MPQC: Massively Parallel Quantum Chemistry Version 2.1.0-alpha-gcc3 Machine: i686-pc-linux-gnu User: cljanss@aros.ca.sandia.gov Start Time: Sat Apr 6 13:34:05 2002 Using ProcMessageGrp for message passing (number of nodes = 1). Using PthreadThreadGrp for threading (number of threads = 2). Using ProcMemoryGrp for distributed shared memory. Total number of processors = 2 Reading file /usr/local/mpqc/2.1.0-alpha-gcc3/share/atominfo.kv. IntCoorGen: generated 3 coordinates. Forming optimization coordinates: SymmMolecularCoor::form_variable_coordinates() expected 3 coordinates found 2 variable coordinates found 0 constant coordinates Reading file /usr/local/mpqc/2.1.0-alpha-gcc3/share/basis/6-311gSS.kv. Reading file /usr/local/mpqc/2.1.0-alpha-gcc3/share/basis/sto-3g.kv. CLSCF::init: total charge = 0 Starting from core Hamiltonian guess Using symmetric orthogonalization. n(SO): 4 0 2 1 Maximum orthogonalization residual = 1.9104 Minimum orthogonalization residual = 0.344888 docc = [ 3 0 1 1 ] nbasis = 7 CLSCF::init: total charge = 0 Projecting guess wavefunction into the present basis set SCF::compute: energy accuracy = 1.0000000e-06 integral intermediate storage = 31876 bytes integral cache = 31967676 bytes nuclear repulsion energy = 9.1571164588 565 integrals iter 1 energy = -74.6468200575 delta = 7.47315e-01 565 integrals iter 2 energy = -74.9403205745 delta = 2.28186e-01 565 integrals iter 3 energy = -74.9595588694 delta = 6.73664e-02 565 integrals iter 4 energy = -74.9606496999 delta = 1.99313e-02 565 integrals iter 5 energy = -74.9607021286 delta = 4.63824e-03 565 integrals iter 6 energy = -74.9607024815 delta = 3.51696e-04 565 integrals iter 7 energy = -74.9607024827 delta = 2.28520e-05 HOMO is 1 B2 = -0.386942 LUMO is 4 A1 = 0.592900 total scf energy = -74.9607024827 Projecting the guess density. The number of electrons in the guess density = 10 Using symmetric orthogonalization. n(SO): 14 2 9 5 Maximum orthogonalization residual = 4.46641 Minimum orthogonalization residual = 0.0188915 The number of electrons in the projected density = 9.99139 docc = [ 3 0 1 1 ] nbasis = 30 Molecular formula H2O MPQC options: matrixkit = filename = h2o_mp2006311gssc2vopt restart_file = h2o_mp2006311gssc2vopt.ckpt restart = no checkpoint = no savestate = no do_energy = yes do_gradient = no optimize = yes write_pdb = no print_mole = yes print_timings = yes Entered memgrp based MP2 routine nproc = 1 Memory available per node: 32000000 Bytes Static memory used per node: 22456 Bytes Total memory used per node: 274856 Bytes Memory required for one pass: 274856 Bytes Minimum memory required: 81896 Bytes Batch size: 5 npass rest nbasis nshell nfuncmax 1 0 30 13 5 nocc nvir nfzc nfzv 5 25 0 0 SCF::compute: energy accuracy = 1.0000000e-08 integral intermediate storage = 260598 bytes integral cache = 31731962 bytes nuclear repulsion energy = 9.1571164588 76100 integrals iter 1 energy = -75.7283928106 delta = 9.87876e-02 76172 integrals iter 2 energy = -76.0314750633 delta = 3.60088e-02 76171 integrals iter 3 energy = -76.0437203774 delta = 6.51247e-03 76172 integrals iter 4 energy = -76.0452919297 delta = 2.49144e-03 76171 integrals iter 5 energy = -76.0456219495 delta = 9.39494e-04 76171 integrals iter 6 energy = -76.0456765838 delta = 5.90423e-04 76172 integrals iter 7 energy = -76.0456769438 delta = 3.85388e-05 76172 integrals iter 8 energy = -76.0456769852 delta = 1.27747e-05 76171 integrals iter 9 energy = -76.0456769889 delta = 4.03046e-06 76172 integrals iter 10 energy = -76.0456769891 delta = 9.71542e-07 76171 integrals iter 11 energy = -76.0456769891 delta = 1.56234e-07 76172 integrals iter 12 energy = -76.0456769891 delta = 3.13551e-08 HOMO is 1 B2 = -0.497601 LUMO is 4 A1 = 0.150997 total scf energy = -76.0456769891 Memory used for integral intermediates: 871938 Bytes Memory used for integral storage: 15449059 Bytes Size of global distributed array: 180000 Bytes Beginning pass 1 Begin loop over shells (erep, 1.