Changes in molecuilder/src/molecules.cpp [1f6efb:560995]
- File:
-
- 1 edited
-
molecuilder/src/molecules.cpp (modified) (26 diffs)
Legend:
- Unmodified
- Added
- Removed
-
molecuilder/src/molecules.cpp
r1f6efb r560995 62 62 cell_size[0] = cell_size[2] = cell_size[5]= 20.; 63 63 cell_size[1] = cell_size[3] = cell_size[4]= 0.; 64 strcpy(name,"none");65 64 }; 66 65 … … 597 596 cerr << Verbose(1) << "molecule::RemoveBond: Function not implemented yet." << endl; 598 597 return false; 599 };600 601 /** Set molecule::name from the basename without suffix in the given \a *filename.602 * \param *filename filename603 */604 void molecule::SetNameFromFilename(char *filename)605 {606 int length = 0;607 char *molname = strrchr(filename, '/')+sizeof(char); // search for filename without dirs608 char *endname = strrchr(filename, '.');609 if ((endname == NULL) || (endname < molname))610 length = strlen(molname);611 else612 length = strlen(molname) - strlen(endname);613 strncpy(name, molname, length);614 598 }; 615 599 … … 1025 1009 }; 1026 1010 1011 /** Evaluates the potential energy used for constrained molecular dynamics. 1012 * \f$V_i^{con} = c^{bond} \cdot | r_{P(i)} - R_i | + sum_{i \neq j} C^{min} \cdot \frac{1}{C_{ij}} + C^{inj} \Bigl (1 - \theta \bigl (\prod_{i \neq j} (P(i) - P(j)) \bigr ) \Bigr )\f$ 1013 * where the first term points to the target in minimum distance, the second is a penalty for trajectories lying too close to each other (\f$C_{ij}$ is minimum distance between 1014 * trajectories i and j) and the third term is a penalty for two atoms trying to each the same target point. 1015 * Note that for the second term we have to solve the following linear system: 1016 * \f$-c_1 \cdot n_1 + c_2 \cdot n_2 + C \cdot n_3 = - p_2 + p_1\f$, where \f$c_1\f$, \f$c_2\f$ and \f$C\f$ are constants, 1017 * offset vector \f$p_1\f$ in direction \f$n_1\f$, offset vector \f$p_2\f$ in direction \f$n_2\f$, 1018 * \f$n_3\f$ is the normal vector to both directions. \f$C\f$ would be the minimum distance between the two lines. 1019 * \sa molecule::MinimiseConstrainedPotential(), molecule::VerletForceIntegration() 1020 * \param *out output stream for debugging 1021 * \param *PermutationMap gives target ptr for each atom, array of size molecule::AtomCount (this is "x" in \f$ V^{con}(x) \f$ ) 1022 * \param startstep start configuration (MDStep in molecule::trajectories) 1023 * \param endstep end configuration (MDStep in molecule::trajectories) 1024 * \param *constants constant in front of each term 1025 * \param IsAngstroem whether coordinates are in angstroem (true) or bohrradius (false) 1026 * \return potential energy 1027 * \note This routine is scaling quadratically which is not optimal. 1028 * \todo There's a bit double counting going on for the first time, bu nothing to worry really about. 1029 */ 1030 double molecule::ConstrainedPotential(ofstream *out, atom **PermutationMap, int startstep, int endstep, double *constants, bool IsAngstroem) 1031 { 1032 double result = 0., tmp, Norm1, Norm2; 1033 atom *Walker = NULL, *Runner = NULL, *Sprinter = NULL; 1034 Vector trajectory1, trajectory2, normal, TestVector; 1035 gsl_matrix *A = gsl_matrix_alloc(NDIM,NDIM); 1036 gsl_vector *x = gsl_vector_alloc(NDIM); 1037 1038 // go through every atom 1039 Walker = start; 1040 while (Walker->next != end) { 1041 Walker = Walker->next; 1042 // first term: distance to target 1043 Runner = PermutationMap[Walker->nr]; // find target point 1044 tmp = (Trajectories[Walker].R.at(startstep).Distance(&Trajectories[Runner].R.at(endstep))); 1045 tmp *= IsAngstroem ? 