MPQC: Massively Parallel Quantum Chemistry Version 2.1.0-alpha-gcc3 Machine: i686-pc-linux-gnu User: cljanss@aros.ca.sandia.gov Start Time: Sat Apr 6 13:35:46 2002 Using ProcMessageGrp for message passing (number of nodes = 1). Using PthreadThreadGrp for threading (number of threads = 2). Using ProcMemoryGrp for distributed shared memory. Total number of processors = 2 Reading file /usr/local/mpqc/2.1.0-alpha-gcc3/share/atominfo.kv. IntCoorGen: generated 3 coordinates. Forming optimization coordinates: SymmMolecularCoor::form_variable_coordinates() expected 3 coordinates found 2 variable coordinates found 0 constant coordinates Reading file /usr/local/mpqc/2.1.0-alpha-gcc3/share/basis/sto-3g.kv. Reading file /usr/local/mpqc/2.1.0-alpha-gcc3/share/basis/sto-3g.kv. CLSCF::init: total charge = 0 docc = [ 5 ] nbasis = 7 CLSCF::init: total charge = 0 docc = [ 5 ] nbasis = 7 Molecular formula H2O MPQC options: matrixkit = filename = h2ofrq_scfsto3gc2voptfrq restart_file = h2ofrq_scfsto3gc2voptfrq.ckpt restart = no checkpoint = no savestate = no do_energy = yes do_gradient = no optimize = yes write_pdb = no print_mole = yes print_timings = yes SCF::compute: energy accuracy = 1.0000000e-06 integral intermediate storage = 31876 bytes integral cache = 31967676 bytes Using symmetric orthogonalization. n(SO): 7 Maximum orthogonalization residual = 1.9104 Minimum orthogonalization residual = 0.344888 Using symmetric orthogonalization. n(SO): 7 Maximum orthogonalization residual = 1.9104 Minimum orthogonalization residual = 0.344888 Using guess wavefunction as starting vector SCF::compute: energy accuracy = 1.0000000e-06 integral intermediate storage = 31876 bytes integral cache = 31967676 bytes Starting from core Hamiltonian guess nuclear repulsion energy = 9.1571164588 733 integrals iter 1 energy = -74.6468200575 delta = 7.47196e-01 733 integrals iter 2 energy = -74.9403205745 delta = 2.23216e-01 733 integrals iter 3 energy = -74.9595428818 delta = 6.69340e-02 733 integrals iter 4 energy = -74.9606520926 delta = 2.02576e-02 733 integrals iter 5 energy = -74.9607020706 delta = 4.09811e-03 733 integrals iter 6 energy = -74.9607024821 delta = 3.66040e-04 733 integrals iter 7 energy = -74.9607024827 delta = 1.47732e-05 HOMO is 5 A = -0.386942 LUMO is 6 A = 0.592900 total scf energy = -74.9607024827 nuclear repulsion energy = 9.1571164588 733 integrals iter 1 energy = -74.9607024827 delta = 7.72168e-01 733 integrals iter 2 energy = -74.9607024827 delta = 6.14966e-10 HOMO is 5 A = -0.386942 LUMO is 6 A = 0.592900 total scf energy = -74.9607024827 SCF::compute: gradient accuracy = 1.0000000e-04 Total Gradient: 1 O -0.0000000000 0.0000000000 -0.0729842490 2 H -0.0120904564 0.0000000000 0.0364921245 3 H 0.0120904564 0.0000000000 0.0364921245 Max Gradient : 0.0729842490 0.0001000000 no Max Displacement : 0.1100275815 0.0001000000 no Gradient*Displace: 0.0116038775 0.0001000000 no taking step of size 0.195457 CLHF: changing atomic coordinates: Molecular formula: H2O molecule: ( symmetry = c1 unit = "angstrom" { n atoms geometry }={ 1 O [ -0.0000000000 -0.0000000000 0.4275970369] 2 H [ 0.7743131296 0.0000000000 -0.2137985184] 3 H [ -0.7743131296 0.0000000000 -0.2137985184] } ) Atomic Masses: 15.99491 1.00783 1.00783 SCF::compute: energy accuracy = 6.0140210e-07 integral intermediate storage = 31876 bytes integral cache = 31967676 bytes nuclear