+2. q.t.) working on shell pair ( 0 0), 2.2% complete working on shell pair ( 3 2), 11.1% complete working on shell pair ( 5 1), 20.0% complete working on shell pair ( 6 3), 28.9% complete working on shell pair ( 7 4), 37.8% complete working on shell pair ( 8 4), 46.7% complete working on shell pair ( 9 3), 55.6% complete working on shell pair ( 10 1), 64.4% complete working on shell pair ( 10 9), 73.3% complete working on shell pair ( 11 6), 82.2% complete working on shell pair ( 12 2), 91.1% complete working on shell pair ( 12 10), 100.0% complete End of loop over shells Begin third q.t. End of third q.t. Begin fourth q.t. End of fourth q.t. Begin third and fourth q.b.t. working on shell pair ( 0 0), 2.2% complete working on shell pair ( 3 2), 11.1% complete working on shell pair ( 5 1), 20.0% complete working on shell pair ( 6 3), 28.9% complete working on shell pair ( 7 4), 37.8% complete working on shell pair ( 8 4), 46.7% complete working on shell pair ( 9 3), 55.6% complete working on shell pair ( 10 1), 64.4% complete working on shell pair ( 10 9), 73.3% complete working on shell pair ( 11 6), 82.2% complete working on shell pair ( 12 2), 91.1% complete working on shell pair ( 12 10), 100.0% complete End of third and fourth q.b.t. Done with pass 1 Largest first order coefficients (unique): 1 -0.04510001 1 B2 1 B2 -> 2 B2 2 B2 (+-+-) 2 -0.03742631 3 A1 3 A1 -> 6 A1 6 A1 (+-+-) 3 0.03122608 1 B2 3 A1 -> 2 B2 6 A1 (+-+-) 4 -0.02685570 1 B1 1 B1 -> 3 B1 3 B1 (+-+-) 5 0.02629418 1 B2 3 A1 -> 2 B2 6 A1 (++++) 6 -0.02441203 1 B2 1 B1 -> 2 B2 4 B1 (+-+-) 7 -0.02404366 1 B1 1 B1 -> 4 B1 4 B1 (+-+-) 8 -0.02272080 1 B1 1 B1 -> 5 A1 5 A1 (+-+-) 9 -0.02189394 3 A1 3 A1 -> 3 B1 3 B1 (+-+-) 10 0.02150831 3 A1 1 B1 -> 6 A1 4 B1 (+-+-) RHF energy [au]: -76.045676989113 MP2 correlation energy [au]: -0.235997495452 MP2 energy [au]: -76.281674484565 D1(MP2) = 0.00904811 S2 matrix 1-norm = 0.00687928 S2 matrix inf-norm = 0.02363838 S2 diagnostic = 0.00441398 Largest S2 values (unique determinants): 1 -0.00464967 3 A1 -> 4 A1 2 0.00422359 1 B1 -> 4 B1 3 -0.00419635 1 B2 -> 5 B2 4 -0.00405114 1 B1 -> 2 B1 5 -0.00395146 3 A1 -> 13 A1 6 0.00394674 1 B1 -> 6 B1 7 -0.00370244 1 B1 -> 9 B1 8 0.00346762 1 B1 -> 7 B1 9 0.00344737 2 A1 -> 6 A1 10 0.00320962 3 A1 -> 10 A1 D2(MP1) = 0.11035210 CPHF: iter = 1 rms(P) = 0.0046752203 eps = 0.0000000100 CPHF: iter = 2 rms(P) = 0.0021023852 eps = 0.0000000100 CPHF: iter = 3 rms(P) = 0.0003315392 eps = 0.0000000100 CPHF: iter = 4 rms(P) = 0.0000311555 eps = 0.0000000100 CPHF: iter = 5 rms(P) = 0.0000068694 eps = 0.0000000100 CPHF: iter = 6 rms(P) = 0.0000010067 eps = 0.0000000100 CPHF: iter = 7 rms(P) = 0.0000000699 eps = 0.0000000100 CPHF: iter = 8 rms(P) = 0.0000000071 eps = 0.0000000100 Total MP2 gradient [au]: 1 O -0.0000000000 -0.0000000000 -0.0095482355 2 H 0.0113551286 0.0000000000 0.0047741177 3 H -0.0113551286 0.0000000000 0.0047741177 Max Gradient : 0.0113551286 0.0001000000 no Max Displacement : 0.0520178725 0.0001000000 no Gradient*Displace: 0.0015664227 0.0001000000 no taking step of size 0.074647 MBPT2: changing atomic coordinates: Molecular formula: H2O molecule: ( symmetry = c2v unit = "angstrom" { n atoms geometry }={ 1 O [ 0.0000000000 -0.0000000000 0.3836008724] 2 H [ 0.7564492243 0.0000000000 -0.1918004362] 3 H [ -0.7564492243 -0.0000000000 -0.1918004362] } ) Atomic Masses: 15.99491 1.00783 1.00783 Using symmetric orthogonalization. n(SO): 14 2 9 5 Maximum orthogonalization residual = 4.53153 Minimum orthogonalization residual = 0.0175865 Entered memgrp based MP2 routine nproc = 1 Memory available per node: 32000000 Bytes Static memory used