 | {exp coef:0} = {
|
---|
| 347 | 11.320000000 1.0000000000
|
---|
| 348 | })
|
---|
| 349 | (type: [am = p]
|
---|
| 350 | {exp coef:0} = {
|
---|
| 351 | 33.349000000 1.0000000000
|
---|
| 352 | })
|
---|
| 353 | (type: [am = p]
|
---|
| 354 | {exp coef:0} = {
|
---|
| 355 | 98.245000000 1.0000000000
|
---|
| 356 | })
|
---|
| 357 | (type: [am = p]
|
---|
| 358 | {exp coef:0} = {
|
---|
| 359 | 0.44020000000E-01 1.0000000000
|
---|
| 360 | })
|
---|
| 361 | (type: [(am = d puream = 1)]
|
---|
| 362 | {exp coef:0} = {
|
---|
| 363 | 2.8370000000 1.0000000000
|
---|
| 364 | })
|
---|
| 365 | (type: [(am = d puream = 1)]
|
---|
| 366 | {exp coef:0} = {
|
---|
| 367 | 0.96800000000 1.0000000000
|
---|
| 368 | })
|
---|
| 369 | (type: [(am = d puream = 1)]
|
---|
| 370 | {exp coef:0} = {
|
---|
| 371 | 0.33500000000 1.0000000000
|
---|
| 372 | })
|
---|
| 373 | (type: [(am = d puream = 1)]
|
---|
| 374 | {exp coef:0} = {
|
---|
| 375 | 11.828000000 1.0000000000
|
---|
| 376 | })
|
---|
| 377 | (type: [(am = d puream = 1)]
|
---|
| 378 | {exp coef:0} = {
|
---|
| 379 | 45.218000000 1.0000000000
|
---|
| 380 | })
|
---|
| 381 | (type: [(am = d puream = 1)]
|
---|
| 382 | {exp coef:0} = {
|
---|
| 383 | 0.11100000000 1.0000000000
|
---|
| 384 | })
|
---|
| 385 | (type: [(am = f puream = 1)]
|
---|
| 386 | {exp coef:0} = {
|
---|
| 387 | 2.0270000000 1.0000000000
|
---|
| 388 | })
|
---|
| 389 | (type: [(am = f puream = 1)]
|
---|
| 390 | {exp coef:0} = {
|
---|
| 391 | 0.68500000000 1.0000000000
|
---|
| 392 | })
|
---|
| 393 | (type: [(am = f puream = 1)]
|
---|
| 394 | {exp coef:0} = {
|
---|
| 395 | 28.364000000 1.0000000000
|
---|
| 396 | })
|
---|
| 397 | (type: [(am = f puream = 1)]
|
---|
| 398 | {exp coef:0} = {
|
---|
| 399 | 0.24500000000 1.0000000000
|
---|
| 400 | })
|
---|
| 401 | (type: [(am = g puream = 1)]
|
---|
| 402 | {exp coef:0} = {
|
---|
| 403 | 1.4270000000 1.0000000000
|
---|
| 404 | })
|
---|
| 405 | (type: [(am = g puream = 1)]
|
---|
| 406 | {exp coef:0} = {
|
---|
| 407 | 0.55900000000 1.0000000000
|
---|
| 408 | })
|
---|
| 409 | ]
|
---|
| 410 | %
|
---|
| 411 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
|
---|
| 412 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f)
|
---|
| 413 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
| 414 | oxygen: "aug-cc-pCVQZ": [
|
---|
| 415 | (type: [am = s am = s]
|
---|
| 416 | {exp coef:0 coef:1} = {
|
---|
| 417 | 61420.000000 0.90000000000E-04 -0.20000000000E-04
|
---|
| 418 | 9199.0000000 0.69800000000E-03 -0.15900000000E-03
|
---|
| 419 | 2091.0000000 0.36640000000E-02 -0.82900000000E-03
|
---|
| 420 | 590.90000000 0.15218000000E-01 -0.35080000000E-02
|
---|
| 421 | 192.30000000 0.52423000000E-01 -0.12156000000E-01
|
---|
| 422 | 69.320000000 0.14592100000 -0.36261000000E-01
|
---|
| 423 | 26.970000000 0.30525800000 -0.82992000000E-01
|
---|
| 424 | 11.100000000 0.39850800000 -0.15209000000
|
---|
| 425 | 4.6820000000 0.21698000000 -0.11533100000
|
---|
| 426 | })
|
---|
| 427 | (type: [am = s]
|
---|
| 428 | {exp coef:0} = {
|
---|
| 429 | 1.4280000000 1.0000000000
|
---|
| 430 | })
|
---|
| 431 | (type: [am = s]
|
---|
| 432 | {exp coef:0} = {
|
---|
| 433 | 0.55470000000 1.0000000000
|
---|
| 434 | })
|
---|
| 435 | (type: [am = s]
|
---|
| 436 | {exp coef:0} = {
|
---|
| 437 | 0.20670000000 1.0000000000
|
---|
| 438 | })
|
---|
| 439 | (type: [am = s]
|
---|
| 440 | {exp coef:0} = {
|
---|
| 441 | 12.974000000 1.0000000000
|
---|
| 442 | })
|
---|
| 443 | (type: [am = s]
|
---|
| 444 | {exp coef:0} = {
|
---|
| 445 | 34.900000000 1.0000000000
|
---|
| 446 | })
|
---|
| 447 | (type: [am = s]
|
---|
| 448 | {exp coef:0} = {
|
---|
| 449 | 93.881000000 1.0000000000
|
---|
| 450 | })
|
---|
| 451 | (type: [am = s]
|
---|
| 452 | {exp coef:0} = {
|
---|
| 453 | 0.69590000000E-01 1.0000000000
|
---|
| 454 | })
|
---|
| 455 | (type: [am = p]
|
---|
| 456 | {exp coef:0} = {
|
---|
| 457 | 63.420000000 0.60440000000E-02
|
---|
| 458 | 14.660000000 0.41799000000E-01
|
---|
| 459 | 4.4590000000 0.16114300000
|
---|
| 460 | })
|
---|
| 461 | (type: [am = p]
|
---|
| 462 | {exp coef:0} = {
|
---|
| 463 | 1.5310000000 1.0000000000
|
---|
| 464 | })
|
---|
| 465 | (type: [am = p]
|
---|
| 466 | {exp coef:0} = {
|
---|
| 467 | 0.53020000000 1.0000000000
|
---|
| 468 | })
|
---|
| 469 | (type: [am = p]
|
---|
| 470 | {exp coef:0} = {
|
---|
| 471 | 0.17500000000 1.0000000000
|
---|
| 472 | })
|
---|
| 473 | (type: [am = p]
|
---|
| 474 | {exp coef:0} = {
|
---|
| 475 | 14.475000000 1.0000000000
|
---|
| 476 | })
|
---|
| 477 | (type: [am = p]
|
---|
| 478 | {exp coef:0} = {
|
---|
| 479 | 42.730000000 1.0000000000
|
---|
| 480 | })
|
---|
| 481 | (type: [am = p]
|
---|
| 482 | {exp coef:0} = {
|
---|
| 483 | 126.14000000 1.0000000000
|
---|
| 484 | })
|
---|
| 485 | (type: [am = p]
|
---|
| 486 | {exp coef:0} = {
|
---|
| 487 | 0.53480000000E-01 1.0000000000
|
---|
| 488 | })
|
---|
| 489 | (type: [(am = d puream = 1)]
|
---|
| 490 | {exp coef:0} = {
|
---|
| 491 | 3.7750000000 1.0000000000
|
---|
| 492 | })
|
---|
| 493 | (type: [(am = d puream = 1)]
|
---|
| 494 | {exp coef:0} = {
|
---|
| 495 | 1.3000000000 1.0000000000
|
---|
| 496 | })
|
---|
| 497 | (type: [(am = d puream = 1)]
|
---|
| 498 | {exp coef:0} = {
|
---|
| 499 | 0.44400000000 1.0000000000
|
---|
| 500 | })
|
---|
| 501 | (type: [(am = d puream = 1)]
|
---|
| 502 | {exp coef:0} = {
|
---|
| 503 | 14.927000000 1.0000000000
|
---|
| 504 | })
|
---|
| 505 | (type: [(am = d puream = 1)]
|
---|
| 506 | {exp coef:0} = {
|
---|
| 507 | 57.544000000 1.0000000000
|
---|
| 508 | })
|
---|
| 509 | (type: [(am = d puream = 1)]
|
---|
| 510 | {exp coef:0} = {
|
---|
| 511 | 0.15400000000 1.0000000000
|
---|
| 512 | })
|
---|
| 513 | (type: [(am = f puream = 1)]
|
---|
| 514 | {exp coef:0} = {
|
---|
| 515 | 2.6660000000 1.0000000000
|
---|
| 516 | })
|
---|
| 517 | (type: [(am = f puream = 1)]
|
---|
| 518 | {exp coef:0} = {
|
---|
| 519 | 0.85900000000 1.0000000000
|
---|
| 520 | })
|
---|
| 521 | (type: [(am = f puream = 1)]
|
---|
| 522 | {exp coef:0} = {
|
---|
| 523 | 26.483000000 1.0000000000
|
---|
| 524 | })
|
---|
| 525 | (type: [(am = f puream = 1)]
|
---|
| 526 | {exp coef:0} = {
|
---|
| 527 | 0.32400000000 1.0000000000
|
---|
| 528 | })
|
---|
| 529 | (type: [(am = g puream = 1)]
|
---|
| 530 | {exp coef:0} = {
