Changeset b52710e


Ignore:
Timestamp:
Jul 3, 2017, 3:06:53 PM (8 years ago)
Author:
Frederik Heber <frederik.heber@…>
Branches:
Action_Thermostats, Adding_Graph_to_ChangeBondActions, Adding_MD_integration_tests, Adding_StructOpt_integration_tests, AutomationFragmentation_failures, Candidate_v1.6.1, ChemicalSpaceEvaluator, EmpiricalPotential_contain_HomologyGraph_documentation, Enhanced_StructuralOptimization, Enhanced_StructuralOptimization_continued, Example_ManyWaysToTranslateAtom, Exclude_Hydrogens_annealWithBondGraph, Fix_Verbose_Codepatterns, ForceAnnealing_oldresults, ForceAnnealing_with_BondGraph, ForceAnnealing_with_BondGraph_continued, ForceAnnealing_with_BondGraph_continued_betteresults, ForceAnnealing_with_BondGraph_contraction-expansion, Gui_displays_atomic_force_velocity, IndependentFragmentGrids_IntegrationTest, JobMarket_RobustOnKillsSegFaults, JobMarket_StableWorkerPool, PythonUI_with_named_parameters, Recreated_GuiChecks, StoppableMakroAction, TremoloParser_IncreasedPrecision, TremoloParser_MultipleTimesteps
Children:
3cfb31
Parents:
8f2f4e
git-author:
Frederik Heber <heber@…> (03/01/17 20:34:07)
git-committer:
Frederik Heber <frederik.heber@…> (07/03/17 15:06:53)
Message:

DOCU: Enhanced documentation of fit-potential to explain new implementation.

File:
1 edited

Legend:

Unmodified
Added
Removed
  • doc/userguide/userguide.xml

    r8f2f4e rb52710e  
    20992099        <section xml:id="potentials.fit-potential">
    21002100          <title xml:id="potentials.fit-potential.title">Fitting empirical potentials</title>
     2101          <para>Empirical potentials are function that represent a certain aspect
     2102          of binding forces in molecular dynamics, e.g. a bond potential represents
     2103          the force between two atoms arising because of a binding orbital in
     2104          between that may be (in some approximartion) represented by a Hooke's
     2105          spring law.
     2106          In a more abstract view, an empirical potential consists of the
     2107          following: a binding model representable as a graph consisting of nodes
     2108          and edges, a function that takes the distance between nodes and the
     2109          set of edges (representing bonds in the binding model) and last but
     2110          not least a set of parameters that represent the respective strength
     2111          of the bonds. For example, a torsion potential has a binding model
     2112          containing four nodes and three edges connecting node 1 and 2, 2 and
     2113          3, and 3 and 4. The function requires the six interatomic distances. And
     2114          the parameters are coefficients in the functions that need to be
     2115          evaluated to obtain the resulting force vector.
     2116          </para>
     2117          <para>In this manner, empirical potentials are implemented in
     2118          MoleCuilder. They are not just a function but always an additional
     2119          binding model that allows to associate atoms with a specific node
     2120          in the model and thereby to assicate it with a particular interatomic
     2121          distance. And said model determines in what order the elements have
     2122          to be given.
     2123          </para>
    21012124          <para>Let&apos;s take a look at an exemplary call to the fit potential
    21022125          action.</para>
     
    21122135          we want to look at. Here, obviously we are interested in water
    21132136          molecules, consisting of a single oxygen (8) and two hydrogen atoms (1).
    2114           Next, we specify the chemical element type of the potential, here a potential between oxygen (8) and hydrogen (1). We give
    2115           the type of the potential as morse, which requires a single distance
    2116           or two nuclear coordinates and the distance taken between the two. Finally, we state that the non-linear regression should be
    2117           done with five random starting positions, i.e. five individual minimizations, and the set of parameters
    2118           with the smallest L2 norm wins.</para>
     2137          Next, we specify the chemical element type of the potential, here a
     2138          potential between oxygen (8) and hydrogen (1). We give the type of
     2139          the potential as morse, which requires a single distance or two
     2140          nuclear coordinates and the distance taken between the two. Finally,
     2141          we state that the non-linear regression should be done with five
     2142          random starting positions, i.e. five individual minimizations, and
     2143          the set of parameters with the smallest L2 norm wins.</para>
    21192144          <note>
    21202145            <para>Due to translational and rotational degrees of freedom for
    21212146            fragments smaller than 7 atoms, it is appropriate to look at the
    2122             pair-wise distances and not at the absolute coordinates. Hence,
    2123             the two atomic positions, here for oxygen and hydrogen, are
    2124             converted to a single distance. If we had given an harmonic
    2125             angular potential and the then required three charges/elements, &quot;8 1 1&quot;, i.e. oxygen
    2126             and two hydrogens, we would have obtained three distances.</para>
     2147            pair-wise distances and not at the absolute coordinates. In the
     2148            case of the water molecule as a the fragment whose energy we
     2149            want to represent by a empirical potential, there are 3 atoms
     2150            and therefore 3 unique distances between any pair of atoms.
     2151            From this set of distances MoleCuilder needs to pick any subset
     2152            that matches with the ones required by the binding model.
     2153            In our case of the Morse potential, we need two atoms, oxygen
     2154            and hydrogen, i.e. a single distance. If we had given a harmonic
     2155            angular potential and the then required three charges/elements,
     2156            &quot;1 8 1&quot;, i.e. oxygen and two hydrogens, we would have
     2157            obtained three distances. The order of the elements, i.e.
     2158            &quot;8 1 1&quot; would match a different angular interaction
     2159            in the same fragment, depends on the binding model of the
     2160            potential. In the case of the harmonic angle, the second element
     2161            in the list is the central atom in the angle, while the first and
     2162            third atom define either arm of the angle.Naturally, for the Morse
     2163            potential the order does not matter as each distance is symmetric.
     2164            </para>
    21272165            <para>MoleCuilder always adds a so-called constant potential to
    21282166            the fit containing only a single parameter, the energy offset.
    21292167            This offset compensates for the interaction energy associated with
    2130             a fragment of order 1, e.g. a single hydrogen atom. Essentially, this captures the atomic energy that is not associated to any bonding interactions.</para>
     2168            a fragment of order 1, e.g. a single hydrogen atom. Essentially,
     2169            this captures the atomic energy that is not associated to any
     2170            binding interactions.</para>
    21312171            <para>Note that by choosing "set-max-iterations" and "take-best-of"
    21322172            one can force the optimization to try either a single set of random
Note: See TracChangeset for help on using the changeset viewer.