- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
src/Actions/MoleculeAction/RotateToPrincipalAxisSystemAction.cpp
r0430e3 r6e5084 10 10 #include "Actions/MoleculeAction/RotateToPrincipalAxisSystemAction.hpp" 11 11 #include "Actions/ActionRegistry.hpp" 12 #include "log.hpp" 12 #include "Helpers/Log.hpp" 13 #include "Helpers/Verbose.hpp" 14 #include "LinearAlgebra/Line.hpp" 15 #include "LinearAlgebra/Matrix.hpp" 16 #include "LinearAlgebra/Vector.hpp" 17 #include "element.hpp" 13 18 #include "molecule.hpp" 14 #include "verbose.hpp"15 19 16 20 … … 23 27 #include "UIElements/UIFactory.hpp" 24 28 #include "UIElements/Dialog.hpp" 25 #include " UIElements/ValueStorage.hpp"29 #include "Actions/ValueStorage.hpp" 26 30 27 31 /****** MoleculeRotateToPrincipalAxisSystemAction *****/ … … 48 52 {} 49 53 50 void MoleculeRotateToPrincipalAxisSystem() { 54 void MoleculeRotateToPrincipalAxisSystem(Vector &Axis) { 55 ValueStorage::getInstance().setCurrentValue(MoleculeRotateToPrincipalAxisSystemAction::NAME, Axis); 51 56 ActionRegistry::getInstance().getActionByName(MoleculeRotateToPrincipalAxisSystemAction::NAME)->call(Action::NonInteractive); 52 57 }; 53 58 54 Dialog* MoleculeRotateToPrincipalAxisSystemAction:: createDialog() {55 Dialog *dialog = UIFactory::getInstance().makeDialog();59 Dialog* MoleculeRotateToPrincipalAxisSystemAction::fillDialog(Dialog *dialog) { 60 ASSERT(dialog,"No Dialog given when filling action dialog"); 56 61 57 dialog->query Empty(NAME, MapOfActions::getInstance().getDescription(NAME));62 dialog->queryVector(NAME, false, MapOfActions::getInstance().getDescription(NAME)); 58 63 59 64 return dialog; … … 62 67 Action::state_ptr MoleculeRotateToPrincipalAxisSystemAction::performCall() { 63 68 molecule *mol = NULL; 69 Vector Axis; 70 71 // obtain axis to rotate to 72 ValueStorage::getInstance().queryCurrentValue(NAME, Axis); 64 73 65 74 for (World::MoleculeSelectionIterator iter = World::getInstance().beginMoleculeSelection(); iter != World::getInstance().endMoleculeSelection(); ++iter) { 66 75 mol = iter->second; 67 76 DoLog(0) && (Log() << Verbose(0) << "Converting to prinicipal axis system." << endl); 68 mol->PrincipalAxisSystem(true); 77 Matrix InertiaTensor; 78 Vector *CenterOfGravity = mol->DetermineCenterOfGravity(); 79 80 // reset inertia tensor 81 InertiaTensor.zero(); 82 83 // sum up inertia tensor 84 for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) { 85 Vector x = (*iter)->x; 86 x -= *CenterOfGravity; 87 InertiaTensor.at(0,0) += (*iter)->type->mass*(x[1]*x[1] + x[2]*x[2]); 88 InertiaTensor.at(0,1) += (*iter)->type->mass*(-x[0]*x[1]); 89 InertiaTensor.at(0,2) += (*iter)->type->mass*(-x[0]*x[2]); 90 InertiaTensor.at(1,0) += (*iter)->type->mass*(-x[1]*x[0]); 91 InertiaTensor.at(1,1) += (*iter)->type->mass*(x[0]*x[0] + x[2]*x[2]); 92 InertiaTensor.at(1,2) += (*iter)->type->mass*(-x[1]*x[2]); 93 InertiaTensor.at(2,0) += (*iter)->type->mass*(-x[2]*x[0]); 94 InertiaTensor.at(2,1) += (*iter)->type->mass*(-x[2]*x[1]); 95 InertiaTensor.at(2,2) += (*iter)->type->mass*(x[0]*x[0] + x[1]*x[1]); 96 } 97 // print InertiaTensor for debugging 98 DoLog(0) && (Log() << Verbose(0) << "The inertia tensor is:" << InertiaTensor << endl); 99 100 // diagonalize to determine principal axis system 101 Vector Eigenvalues = InertiaTensor.transformToEigenbasis(); 102 103 for(int i=0;i<NDIM;i++) 104 DoLog(0) && (Log() << Verbose(0) << "eigenvalue = " << Eigenvalues[i] << ", eigenvector = " << InertiaTensor.column(i) << endl); 105 106 // check whether we rotate or not 107 DoLog(0) && (Log() << Verbose(0) << "Transforming molecule into PAS ... "); 108 109 // obtain first column, eigenvector to biggest eigenvalue 110 Vector BiggestEigenvector(InertiaTensor.column(Eigenvalues.SmallestComponent())); 111 Vector DesiredAxis(Axis); 112 113 // Creation Line that is the rotation axis 114 DesiredAxis.VectorProduct(BiggestEigenvector); 115 Line RotationAxis(Vector(0.,0.,0.), DesiredAxis); 116 117 // determine angle 118 const double alpha = BiggestEigenvector.Angle(Axis); 119 120 DoLog(0) && (Log() << Verbose(0) << alpha << endl); 121 122 for (molecule::iterator iter = mol->begin(); iter != mol->end(); ++iter) { 123 *((*iter)->node) -= *CenterOfGravity; 124 *((*iter)->node) = RotationAxis.rotateVector(*((*iter)->node), alpha); 125 *((*iter)->node) += *CenterOfGravity; 126 } 127 DoLog(0) && (Log() << Verbose(0) << "done." << endl); 128 129 // summing anew for debugging (resulting matrix has to be diagonal!) 130 // reset inertia tensor 131 InertiaTensor.zero(); 132 133 // sum up inertia tensor 134 for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) { 135 Vector x = (*iter)->x; 136 x -= *CenterOfGravity; 137 InertiaTensor.at(0,0) += (*iter)->type->mass*(x[1]*x[1] + x[2]*x[2]); 138 InertiaTensor.at(0,1) += (*iter)->type->mass*(-x[0]*x[1]); 139 InertiaTensor.at(0,2) += (*iter)->type->mass*(-x[0]*x[2]); 140 InertiaTensor.at(1,0) += (*iter)->type->mass*(-x[1]*x[0]); 141 InertiaTensor.at(1,1) += (*iter)->type->mass*(x[0]*x[0] + x[2]*x[2]); 142 InertiaTensor.at(1,2) += (*iter)->type->mass*(-x[1]*x[2]); 143 InertiaTensor.at(2,0) += (*iter)->type->mass*(-x[2]*x[0]); 144 InertiaTensor.at(2,1) += (*iter)->type->mass*(-x[2]*x[1]); 145 InertiaTensor.at(2,2) += (*iter)->type->mass*(x[0]*x[0] + x[1]*x[1]); 146 // print InertiaTensor for debugging 147 DoLog(0) && (Log() << Verbose(0) << "The inertia tensor is:" << InertiaTensor << endl); 148 } 149 150 // free everything 151 delete(CenterOfGravity); 69 152 } 70 153 return Action::success;
Note:
See TracChangeset
for help on using the changeset viewer.