|
---|
| 531 | 1.8460000000 1.0000000000
|
---|
| 532 | })
|
---|
| 533 | (type: [(am = g puream = 1)]
|
---|
| 534 | {exp coef:0} = {
|
---|
| 535 | 0.71400000000 1.0000000000
|
---|
| 536 | })
|
---|
| 537 | ]
|
---|
| 538 | %
|
---|
| 539 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
|
---|
| 540 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f)
|
---|
| 541 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
| 542 | fluorine: "aug-cc-pCVQZ": [
|
---|
| 543 | (type: [am = s am = s]
|
---|
| 544 | {exp coef:0 coef:1} = {
|
---|
| 545 | 74530.000000 0.95000000000E-04 -0.22000000000E-04
|
---|
| 546 | 11170.000000 0.73800000000E-03 -0.17200000000E-03
|
---|
| 547 | 2543.0000000 0.38580000000E-02 -0.89100000000E-03
|
---|
| 548 | 721.00000000 0.15926000000E-01 -0.37480000000E-02
|
---|
| 549 | 235.90000000 0.54289000000E-01 -0.12862000000E-01
|
---|
| 550 | 85.600000000 0.14951300000 -0.38061000000E-01
|
---|
| 551 | 33.550000000 0.30825200000 -0.86239000000E-01
|
---|
| 552 | 13.930000000 0.39485300000 -0.15586500000
|
---|
| 553 | 5.9150000000 0.21103100000 -0.11091400000
|
---|
| 554 | })
|
---|
| 555 | (type: [am = s]
|
---|
| 556 | {exp coef:0} = {
|
---|
| 557 | 1.8430000000 1.0000000000
|
---|
| 558 | })
|
---|
| 559 | (type: [am = s]
|
---|
| 560 | {exp coef:0} = {
|
---|
| 561 | 0.71240000000 1.0000000000
|
---|
| 562 | })
|
---|
| 563 | (type: [am = s]
|
---|
| 564 | {exp coef:0} = {
|
---|
| 565 | 0.26370000000 1.0000000000
|
---|
| 566 | })
|
---|
| 567 | (type: [am = s]
|
---|
| 568 | {exp coef:0} = {
|
---|
| 569 | 16.319000000 1.0000000000
|
---|
| 570 | })
|
---|
| 571 | (type: [am = s]
|
---|
| 572 | {exp coef:0} = {
|
---|
| 573 | 43.784000000 1.0000000000
|
---|
| 574 | })
|
---|
| 575 | (type: [am = s]
|
---|
| 576 | {exp coef:0} = {
|
---|
| 577 | 117.47200000 1.0000000000
|
---|
| 578 | })
|
---|
| 579 | (type: [am = s]
|
---|
| 580 | {exp coef:0} = {
|
---|
| 581 | 0.85940000000E-01 1.0000000000
|
---|
| 582 | })
|
---|
| 583 | (type: [am = p]
|
---|
| 584 | {exp coef:0} = {
|
---|
| 585 | 80.390000000 0.63470000000E-02
|
---|
| 586 | 18.630000000 0.44204000000E-01
|
---|
| 587 | 5.6940000000 0.16851400000
|
---|
| 588 | })
|
---|
| 589 | (type: [am = p]
|
---|
| 590 | {exp coef:0} = {
|
---|
| 591 | 1.9530000000 1.0000000000
|
---|
| 592 | })
|
---|
| 593 | (type: [am = p]
|
---|
| 594 | {exp coef:0} = {
|
---|
| 595 | 0.67020000000 1.0000000000
|
---|
| 596 | })
|
---|
| 597 | (type: [am = p]
|
---|
| 598 | {exp coef:0} = {
|
---|
| 599 | 0.21660000000 1.0000000000
|
---|
| 600 | })
|
---|
| 601 | (type: [am = p]
|
---|
| 602 | {exp coef:0} = {
|
---|
| 603 | 18.119000000 1.0000000000
|
---|
| 604 | })
|
---|
| 605 | (type: [am = p]
|
---|
| 606 | {exp coef:0} = {
|
---|
| 607 | 53.505000000 1.0000000000
|
---|
| 608 | })
|
---|
| 609 | (type: [am = p]
|
---|
| 610 | {exp coef:0} = {
|
---|
| 611 | 158.00100000 1.0000000000
|
---|
| 612 | })
|
---|
| 613 | (type: [am = p]
|
---|
| 614 | {exp coef:0} = {
|
---|
| 615 | 0.65680000000E-01 1.0000000000
|
---|
| 616 | })
|
---|
| 617 | (type: [(am = d puream = 1)]
|
---|
| 618 | {exp coef:0} = {
|
---|
| 619 | 5.0140000000 1.0000000000
|
---|
| 620 | })
|
---|
| 621 | (type: [(am = d puream = 1)]
|
---|
| 622 | {exp coef:0} = {
|
---|
| 623 | 1.7250000000 1.0000000000
|
---|
| 624 | })
|
---|
| 625 | (type: [(am = d puream = 1)]
|
---|
| 626 | {exp coef:0} = {
|
---|
| 627 | 0.58600000000 1.0000000000
|
---|
| 628 | })
|
---|
| 629 | (type: [(am = d puream = 1)]
|
---|
| 630 | {exp coef:0} = {
|
---|
| 631 | 18.943000000 1.0000000000
|
---|
| 632 | })
|
---|
| 633 | (type: [(am = d puream = 1)]
|
---|
| 634 | {exp coef:0} = {
|
---|
| 635 | 72.798000000 1.0000000000
|
---|
| 636 | })
|
---|
| 637 | (type: [(am = d puream = 1)]
|
---|
| 638 | {exp coef:0} = {
|
---|
| 639 | 0.20700000000 1.0000000000
|
---|
| 640 | })
|
---|
| 641 | (type: [(am = f puream = 1)]
|
---|
| 642 | {exp coef:0} = {
|
---|
| 643 | 3.5620000000 1.0000000000
|
---|
| 644 | })
|
---|
| 645 | (type: [(am = f puream = 1)]
|
---|
| 646 | {exp coef:0} = {
|
---|
| 647 | 1.1480000000 1.0000000000
|
---|
| 648 | })
|
---|
| 649 | (type: [(am = f puream = 1)]
|
---|
| 650 | {exp coef:0} = {
|
---|
| 651 | 25.161000000 1.0000000000
|
---|
| 652 | })
|
---|
| 653 | (type: [(am = f puream = 1)]
|
---|
| 654 | {exp coef:0} = {
|
---|
| 655 | 0.46000000000 1.0000000000
|
---|
| 656 | })
|
---|
| 657 | (type: [(am = g puream = 1)]
|
---|
| 658 | {exp coef:0} = {
|
---|
| 659 | 2.3760000000 1.0000000000
|
---|
| 660 | })
|
---|
| 661 | (type: [(am = g puream = 1)]
|
---|
| 662 | {exp coef:0} = {
|
---|
| 663 | 0.92400000000 1.0000000000
|
---|
| 664 | })
|
---|
| 665 | ]
|
---|
| 666 | %
|
---|
| 667 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
|
---|
| 668 | % AUGMENTING FUNCTIONS: Tight (s,p,d)
|
---|
| 669 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
| 670 | neon: "aug-cc-pCVQZ": [
|
---|
| 671 | (type: [am = s am = s]
|
---|
| 672 | {exp coef:0 coef:1} = {
|
---|
| 673 | 99920.000000 0.86000000000E-04 -0.20000000000E-04
|
---|
| 674 | 14960.000000 0.66900000000E-03 -0.15800000000E-03
|
---|
| 675 | 3399.0000000 0.35180000000E-02 -0.82400000000E-03
|
---|
| 676 | 958.90000000 0.14667000000E-01 -0.35000000000E-02
|
---|
| 677 | 311.20000000 0.50962000000E-01 -0.12233000000E-01
|
---|
| 678 | 111.70000000 0.14374400000 -0.37017000000E-01
|
---|
| 679 | 43.320000000 0.30456200000 -0.86113000000E-01
|
---|
| 680 | 17.800000000 0.40010500000 -0.15838100000
|
---|
| 681 | 7.5030000000 0.21864400000 -0.11428800000
|
---|
| 682 | })
|
---|
| 683 | (type: [am = s]
|
---|
| 684 | {exp coef:0} = {
|
---|
| 685 | 2.3370000000 1.0000000000
|
---|
| 686 | })
|
---|
| 687 | (type: [am = s]
|
---|
| 688 | {exp coef:0} = {
|
---|
| 689 | 0.90010000000 1.0000000000
|
---|
| 690 | })
|
---|
| 691 | (type: [am = s]
|
---|
| 692 | {exp coef:0} = {
|
---|
| 693 | 0.33010000000 1.0000000000
|
---|
| 694 | })
|
---|
| 695 | (type: [am = s]
|
---|
| 696 | {exp coef:0} = {
|
---|
| 697 | 20.180000000 1.0000000000
|
---|
| 698 | })
|
---|
| 699 | (type: [am = s]
|
---|
| 700 | {exp coef:0} = {
|
---|
| 701 | 54.042000000 1.0000000000
|
---|
| 702 | })
|
---|
| 703 | (type: [am = s]
|
---|
| 704 | {exp coef:0} = {
|
---|
| 705 | 144.72500000 1.0000000000
|
---|
| 706 | })
|
---|
| 707 | (type: [am = s]
|
---|