per node: 22456 Bytes Total memory used per node: 274856 Bytes Memory required for one pass: 274856 Bytes Minimum memory required: 81896 Bytes Batch size: 5 npass rest nbasis nshell nfuncmax 1 0 30 13 5 nocc nvir nfzc nfzv 5 25 0 0 SCF::compute: energy accuracy = 1.0000000e-08 integral intermediate storage = 260598 bytes integral cache = 31731962 bytes nuclear repulsion energy = 9.2582782157 Using symmetric orthogonalization. n(SO): 14 2 9 5 Maximum orthogonalization residual = 4.53153 Minimum orthogonalization residual = 0.0175865 76165 integrals iter 1 energy = -76.0423840210 delta = 8.84969e-02 76172 integrals iter 2 energy = -76.0467389405 delta = 4.89146e-03 76171 integrals iter 3 energy = -76.0468144900 delta = 7.67133e-04 76172 integrals iter 4 energy = -76.0468157660 delta = 1.21937e-04 76171 integrals iter 5 energy = -76.0468158853 delta = 1.95997e-05 76172 integrals iter 6 energy = -76.0468159067 delta = 1.14086e-05 76172 integrals iter 7 energy = -76.0468159090 delta = 3.48291e-06 76172 integrals iter 8 energy = -76.0468159092 delta = 7.76545e-07 76171 integrals iter 9 energy = -76.0468159092 delta = 1.70573e-07 76172 integrals iter 10 energy = -76.0468159092 delta = 3.31695e-08 HOMO is 1 B2 = -0.499913 LUMO is 4 A1 = 0.151400 total scf energy = -76.0468159092 Memory used for integral intermediates: 871938 Bytes Memory used for integral storage: 15449059 Bytes Size of global distributed array: 180000 Bytes Beginning pass 1 Begin loop over shells (erep, 1.+2. q.t.) working on shell pair ( 0 0), 2.2% complete working on shell pair ( 3 2), 11.1% complete working on shell pair ( 5 1), 20.0% complete working on shell pair ( 6 3), 28.9% complete working on shell pair ( 7 4), 37.8% complete working on shell pair ( 8 4), 46.7% complete working on shell pair ( 9 3), 55.6% complete working on shell pair ( 10 1), 64.4% complete working on shell pair ( 10 9), 73.3% complete working on shell pair ( 11 6), 82.2% complete working on shell pair ( 12 2), 91.1% complete working on shell pair ( 12 10), 100.0% complete End of loop over shells Begin third q.t. End of third q.t. Begin fourth q.t. End of fourth q.t. Begin third and fourth q.b.t. working on shell pair ( 0 0), 2.2% complete working on shell pair ( 3 2), 11.1% complete working on shell pair ( 5 1), 20.0% complete working on shell pair ( 6 3), 28.9% complete working on shell pair ( 7 4), 37.8% complete working on shell pair ( 8 4), 46.7% complete working on shell pair ( 9 3), 55.6% complete working on shell pair ( 10 1), 64.4% complete working on shell pair ( 10 9), 73.3% complete working on shell pair ( 11 6), 82.2% complete working on shell pair ( 12 2), 91.1% complete working on shell pair ( 12 10), 100.0% complete End of third and fourth q.b.t. Done with pass 1 Largest first order coefficients (unique): 1 -0.04495097 1 B2 1 B2 -> 2 B2 2 B2 (+-+-) 2 -0.03663033 3 A1 3 A1 -> 6 A1 6 A1 (+-+-) 3 0.03082621 1 B2 3 A1 -> 2 B2 6 A1 (+-+-) 4 -0.02700905 1 B1 1 B1 -> 3 B1 3 B1 (+-+-) 5 0.02589942 1 B2 3 A1 -> 2 B2 6 A1 (++++) 6 -0.02457960 1 B2 1 B1 -> 2 B2 4 B1 (+-+-) 7 -0.02423428 1 B1 1 B1 -> 4 B1 4 B1 (+-+-) 8 -0.02205626 3 A1 3 A1 -> 3 B1 3 B1 (+-+-) 9 0.02155043 3 A1 1 B1 -> 6 A1 4 B1 (+-+-) 10 -0.02108714 1 B1 1 B1 -> 5 A1 5 A1 (+-+-) RHF energy [au]: -76.046815909162 MP2 correlation energy [au]: -0.235811409270 MP2 energy [au]: -76.282627318431 D1(MP2) = 0.00902217 S2 matrix 1-norm = 0.00661720 S2 matrix inf-norm = 0.02340045 S2 diagnostic = 0.00438122 Largest S2 values (unique determinants): 1 -0.00451884 3 A1 -> 4 A1 2 0.00421331 1 B1 -> 4 B1 3 -0.00417527 1 B2 -> 5 B2 4 -0.00416223 1 B1 -> 2 B1 5 0.00398115 1 B1 -> 6 B1 6 -0.00388610 3 A1 -> 13 A1 7 -0.00367833 1 B1 -> 9 B1 8 0.00341570 1 B1 -> 7 B1 9 0.00341117 2 A1 -> 6 A1 10 -0.00331722 3 A1 -> 10 A1 D2(MP1) = 0.10986932 CPHF: iter = 1 rms(P) = 0.0044933006 eps = 0.0000000100 CPHF: iter = 2 rms(P) = 0.0020397300 eps = 0.0000000100 CPHF: iter = 3 rms(P) = 0.0003248365 eps = 0.0000000100 CPHF: iter = 4 rms(P) = 0.0000315169 eps = 0.0000000100 CPHF: iter = 5 rms(P) = 0.0000067576 eps = 0.0000000100 CPHF: iter = 6 rms(P) = 0.0000009890 eps = 0.0000000100 CPHF: iter = 7 rms(P) = 0.0000000698 eps = 0.0000000100 CPHF: iter = 8 rms(P) = 0.0000000067 eps = 0.0000000100 Total MP2 gradient [au]: 1 O 0.0000000000 -0.0000000000 -0.0135261761 2 H -0.0019928638 0.0000000000 0.0067630881 3 H 0.0019928638 0.0000000000 0.0067630881 Max Gradient : 0.0135261761 0.0001000000 no Max Displacement : 0.0330084729 0.0001000000 no Gradient*Displace: 0.0005857168 0.0001000000 no taking step of size 0.060935 MBPT2: changing atomic coordinates: Molecular formula: H2O molecule: ( symmetry = c2v unit = "angstrom" { n atoms geometry }={ 1 O [ 0.0000000000 -0.0000000000 0.4010682052] 2 H [ 0.7452965978 0.0000000000 -0.2005341026] 3 H [ -0.7452965978 -0.0000000000 -0.2005341026] } ) Atomic Masses: 15.99491 1.00783 1.00783 Using symmetric orthogonalization. n(SO): 14 2 9 5 Maximum orthogonalization residual = 4.54656 Minimum orthogonalization residual = 0.0177267 Entered memgrp based MP2 routine nproc = 1 Memory available per node: 32000000 Bytes Static memory used per node: 22456 Bytes Total memory used per node: 274856 Bytes Memory required for one pass: 274856 Bytes Minimum memory required: 81896 Bytes Batch size: 5 npass rest nbasis nshell nfuncmax 1 0 30 13 5 nocc nvir nfzc nfzv 5 25 0 0 SCF::compute: energy accuracy = 1.0000000e-08 integral intermediate storage = 260598 bytes integral cache = 31731962 bytes nuclear repulsion energy = 9.1948345711 Using symmetric orthogonalization. n(SO): 14 2 9 5 Maximum orthogonalization residual = 4.54656 Minimum orthogonalization residual = 0.0177267 76171 integrals iter 1 energy = -76.0431960780 delta = 8.70728e-02 76172 integrals iter 2 energy = -76.0461457466 delta = 6.35230e-03 76172 integrals iter 3 energy = -76.0462141777 delta = 1.12861e-03 76172 integrals iter 4 energy = -76.0462171088 delta = 1.55213e-04 76172 integrals iter 5 energy = -76.0462175221 delta = 4.85688e-05 76172 integrals iter 6 energy = -76.0462176217 delta = 2.38597e-05 76172 integrals iter 7 energy = -76.0462176277 delta = 5.64048e-06 76172 integrals iter 8 energy = -76.0462176279 delta = 8.97231e-07 76172 integrals iter 9 energy = -76.0462176279 delta = 1.04849e-07 76172 integrals iter 10 energy = -76.0462176279 delta = 1.96665e-08 HOMO is 1 B2 = -0.500598 LUMO is 4 A1 = 0.149626 total scf energy = -76.0462176279 Memory used for integral intermediates: 871938 Bytes Memory used for integral storage: 15449059 Bytes Size of global distributed array: 180000 Bytes Beginning pass 1 Begin loop over shells (erep, 1.+2. q.t.) working on shell pair ( 0 0), 2.2% complete working on shell pair ( 3 2), 11.1% complete working on shell pair ( 5 1), 20.0% complete working on shell pair ( 6 3), 28.9% complete working on shell pair ( 7 4), 37.8% complete working on shell pair ( 8 4), 46.7% complete working on shell pair ( 9 3), 55.6% complete working on shell pair ( 10 1), 64.4% complete working on shell pair ( 10 9), 73.3% complete working on shell pair ( 11 6), 82.2% complete working on shell pair ( 12 2), 91.1% complete working on shell pair ( 12 10), 100.0% complete End of loop over shells Begin third q.t. End of third q.t. Begin fourth q.t. End of fourth q.t. Begin third and fourth q.b.t. working on shell pair ( 0 0), 2.2% complete working on shell pair ( 3 2), 11.1% complete working on shell pair ( 5 1), 20.0% complete working on shell pair ( 6 3), 28.9% complete working on shell pair ( 7 4), 37.8% complete working on shell pair ( 8 4), 46.7% complete working on shell pair ( 9 3), 