1. : 1./AtomicLengthToAngstroem; 1046 result += constants[0] * tmp; 1047 //*out << Verbose(4) << "Adding " << tmp*constants[0] << "." << endl; 1048 1049 // second term: sum of distances to other trajectories 1050 Runner = start; 1051 while (Runner->next != end) { 1052 Runner = Runner->next; 1053 if (Runner == Walker) // hence, we only go up to the Walker, not beyond (similar to i=0; i<j; i++) 1054 break; 1055 // determine normalized trajectories direction vector (n1, n2) 1056 Sprinter = PermutationMap[Walker->nr]; // find first target point 1057 trajectory1.CopyVector(&Trajectories[Sprinter].R.at(endstep)); 1058 trajectory1.SubtractVector(&Trajectories[Walker].R.at(startstep)); 1059 trajectory1.Normalize(); 1060 Norm1 = trajectory1.Norm(); 1061 Sprinter = PermutationMap[Runner->nr]; // find second target point 1062 trajectory2.CopyVector(&Trajectories[Sprinter].R.at(endstep)); 1063 trajectory2.SubtractVector(&Trajectories[Runner].R.at(startstep)); 1064 trajectory2.Normalize(); 1065 Norm2 = trajectory1.Norm(); 1066 // check whether either is zero() 1067 if ((Norm1 < MYEPSILON) && (Norm2 < MYEPSILON)) { 1068 tmp = Trajectories[Walker].R.at(startstep).Distance(&Trajectories[Runner].R.at(startstep)); 1069 } else if (Norm1 < MYEPSILON) { 1070 Sprinter = PermutationMap[Walker->nr]; // find first target point 1071 trajectory1.CopyVector(&Trajectories[Sprinter].R.at(endstep)); // copy first offset 1072 trajectory1.SubtractVector(&Trajectories[Runner].R.at(startstep)); // subtract second offset 1073 trajectory2.Scale( trajectory1.ScalarProduct(&trajectory2) ); // trajectory2 is scaled to unity, hence we don't need to divide by anything 1074 trajectory1.SubtractVector(&trajectory2); // project the part in norm direction away 1075 tmp = trajectory1.Norm(); // remaining norm is distance 1076 } else if (Norm2 < MYEPSILON) { 1077 Sprinter = PermutationMap[Runner->nr]; // find second target point 1078 trajectory2.CopyVector(&Trajectories[Sprinter].R.at(endstep)); // copy second offset 1079 trajectory2.SubtractVector(&Trajectories[Walker].R.at(startstep)); // subtract first offset 1080 trajectory1.Scale( trajectory2.ScalarProduct(&trajectory1) ); // trajectory1 is scaled to unity, hence we don't need to divide by anything 1081 trajectory2.SubtractVector(&trajectory1); // project the part in norm direction away 1082 tmp = trajectory2.Norm(); // remaining norm is distance 1083 } else if ((fabs(trajectory1.ScalarProduct(&trajectory2)/Norm1/Norm2) - 1.) < MYEPSILON) { // check whether they're linear dependent 1084 // *out << Verbose(3) << "Both trajectories of " << *Walker << " and " << *Runner << " are linear dependent: "; 1085 // *out << trajectory1; 1086 // *out << " and "; 1087 // *out << trajectory2; 1088 tmp = Trajectories[Walker].R.at(startstep).Distance(&Trajectories[Runner].R.at(startstep)); 1089 // *out << " with distance " << tmp << "." << endl; 1090 } else { // determine distance by finding minimum distance 1091 // *out << Verbose(3) << "Both trajectories of " << *Walker << " and " << *Runner << " are linear independent "; 1092 // *out << endl; 1093 // *out << "First Trajectory: "; 1094 // *out << trajectory1 << endl; 1095 // *out << "Second Trajectory: "; 1096 // *out << trajectory2 << endl; 1097 // determine normal vector for both 1098 normal.MakeNormalVector(&trajectory1, &trajectory2); 1099 // print all vectors for debugging 1100 // *out << "Normal vector in between: "; 1101 // *out << normal << endl; 1102 // setup matrix 1103 for (int i=NDIM;i--;) { 1104 gsl_matrix_set(A, 0, i, trajectory1.x[i]); 1105 gsl_matrix_set(A, 1, i, trajectory2.x[i]); 1106 gsl_matrix_set(A, 2, i, normal.x[i]); 1107 gsl_vector_set(x,i, (Trajectories[Walker].R.at(startstep).x[i] - Trajectories[Runner].R.at(startstep).x[i])); 1108 } 1109 // solve the linear system by Householder transformations 1110 gsl_linalg_HH_svx(A, x); 1111 // distance from last component 1112 tmp = gsl_vector_get(x,2); 1113 // *out << " with distance " << tmp << "." << endl; 1114 // test whether we really have the intersection (by checking on c_1 and c_2) 1115 TestVector.CopyVector(&Trajectories[Runner].R.at(startstep)); 1116 trajectory2.Scale(gsl_vector_get(x,1)); 1117 TestVector.AddVector(&trajectory2); 1118 normal.Scale(gsl_vector_get(x,2)); 1119 TestVector.AddVector(&normal); 1120 TestVector.SubtractVector(&Trajectories[Walker].R.at(startstep)); 1121 trajectory1.Scale(gsl_vector_get(x,0)); 1122 TestVector.SubtractVector(&trajectory1); 1123 if (TestVector.Norm() < MYEPSILON) { 1124 // *out << Verbose(2) << "Test: ok.