| 708 | {exp coef:0} = {
|
---|
| 709 | 0.10540000000 1.0000000000
|
---|
| 710 | })
|
---|
| 711 | (type: [am = p]
|
---|
| 712 | {exp coef:0} = {
|
---|
| 713 | 99.680000000 0.65660000000E-02
|
---|
| 714 | 23.150000000 0.45979000000E-01
|
---|
| 715 | 7.1080000000 0.17341900000
|
---|
| 716 | })
|
---|
| 717 | (type: [am = p]
|
---|
| 718 | {exp coef:0} = {
|
---|
| 719 | 2.4410000000 1.0000000000
|
---|
| 720 | })
|
---|
| 721 | (type: [am = p]
|
---|
| 722 | {exp coef:0} = {
|
---|
| 723 | 0.83390000000 1.0000000000
|
---|
| 724 | })
|
---|
| 725 | (type: [am = p]
|
---|
| 726 | {exp coef:0} = {
|
---|
| 727 | 0.26620000000 1.0000000000
|
---|
| 728 | })
|
---|
| 729 | (type: [am = p]
|
---|
| 730 | {exp coef:0} = {
|
---|
| 731 | 22.222000000 1.0000000000
|
---|
| 732 | })
|
---|
| 733 | (type: [am = p]
|
---|
| 734 | {exp coef:0} = {
|
---|
| 735 | 65.622000000 1.0000000000
|
---|
| 736 | })
|
---|
| 737 | (type: [am = p]
|
---|
| 738 | {exp coef:0} = {
|
---|
| 739 | 193.78000000 1.0000000000
|
---|
| 740 | })
|
---|
| 741 | (type: [am = p]
|
---|
| 742 | {exp coef:0} = {
|
---|
| 743 | 0.81780000000E-01 1.0000000000
|
---|
| 744 | })
|
---|
| 745 | (type: [(am = d puream = 1)]
|
---|
| 746 | {exp coef:0} = {
|
---|
| 747 | 6.4710000000 1.0000000000
|
---|
| 748 | })
|
---|
| 749 | (type: [(am = d puream = 1)]
|
---|
| 750 | {exp coef:0} = {
|
---|
| 751 | 2.2130000000 1.0000000000
|
---|
| 752 | })
|
---|
| 753 | (type: [(am = d puream = 1)]
|
---|
| 754 | {exp coef:0} = {
|
---|
| 755 | 0.74700000000 1.0000000000
|
---|
| 756 | })
|
---|
| 757 | (type: [(am = d puream = 1)]
|
---|
| 758 | {exp coef:0} = {
|
---|
| 759 | 23.613000000 1.0000000000
|
---|
| 760 | })
|
---|
| 761 | (type: [(am = d puream = 1)]
|
---|
| 762 | {exp coef:0} = {
|
---|
| 763 | 90.107000000 1.0000000000
|
---|
| 764 | })
|
---|
| 765 | (type: [(am = d puream = 1)]
|
---|
| 766 | {exp coef:0} = {
|
---|
| 767 | 0.27300000000 1.0000000000
|
---|
| 768 | })
|
---|
| 769 | (type: [(am = f puream = 1)]
|
---|
| 770 | {exp coef:0} = {
|
---|
| 771 | 4.6570000000 1.0000000000
|
---|
| 772 | })
|
---|
| 773 | (type: [(am = f puream = 1)]
|
---|
| 774 | {exp coef:0} = {
|
---|
| 775 | 1.5240000000 1.0000000000
|
---|
| 776 | })
|
---|
| 777 | (type: [(am = f puream = 1)]
|
---|
| 778 | {exp coef:0} = {
|
---|
| 779 | 28.830000000 1.0000000000
|
---|
| 780 | })
|
---|
| 781 | (type: [(am = f puream = 1)]
|
---|
| 782 | {exp coef:0} = {
|
---|
| 783 | 0.68900000000 1.0000000000
|
---|
| 784 | })
|
---|
| 785 | (type: [(am = g puream = 1)]
|
---|
| 786 | {exp coef:0} = {
|
---|
| 787 | 2.9830000000 1.0000000000
|
---|
| 788 | })
|
---|
| 789 | (type: [(am = g puream = 1)]
|
---|
| 790 | {exp coef:0} = {
|
---|
| 791 | 1.2240000000 1.0000000000
|
---|
| 792 | })
|
---|
| 793 | ]
|
---|
| 794 | %
|
---|
| 795 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
|
---|
| 796 | % AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g)
|
---|
| 797 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
| 798 | aluminum: "aug-cc-pCVQZ": [
|
---|
| 799 | (type: [am = s am = s am = s]
|
---|
| 800 | {exp coef:0 coef:1 coef:2} = {
|
---|
| 801 | 419600.00000 0.27821900000E-04 -0.72375400000E-05 0.16715000000E-05
|
---|
| 802 | 62830.000000 0.21633000000E-03 -0.56173300000E-04 0.12964100000E-04
|
---|
| 803 | 14290.000000 0.11375400000E-02 -0.29652800000E-03 0.68510100000E-04
|
---|
| 804 | 4038.0000000 0.47963500000E-02 -0.12491300000E-02 0.28827400000E-03
|
---|
| 805 | 1312.0000000 0.17238900000E-01 -0.45510100000E-02 0.10527600000E-02
|
---|
| 806 | 470.50000000 0.53806600000E-01 -0.14439300000E-01 0.33387800000E-02
|
---|
| 807 | 181.80000000 0.14132600000 -0.40346400000E-01 0.93921700000E-02
|
---|
| 808 | 74.460000000 0.28926800000 -0.92261800000E-01 0.21604700000E-01
|
---|
| 809 | 31.900000000 0.38482500000 -0.16451000000 0.39587300000E-01
|
---|
| 810 | 13.960000000 0.23285200000 -0.14129600000 0.34918000000E-01
|
---|
| 811 | 5.1800000000 0.29333000000E-01 0.19536500000 -0.52841500000E-01
|
---|
| 812 | 2.2650000000 -0.30057400000E-02 0.57247500000 -0.19187800000
|
---|
| 813 | 0.96640000000 0.16667300000E-02 0.37404100000 -0.25411500000
|
---|
| 814 | })
|
---|
| 815 | (type: [am = s]
|
---|
| 816 | {exp coef:0} = {
|
---|
| 817 | 0.24470000000 1.0000000000
|
---|
| 818 | })
|
---|
| 819 | (type: [am = s]
|
---|
| 820 | {exp coef:0} = {
|
---|
| 821 | 0.11840000000 1.0000000000
|
---|
| 822 | })
|
---|
| 823 | (type: [am = s]
|
---|
| 824 | {exp coef:0} = {
|
---|
| 825 | 0.50210000000E-01 1.0000000000
|
---|
| 826 | })
|
---|
| 827 | (type: [am = s]
|
---|
| 828 | {exp coef:0} = {
|
---|
| 829 | 9.7290000000 1.0000000000
|
---|
| 830 | })
|
---|
| 831 | (type: [am = s]
|
---|
| 832 | {exp coef:0} = {
|
---|
| 833 | 4.8700000000 1.0000000000
|
---|
| 834 | })
|
---|
| 835 | (type: [am = s]
|
---|
| 836 | {exp coef:0} = {
|
---|
| 837 | 2.4370000000 1.0000000000
|
---|
| 838 | })
|
---|
| 839 | (type: [am = s]
|
---|
| 840 | {exp coef:0} = {
|
---|
| 841 | 0.18300000000E-01 1.0000000000
|
---|
| 842 | })
|
---|
| 843 | (type: [am = p am = p]
|
---|
| 844 | {exp coef:0 coef:1} = {
|
---|
| 845 | 891.30000000 0.49175500000E-03 -0.88869500000E-04
|
---|
| 846 | 211.30000000 0.41584300000E-02 -0.74582300000E-03
|
---|
| 847 | 68.280000000 0.21253800000E-01 -0.38702500000E-02
|
---|
| 848 | 25.700000000 0.76405800000E-01 -0.13935000000E-01
|
---|
| 849 | 10.630000000 0.19427700000 -0.36686000000E-01
|
---|
| 850 | 4.6020000000 0.33442800000 -0.62779700000E-01
|
---|
| 851 | 2.0150000000 0.37502600000 -0.78960200000E-01
|
---|
| 852 | 0.87060000000 0.20404100000 -0.28858900000E-01
|
---|
| 853 | })
|
---|
| 854 | (type: [am = p]
|
---|
| 855 | {exp coef:0} = {
|
---|
| 856 | 0.29720000000 1.0000000000
|
---|
| 857 | })
|
---|
| 858 | (type: [am = p]
|
---|
| 859 | {exp coef:0} = {
|
---|
| 860 | 0.11000000000 1.0000000000
|
---|
| 861 | })
|
---|
| 862 | (type: [am = p]
|
---|
| 863 | {exp coef:0} = {
|
---|
| 864 | 0.39890000000E-01 1.0000000000
|
---|
| 865 | })
|
---|
| 866 | (type: [am = p]
|
---|
| 867 | {exp coef:0} = {
|
---|
| 868 | 10.000000000 1.0000000000
|
---|
| 869 | })
|
---|
| 870 | (type: [am = p]
|
---|
| 871 | {exp coef:0} = {
|
---|
| 872 | 4.5140000000 1.0000000000
|
---|
| 873 | })
|
---|
| 874 | (type: [am = p]
|
---|
| 875 | {exp coef:0} = {
|
---|