repulsion energy = 8.7625686681 Using symmetric orthogonalization. n(SO): 7 Maximum orthogonalization residual = 1.88345 Minimum orthogonalization residual = 0.373661 733 integrals iter 1 energy = -74.9600557457 delta = 7.66216e-01 733 integrals iter 2 energy = -74.9645681484 delta = 3.07904e-02 733 integrals iter 3 energy = -74.9652139114 delta = 1.22430e-02 733 integrals iter 4 energy = -74.9652936737 delta = 5.30781e-03 733 integrals iter 5 energy = -74.9652956044 delta = 6.65831e-04 733 integrals iter 6 energy = -74.9652956528 delta = 1.17553e-04 733 integrals iter 7 energy = -74.9652956528 delta = 5.13824e-07 HOMO is 5 A = -0.391460 LUMO is 6 A = 0.565640 total scf energy = -74.9652956528 SCF::compute: gradient accuracy = 6.0140210e-05 Total Gradient: 1 O 0.0000000000 0.0000000000 0.0189281435 2 H 0.0161925604 -0.0000000000 -0.0094640718 3 H -0.0161925604 -0.0000000000 -0.0094640718 Max Gradient : 0.0189281435 0.0001000000 no Max Displacement : 0.0462248233 0.0001000000 no Gradient*Displace: 0.0014817497 0.0001000000 no taking step of size 0.058908 CLHF: changing atomic coordinates: Molecular formula: H2O molecule: ( symmetry = c1 unit = "angstrom" { n atoms geometry }={ 1 O [ -0.0000000000 -0.0000000000 0.4278812074] 2 H [ 0.7498520047 0.0000000000 -0.2139406037] 3 H [ -0.7498520047 0.0000000000 -0.2139406037] } ) Atomic Masses: 15.99491 1.00783 1.00783 SCF::compute: energy accuracy = 2.1310519e-07 integral intermediate storage = 31876 bytes integral cache = 31967676 bytes nuclear repulsion energy = 8.9310141606 Using symmetric orthogonalization. n(SO): 7 Maximum orthogonalization residual = 1.91335 Minimum orthogonalization residual = 0.361664 733 integrals iter 1 energy = -74.9655992543 delta = 7.79083e-01 733 integrals iter 2 energy = -74.9658114788 delta = 5.62911e-03 733 integrals iter 3 energy = -74.9658210078 delta = 1.05601e-03 733 integrals iter 4 energy = -74.9658214097 delta = 2.78062e-04 733 integrals iter 5 energy = -74.9658214119 delta = 1.59594e-05 733 integrals iter 6 energy = -74.9658214122 delta = 1.06676e-05 HOMO is 5 A = -0.393473 LUMO is 6 A = 0.585729 total scf energy = -74.9658214122 SCF::compute: gradient accuracy = 2.1310519e-05 Total Gradient: 1 O 0.0000000000 -0.0000000000 0.0004917686 2 H -0.0049560024 0.0000000000 -0.0002458843 3 H 0.0049560024 -0.0000000000 -0.0002458843 Max Gradient : 0.0049560024 0.0001000000 no Max Displacement : 0.0166002180 0.0001000000 no Gradient*Displace: 0.0001709563 0.0001000000 no taking step of size 0.022950 CLHF: changing atomic coordinates: Molecular formula: H2O molecule: ( symmetry = c1 unit = "angstrom" { n atoms geometry }={ 1 O [ -0.0000000000 -0.0000000000 0.4232792967] 2 H [ 0.7586364624 -0.0000000000 -0.2116396483] 3 H [ -0.7586364624 -0.0000000000 -0.2116396483] } ) Atomic Masses: 15.99491 1.00783 1.00783 SCF::compute: energy accuracy = 8.1481549e-08 integral intermediate storage = 31876 bytes integral cache = 31967676 bytes nuclear repulsion energy = 8.9074557278 Using symmetric orthogonalization. n(SO): 7 Maximum orthogonalization residual = 1.9058 Minimum orthogonalization residual = 0.363085 733 integrals iter 1 energy = -74.9658760001 delta = 7.77075e-01 733 integrals iter 2 energy = -74.9658960905 delta = 1.56731e-03 733 integrals iter 3 energy = -74.9659002608 delta = 9.53666e-04 733 integrals iter 4 energy = -74.9659005409 delta = 