\tDistance of " << tmp << " is correct." << endl; 1125 } else { 1126 // *out << Verbose(2) << "Test: failed.\tIntersection is off by "; 1127 // *out << TestVector; 1128 // *out << "." << endl; 1129 } 1130 } 1131 // add up 1132 tmp *= IsAngstroem ? 1. : 1./AtomicLengthToAngstroem; 1133 if (fabs(tmp) > MYEPSILON) { 1134 result += constants[1] * 1./tmp; 1135 //*out << Verbose(4) << "Adding " << 1./tmp*constants[1] << "." << endl; 1136 } 1137 } 1138 1139 // third term: penalty for equal targets 1140 Runner = start; 1141 while (Runner->next != end) { 1142 Runner = Runner->next; 1143 if ((PermutationMap[Walker->nr] == PermutationMap[Runner->nr]) && (Walker->nr < Runner->nr)) { 1144 Sprinter = PermutationMap[Walker->nr]; 1145 // *out << *Walker << " and " << *Runner << " are heading to the same target at "; 1146 // *out << Trajectories[Sprinter].R.at(endstep); 1147 // *out << ", penalting." << endl; 1148 result += constants[2]; 1149 //*out << Verbose(4) << "Adding " << constants[2] << "." << endl; 1150 } 1151 } 1152 } 1153 1154 return result; 1155 }; 1156 1157 void PrintPermutationMap(ofstream *out, atom **PermutationMap, int Nr) 1158 { 1159 stringstream zeile1, zeile2; 1160 int *DoubleList = (int *) Malloc(Nr*sizeof(int), "PrintPermutationMap: *DoubleList"); 1161 int doubles = 0; 1162 for (int i=0;i<Nr;i++) 1163 DoubleList[i] = 0; 1164 zeile1 << "PermutationMap: "; 1165 zeile2 << " "; 1166 for (int i=0;i<Nr;i++) { 1167 DoubleList[PermutationMap[i]->nr]++; 1168 zeile1 << i << " "; 1169 zeile2 << PermutationMap[i]->nr << " "; 1170 } 1171 for (int i=0;i<Nr;i++) 1172 if (DoubleList[i] > 1) 1173 doubles++; 1174 // *out << "Found " << doubles << " Doubles." << endl; 1175 Free((void **)&DoubleList, "PrintPermutationMap: *DoubleList"); 1176 // *out << zeile1.str() << endl << zeile2.str() << endl; 1177 }; 1178 1179 /** Minimises the extra potential for constrained molecular dynamics and gives forces and the constrained potential energy. 1180 * We do the following: 1181 * -# Generate a distance list from all source to all target points 1182 * -# Sort this per source point 1183 * -# Take for each source point the target point with minimum distance, use this as initial permutation 1184 * -# check whether molecule::ConstrainedPotential() is greater than injective penalty 1185 * -# If so, we go through each source point, stepping down in the sorted target point distance list and re-checking potential. 1186 * -# Next, we only apply transformations that keep the injectivity of the permutations list. 1187 * -# Hence, for one source point we step down the ladder and seek the corresponding owner of this new target 1188 * point and try to change it for one with lesser distance, or for the next one with greater distance, but only 1189 * if this decreases the conditional potential. 1190 * -# finished. 1191 * -# Then, we calculate the forces by taking the spatial derivative, where we scale the potential to such a degree, 1192 * that the total force is always pointing in direction of the constraint force (ensuring that we move in the 1193 * right direction). 1194 * -# Finally, we calculate the potential energy and return. 1195 * \param *out output stream for debugging 1196 * \param **PermutationMap on return: mapping between the atom label of the initial and the final configuration 1197 * \param startstep current MD step giving initial position between which and \a endstep we perform the constrained MD (as further steps are always concatenated) 1198 * \param endstep step giving final position in constrained MD 1199 * \param IsAngstroem whether coordinates are in angstroem (true) or bohrradius (false) 1200 * \sa molecule::VerletForceIntegration() 1201 * \return potential energy (and allocated **PermutationMap (array of molecule::AtomCount ^2) 1202 * \todo The constrained potential's constants are set to fixed values right now, but they should scale based on checks of the system in order 1203 * to ensure they're properties (e.g. constants[2] always greater than the energy of the system). 