| 876 | 2.0380000000 1.0000000000
|
---|
| 877 | })
|
---|
| 878 | (type: [am = p]
|
---|
| 879 | {exp coef:0} = {
|
---|
| 880 | 0.12100000000E-01 1.0000000000
|
---|
| 881 | })
|
---|
| 882 | (type: [(am = d puream = 1)]
|
---|
| 883 | {exp coef:0} = {
|
---|
| 884 | 0.80400000000E-01 1.0000000000
|
---|
| 885 | })
|
---|
| 886 | (type: [(am = d puream = 1)]
|
---|
| 887 | {exp coef:0} = {
|
---|
| 888 | 0.19900000000 1.0000000000
|
---|
| 889 | })
|
---|
| 890 | (type: [(am = d puream = 1)]
|
---|
| 891 | {exp coef:0} = {
|
---|
| 892 | 0.49400000000 1.0000000000
|
---|
| 893 | })
|
---|
| 894 | (type: [(am = d puream = 1)]
|
---|
| 895 | {exp coef:0} = {
|
---|
| 896 | 14.835000000 1.0000000000
|
---|
| 897 | })
|
---|
| 898 | (type: [(am = d puream = 1)]
|
---|
| 899 | {exp coef:0} = {
|
---|
| 900 | 5.6370000000 1.0000000000
|
---|
| 901 | })
|
---|
| 902 | (type: [(am = d puream = 1)]
|
---|
| 903 | {exp coef:0} = {
|
---|
| 904 | 2.1420000000 1.0000000000
|
---|
| 905 | })
|
---|
| 906 | (type: [(am = d puream = 1)]
|
---|
| 907 | {exp coef:0} = {
|
---|
| 908 | 0.28200000000E-01 1.0000000000
|
---|
| 909 | })
|
---|
| 910 | (type: [(am = f puream = 1)]
|
---|
| 911 | {exp coef:0} = {
|
---|
| 912 | 0.15400000000 1.0000000000
|
---|
| 913 | })
|
---|
| 914 | (type: [(am = f puream = 1)]
|
---|
| 915 | {exp coef:0} = {
|
---|
| 916 | 0.40100000000 1.0000000000
|
---|
| 917 | })
|
---|
| 918 | (type: [(am = f puream = 1)]
|
---|
| 919 | {exp coef:0} = {
|
---|
| 920 | 9.8530000000 1.0000000000
|
---|
| 921 | })
|
---|
| 922 | (type: [(am = f puream = 1)]
|
---|
| 923 | {exp coef:0} = {
|
---|
| 924 | 3.5250000000 1.0000000000
|
---|
| 925 | })
|
---|
| 926 | (type: [(am = f puream = 1)]
|
---|
| 927 | {exp coef:0} = {
|
---|
| 928 | 0.58200000000E-01 1.0000000000
|
---|
| 929 | })
|
---|
| 930 | (type: [(am = g puream = 1)]
|
---|
| 931 | {exp coef:0} = {
|
---|
| 932 | 0.35700000000 1.0000000000
|
---|
| 933 | })
|
---|
| 934 | (type: [(am = g puream = 1)]
|
---|
| 935 | {exp coef:0} = {
|
---|
| 936 | 6.8940000000 1.0000000000
|
---|
| 937 | })
|
---|
| 938 | (type: [(am = g puream = 1)]
|
---|
| 939 | {exp coef:0} = {
|
---|
| 940 | 0.15300000000 1.0000000000
|
---|
| 941 | })
|
---|
| 942 | ]
|
---|
| 943 | %
|
---|
| 944 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
|
---|
| 945 | % AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g)
|
---|
| 946 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
| 947 | silicon: "aug-cc-pCVQZ": [
|
---|
| 948 | (type: [am = s am = s am = s]
|
---|
| 949 | {exp coef:0 coef:1 coef:2} = {
|
---|
| 950 | 513000.00000 0.26092000000E-04 -0.69488000000E-05 0.17806800000E-05
|
---|
| 951 | 76820.000000 0.20290500000E-03 -0.53964100000E-04 0.13814800000E-04
|
---|
| 952 | 17470.000000 0.10671500000E-02 -0.28471600000E-03 0.73000500000E-04
|
---|
| 953 | 4935.0000000 0.45059700000E-02 -0.12020300000E-02 0.30766600000E-03
|
---|
| 954 | 1602.0000000 0.16235900000E-01 -0.43839700000E-02 0.11256300000E-02
|
---|
| 955 | 574.10000000 0.50891300000E-01 -0.13977600000E-01 0.35843500000E-02
|
---|
| 956 | 221.50000000 0.13515500000 -0.39351600000E-01 0.10172800000E-01
|
---|
| 957 | 90.540000000 0.28129200000 -0.91428300000E-01 0.23752000000E-01
|
---|
| 958 | 38.740000000 0.38533600000 -0.16560900000 0.44348300000E-01
|
---|
| 959 | 16.950000000 0.24565100000 -0.15250500000 0.41904100000E-01
|
---|
| 960 | 6.4520000000 0.34314500000E-01 0.16852400000 -0.50250400000E-01
|
---|
| 961 | 2.8740000000 -0.33488400000E-02 0.56928400000 -0.21657800000
|
---|
| 962 | 1.2500000000 0.18762500000E-02 0.39805600000 -0.28644800000
|
---|
| 963 | })
|
---|
| 964 | (type: [am = s]
|
---|
| 965 | {exp coef:0} = {
|
---|
| 966 | 0.35990000000 1.0000000000
|
---|
| 967 | })
|
---|
| 968 | (type: [am = s]
|
---|
| 969 | {exp coef:0} = {
|
---|
| 970 | 0.16990000000 1.0000000000
|
---|
| 971 | })
|
---|
| 972 | (type: [am = s]
|
---|
| 973 | {exp coef:0} = {
|
---|
| 974 | 0.70660000000E-01 1.0000000000
|
---|
| 975 | })
|
---|
| 976 | (type: [am = s]
|
---|
| 977 | {exp coef:0} = {
|
---|
| 978 | 12.164000000 1.0000000000
|
---|
| 979 | })
|
---|
| 980 | (type: [am = s]
|
---|
| 981 | {exp coef:0} = {
|
---|
| 982 | 6.1870000000 1.0000000000
|
---|
| 983 | })
|
---|
| 984 | (type: [am = s]
|
---|
| 985 | {exp coef:0} = {
|
---|
| 986 | 3.1470000000 1.0000000000
|
---|
| 987 | })
|
---|
| 988 | (type: [am = s]
|
---|
| 989 | {exp coef:0} = {
|
---|
| 990 | 0.27500000000E-01 1.0000000000
|
---|
| 991 | })
|
---|
| 992 | (type: [am = p am = p]
|
---|
| 993 | {exp coef:0 coef:1} = {
|
---|
| 994 | 1122.0000000 0.44814300000E-03 -0.96488300000E-04
|
---|
| 995 | 266.00000000 0.38163900000E-02 -0.81197100000E-03
|
---|
| 996 | 85.920000000 0.19810500000E-01 -0.43008700000E-02
|
---|
| 997 | 32.330000000 0.72701700000E-01 -0.15750200000E-01
|
---|
| 998 | 13.370000000 0.18983900000 -0.42954100000E-01
|
---|
| 999 | 5.8000000000 0.33567200000 -0.75257400000E-01
|
---|
| 1000 | 2.5590000000 0.37936500000 -0.97144600000E-01
|
---|
| 1001 | 1.1240000000 0.20119300000 -0.22750700000E-01
|
---|
| 1002 | })
|
---|
| 1003 | (type: [am = p]
|
---|
| 1004 | {exp coef:0} = {
|
---|
| 1005 | 0.39880000000 1.0000000000
|
---|
| 1006 | })
|
---|
| 1007 | (type: [am = p]
|
---|
| 1008 | {exp coef:0} = {
|
---|
| 1009 | 0.15330000000 1.0000000000
|
---|
| 1010 | })
|
---|
| 1011 | (type: [am = p]
|
---|
| 1012 | {exp coef:0} = {
|
---|
| 1013 | 0.57280000000E-01 1.0000000000
|
---|
| 1014 | })
|
---|
| 1015 | (type: [am = p]
|
---|
| 1016 | {exp coef:0} = {
|
---|
| 1017 | 12.646000000 1.0000000000
|
---|
| 1018 | })
|
---|
| 1019 | (type: [am = p]
|
---|
| 1020 | {exp coef:0} = {
|
---|
| 1021 | 5.7470000000 1.0000000000
|
---|
| 1022 | })
|
---|
| 1023 | (type: [am = p]
|
---|
| 1024 | {exp coef:0} = {
|
---|
| 1025 | 2.6120000000 1.0000000000
|
---|
| 1026 | })
|
---|
| 1027 | (type: [am = p]
|
---|
| 1028 | {exp coef:0} = {
|
---|
| 1029 | 0.20000000000E-01 1.0000000000
|
---|
| 1030 | })
|
---|
| 1031 | (type: [(am = d puream = 1)]
|
---|
| 1032 | {exp coef:0} = {
|
---|
| 1033 | 0.12000000000 1.0000000000
|
---|
| 1034 | })
|
---|
| 1035 | (type: [(am = d puream = 1)]
|
---|
| 1036 | {exp coef:0} = {
|
---|
| 1037 | 0.30200000000 1.0000000000
|
---|
| 1038 | })
|
---|
| 1039 | (type: [(am = d puream = 1)]
|
---|
| 1040 | {exp coef:0} = {
|
---|