55.6% complete working on shell pair ( 10 1), 64.4% complete working on shell pair ( 10 9), 73.3% complete working on shell pair ( 11 6), 82.2% complete working on shell pair ( 12 2), 91.1% complete working on shell pair ( 12 10), 100.0% complete End of third and fourth q.b.t. Done with pass 1 Largest first order coefficients (unique): 1 -0.04497848 1 B2 1 B2 -> 2 B2 2 B2 (+-+-) 2 -0.03593428 3 A1 3 A1 -> 6 A1 6 A1 (+-+-) 3 0.03052531 1 B2 3 A1 -> 2 B2 6 A1 (+-+-) 4 -0.02777706 1 B1 1 B1 -> 3 B1 3 B1 (+-+-) 5 0.02555396 1 B2 3 A1 -> 2 B2 6 A1 (++++) 6 -0.02469724 1 B2 1 B1 -> 2 B2 4 B1 (+-+-) 7 -0.02433789 1 B1 1 B1 -> 4 B1 4 B1 (+-+-) 8 -0.02230554 3 A1 3 A1 -> 3 B1 3 B1 (+-+-) 9 0.02142438 3 A1 1 B1 -> 6 A1 4 B1 (+-+-) 10 0.02109062 1 B2 1 B1 -> 4 B1 2 B2 (++++) RHF energy [au]: -76.046217627892 MP2 correlation energy [au]: -0.236675212752 MP2 energy [au]: -76.282892840644 D1(MP2) = 0.00926878 S2 matrix 1-norm = 0.00659134 S2 matrix inf-norm = 0.02379199 S2 diagnostic = 0.00449848 Largest S2 values (unique determinants): 1 -0.00472224 3 A1 -> 4 A1 2 0.00450655 1 B1 -> 4 B1 3 -0.00420068 1 B1 -> 2 B1 4 -0.00418088 1 B2 -> 5 B2 5 0.00417744 1 B1 -> 6 B1 6 0.00390041 3 A1 -> 13 A1 7 -0.00374821 1 B1 -> 9 B1 8 -0.00352942 2 A1 -> 6 A1 9 0.00340568 1 B1 -> 7 B1 10 -0.00333867 3 A1 -> 10 A1 D2(MP1) = 0.11093323 CPHF: iter = 1 rms(P) = 0.0045846623 eps = 0.0000000100 CPHF: iter = 2 rms(P) = 0.0021512225 eps = 0.0000000100 CPHF: iter = 3 rms(P) = 0.0003484117 eps = 0.0000000100 CPHF: iter = 4 rms(P) = 0.0000364364 eps = 0.0000000100 CPHF: iter = 5 rms(P) = 0.0000077625 eps = 0.0000000100 CPHF: iter = 6 rms(P) = 0.0000010837 eps = 0.0000000100 CPHF: iter = 7 rms(P) = 0.0000000786 eps = 0.0000000100 CPHF: iter = 8 rms(P) = 0.0000000076 eps = 0.0000000100 Total MP2 gradient [au]: 1 O 0.0000000000 -0.0000000000 0.0012745543 2 H 0.0000086088 0.0000000000 -0.0006372771 3 H -0.0000086088 0.0000000000 -0.0006372771 Max Gradient : 0.0012745543 0.0001000000 no Max Displacement : 0.0032293455 0.0001000000 no Gradient*Displace: 0.0000061298 0.0001000000 yes taking step of size 0.006128 MBPT2: changing atomic coordinates: Molecular formula: H2O molecule: ( symmetry = c2v unit = "angstrom" { n atoms geometry }={ 1 O [ 0.0000000000 -0.0000000000 0.3993593091] 2 H [ 0.7466550391 0.0000000000 -0.1996796545] 3 H [ -0.7466550391 -0.0000000000 -0.1996796545] } ) Atomic Masses: 15.99491 1.00783 1.00783 Using symmetric orthogonalization. n(SO): 14 2 9 5 Maximum orthogonalization residual = 4.54437 Minimum orthogonalization residual = 0.0177201 Entered memgrp based MP2 routine nproc = 1 Memory available per node: 32000000 Bytes Static memory used per node: 22456 Bytes Total memory used per node: 274856 Bytes Memory required for one pass: 274856 Bytes Minimum memory required: 81896 Bytes Batch size: 5 npass rest nbasis nshell nfuncmax 1 0 30 13 5 nocc nvir nfzc nfzv 5 25 0 0 SCF::compute: energy accuracy = 1.0000000e-08 integral intermediate storage = 260598 bytes integral cache = 31731962 bytes nuclear repulsion energy = 9.1992563041 Using symmetric orthogonalization. n(SO): 14 2 9 5 Maximum orthogonalization residual = 4.54437 Minimum orthogonalization residual = 0.0177201 76171 integrals iter 1 energy = -76.0462692830 delta = 8.91168e-02 76172 integrals iter 2 energy = -76.0462985526 delta = 6.36919e-04 76172 integrals iter 3 energy = -76.0462992097 delta = 1.07896e-04 76172 integrals iter 4 energy = -76.0462992346 delta = 1.49963e-05 76172 integrals iter 5 energy = -76.0462992379 delta = 5.06728e-06 76172 integrals iter 6 energy = -76.0462992382 delta = 1.02602e-06 76172 integrals iter 7 energy = -76.0462992382 delta = 4.02880e-07 76172 integrals iter 8 energy = -76.0462992382 delta = 9.06433e-08 76172 integrals iter 9 energy = -76.0462992382 delta = 1.06382e-08 HOMO is 1 B2 = -0.500511 LUMO is 4 A1 = 0.149785 total scf energy = -76.0462992382 Memory used for integral intermediates: 871938 Bytes Memory used for integral storage: 15449059 Bytes Size of global distributed array: 180000 Bytes Beginning pass 1 Begin loop over shells (erep, 1.