3.41816e-04 733 integrals iter 5 energy = -74.9659005417 delta = 1.22645e-05 733 integrals iter 6 energy = -74.9659005417 delta = 5.60889e-07 HOMO is 5 A = -0.392545 LUMO is 6 A = 0.581747 total scf energy = -74.9659005417 SCF::compute: gradient accuracy = 8.1481549e-06 Total Gradient: 1 O -0.0000000000 -0.0000000000 -0.0006048632 2 H 0.0001386420 0.0000000000 0.0003024316 3 H -0.0001386420 -0.0000000000 0.0003024316 Max Gradient : 0.0006048632 0.0001000000 no Max Displacement : 0.0011699905 0.0001000000 no Gradient*Displace: 0.0000013466 0.0001000000 yes taking step of size 0.002198 CLHF: changing atomic coordinates: Molecular formula: H2O molecule: ( symmetry = c1 unit = "angstrom" { n atoms geometry }={ 1 O [ -0.0000000000 -0.0000000000 0.4238984290] 2 H [ 0.7580924982 -0.0000000000 -0.2119492145] 3 H [ -0.7580924982 -0.0000000000 -0.2119492145] } ) Atomic Masses: 15.99491 1.00783 1.00783 SCF::compute: energy accuracy = 4.8212102e-09 integral intermediate storage = 31876 bytes integral cache = 31967676 bytes nuclear repulsion energy = 8.9061536070 Using symmetric orthogonalization. n(SO): 7 Maximum orthogonalization residual = 1.90602 Minimum orthogonalization residual = 0.363205 733 integrals iter 1 energy = -74.9659007700 delta = 7.76697e-01 733 integrals iter 2 energy = -74.9659011131 delta = 2.61340e-04 733 integrals iter 3 energy = -74.9659011859 delta = 1.48080e-04 733 integrals iter 4 energy = -74.9659011889 delta = 3.21369e-05 733 integrals iter 5 energy = -74.9659011889 delta = 2.79415e-06 731 integrals iter 6 energy = -74.9659011888 delta = 3.45305e-07 HOMO is 5 A = -0.392617 LUMO is 6 A = 0.581763 total scf energy = -74.9659011888 SCF::compute: gradient accuracy = 4.8212102e-07 Total Gradient: 1 O -0.0000000000 -0.0000000000 0.0000640341 2 H 0.0000291212 0.0000000000 -0.0000320170 3 H -0.0000291212 -0.0000000000 -0.0000320170 Max Gradient : 0.0000640341 0.0001000000 yes Max Displacement : 0.0000580782 0.0001000000 yes Gradient*Displace: 0.0000000071 0.0001000000 yes All convergence criteria have been met. The optimization has converged. Value of the MolecularEnergy: -74.9659011888 The external rank is 6 Computing molecular hessian from 6 displacements: Starting at displacement: 0 Hessian options: displacement: 0.01 bohr gradient_accuracy: 1e-05 au eliminate_cubic_terms: yes only_totally_symmetric: no Beginning displacement 0: Molecule: setting point group to c1 Displacement is A1 in c2v. Using point group c1 for displaced molecule. SCF::compute: energy accuracy = 1.0000000e-07 integral intermediate storage = 31876 bytes integral cache = 31967676 bytes nuclear repulsion energy = 8.9061536070 Using symmetric orthogonalization. n(SO): 7 Maximum orthogonalization residual = 1.90602 Minimum orthogonalization residual = 0.363205 733 integrals iter 1 energy = -74.9659011889 delta = 7.76791e-01 733 integrals iter 2 energy = -74.9659011889 delta = 4.78834e-11 HOMO is 5 A = -0.392617 LUMO is 6 A = 0.581763 total scf energy = -74.9659011889 SCF::compute: gradient accuracy = 1.0000000e-05 Total Gradient: 1 O -0.0000000000 -0.0000000000 0.0000640341 2 H 0.0000291212 0.0000000000 -0.0000320171 3 H -0.0000291212 -0.0000000000 -0.0000320171 Beginning displacement 1: Molecule: setting point group to c1 Displacement is A1 in c2v. Using point group c1 for displaced molecule. SCF::compute: energy accuracy = 1.0000000e-07 integral