| 1041 | 0.76000000000 1.0000000000
|
---|
| 1042 | })
|
---|
| 1043 | (type: [(am = d puream = 1)]
|
---|
| 1044 | {exp coef:0} = {
|
---|
| 1045 | 19.015000000 1.0000000000
|
---|
| 1046 | })
|
---|
| 1047 | (type: [(am = d puream = 1)]
|
---|
| 1048 | {exp coef:0} = {
|
---|
| 1049 | 7.4010000000 1.0000000000
|
---|
| 1050 | })
|
---|
| 1051 | (type: [(am = d puream = 1)]
|
---|
| 1052 | {exp coef:0} = {
|
---|
| 1053 | 2.8810000000 1.0000000000
|
---|
| 1054 | })
|
---|
| 1055 | (type: [(am = d puream = 1)]
|
---|
| 1056 | {exp coef:0} = {
|
---|
| 1057 | 0.43500000000E-01 1.0000000000
|
---|
| 1058 | })
|
---|
| 1059 | (type: [(am = f puream = 1)]
|
---|
| 1060 | {exp coef:0} = {
|
---|
| 1061 | 0.21200000000 1.0000000000
|
---|
| 1062 | })
|
---|
| 1063 | (type: [(am = f puream = 1)]
|
---|
| 1064 | {exp coef:0} = {
|
---|
| 1065 | 0.54100000000 1.0000000000
|
---|
| 1066 | })
|
---|
| 1067 | (type: [(am = f puream = 1)]
|
---|
| 1068 | {exp coef:0} = {
|
---|
| 1069 | 11.925000000 1.0000000000
|
---|
| 1070 | })
|
---|
| 1071 | (type: [(am = f puream = 1)]
|
---|
| 1072 | {exp coef:0} = {
|
---|
| 1073 | 4.3040000000 1.0000000000
|
---|
| 1074 | })
|
---|
| 1075 | (type: [(am = f puream = 1)]
|
---|
| 1076 | {exp coef:0} = {
|
---|
| 1077 | 0.84600000000E-01 1.0000000000
|
---|
| 1078 | })
|
---|
| 1079 | (type: [(am = g puream = 1)]
|
---|
| 1080 | {exp coef:0} = {
|
---|
| 1081 | 0.46100000000 1.0000000000
|
---|
| 1082 | })
|
---|
| 1083 | (type: [(am = g puream = 1)]
|
---|
| 1084 | {exp coef:0} = {
|
---|
| 1085 | 8.5770000000 1.0000000000
|
---|
| 1086 | })
|
---|
| 1087 | (type: [(am = g puream = 1)]
|
---|
| 1088 | {exp coef:0} = {
|
---|
| 1089 | 0.21200000000 1.0000000000
|
---|
| 1090 | })
|
---|
| 1091 | ]
|
---|
| 1092 | %
|
---|
| 1093 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
|
---|
| 1094 | % AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g)
|
---|
| 1095 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
| 1096 | phosphorus: "aug-cc-pCVQZ": [
|
---|
| 1097 | (type: [am = s am = s am = s]
|
---|
| 1098 | {exp coef:0 coef:1 coef:2} = {
|
---|
| 1099 | 615200.00000 0.24745000000E-04 -0.67220500000E-05 0.18474000000E-05
|
---|
| 1100 | 92120.000000 0.19246500000E-03 -0.52231100000E-04 0.14338000000E-04
|
---|
| 1101 | 20950.000000 0.10120200000E-02 -0.27536100000E-03 0.75722800000E-04
|
---|
| 1102 | 5920.0000000 0.42726100000E-02 -0.11630700000E-02 0.31920500000E-03
|
---|
| 1103 | 1922.0000000 0.15416100000E-01 -0.42428100000E-02 0.11685100000E-02
|
---|
| 1104 | 688.00000000 0.48597600000E-01 -0.13611400000E-01 0.37426700000E-02
|
---|
| 1105 | 265.00000000 0.13006000000 -0.38511400000E-01 0.10681700000E-01
|
---|
| 1106 | 108.20000000 0.27451400000 -0.90664300000E-01 0.25265700000E-01
|
---|
| 1107 | 46.220000000 0.38540200000 -0.16658400000 0.47928300000E-01
|
---|
| 1108 | 20.230000000 0.25593400000 -0.16144700000 0.47709600000E-01
|
---|
| 1109 | 7.8590000000 0.39123700000E-01 0.14678100000 -0.46652500000E-01
|
---|
| 1110 | 3.5470000000 -0.36801000000E-02 0.56668200000 -0.23496800000
|
---|
| 1111 | 1.5640000000 0.20821100000E-02 0.41643300000 -0.31133700000
|
---|
| 1112 | })
|
---|
| 1113 | (type: [am = s]
|
---|
| 1114 | {exp coef:0} = {
|
---|
| 1115 | 0.48880000000 1.0000000000
|
---|
| 1116 | })
|
---|
| 1117 | (type: [am = s]
|
---|
| 1118 | {exp coef:0} = {
|
---|
| 1119 | 0.22660000000 1.0000000000
|
---|
| 1120 | })
|
---|
| 1121 | (type: [am = s]
|
---|
| 1122 | {exp coef:0} = {
|
---|
| 1123 | 0.93310000000E-01 1.0000000000
|
---|
| 1124 | })
|
---|
| 1125 | (type: [am = s]
|
---|
| 1126 | {exp coef:0} = {
|
---|
| 1127 | 14.831000000 1.0000000000
|
---|
| 1128 | })
|
---|
| 1129 | (type: [am = s]
|
---|
| 1130 | {exp coef:0} = {
|
---|
| 1131 | 7.6400000000 1.0000000000
|
---|
| 1132 | })
|
---|
| 1133 | (type: [am = s]
|
---|
| 1134 | {exp coef:0} = {
|
---|
| 1135 | 3.9350000000 1.0000000000
|
---|
| 1136 | })
|
---|
| 1137 | (type: [am = s]
|
---|
| 1138 | {exp coef:0} = {
|
---|
| 1139 | 0.35400000000E-01 1.0000000000
|
---|
| 1140 | })
|
---|
| 1141 | (type: [am = p am = p]
|
---|
| 1142 | {exp coef:0 coef:1} = {
|
---|
| 1143 | 1367.0000000 0.42101500000E-03 -0.10082700000E-03
|
---|
| 1144 | 324.00000000 0.36098500000E-02 -0.85449900000E-03
|
---|
| 1145 | 104.60000000 0.18921700000E-01 -0.45711600000E-02
|
---|
| 1146 | 39.370000000 0.70556000000E-01 -0.17032700000E-01
|
---|
| 1147 | 16.260000000 0.18815700000 -0.47520400000E-01
|
---|
| 1148 | 7.0560000000 0.33870900000 -0.85278600000E-01
|
---|
| 1149 | 3.1300000000 0.38194300000 -0.10967600000
|
---|
| 1150 | 1.3940000000 0.19526100000 -0.16118100000E-01
|
---|
| 1151 | })
|
---|
| 1152 | (type: [am = p]
|
---|
| 1153 | {exp coef:0} = {
|
---|
| 1154 | 0.51790000000 1.0000000000
|
---|
| 1155 | })
|
---|
| 1156 | (type: [am = p]
|
---|
| 1157 | {exp coef:0} = {
|
---|
| 1158 | 0.20320000000 1.0000000000
|
---|
| 1159 | })
|
---|
| 1160 | (type: [am = p]
|
---|
| 1161 | {exp coef:0} = {
|
---|
| 1162 | 0.76980000000E-01 1.0000000000
|
---|
| 1163 | })
|
---|
| 1164 | (type: [am = p]
|
---|
| 1165 | {exp coef:0} = {
|
---|
| 1166 | 15.523000000 1.0000000000
|
---|
| 1167 | })
|
---|
| 1168 | (type: [am = p]
|
---|
| 1169 | {exp coef:0} = {
|
---|
| 1170 | 7.0730000000 1.0000000000
|
---|
| 1171 | })
|
---|
| 1172 | (type: [am = p]
|
---|
| 1173 | {exp coef:0} = {
|
---|
| 1174 | 3.2230000000 1.0000000000
|
---|
| 1175 | })
|
---|
| 1176 | (type: [am = p]
|
---|
| 1177 | {exp coef:0} = {
|
---|
| 1178 | 0.27200000000E-01 1.0000000000
|
---|
| 1179 | })
|
---|
| 1180 | (type: [(am = d puream = 1)]
|
---|
| 1181 | {exp coef:0} = {
|
---|
| 1182 | 0.16500000000 1.0000000000
|
---|
| 1183 | })
|
---|
| 1184 | (type: [(am = d puream = 1)]
|
---|
| 1185 | {exp coef:0} = {
|
---|
| 1186 | 0.41300000000 1.0000000000
|
---|
| 1187 | })
|
---|
| 1188 | (type: [(am = d puream = 1)]
|
---|
| 1189 | {exp coef:0} = {
|
---|
| 1190 | 1.0360000000 1.0000000000
|
---|
| 1191 | })
|
---|
| 1192 | (type: [(am = d puream = 1)]
|
---|
| 1193 | {exp coef:0} = {
|
---|
| 1194 | 23.417000000 1.0000000000
|
---|
| 1195 | })
|
---|
| 1196 | (type: [(am = d puream = 1)]
|
---|
| 1197 | {exp coef:0} = {
|
---|
| 1198 | 9.2500000000 1.0000000000
|
---|
| 1199 | })
|
---|
| 1200 | (type: [(am = d puream = 1)]
|
---|
| 1201 | {exp coef:0} = {
|
---|