1204 * \bug this all is not O(N log N) but O(N^2) 1205 */ 1206 double molecule::MinimiseConstrainedPotential(ofstream *out, atom **&PermutationMap, int startstep, int endstep, bool IsAngstroem) 1207 { 1208 double Potential, OldPotential, OlderPotential; 1209 PermutationMap = (atom **) Malloc(AtomCount*sizeof(atom *), "molecule::MinimiseConstrainedPotential: **PermutationMap"); 1210 DistanceMap **DistanceList = (DistanceMap **) Malloc(AtomCount*sizeof(DistanceMap *), "molecule::MinimiseConstrainedPotential: **DistanceList"); 1211 DistanceMap::iterator *DistanceIterators = (DistanceMap::iterator *) Malloc(AtomCount*sizeof(DistanceMap::iterator), "molecule::MinimiseConstrainedPotential: *DistanceIterators"); 1212 int *DoubleList = (int *) Malloc(AtomCount*sizeof(int), "molecule::MinimiseConstrainedPotential: *DoubleList"); 1213 DistanceMap::iterator *StepList = (DistanceMap::iterator *) Malloc(AtomCount*sizeof(DistanceMap::iterator), "molecule::MinimiseConstrainedPotential: *StepList"); 1214 double constants[3]; 1215 int round; 1216 atom *Walker = NULL, *Runner = NULL, *Sprinter = NULL; 1217 DistanceMap::iterator Rider, Strider; 1218 1219 /// Minimise the potential 1220 // set Lagrange multiplier constants 1221 constants[0] = 10.; 1222 constants[1] = 1.; 1223 constants[2] = 1e+7; // just a huge penalty 1224 // generate the distance list 1225 *out << Verbose(1) << "Creating the distance list ... " << endl; 1226 for (int i=AtomCount; i--;) { 1227 DoubleList[i] = 0; // stores for how many atoms in startstep this atom is a target in endstep 1228 DistanceList[i] = new DistanceMap; // is the distance sorted target list per atom 1229 DistanceList[i]->clear(); 1230 } 1231 *out << Verbose(1) << "Filling the distance list ... " << endl; 1232 Walker = start; 1233 while (Walker->next != end) { 1234 Walker = Walker->next; 1235 Runner = start; 1236 while(Runner->next != end) { 1237 Runner = Runner->next; 1238 DistanceList[Walker->nr]->insert( DistancePair(Trajectories[Walker].R.at(startstep).Distance(&Trajectories[Runner].R.at(endstep)), Runner) ); 1239 } 1240 } 1241 // create the initial PermutationMap (source -> target) 1242 Walker = start; 1243 while (Walker->next != end) { 1244 Walker = Walker->next; 1245 StepList[Walker->nr] = DistanceList[Walker->nr]->begin(); // stores the step to the next iterator that could be a possible next target 1246 PermutationMap[Walker->nr] = DistanceList[Walker->nr]->begin()->second; // always pick target with the smallest distance 1247 DoubleList[DistanceList[Walker->nr]->begin()->second->nr]++; // increase this target's source count (>1? not injective) 1248 DistanceIterators[Walker->nr] = DistanceList[Walker->nr]->begin(); // and remember which one we picked 1249 *out << *Walker << " starts with distance " << DistanceList[Walker->nr]->begin()->first << "." << endl; 1250 } 1251 *out << Verbose(1) << "done." << endl; 1252 // make the PermutationMap injective by checking whether we have a non-zero constants[2] term in it 1253 *out << Verbose(1) << "Making the PermutationMap injective ... " << endl; 1254 Walker = start; 1255 DistanceMap::iterator NewBase; 1256 OldPotential = fabs(ConstrainedPotential(out, PermutationMap, startstep, endstep, constants, IsAngstroem)); 1257 while ((OldPotential) > constants[2]) { 1258 PrintPermutationMap(out, PermutationMap, AtomCount); 1259 Walker = Walker->next; 1260 if (Walker == end) // round-robin at the end 1261 Walker = start->next; 1262 if (DoubleList[DistanceIterators[Walker->nr]->second->nr] <= 1) // no need to make those injective that aren't 1263 continue; 1264 // now, try finding a new one 1265 NewBase = DistanceIterators[Walker->nr]; // store old base 1266 do { 1267 NewBase++; // take next further distance in distance to targets list that's a target of no one 1268 } while ((DoubleList[NewBase->second->nr] != 0) && (NewBase != DistanceList[Walker->nr]->end())); 1269 if (NewBase != DistanceList[Walker->nr]->end()) { 1270 PermutationMap[Walker->nr] = NewBase->second; 1271 Potential = fabs(ConstrainedPotential(out, PermutationMap, startstep, endstep, constants, IsAngstroem)); 