+2. q.t.) working on shell pair ( 0 0), 2.2% complete working on shell pair ( 3 2), 11.1% complete working on shell pair ( 5 1), 20.0% complete working on shell pair ( 6 3), 28.9% complete working on shell pair ( 7 4), 37.8% complete working on shell pair ( 8 4), 46.7% complete working on shell pair ( 9 3), 55.6% complete working on shell pair ( 10 1), 64.4% complete working on shell pair ( 10 9), 73.3% complete working on shell pair ( 11 6), 82.2% complete working on shell pair ( 12 2), 91.1% complete working on shell pair ( 12 10), 100.0% complete End of loop over shells Begin third q.t. End of third q.t. Begin fourth q.t. End of fourth q.t. Begin third and fourth q.b.t. working on shell pair ( 0 0), 2.2% complete working on shell pair ( 3 2), 11.1% complete working on shell pair ( 5 1), 20.0% complete working on shell pair ( 6 3), 28.9% complete working on shell pair ( 7 4), 37.8% complete working on shell pair ( 8 4), 46.7% complete working on shell pair ( 9 3), 55.6% complete working on shell pair ( 10 1), 64.4% complete working on shell pair ( 10 9), 73.3% complete working on shell pair ( 11 6), 82.2% complete working on shell pair ( 12 2), 91.1% complete working on shell pair ( 12 10), 100.0% complete End of third and fourth q.b.t. Done with pass 1 Largest first order coefficients (unique): 1 -0.04497774 1 B2 1 B2 -> 2 B2 2 B2 (+-+-) 2 -0.03600874 3 A1 3 A1 -> 6 A1 6 A1 (+-+-) 3 0.03055788 1 B2 3 A1 -> 2 B2 6 A1 (+-+-) 4 -0.02770846 1 B1 1 B1 -> 3 B1 3 B1 (+-+-) 5 0.02559066 1 B2 3 A1 -> 2 B2 6 A1 (++++) 6 -0.02468448 1 B2 1 B1 -> 2 B2 4 B1 (+-+-) 7 -0.02432534 1 B1 1 B1 -> 4 B1 4 B1 (+-+-) 8 -0.02228377 3 A1 3 A1 -> 3 B1 3 B1 (+-+-) 9 0.02143558 3 A1 1 B1 -> 6 A1 4 B1 (+-+-) 10 0.02108019 1 B2 1 B1 -> 4 B1 2 B2 (++++) RHF energy [au]: -76.046299238216 MP2 correlation energy [au]: -0.236596606823 MP2 energy [au]: -76.282895845039 D1(MP2) = 0.00924579 S2 matrix 1-norm = 0.00659735 S2 matrix inf-norm = 0.02376072 S2 diagnostic = 0.00448793 Largest S2 values (unique determinants): 1 -0.00470607 3 A1 -> 4 A1 2 0.00448074 1 B1 -> 4 B1 3 -0.00419442 1 B1 -> 2 B1 4 -0.00418059 1 B2 -> 5 B2 5 0.00416135 1 B1 -> 6 B1 6 0.00389972 3 A1 -> 13 A1 7 -0.00374211 1 B1 -> 9 B1 8 -0.00351959 2 A1 -> 6 A1 9 0.00340658 1 B1 -> 7 B1 10 -0.00333852 3 A1 -> 10 A1 D2(MP1) = 0.11084203 CPHF: iter = 1 rms(P) = 0.0045792957 eps = 0.0000000100 CPHF: iter = 2 rms(P) = 0.0021424069 eps = 0.0000000100 CPHF: iter = 3 rms(P) = 0.0003463418 eps = 0.0000000100 CPHF: iter = 4 rms(P) = 0.0000359482 eps = 0.0000000100 CPHF: iter = 5 rms(P) = 0.0000076703 eps = 0.0000000100 CPHF: iter = 6 rms(P) = 0.0000010751 eps = 0.0000000100 CPHF: iter = 7 rms(P) = 0.0000000778 eps = 0.0000000100 CPHF: iter = 8 rms(P) = 0.0000000075 eps = 0.0000000100 Total MP2 gradient [au]: 1 O 0.0000000000 -0.0000000000 0.0000091475 2 H 0.0000307882 0.0000000000 -0.0000045737 3 H -0.0000307882 0.0000000000 -0.0000045737 Max Gradient : 0.0000307882 0.0001000000 yes Max Displacement : 0.0001209408 0.0001000000 no Gradient*Displace: 0.0000000067 0.0001000000 yes taking step of size 0.000168 MBPT2: changing atomic coordinates: Molecular formula: H2O molecule: ( symmetry = c2v unit = "angstrom" { n atoms geometry }={ 1 O [ 0.0000000000 -0.0000000000 0.3993894869] 2 H [ 0.7465910400 0.0000000000 -0.1996947434] 3 H [ -0.7465910400 -0.0000000000 -0.1996947434] } ) Atomic Masses: 15.99491 1.00783 1.00783 Using symmetric orthogonalization. n(SO): 14 2 9 5 Maximum orthogonalization residual = 4.54452 Minimum orthogonalization residual = 0.0177179 Entered memgrp based MP2 routine nproc = 1 Memory available per node: 32000000 Bytes Static memory used per node: 22456 Bytes Total memory used per node: 274856 Bytes Memory required for one pass: 274856 Bytes Minimum memory required: 81896 Bytes Batch size: 5 npass rest nbasis nshell nfuncmax 1 0 30 13 5 nocc nvir nfzc nfzv 5 25 0 0 SCF::compute: energy accuracy = 1.0000000e-08 integral intermediate storage = 260598 bytes integral cache = 31731962 bytes nuclear repulsion energy = 9.1994861607 Using symmetric orthogonalization. n(SO): 14 2 9 5 Maximum orthogonalization residual = 4.54452 Minimum orthogonalization residual = 0.0177179 76171 integrals iter 1 energy = -76.0462992493 delta = 8.89074e-02 76172 integrals iter 2 energy = -76.0462994569 delta = 1.11871e-05 76172 integrals iter 3 energy = -76.0462994573 delta = 1.74313e-06 76172 integrals iter 4 energy = -76.0462994573 delta = 2.97036e-07 76172 integrals iter 5 energy = -76.0462994573 delta = 5.60251e-08 76172 integrals iter 6 energy = -76.0462994573 delta = 3.01534e-08 HOMO is 1 B2 = -0.500516 LUMO is 4 A1 = 0.149785 total scf energy = -76.0462994573 Memory used for integral intermediates: 871938 Bytes Memory used for integral storage: 15449059 Bytes Size of global distributed array: 180000 Bytes Beginning pass 1 Begin loop over shells (erep, 1.+2. q.t.) working on shell pair ( 0 0), 2.2% complete working on shell pair ( 3 2), 11.1% complete working on shell pair ( 5 1), 20.0% complete working on shell pair ( 6 3), 28.9% complete working on shell pair ( 7 4), 37.8% complete working on shell pair ( 8 4), 46.7% complete working on shell pair ( 9 3), 55.6% complete working on shell pair ( 10 1), 64.4% complete working on shell pair ( 10 9), 73.3% complete working on shell pair ( 11 6), 82.2% complete working on shell pair ( 12 2), 91.1% complete working on shell pair ( 12 10), 100.0% complete End of loop over shells Begin third q.t. End of third q.t. Begin fourth q.t. End of fourth q.t. Begin third and fourth q.b.t. working on shell pair ( 0 0), 2.2% complete working on shell pair ( 3 2), 11.1% complete working on shell pair ( 5 1), 20.0% complete working on shell pair ( 6 3), 28.9% complete working on shell pair ( 7 4), 37.8% complete working on shell pair ( 8 4), 46.7% complete working on shell pair ( 9 3), 55.6% complete working on shell pair ( 10 1), 64.4% complete working on shell pair ( 10 9), 73.3% complete working on shell pair ( 11 6), 82.2% complete working on shell pair ( 12 2), 91.1% complete working on shell pair ( 12 10), 100.0% complete End of third and fourth q.b.t. Done with pass 1 Largest first order coefficients (unique): 1 -0.04497741 1 B2 1 B2 -> 2 B2 2 B2 (+-+-) 2 -0.03600678 3 A1 3 A1 -> 6 A1 6 A1 (+-+-) 3 0.03055692 1 B2 3 A1 -> 2 B2 6 A1 (+-+-) 4 -0.02770880 1 B1 1 B1 -> 3 B1 3 B1 (+-+-) 5 0.02558971 1 B2 3 A1 -> 2 B2 6 A1 (++++) 6 -0.02468486 1 B2 1 B1 -> 2 B2 4 B1 (+-+-) 7 -0.02432583 1 B1 1 B1 -> 4 B1 4 B1 (+-+-) 8 -0.02228397 3 A1 3 A1 -> 3 B1 3 B1 (+-+-) 9 0.02143561 3 A1 1 B1 -> 6 A1 4 B1 (+-+-) 10 0.02108051 1 B2 1 B1 -> 4 B1 2 B2 (++++) RHF energy [au]: -76.046299457322 MP2 correlation energy [au]: -0.236596390524 MP2 energy [au]: -76.282895847846 D1(MP2) = 0.00924578 S2 matrix 1-norm = 0.00659679 S2 matrix inf-norm = 0.02376013 S2 diagnostic = 0.00448787 Largest S2 values (unique determinants): 1 -0.00470577 3 A1 -> 4 A1 2 0.00448067 1 B1 -> 4 B1 3 -0.00419474 1 B1 -> 2 B1 4 -0.00418055 1 B2 -> 5 B2 5 0.00416133 1 B1 -> 6 B1 6 0.00389958 3 A1 -> 13 A1 7 -0.00374206 1 B1 -> 9 B1 8 -0.00351949 2 A1 -> 6 A1 9 0.00340647 1 B1 -> 7 B1 10 -0.00333864 3 A1 -> 10 A1 D2(MP1) = 0.11084103 CPHF: iter = 1 rms(P) = 0.0045788397 eps = 0.0000000100 CPHF: iter = 2 rms(P) = 0.0021422380 eps = 0.0000000100 CPHF: iter = 3 rms(P) = 0.0003463289 eps = 