| 1202 | 3.6540000000 1.0000000000
|
---|
| 1203 | })
|
---|
| 1204 | (type: [(am = d puream = 1)]
|
---|
| 1205 | {exp coef:0} = {
|
---|
| 1206 | 0.59400000000E-01 1.0000000000
|
---|
| 1207 | })
|
---|
| 1208 | (type: [(am = f puream = 1)]
|
---|
| 1209 | {exp coef:0} = {
|
---|
| 1210 | 0.28000000000 1.0000000000
|
---|
| 1211 | })
|
---|
| 1212 | (type: [(am = f puream = 1)]
|
---|
| 1213 | {exp coef:0} = {
|
---|
| 1214 | 0.70300000000 1.0000000000
|
---|
| 1215 | })
|
---|
| 1216 | (type: [(am = f puream = 1)]
|
---|
| 1217 | {exp coef:0} = {
|
---|
| 1218 | 14.207000000 1.0000000000
|
---|
| 1219 | })
|
---|
| 1220 | (type: [(am = f puream = 1)]
|
---|
| 1221 | {exp coef:0} = {
|
---|
| 1222 | 5.1610000000 1.0000000000
|
---|
| 1223 | })
|
---|
| 1224 | (type: [(am = f puream = 1)]
|
---|
| 1225 | {exp coef:0} = {
|
---|
| 1226 | 0.10900000000 1.0000000000
|
---|
| 1227 | })
|
---|
| 1228 | (type: [(am = g puream = 1)]
|
---|
| 1229 | {exp coef:0} = {
|
---|
| 1230 | 0.59700000000 1.0000000000
|
---|
| 1231 | })
|
---|
| 1232 | (type: [(am = g puream = 1)]
|
---|
| 1233 | {exp coef:0} = {
|
---|
| 1234 | 10.448000000 1.0000000000
|
---|
| 1235 | })
|
---|
| 1236 | (type: [(am = g puream = 1)]
|
---|
| 1237 | {exp coef:0} = {
|
---|
| 1238 | 0.25000000000 1.0000000000
|
---|
| 1239 | })
|
---|
| 1240 | ]
|
---|
| 1241 | %
|
---|
| 1242 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
|
---|
| 1243 | % AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g)
|
---|
| 1244 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
| 1245 | sulfur: "aug-cc-pCVQZ": [
|
---|
| 1246 | (type: [am = s am = s am = s]
|
---|
| 1247 | {exp coef:0 coef:1 coef:2} = {
|
---|
| 1248 | 727800.00000 0.23602500000E-04 -0.65217900000E-05 0.18940600000E-05
|
---|
| 1249 | 109000.00000 0.18348200000E-03 -0.50663100000E-04 0.14694800000E-04
|
---|
| 1250 | 24800.000000 0.96427800000E-03 -0.26683300000E-03 0.77546000000E-04
|
---|
| 1251 | 7014.0000000 0.40653700000E-02 -0.11260100000E-02 0.32650900000E-03
|
---|
| 1252 | 2278.0000000 0.14697300000E-01 -0.41118600000E-02 0.11968600000E-02
|
---|
| 1253 | 814.70000000 0.46508100000E-01 -0.13245400000E-01 0.38479900000E-02
|
---|
| 1254 | 313.40000000 0.12550800000 -0.37700400000E-01 0.11053900000E-01
|
---|
| 1255 | 127.70000000 0.26843300000 -0.89855400000E-01 0.26464500000E-01
|
---|
| 1256 | 54.480000000 0.38480900000 -0.16709800000 0.50877100000E-01
|
---|
| 1257 | 23.850000000 0.26537200000 -0.16935400000 0.53003000000E-01
|
---|
| 1258 | 9.4280000000 0.43732600000E-01 0.12782400000 -0.42551800000E-01
|
---|
| 1259 | 4.2900000000 -0.37880700000E-02 0.56486200000 -0.25085300000
|
---|
| 1260 | 1.9090000000 0.21808300000E-02 0.43176700000 -0.33315200000
|
---|
| 1261 | })
|
---|
| 1262 | (type: [am = s]
|
---|
| 1263 | {exp coef:0} = {
|
---|
| 1264 | 0.62700000000 1.0000000000
|
---|
| 1265 | })
|
---|
| 1266 | (type: [am = s]
|
---|
| 1267 | {exp coef:0} = {
|
---|
| 1268 | 0.28730000000 1.0000000000
|
---|
| 1269 | })
|
---|
| 1270 | (type: [am = s]
|
---|
| 1271 | {exp coef:0} = {
|
---|
| 1272 | 0.11720000000 1.0000000000
|
---|
| 1273 | })
|
---|
| 1274 | (type: [am = s]
|
---|
| 1275 | {exp coef:0} = {
|
---|
| 1276 | 17.599000000 1.0000000000
|
---|
| 1277 | })
|
---|
| 1278 | (type: [am = s]
|
---|
| 1279 | {exp coef:0} = {
|
---|
| 1280 | 9.1860000000 1.0000000000
|
---|
| 1281 | })
|
---|
| 1282 | (type: [am = s]
|
---|
| 1283 | {exp coef:0} = {
|
---|
| 1284 | 4.7950000000 1.0000000000
|
---|
| 1285 | })
|
---|
| 1286 | (type: [am = s]
|
---|
| 1287 | {exp coef:0} = {
|
---|
| 1288 | 0.42800000000E-01 1.0000000000
|
---|
| 1289 | })
|
---|
| 1290 | (type: [am = p am = p]
|
---|
| 1291 | {exp coef:0 coef:1} = {
|
---|
| 1292 | 1546.0000000 0.44118300000E-03 -0.11311000000E-03
|
---|
| 1293 | 366.40000000 0.37757100000E-02 -0.95858100000E-03
|
---|
| 1294 | 118.40000000 0.19836000000E-01 -0.51347100000E-02
|
---|
| 1295 | 44.530000000 0.74206300000E-01 -0.19264100000E-01
|
---|
| 1296 | 18.380000000 0.19732700000 -0.53598000000E-01
|
---|
| 1297 | 7.9650000000 0.35185100000 -0.96033300000E-01
|
---|
| 1298 | 3.5410000000 0.37868700000 -0.11818300000
|
---|
| 1299 | 1.5910000000 0.17093100000 0.92319400000E-02
|
---|
| 1300 | })
|
---|
| 1301 | (type: [am = p]
|
---|
| 1302 | {exp coef:0} = {
|
---|
| 1303 | 0.62050000000 1.0000000000
|
---|
| 1304 | })
|
---|
| 1305 | (type: [am = p]
|
---|
| 1306 | {exp coef:0} = {
|
---|
| 1307 | 0.24200000000 1.0000000000
|
---|
| 1308 | })
|
---|
| 1309 | (type: [am = p]
|
---|
| 1310 | {exp coef:0} = {
|
---|
| 1311 | 0.90140000000E-01 1.0000000000
|
---|
| 1312 | })
|
---|
| 1313 | (type: [am = p]
|
---|
| 1314 | {exp coef:0} = {
|
---|
| 1315 | 18.127000000 1.0000000000
|
---|
| 1316 | })
|
---|
| 1317 | (type: [am = p]
|
---|
| 1318 | {exp coef:0} = {
|
---|
| 1319 | 8.2190000000 1.0000000000
|
---|
| 1320 | })
|
---|
| 1321 | (type: [am = p]
|
---|
| 1322 | {exp coef:0} = {
|
---|
| 1323 | 3.7260000000 1.0000000000
|
---|
| 1324 | })
|
---|
| 1325 | (type: [am = p]
|
---|
| 1326 | {exp coef:0} = {
|
---|
| 1327 | 0.31700000000E-01 1.0000000000
|
---|
| 1328 | })
|
---|
| 1329 | (type: [(am = d puream = 1)]
|
---|
| 1330 | {exp coef:0} = {
|
---|
| 1331 | 0.20300000000 1.0000000000
|
---|
| 1332 | })
|
---|
| 1333 | (type: [(am = d puream = 1)]
|
---|
| 1334 | {exp coef:0} = {
|
---|
| 1335 | 0.50400000000 1.0000000000
|
---|
| 1336 | })
|
---|
| 1337 | (type: [(am = d puream = 1)]
|
---|
| 1338 | {exp coef:0} = {
|
---|
| 1339 | 1.2500000000 1.0000000000
|
---|
| 1340 | })
|
---|
| 1341 | (type: [(am = d puream = 1)]
|
---|
| 1342 | {exp coef:0} = {
|
---|
| 1343 | 27.417000000 1.0000000000
|
---|
| 1344 | })
|
---|
| 1345 | (type: [(am = d puream = 1)]
|
---|
| 1346 | {exp coef:0} = {
|
---|
| 1347 | 10.893000000 1.0000000000
|
---|
| 1348 | })
|
---|
| 1349 | (type: [(am = d puream = 1)]
|
---|
| 1350 | {exp coef:0} = {
|
---|
| 1351 | 4.3190000000 1.0000000000
|
---|
| 1352 | })
|
---|
| 1353 | (type: [(am = d puream = 1)]
|
---|
| 1354 | {exp coef:0} = {
|
---|
| 1355 | 0.74800000000E-01 1.0000000000
|
---|
| 1356 | })
|
---|
| 1357 | (type: [(am = f puream = 1)]
|
---|
| 1358 | {exp coef:0} = {
|
---|
| 1359 | 0.33500000000 1.0000000000
|
---|
| 1360 | })
|
---|
| 1361 | (type: [(am = f puream = 1)]
|
---|
| 1362 | {exp coef:0} = {
|
---|
| 1363 | 0.86900000000 1.0000000000