intermediate storage = 31876 bytes integral cache = 31967676 bytes nuclear repulsion energy = 8.9017652169 Using symmetric orthogonalization. n(SO): 7 Maximum orthogonalization residual = 1.90738 Minimum orthogonalization residual = 0.363655 733 integrals iter 1 energy = -74.9658762357 delta = 7.76615e-01 733 integrals iter 2 energy = -74.9658835013 delta = 1.18413e-03 733 integrals iter 3 energy = -74.9658851062 delta = 7.15106e-04 733 integrals iter 4 energy = -74.9658851505 delta = 1.22961e-04 733 integrals iter 5 energy = -74.9658851510 delta = 1.04249e-05 731 integrals iter 6 energy = -74.9658851506 delta = 1.26702e-06 HOMO is 5 A = -0.392971 LUMO is 6 A = 0.582017 total scf energy = -74.9658851506 SCF::compute: gradient accuracy = 1.0000000e-05 Total Gradient: 1 O -0.0000000000 -0.0000000000 0.0029890656 2 H -0.0007094581 0.0000000000 -0.0014945328 3 H 0.0007094581 -0.0000000000 -0.0014945328 Beginning displacement 2: Molecule: setting point group to c1 Displacement is A1 in c2v. Using point group c1 for displaced molecule. SCF::compute: energy accuracy = 1.0000000e-07 integral intermediate storage = 31876 bytes integral cache = 31967676 bytes nuclear repulsion energy = 8.9508812501 Using symmetric orthogonalization. n(SO): 7 Maximum orthogonalization residual = 1.91146 Minimum orthogonalization residual = 0.359915 733 integrals iter 1 energy = -74.9657834852 delta = 7.77902e-01 733 integrals iter 2 energy = -74.9658377567 delta = 3.47008e-03 733 integrals iter 3 energy = -74.9658450691 delta = 1.31938e-03 733 integrals iter 4 energy = -74.9658459457 delta = 5.58077e-04 733 integrals iter 5 energy = -74.9658459678 delta = 7.35883e-05 733 integrals iter 6 energy = -74.9658459683 delta = 1.18429e-05 HOMO is 5 A = -0.392701 LUMO is 6 A = 0.586163 total scf energy = -74.9658459683 SCF::compute: gradient accuracy = 1.0000000e-05 Total Gradient: 1 O -0.0000000000 -0.0000000000 -0.0078502085 2 H -0.0042547284 0.0000000000 0.0039251043 3 H 0.0042547284 -0.0000000000 0.0039251043 Beginning displacement 3: Molecule: setting point group to c1 Displacement is A1 in c2v. Using point group c1 for displaced molecule. SCF::compute: energy accuracy = 1.0000000e-07 integral intermediate storage = 31876 bytes integral cache = 31967676 bytes nuclear repulsion energy = 8.9103309454 Using symmetric orthogonalization. n(SO): 7 Maximum orthogonalization residual = 1.90465 Minimum orthogonalization residual = 0.362783 733 integrals iter 1 energy = -74.9658726258 delta = 7.76047e-01 733 integrals iter 2 energy = -74.9658850747 delta = 1.41184e-03 733 integrals iter 3 energy = -74.9658856405 delta = 2.86074e-04 733 integrals iter 4 energy = -74.9658856659 delta = 8.51254e-05 733 integrals iter 5 energy = -74.9658856661 delta = 6.25004e-06 733 integrals iter 6 energy = -74.9658856661 delta = 4.11396e-06 HOMO is 5 A = -0.392253 LUMO is 6 A = 0.581454 total scf energy = -74.9658856661 SCF::compute: gradient accuracy = 1.0000000e-05 Total Gradient: 1 O -0.0000000000 -0.0000000000 -0.0028306959 2 H 0.0007678399 0.0000000000 0.0014153479 3 H -0.0007678399 -0.0000000000 0.0014153479 Beginning displacement 4: Molecule: setting point group to c1 Displacement is A1 in c2v. Using point group c1 for displaced molecule. SCF::compute: energy accuracy = 1.0000000e-07 integral intermediate storage = 31876 bytes integral cache = 31967676 bytes nuclear