0.0000000100 CPHF: iter = 4 rms(P) = 0.0000359508 eps = 0.0000000100 CPHF: iter = 5 rms(P) = 0.0000076701 eps = 0.0000000100 CPHF: iter = 6 rms(P) = 0.0000010751 eps = 0.0000000100 CPHF: iter = 7 rms(P) = 0.0000000778 eps = 0.0000000100 CPHF: iter = 8 rms(P) = 0.0000000075 eps = 0.0000000100 Total MP2 gradient [au]: 1 O -0.0000000000 -0.0000000000 -0.0000010798 2 H -0.0000009119 0.0000000000 0.0000005399 3 H 0.0000009119 0.0000000000 0.0000005399 Max Gradient : 0.0000010798 0.0001000000 yes Max Displacement : 0.0000019377 0.0001000000 yes Gradient*Displace: 0.0000000000 0.0001000000 yes All convergence criteria have been met. The optimization has converged. Value of the MolecularEnergy: -76.2828958478 MBPT2: Function Parameters: value_accuracy = 8.459591e-07 (1.000000e-06) (computed) gradient_accuracy = 0.000000e+00 (4.622716e-08) (computed) hessian_accuracy = 0.000000e+00 (1.000000e-04) Molecular Coordinates: IntMolecularCoor Parameters: update_bmat = no scale_bonds = 1 scale_bends = 1 scale_tors = 1 scale_outs = 1 symmetry_tolerance = 1.000000e-05 simple_tolerance = 1.000000e-03 coordinate_tolerance = 1.000000e-07 have_fixed_values = 0 max_update_steps = 100 max_update_disp = 0.500000 have_fixed_values = 0 Molecular formula: H2O molecule: ( symmetry = c2v unit = "angstrom" { n atoms geometry }={ 1 O [ 0.0000000000 -0.0000000000 0.3993894869] 2 H [ 0.7465910400 0.0000000000 -0.1996947434] 3 H [ -0.7465910400 -0.0000000000 -0.1996947434] } ) Atomic Masses: 15.99491 1.00783 1.00783 Bonds: STRE s1 0.95724 1 2 O-H STRE s2 0.95724 1 3 O-H Bends: BEND b1 102.51106 2 1 3 H-O-H SymmMolecularCoor Parameters: change_coordinates = no transform_hessian = yes max_kappa2 = 10.000000 GaussianBasisSet: nbasis = 30 nshell = 13 nprim = 24 name = "6-311G**" Reference Wavefunction: Function Parameters: value_accuracy = 8.459591e-09 (1.000000e-08) (computed) gradient_accuracy = 0.000000e+00 (1.000000e-06) hessian_accuracy = 0.000000e+00 (1.000000e-04) Molecule: Molecular formula: H2O molecule: ( symmetry = c2v unit = "angstrom" { n atoms geometry }={ 1 O [ 0.0000000000 -0.0000000000 0.3993894869] 2 H [ 0.7465910400 0.0000000000 -0.1996947434] 3 H [ -0.7465910400 -0.0000000000 -0.1996947434] } ) Atomic Masses: 15.99491 1.00783 1.00783 GaussianBasisSet: nbasis = 30 nshell = 13 nprim = 24 name = "6-311G**" SCF Parameters: maxiter = 40 density_reset_frequency = 10 level_shift = 0.000000 CLSCF Parameters: charge = 0 ndocc = 5 docc = [ 3 0 1 1 ] The following keywords in "h2o_mp2006311gssc2vopt.in" were ignored: mpqc:mole:reference:guess_wavefunction:multiplicity mpqc:mole:reference:multiplicity CPU Wall mpqc: 6.70 7.05 calc: 6.49 6.82 mp2-mem: 6.43 6.77 Laj: 0.30 0.34 make_gmat for Laj: 0.26 0.29 gmat: 0.25 0.29 Pab and Wab: 0.00 0.00 Pkj and Wkj: 0.15 0.14 make_gmat for Wkj: 0.10 0.09 gmat: 0.10 0.09 cphf: 0.84 0.78 gmat: 0.76 0.70 hcore contrib.: 0.10 0.10 mp2 passes: 2.32 2.37 1. q.b.t.: 0.03 0.03 2. q.b.t.: 0.02 0.02 3. q.t.: 0.03 0.03 3.qbt+4.qbt+non-sep contrib.: 1.16 1.22 4. q.t.: 0.03 0.02 Pab and Wab: 0.08 0.08 Pkj and Wkj: 0.01 0.02 Waj and Laj: 0.02 0.02 compute ecorr: 0.01 0.01 divide (ia|jb)'s: 0.00 0.00 erep+1.qt+2.qt: 0.92 0.92 overlap contrib.: 0.02 0.03 sep 2PDM contrib.: 0.76 0.99 vector: 1.27 1.35 density: 0.03 0.02 evals: 0.06 0.05 extrap: 0.07 0.07 fock: 0.92 1.04 accum: 0.00 0.00 ao_gmat: 0.55 0.60 start thread: 0.55 0.53 stop thread: 0.00 0.07 init pmax: 0.00 0.00 local data: 0.01 0.01 setup: 0.15 0.18 sum: 0.00 0.00 symm: 0.18 0.22 input: 0.21 0.22 vector: 0.04 0.04 density: 0.00 0.00 evals: 0.00 0.00 extrap: 0.00 0.01 fock: 0.03 0.02 accum: 0.00 0.00 ao_gmat: 0.00 0.01 start thread: 0.00 0.00 stop thread: 0.00 0.00 init pmax: 0.00 0.00 local data: 0.00 0.00 setup: 0.01 0.01 sum: 0.00 0.00 symm: 0.02 0.01 End Time: Sat Apr 6 13:34:12 2002