|
---|
| 1364 | })
|
---|
| 1365 | (type: [(am = f puream = 1)]
|
---|
| 1366 | {exp coef:0} = {
|
---|
| 1367 | 16.535000000 1.0000000000
|
---|
| 1368 | })
|
---|
| 1369 | (type: [(am = f puream = 1)]
|
---|
| 1370 | {exp coef:0} = {
|
---|
| 1371 | 6.0080000000 1.0000000000
|
---|
| 1372 | })
|
---|
| 1373 | (type: [(am = f puream = 1)]
|
---|
| 1374 | {exp coef:0} = {
|
---|
| 1375 | 0.14000000000 1.0000000000
|
---|
| 1376 | })
|
---|
| 1377 | (type: [(am = g puream = 1)]
|
---|
| 1378 | {exp coef:0} = {
|
---|
| 1379 | 0.68300000000 1.0000000000
|
---|
| 1380 | })
|
---|
| 1381 | (type: [(am = g puream = 1)]
|
---|
| 1382 | {exp coef:0} = {
|
---|
| 1383 | 12.518000000 1.0000000000
|
---|
| 1384 | })
|
---|
| 1385 | (type: [(am = g puream = 1)]
|
---|
| 1386 | {exp coef:0} = {
|
---|
| 1387 | 0.29700000000 1.0000000000
|
---|
| 1388 | })
|
---|
| 1389 | ]
|
---|
| 1390 | %
|
---|
| 1391 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
|
---|
| 1392 | % AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g)
|
---|
| 1393 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
| 1394 | chlorine: "aug-cc-pCVQZ": [
|
---|
| 1395 | (type: [am = s am = s am = s]
|
---|
| 1396 | {exp coef:0 coef:1 coef:2} = {
|
---|
| 1397 | 834900.00000 0.23168800000E-04 -0.64964900000E-05 0.19664500000E-05
|
---|
| 1398 | 125000.00000 0.18015400000E-03 -0.50489500000E-04 0.15262000000E-04
|
---|
| 1399 | 28430.000000 0.94778200000E-03 -0.26611300000E-03 0.80608600000E-04
|
---|
| 1400 | 8033.0000000 0.40013900000E-02 -0.11249900000E-02 0.33996000000E-03
|
---|
| 1401 | 2608.0000000 0.14462900000E-01 -0.41049700000E-02 0.12455100000E-02
|
---|
| 1402 | 933.90000000 0.45658600000E-01 -0.13198700000E-01 0.39961200000E-02
|
---|
| 1403 | 360.00000000 0.12324800000 -0.37534200000E-01 0.11475100000E-01
|
---|
| 1404 | 147.00000000 0.26436900000 -0.89723300000E-01 0.27550400000E-01
|
---|
| 1405 | 62.880000000 0.38298900000 -0.16767100000 0.53291700000E-01
|
---|
| 1406 | 27.600000000 0.27093400000 -0.17476300000 0.57124600000E-01
|
---|
| 1407 | 11.080000000 0.47140400000E-01 0.11490900000 -0.39520100000E-01
|
---|
| 1408 | 5.0750000000 -0.37176600000E-02 0.56361800000 -0.26434300000
|
---|
| 1409 | 2.2780000000 0.21915800000E-02 0.44160600000 -0.34929100000
|
---|
| 1410 | })
|
---|
| 1411 | (type: [am = s]
|
---|
| 1412 | {exp coef:0} = {
|
---|
| 1413 | 0.77750000000 1.0000000000
|
---|
| 1414 | })
|
---|
| 1415 | (type: [am = s]
|
---|
| 1416 | {exp coef:0} = {
|
---|
| 1417 | 0.35270000000 1.0000000000
|
---|
| 1418 | })
|
---|
| 1419 | (type: [am = s]
|
---|
| 1420 | {exp coef:0} = {
|
---|
| 1421 | 0.14310000000 1.0000000000
|
---|
| 1422 | })
|
---|
| 1423 | (type: [am = s]
|
---|
| 1424 | {exp coef:0} = {
|
---|
| 1425 | 20.689000000 1.0000000000
|
---|
| 1426 | })
|
---|
| 1427 | (type: [am = s]
|
---|
| 1428 | {exp coef:0} = {
|
---|
| 1429 | 10.880000000 1.0000000000
|
---|
| 1430 | })
|
---|
| 1431 | (type: [am = s]
|
---|
| 1432 | {exp coef:0} = {
|
---|
| 1433 | 5.7220000000 1.0000000000
|
---|
| 1434 | })
|
---|
| 1435 | (type: [am = s]
|
---|
| 1436 | {exp coef:0} = {
|
---|
| 1437 | 0.51900000000E-01 1.0000000000
|
---|
| 1438 | })
|
---|
| 1439 | (type: [am = p am = p]
|
---|
| 1440 | {exp coef:0 coef:1} = {
|
---|
| 1441 | 1703.0000000 0.47403900000E-03 -0.12826600000E-03
|
---|
| 1442 | 403.60000000 0.40641200000E-02 -0.10935600000E-02
|
---|
| 1443 | 130.30000000 0.21335500000E-01 -0.58342900000E-02
|
---|
| 1444 | 49.050000000 0.79461100000E-01 -0.21925800000E-01
|
---|
| 1445 | 20.260000000 0.20892700000 -0.60138500000E-01
|
---|
| 1446 | 8.7870000000 0.36494500000 -0.10692900000
|
---|
| 1447 | 3.9190000000 0.37172500000 -0.12245400000
|
---|
| 1448 | 1.7650000000 0.14629200000 0.38361900000E-01
|
---|
| 1449 | })
|
---|
| 1450 | (type: [am = p]
|
---|
| 1451 | {exp coef:0} = {
|
---|
| 1452 | 0.72070000000 1.0000000000
|
---|
| 1453 | })
|
---|
| 1454 | (type: [am = p]
|
---|
| 1455 | {exp coef:0} = {
|
---|
| 1456 | 0.28390000000 1.0000000000
|
---|
| 1457 | })
|
---|
| 1458 | (type: [am = p]
|
---|
| 1459 | {exp coef:0} = {
|
---|
| 1460 | 0.10600000000 1.0000000000
|
---|
| 1461 | })
|
---|
| 1462 | (type: [am = p]
|
---|
| 1463 | {exp coef:0} = {
|
---|
| 1464 | 20.784000000 1.0000000000
|
---|
| 1465 | })
|
---|
| 1466 | (type: [am = p]
|
---|
| 1467 | {exp coef:0} = {
|
---|
| 1468 | 9.3790000000 1.0000000000
|
---|
| 1469 | })
|
---|
| 1470 | (type: [am = p]
|
---|
| 1471 | {exp coef:0} = {
|
---|
| 1472 | 4.2320000000 1.0000000000
|
---|
| 1473 | })
|
---|
| 1474 | (type: [am = p]
|
---|
| 1475 | {exp coef:0} = {
|
---|
| 1476 | 0.37600000000E-01 1.0000000000
|
---|
| 1477 | })
|
---|
| 1478 | (type: [(am = d puream = 1)]
|
---|
| 1479 | {exp coef:0} = {
|
---|
| 1480 | 0.25400000000 1.0000000000
|
---|
| 1481 | })
|
---|
| 1482 | (type: [(am = d puream = 1)]
|
---|
| 1483 | {exp coef:0} = {
|
---|
| 1484 | 0.62800000000 1.0000000000
|
---|
| 1485 | })
|
---|
| 1486 | (type: [(am = d puream = 1)]
|
---|
| 1487 | {exp coef:0} = {
|
---|
| 1488 | 1.5510000000 1.0000000000
|
---|
| 1489 | })
|
---|
| 1490 | (type: [(am = d puream = 1)]
|
---|
| 1491 | {exp coef:0} = {
|
---|
| 1492 | 32.255000000 1.0000000000
|
---|
| 1493 | })
|
---|
| 1494 | (type: [(am = d puream = 1)]
|
---|
| 1495 | {exp coef:0} = {
|
---|
| 1496 | 12.888000000 1.0000000000
|
---|
| 1497 | })
|
---|
| 1498 | (type: [(am = d puream = 1)]
|
---|
| 1499 | {exp coef:0} = {
|
---|
| 1500 | 5.1490000000 1.0000000000
|
---|
| 1501 | })
|
---|
| 1502 | (type: [(am = d puream = 1)]
|
---|
| 1503 | {exp coef:0} = {
|
---|
| 1504 | 0.95200000000E-01 1.0000000000
|
---|
| 1505 | })
|
---|
| 1506 | (type: [(am = f puream = 1)]
|
---|
| 1507 | {exp coef:0} = {
|
---|
| 1508 | 0.42300000000 1.0000000000
|
---|
| 1509 | })
|
---|
| 1510 | (type: [(am = f puream = 1)]
|
---|
| 1511 | {exp coef:0} = {
|
---|
| 1512 | 1.0890000000 1.0000000000
|
---|
| 1513 | })
|
---|
| 1514 | (type: [(am = f puream = 1)]
|
---|
| 1515 | {exp coef:0} = {
|
---|
| 1516 | 19.107000000 1.0000000000
|
---|
| 1517 | })
|
---|
| 1518 | (type: [(am = f puream = 1)]
|
---|
| 1519 | {exp coef:0} = {
|
---|
| 1520 | 6.9500000000 1.0000000000
|
---|
| 1521 | })
|
---|
| 1522 | (type: [(am = f puream = 1)]
|
---|
| 1523 | {exp coef:0} = {
|
---|
| 1524 | 0.21700000000 1.0000000000
|
---|
| 1525 | })
|
---|