repulsion energy = 8.8618348904 Using symmetric orthogonalization. n(SO): 7 Maximum orthogonalization residual = 1.9006 Minimum orthogonalization residual = 0.366497 733 integrals iter 1 energy = -74.9657839616 delta = 7.75732e-01 733 integrals iter 2 energy = -74.9658370780 delta = 3.40098e-03 733 integrals iter 3 energy = -74.9658442546 delta = 1.29084e-03 733 integrals iter 4 energy = -74.9658451392 delta = 5.55750e-04 733 integrals iter 5 energy = -74.9658451628 delta = 7.50195e-05 733 integrals iter 6 energy = -74.9658451634 delta = 1.30350e-05 HOMO is 5 A = -0.392544 LUMO is 6 A = 0.577386 total scf energy = -74.9658451634 SCF::compute: gradient accuracy = 1.0000000e-05 Total Gradient: 1 O 0.0000000000 -0.0000000000 0.0078142156 2 H 0.0041813176 0.0000000000 -0.0039071078 3 H -0.0041813176 -0.0000000000 -0.0039071078 Beginning displacement 5: Displacement is B1 in c2v. Using point group c1 for displaced molecule. SCF::compute: energy accuracy = 1.0000000e-07 integral intermediate storage = 31876 bytes integral cache = 31967676 bytes nuclear repulsion energy = 8.9063915734 Using symmetric orthogonalization. n(SO): 7 Maximum orthogonalization residual = 1.90605 Minimum orthogonalization residual = 0.363005 733 integrals iter 1 energy = -74.9657678554 delta = 7.77729e-01 733 integrals iter 2 energy = -74.9658225593 delta = 2.80290e-03 733 integrals iter 3 energy = -74.9658263905 delta = 8.21381e-04 733 integrals iter 4 energy = -74.9658267503 delta = 3.27011e-04 733 integrals iter 5 energy = -74.9658267669 delta = 6.55565e-05 733 integrals iter 6 energy = -74.9658267676 delta = 1.38789e-05 733 integrals iter 7 energy = -74.9658267676 delta = 8.86547e-07 733 integrals iter 8 energy = -74.9658267676 delta = 2.78572e-07 HOMO is 5 A = -0.392624 LUMO is 6 A = 0.581491 total scf energy = -74.9658267676 SCF::compute: gradient accuracy = 1.0000000e-05 Total Gradient: 1 O 0.0109383730 -0.0000000000 -0.0000910837 2 H -0.0055098015 0.0000000000 0.0046330688 3 H -0.0054285715 -0.0000000000 -0.0045419850 The external rank is 6 Frequencies (cm-1; negative is imaginary): A1 1 4139.82 2 2170.12 B1 3 4390.84 THERMODYNAMIC ANALYSIS: Contributions to the nonelectronic enthalpy at 298.15 K: kJ/mol kcal/mol E0vib = 64.0049 15.2975 Evib(T) = 0.0007 0.0002 Erot(T) = 3.7185 0.8887 Etrans(T) = 3.7185 0.8887 PV(T) = 2.4790 0.5925 Total nonelectronic enthalpy: H_nonel(T) = 73.9215 17.6677 Contributions to the entropy at 298.15 K and 1.0 atm: J/(mol*K) cal/(mol*K) S_trans(T,P) = 144.8020 34.6085 S_rot(T) = 44.6554 10.6729 S_vib(T) = 0.0027 0.0006 S_el = 0.0000 0.0000 Total entropy: S_total(T,P) = 189.4601 45.2820 Various data used for thermodynamic analysis: Nonlinear molecule Principal moments of inertia (amu*angstrom^2): 0.72373, 1.15840, 1.88213 Point group: c2v Order of point group: 4 Rotational symmetry number: 2 Rotational temperatures (K): 33.5129, 20.9377, 12.8866 Electronic degeneracy: 1 Function Parameters: value_accuracy = 2.075779e-08 (1.000000e-07) gradient_accuracy = 2.075779e-06 (4.821210e-07) hessian_accuracy = 0.000000e+00 (1.000000e-04) (computed) Molecular Coordinates: IntMolecularCoor Parameters: update_bmat = no scale_bonds = 1 scale_bends = 1 scale_tors = 1 scale_outs = 1 symmetry_tolerance = 1.000000e-05 simple_tolerance = 1.000000e-03 coordinate_tolerance = 1.000000e-07 have_fixed_values = 0 max_update_steps = 100 