1272 if (Potential > OldPotential) { // undo 1273 PermutationMap[Walker->nr] = DistanceIterators[Walker->nr]->second; 1274 } else { // do 1275 DoubleList[DistanceIterators[Walker->nr]->second->nr]--; // decrease the old entry in the doubles list 1276 DoubleList[NewBase->second->nr]++; // increase the old entry in the doubles list 1277 DistanceIterators[Walker->nr] = NewBase; 1278 OldPotential = Potential; 1279 *out << Verbose(3) << "Found a new permutation, new potential is " << OldPotential << "." << endl; 1280 } 1281 } 1282 } 1283 for (int i=AtomCount; i--;) // now each single entry in the DoubleList should be <=1 1284 if (DoubleList[i] > 1) { 1285 cerr << "Failed to create an injective PermutationMap!" << endl; 1286 exit(1); 1287 } 1288 *out << Verbose(1) << "done." << endl; 1289 Free((void **)&DoubleList, "molecule::MinimiseConstrainedPotential: *DoubleList"); 1290 // argument minimise the constrained potential in this injective PermutationMap 1291 *out << Verbose(1) << "Argument minimising the PermutationMap, at current potential " << OldPotential << " ... " << endl; 1292 OldPotential = 1e+10; 1293 round = 0; 1294 do { 1295 *out << "Starting round " << ++round << " ... " << endl; 1296 OlderPotential = OldPotential; 1297 do { 1298 Walker = start; 1299 while (Walker->next != end) { // pick one 1300 Walker = Walker->next; 1301 PrintPermutationMap(out, PermutationMap, AtomCount); 1302 Sprinter = DistanceIterators[Walker->nr]->second; // store initial partner 1303 Strider = DistanceIterators[Walker->nr]; //remember old iterator 1304 DistanceIterators[Walker->nr] = StepList[Walker->nr]; 1305 if (DistanceIterators[Walker->nr] == DistanceList[Walker->nr]->end()) {// stop, before we run through the list and still on 1306 DistanceIterators[Walker->nr] == DistanceList[Walker->nr]->begin(); 1307 break; 1308 } 1309 //*out << Verbose(2) << "Current Walker: " << *Walker << " with old/next candidate " << *Sprinter << "/" << *DistanceIterators[Walker->nr]->second << "." << endl; 1310 // find source of the new target 1311 Runner = start->next; 1312 while(Runner != end) { // find the source whose toes we might be stepping on (Walker's new target should be in use by another already) 1313 if (PermutationMap[Runner->nr] == DistanceIterators[Walker->nr]->second) { 1314 //*out << Verbose(2) << "Found the corresponding owner " << *Runner << " to " << *PermutationMap[Runner->nr] << "." << endl; 1315 break; 1316 } 1317 Runner = Runner->next; 1318 } 1319 if (Runner != end) { // we found the other source 1320 // then look in its distance list for Sprinter 1321 Rider = DistanceList[Runner->nr]->begin(); 1322 for (; Rider != DistanceList[Runner->nr]->end(); Rider++) 1323 if (Rider->second == Sprinter) 1324 break; 1325 if (Rider != DistanceList[Runner->nr]->end()) { // if we have found one 1326 //*out << Verbose(2) << "Current Other: " << *Runner << " with old/next candidate " << *PermutationMap[Runner->nr] << "/" << *Rider->second << "." << endl; 1327 // exchange both 1328 PermutationMap[Walker->nr] = DistanceIterators[Walker->nr]->second; // put next farther distance into PermutationMap 1329 PermutationMap[Runner->nr] = Sprinter; // and hand the old target to its respective owner 1330 PrintPermutationMap(out, PermutationMap, AtomCount); 1331 // calculate the new potential 1332 //*out << Verbose(2) << "Checking new potential ..." << endl; 1333 Potential = ConstrainedPotential(out, PermutationMap, startstep, endstep, constants, IsAngstroem); 1334 if (Potential > OldPotential) { // we made everything worse! Undo ... 