| 1526 | (type: [(am = g puream = 1)]
|
---|
| 1527 | {exp coef:0} = {
|
---|
| 1528 | 0.82700000000 1.0000000000
|
---|
| 1529 | })
|
---|
| 1530 | (type: [(am = g puream = 1)]
|
---|
| 1531 | {exp coef:0} = {
|
---|
| 1532 | 14.782000000 1.0000000000
|
---|
| 1533 | })
|
---|
| 1534 | (type: [(am = g puream = 1)]
|
---|
| 1535 | {exp coef:0} = {
|
---|
| 1536 | 0.37800000000 1.0000000000
|
---|
| 1537 | })
|
---|
| 1538 | ]
|
---|
| 1539 | %
|
---|
| 1540 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
|
---|
| 1541 | % AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g)
|
---|
| 1542 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
| 1543 | argon: "aug-cc-pCVQZ": [
|
---|
| 1544 | (type: [am = s am = s am = s]
|
---|
| 1545 | {exp coef:0 coef:1 coef:2} = {
|
---|
| 1546 | 950600.00000 0.22754500000E-04 -0.64620100000E-05 0.20205600000E-05
|
---|
| 1547 | 142300.00000 0.17694500000E-03 -0.50234600000E-04 0.15685100000E-04
|
---|
| 1548 | 32360.000000 0.93128200000E-03 -0.26480400000E-03 0.82861700000E-04
|
---|
| 1549 | 9145.0000000 0.39286000000E-02 -0.11189500000E-02 0.34926400000E-03
|
---|
| 1550 | 2970.0000000 0.14206400000E-01 -0.40827600000E-02 0.12797600000E-02
|
---|
| 1551 | 1064.0000000 0.44811400000E-01 -0.13121600000E-01 0.41036500000E-02
|
---|
| 1552 | 410.80000000 0.12100100000 -0.37285500000E-01 0.11778900000E-01
|
---|
| 1553 | 168.00000000 0.26057900000 -0.89470900000E-01 0.28386800000E-01
|
---|
| 1554 | 71.990000000 0.38136400000 -0.16805400000 0.55240600000E-01
|
---|
| 1555 | 31.670000000 0.27605800000 -0.17959400000 0.60749200000E-01
|
---|
| 1556 | 12.890000000 0.50517900000E-01 0.10295300000 -0.36201200000E-01
|
---|
| 1557 | 5.9290000000 -0.35986600000E-02 0.56263000000 -0.27539800000
|
---|
| 1558 | 2.6780000000 0.21879800000E-02 0.45035500000 -0.36284500000
|
---|
| 1559 | })
|
---|
| 1560 | (type: [am = s]
|
---|
| 1561 | {exp coef:0} = {
|
---|
| 1562 | 0.94160000000 1.0000000000
|
---|
| 1563 | })
|
---|
| 1564 | (type: [am = s]
|
---|
| 1565 | {exp coef:0} = {
|
---|
| 1566 | 0.42390000000 1.0000000000
|
---|
| 1567 | })
|
---|
| 1568 | (type: [am = s]
|
---|
| 1569 | {exp coef:0} = {
|
---|
| 1570 | 0.17140000000 1.0000000000
|
---|
| 1571 | })
|
---|
| 1572 | (type: [am = s]
|
---|
| 1573 | {exp coef:0} = {
|
---|
| 1574 | 24.024000000 1.0000000000
|
---|
| 1575 | })
|
---|
| 1576 | (type: [am = s]
|
---|
| 1577 | {exp coef:0} = {
|
---|
| 1578 | 12.706000000 1.0000000000
|
---|
| 1579 | })
|
---|
| 1580 | (type: [am = s]
|
---|
| 1581 | {exp coef:0} = {
|
---|
| 1582 | 6.7200000000 1.0000000000
|
---|
| 1583 | })
|
---|
| 1584 | (type: [am = s]
|
---|
| 1585 | {exp coef:0} = {
|
---|
| 1586 | 0.61000000000E-01 1.0000000000
|
---|
| 1587 | })
|
---|
| 1588 | (type: [am = p am = p]
|
---|
| 1589 | {exp coef:0 coef:1} = {
|
---|
| 1590 | 1890.0000000 0.49575200000E-03 -0.13886300000E-03
|
---|
| 1591 | 447.80000000 0.42517200000E-02 -0.11887000000E-02
|
---|
| 1592 | 144.60000000 0.22327700000E-01 -0.63255300000E-02
|
---|
| 1593 | 54.460000000 0.83087800000E-01 -0.23881300000E-01
|
---|
| 1594 | 22.510000000 0.21711000000 -0.64923800000E-01
|
---|
| 1595 | 9.7740000000 0.37450700000 -0.11544400000
|
---|
| 1596 | 4.3680000000 0.36644500000 -0.12365100000
|
---|
| 1597 | 1.9590000000 0.12924500000 0.64905500000E-01
|
---|
| 1598 | })
|
---|
| 1599 | (type: [am = p]
|
---|
| 1600 | {exp coef:0} = {
|
---|
| 1601 | 0.82600000000 1.0000000000
|
---|
| 1602 | })
|
---|
| 1603 | (type: [am = p]
|
---|
| 1604 | {exp coef:0} = {
|
---|
| 1605 | 0.32970000000 1.0000000000
|
---|
| 1606 | })
|
---|
| 1607 | (type: [am = p]
|
---|
| 1608 | {exp coef:0} = {
|
---|
| 1609 | 0.12420000000 1.0000000000
|
---|
| 1610 | })
|
---|
| 1611 | (type: [am = p]
|
---|
| 1612 | {exp coef:0} = {
|
---|
| 1613 | 23.627000000 1.0000000000
|
---|
| 1614 | })
|
---|
| 1615 | (type: [am = p]
|
---|
| 1616 | {exp coef:0} = {
|
---|
| 1617 | 10.654000000 1.0000000000
|
---|
| 1618 | })
|
---|
| 1619 | (type: [am = p]
|
---|
| 1620 | {exp coef:0} = {
|
---|
| 1621 | 4.8040000000 1.0000000000
|
---|
| 1622 | })
|
---|
| 1623 | (type: [am = p]
|
---|
| 1624 | {exp coef:0} = {
|
---|
| 1625 | 0.43500000000E-01 1.0000000000
|
---|
| 1626 | })
|
---|
| 1627 | (type: [(am = d puream = 1)]
|
---|
| 1628 | {exp coef:0} = {
|
---|
| 1629 | 0.31100000000 1.0000000000
|
---|
| 1630 | })
|
---|
| 1631 | (type: [(am = d puream = 1)]
|
---|
| 1632 | {exp coef:0} = {
|
---|
| 1633 | 0.76300000000 1.0000000000
|
---|
| 1634 | })
|
---|
| 1635 | (type: [(am = d puream = 1)]
|
---|
| 1636 | {exp coef:0} = {
|
---|
| 1637 | 1.8730000000 1.0000000000
|
---|
| 1638 | })
|
---|
| 1639 | (type: [(am = d puream = 1)]
|
---|
| 1640 | {exp coef:0} = {
|
---|
| 1641 | 37.364000000 1.0000000000
|
---|
| 1642 | })
|
---|
| 1643 | (type: [(am = d puream = 1)]
|
---|
| 1644 | {exp coef:0} = {
|
---|
| 1645 | 15.013000000 1.0000000000
|
---|
| 1646 | })
|
---|
| 1647 | (type: [(am = d puream = 1)]
|
---|
| 1648 | {exp coef:0} = {
|
---|
| 1649 | 6.0320000000 1.0000000000
|
---|
| 1650 | })
|
---|
| 1651 | (type: [(am = d puream = 1)]
|
---|
| 1652 | {exp coef:0} = {
|
---|
| 1653 | 0.11600000000 1.0000000000
|
---|
| 1654 | })
|
---|
| 1655 | (type: [(am = f puream = 1)]
|
---|
| 1656 | {exp coef:0} = {
|
---|
| 1657 | 0.54300000000 1.0000000000
|
---|
| 1658 | })
|
---|
| 1659 | (type: [(am = f puream = 1)]
|
---|
| 1660 | {exp coef:0} = {
|
---|
| 1661 | 1.3250000000 1.0000000000
|
---|
| 1662 | })
|
---|
| 1663 | (type: [(am = f puream = 1)]
|
---|
| 1664 | {exp coef:0} = {
|
---|
| 1665 | 21.884000000 1.0000000000
|
---|
| 1666 | })
|
---|
| 1667 | (type: [(am = f puream = 1)]
|
---|
| 1668 | {exp coef:0} = {
|
---|
| 1669 | 7.9680000000 1.0000000000
|
---|
| 1670 | })
|
---|
| 1671 | (type: [(am = f puream = 1)]
|
---|
| 1672 | {exp coef:0} = {
|
---|
| 1673 | 0.29400000000 1.0000000000
|
---|
| 1674 | })
|
---|
| 1675 | (type: [(am = g puream = 1)]
|
---|
| 1676 | {exp coef:0} = {
|
---|
| 1677 | 1.0070000000 1.0000000000
|
---|
| 1678 | })
|
---|
| 1679 | (type: [(am = g puream = 1)]
|
---|
| 1680 | {exp coef:0} = {
|
---|
| 1681 | 17.243000000 1.0000000000
|
---|
| 1682 | })
|
---|
| 1683 | (type: [(am = g puream = 1)]
|
---|
| 1684 | {exp coef:0} = {
|
---|
| 1685 | 0.45900000000 1.0000000000
|
---|
| 1686 | })
|
---|
| 1687 | ]
|
---|
| 1688 | )
|
---|