max_update_disp = 0.500000 have_fixed_values = 0 Molecular formula: H2O molecule: ( symmetry = c1 unit = "angstrom" { n atoms geometry }={ 1 O [ -0.0000000000 -0.0000000000 0.4238984290] 2 H [ 0.7580924982 -0.0000000000 -0.2119492145] 3 H [ -0.7580924982 -0.0000000000 -0.2119492145] } ) Atomic Masses: 15.99491 1.00783 1.00783 Bonds: STRE s1 0.98945 1 2 O-H STRE s2 0.98945 1 3 O-H Bends: BEND b1 100.02373 2 1 3 H-O-H SymmMolecularCoor Parameters: change_coordinates = no transform_hessian = yes max_kappa2 = 10.000000 GaussianBasisSet: nbasis = 7 nshell = 4 nprim = 12 name = "STO-3G" SCF::compute: energy accuracy = 1.0000000e-07 integral intermediate storage = 31876 bytes integral cache = 31967676 bytes nuclear repulsion energy = 8.9061536070 Using symmetric orthogonalization. n(SO): 7 Maximum orthogonalization residual = 1.90602 Minimum orthogonalization residual = 0.363205 733 integrals iter 1 energy = -74.9658709402 delta = 7.76790e-01 733 integrals iter 2 energy = -74.9658997032 delta = 1.50404e-03 733 integrals iter 3 energy = -74.9659011256 delta = 3.76760e-04 733 integrals iter 4 energy = -74.9659011875 delta = 9.05876e-05 733 integrals iter 5 energy = -74.9659011889 delta = 1.70143e-05 733 integrals iter 6 energy = -74.9659011889 delta = 5.76397e-07 HOMO is 5 A = -0.392617 LUMO is 6 A = 0.581763 total scf energy = -74.9659011889 Natural Population Analysis: n atom charge ne(S) ne(P) 1 O -0.365860 3.772732 4.593129 2 H 0.182930 0.817070 3 H 0.182930 0.817070 SCF Parameters: maxiter = 40 density_reset_frequency = 10 level_shift = 0.000000 CLSCF Parameters: charge = 0 ndocc = 5 docc = [ 5 ] The following keywords in "h2ofrq_scfsto3gc2voptfrq.in" were ignored: mpqc:mole:guess_wavefunction:multiplicity mpqc:mole:multiplicity CPU Wall mpqc: 0.78 0.81 NAO: 0.03 0.03 vector: 0.02 0.02 density: 0.00 0.00 evals: 0.00 0.00 extrap: 0.00 0.00 fock: 0.00 0.01 accum: 0.00 0.00 ao_gmat: 0.00 0.01 start thread: 0.00 0.00 stop thread: 0.00 0.00 init pmax: 0.00 0.00 local data: 0.00 0.00 setup: 0.00 0.00 sum: 0.00 0.00 symm: 0.00 0.00 calc: 0.29 0.31 compute gradient: 0.15 0.16 nuc rep: 0.00 0.00 one electron gradient: 0.03 0.02 overlap gradient: 0.00 0.01 two electron gradient: 0.12 0.14 contribution: 0.01 0.03 start thread: 0.01 0.03 stop thread: 0.00 0.00 setup: 0.11 0.11 vector: 0.12 0.13 density: 0.00 0.00 evals: 0.01 0.01 extrap: 0.01 0.01 fock: 0.03 0.03 accum: 0.00 0.00 ao_gmat: 0.02 0.03 start thread: 0.02 0.02 stop thread: 0.00 0.00 init pmax: 0.00 0.00 local data: 0.00 0.00 setup: 0.00 0.00 sum: 0.00 0.00 symm: 0.00 0.00 vector: 0.02 0.02 density: 0.00 0.00 evals: 0.00 0.00 extrap: 0.01 0.00 fock: 0.00 0.01 accum: 0.00 0.00 ao_gmat: 0.00 0.01 start thread: 0.00 0.00 stop thread: 0.00 0.00 init pmax: 0.00 0.00 local data: 0.00 0.00 setup: 0.00 0.00 sum: 0.00 0.00 symm: 0.00 0.00 hessian: 0.32 0.34 compute gradient: 0.20 0.20 nuc rep: 0.00 0.00 one electron gradient: 0.02 0.02 overlap gradient: 0.02 0.01 two electron gradient: 0.16 0.17 contribution: 0.03 0.04 start thread: 0.03 0.03 stop thread: 0.00 0.00 setup: 0.13 0.13 vector: 0.12 0.13 density: 0.01 0.00 evals: 0.00 0.01 extrap: 0.03 0.02 fock: 0.03 0.04 accum: 0.00 0.00 ao_gmat: 0.02 0.03 start thread: 0.02 0.02 stop thread: 0.00 0.00 init pmax: 0.00 0.00 local data: 0.00 0.00 setup: 0.00 0.00 sum: 0.01 0.00 symm: 0.00 0.00 input: 0.13 0.13 End Time: Sat Apr 6 13:35:47 2002