1335 //*out << Verbose(3) << "Nay, made the potential worse: " << Potential << " vs. " << OldPotential << "!" << endl; 1336 //*out << Verbose(3) << "Setting " << *Runner << "'s source to " << *DistanceIterators[Runner->nr]->second << "." << endl; 1337 // Undo for Runner (note, we haven't moved the iteration yet, we may use this) 1338 PermutationMap[Runner->nr] = DistanceIterators[Runner->nr]->second; 1339 // Undo for Walker 1340 DistanceIterators[Walker->nr] = Strider; // take next farther distance target 1341 //*out << Verbose(3) << "Setting " << *Walker << "'s source to " << *DistanceIterators[Walker->nr]->second << "." << endl; 1342 PermutationMap[Walker->nr] = DistanceIterators[Walker->nr]->second; 1343 } else { 1344 DistanceIterators[Runner->nr] = Rider; // if successful also move the pointer in the iterator list 1345 *out << Verbose(3) << "Found a better permutation, new potential is " << Potential << " vs." << OldPotential << "." << endl; 1346 OldPotential = Potential; 1347 } 1348 if (Potential > constants[2]) { 1349 cerr << "ERROR: The two-step permutation procedure did not maintain injectivity!" << endl; 1350 exit(255); 1351 } 1352 //*out << endl; 1353 } else { 1354 cerr << "ERROR: " << *Runner << " was not the owner of " << *Sprinter << "!" << endl; 1355 exit(255); 1356 } 1357 } else { 1358 PermutationMap[Walker->nr] = DistanceIterators[Walker->nr]->second; // new target has no source! 1359 } 1360 StepList[Walker->nr]++; // take next farther distance target 1361 } 1362 } while (Walker->next != end); 1363 } while ((OlderPotential - OldPotential) > 1e-3); 1364 *out << Verbose(1) << "done." << endl; 1365 1366 1367 /// free memory and return with evaluated potential 1368 for (int i=AtomCount; i--;) 1369 DistanceList[i]->clear(); 1370 Free((void **)&DistanceList, "molecule::MinimiseConstrainedPotential: **DistanceList"); 1371 Free((void **)&DistanceIterators, "molecule::MinimiseConstrainedPotential: *DistanceIterators"); 1372 return ConstrainedPotential(out, PermutationMap, startstep, endstep, constants, IsAngstroem); 1373 }; 1374 1375 /** Evaluates the (distance-related part) of the constrained potential for the constrained forces. 1376 * \param *out output stream for debugging 1377 * \param startstep current MD step giving initial position between which and \a endstep we perform the constrained MD (as further steps are always concatenated) 1378 * \param endstep step giving final position in constrained MD 1379 * \param **PermutationMap mapping between the atom label of the initial and the final configuration 1380 * \param *Force ForceMatrix containing force vectors from the external energy functional minimisation. 1381 * \todo the constant for the constrained potential distance part is hard-coded independently of the hard-coded value in MinimiseConstrainedPotential() 1382 */ 1383 void molecule::EvaluateConstrainedForces(ofstream *out, int startstep, int endstep, atom **PermutationMap, ForceMatrix *Force) 1384 { 1385 double constant = 10.; 1386 atom *Walker = NULL, *Sprinter = NULL; 1387 1388 /// evaluate forces (only the distance to target dependent part) with the final PermutationMap 1389 *out << Verbose(1) << "Calculating forces and adding onto ForceMatrix ... " << endl; 1390 Walker = start; 1391 while (Walker->next != NULL) { 1392 Walker = Walker->next; 1393 Sprinter = PermutationMap[Walker->nr]; 1394 // set forces 1395 for (int i=NDIM;i++;) 1396 Force->Matrix[0][Walker->nr][5+i] += 2.*constant*sqrt(Trajectories[Walker].R.at(startstep).Distance(&Trajectories[Sprinter].R.at(endstep))); 1397 } 1398 *out << Verbose(1) << "done." << endl; 1399 }; 1400 1401 /** Performs a linear interpolation between two desired atomic configurations with a given number of steps. 1402 * Note, step number is config::MaxOuterStep 1403 * \param *out output stream for debugging 1404 * \param startstep stating initial configuration in molecule::Trajectories 1405 * \param endstep stating final configuration in molecule::Trajectories 1406 * \param &config configuration structure 1407 * \return true - success in writing step files, false - error writing files or only one step in molecule::Trajectories 1408 */ 1409 bool molecule::LinearInterpolationBetweenConfiguration(ofstream *out, int startstep, int endstep, const char *prefix, config &configuration) 1410 { 1411 bool status = true; 1412 int MaxSteps = configuration.MaxOuterStep; 1413 MoleculeListClass *MoleculePerStep = new MoleculeListClass(MaxSteps+1, AtomCount); 1414 // Get the Permutation Map by MinimiseConstrainedPotential 1415 atom **PermutationMap = NULL; 1416 atom *Walker = NULL, *Sprinter = NULL; 1417 MinimiseConstrainedPotential(out, PermutationMap, startstep, endstep, configuration.GetIsAngstroem()); 1418 1419 // check whether we have sufficient space in Trajectories for each atom 1420 Walker = start; 1421 while (Walker->next != end) { 1422 Walker = Walker->next; 1423 if (Trajectories[Walker].R.size() <= (unsigned int)(MaxSteps)) { 1424 //cout << "Increasing size for trajectory array of " << keyword << " to " << (MaxSteps+1) << "." << endl; 1425 Trajectories[Walker].R.resize(MaxSteps+1); 1426 Trajectories[Walker].U.resize(MaxSteps+1); 1427 Trajectories[Walker].F.resize(MaxSteps+1); 1428 } 1429 } 1430 // push endstep to last one 1431 Walker = start; 1432 while (Walker->next != end) { // remove the endstep (is now the very last one) 1433 Walker = Walker->next; 1434 for (int n=NDIM;n--;) { 1435 Trajectories[Walker].R.at(MaxSteps).x[n] = Trajectories[Walker].R.at(endstep).x[n]; 1436 Trajectories[Walker].U.at(MaxSteps).x[n] = Trajectories[Walker].U.at(endstep).x[n]; 1437 Trajectories[Walker].F.at(MaxSteps).x[n] = Trajectories[Walker].F.at(endstep).x[n]; 1438 } 1439 } 1440 endstep = MaxSteps; 1441 1442 // go through all steps and add the molecular configuration to the list and to the Trajectories of \a this molecule 1443 *out << Verbose(1) << "Filling intermediate " << MaxSteps << " steps with MDSteps of " << MDSteps << "." << endl; 1444 for (int step = 0; step <= MaxSteps; step++) { 1445 MoleculePerStep->ListOfMolecules[step] = new molecule(elemente); 1446 Walker = start; 1447 while (Walker->next != end) { 1448 Walker = Walker->next; 1449 // add to molecule list 1450 Sprinter = MoleculePerStep->ListOfMolecules[step]->AddCopyAtom(Walker); 1451 for (int n=NDIM;n--;) { 1452 Sprinter->x.x[n] = Trajectories[Walker].R.at(startstep).x[n] + (Trajectories[PermutationMap[Walker->nr]].R.at(endstep).x[n] - Trajectories[Walker].R.at(startstep).x[n])*((double)step/(double)MaxSteps); 1453 // add to Trajectories 1454 //*out << Verbose(3) << step << ">=" << MDSteps-1 << endl; 1455 if (step < MaxSteps) { 1456 Trajectories[Walker].R.at(step).x[n] = Trajectories[Walker].R.at(startstep).x[n] + (Trajectories[PermutationMap[Walker->nr]].R.at(endstep).x[n] - Trajectories[Walker].R.at(startstep).x[n])*((double)step/(double)MaxSteps); 1457 Trajectories[Walker].U.at(step).x[n] = 0.; 1458 Trajectories[Walker].F.at(step).x[n] = 0.; 1459 } 1460 } 1461 } 1462 } 1463 MDSteps = MaxSteps+1; // otherwise new Trajectories' points aren't stored on save&exit 1464 1465 // store the list to single step files 1466 int *SortIndex = (int *) Malloc(AtomCount*sizeof(int), "molecule::LinearInterpolationBetweenConfiguration: *SortIndex"); 1467 for (int i=AtomCount; i--; ) 1468 SortIndex[i] = i; 1469 status = MoleculePerStep->OutputConfigForListOfFragments(out, "ConstrainedStep", &configuration, SortIndex, false, false); 1470 1471 // free and return 1472 Free((void **)&PermutationMap, "molecule::MinimiseConstrainedPotential: *PermutationMap"); 1473 delete(MoleculePerStep); 1474 return status; 1475 }; 1476 1027 1477 /** Parses nuclear forces from file and performs Verlet integration. 1028 1478 * Note that we assume the parsed forces to be in atomic units (hence, if coordinates are in angstroem, we 1029 1479 * have to transform them). 1030 1480 * This adds a new MD step to the config file. 1481 * \param *out output stream for debugging 1031 1482 * \param *file filename 1483 * \param config structure with config::Deltat, config::IsAngstroem, config::DoConstrained 1032 1484 * \param delta_t time step width in atomic units 1033 1485 * \param IsAngstroem whether coordinates are in angstroem (true) or bohrradius (false) 1486 * \param DoConstrained whether we perform a constrained (>0, target step in molecule::trajectories) or unconstrained (0) molecular dynamics, \sa molecule::MinimiseConstrainedPotential() 1034 1487 * \return true - file found and parsed, false - file not found or imparsable 1035 * /1036 bool molecule::VerletForceIntegration(char *file, double delta_t, bool IsAngstroem) 1037 { 1038 element *runner = elemente->start; 1488 * \todo This is not yet checked if it is correctly working with DoConstrained set to true. 1489 */ 1490 bool molecule::VerletForceIntegration(ofstream *out, char *file, config &configuration) 1491 { 1039 1492 atom *walker = NULL; 1040 int AtomNo;1041 1493 ifstream input(file); 1042 1494 string token; 1043 1495 stringstream item; 1044 double a, IonMass;1496 double IonMass, Vector[NDIM], ConstrainedPotentialEnergy, ActualTemp; 1045 1497 ForceMatrix Force; 1046 Vector tmpvector;1047 1498 1048 1499 CountElements(); // make sure ElementsInMolecule is up to date … … 1062 1513 } 1063 1514 // correct Forces 1064 // for(int d=0;d<NDIM;d++) 1065 // tmpvector.x[d] = 0.; 1066 // for(int i=0;i<AtomCount;i++) 1067 // for(int d=0;d<NDIM;d++) { 1068 // tmpvector.x[d] += Force.Matrix[0][i][d+5]; 1069 // } 1070 // for(int i=0;i<AtomCount;i++) 1071 // for(int d=0;d<NDIM;d++) { 1072 // Force.Matrix[0][i][d+5] -= tmpvector.x[d]/(double)AtomCount; 1073 // } 1515 for(int d=0;d<NDIM;d++) 1516 Vector[d] = 0.; 1517 for(int i=0;i<AtomCount;i++) 1518 for(int d=0;d<NDIM;d++) { 1519 Vector[d] += Force.Matrix[0][i][d+5]; 1520 } 1521 for(int i=0;i<AtomCount;i++) 1522 for(int d=0;d<NDIM;d++) { 1523 Force.Matrix[0][i][d+5] -= Vector[d]/(double)AtomCount; 1524 } 1525 // solve a constrained potential if we are meant to 1526 if (configuration.DoConstrainedMD) { 1527 // calculate forces and potential 1528 atom **PermutationMap = NULL; 1529 ConstrainedPotentialEnergy = MinimiseConstrainedPotential(out, PermutationMap,configuration.DoConstrainedMD, 0, configuration.GetIsAngstroem()); 1530 EvaluateConstrainedForces(out, configuration.DoConstrainedMD, 0, PermutationMap, &Force); 1531 Free((void **)&PermutationMap, "molecule::MinimiseConstrainedPotential: *PermutationMap"); 1532 } 1533 1074 1534 // and perform Verlet integration for each atom with position, velocity and force vector 1075 runner = elemente->start; 1076 while (runner->next != elemente->end) { // go through every element 1077 runner = runner->next; 1078 IonMass = runner->mass; 1079 a = delta_t*0.5/IonMass; // (F+F_old)/2m = a and thus: v = (F+F_old)/2m * t = (F + F_old) * a 1080 if (ElementsInMolecule[runner->Z]) { // if this element got atoms 1081 AtomNo = 0; 1535 walker = start; 1536 while (walker->next != end) { // go through every atom of this element 1537 walker = walker->next; 1538 //a = configuration.Deltat*0.5/walker->type->mass; // (F+F_old)/2m = a and thus: v = (F+F_old)/2m * t = (F + F_old) * a 1539 // check size of vectors 1540 if (Trajectories[walker].R.size() <= (unsigned int)(MDSteps)) { 1541 //out << "Increasing size for trajectory array of " << *walker << " to " << (size+10) << "." << endl; 1542 Trajectories[walker].R.resize(MDSteps+10); 1543 Trajectories[walker].U.resize(MDSteps+10); 1544 Trajectories[walker].F.resize(MDSteps+10); 1545 } 1546 1547 // Update R (and F) 1548 for (int d=0; d<NDIM; d++) { 1549 Trajectories[walker].F.at(MDSteps).x[d] = -Force.Matrix[0][walker->nr][d+5]*(configuration.GetIsAngstroem() ? AtomicLengthToAngstroem : 1.); 1550 Trajectories[walker].R.at(MDSteps).x[d] = Trajectories[walker].R.at(MDSteps-1).x[d]; 1551 Trajectories[walker].R.at(MDSteps).x[d] += configuration.Deltat*(Trajectories[walker].U.at(MDSteps-1).x[d]); // s(t) = s(0) + v * deltat + 1/2 a * deltat^2 1552 Trajectories[walker].R.at(MDSteps).x[d] += 0.5*configuration.Deltat*configuration.Deltat*(Trajectories[walker].F.at(MDSteps).x[d]/walker->type->mass); // F = m * a and s = 0.5 * F/m * t^2 = F * a * t 1553 } 1554 // Update U 1555 for (int d=0; d<NDIM; d++) { 1556 Trajectories[walker].U.at(MDSteps).x[d] = Trajectories[walker].U.at(MDSteps-1).x[d]; 1557 Trajectories[walker].U.at(MDSteps).x[d] += configuration.Deltat * (Trajectories[walker].F.at(MDSteps).x[d]+Trajectories[walker].F.at(MDSteps-1).x[d]/walker->type->mass); // v = F/m * t 1558 } 1559 // out << "Integrated position&velocity of step " << (MDSteps) << ": ("; 1560 // for (int d=0;d<NDIM;d++) 1561 // out << Trajectories[walker].R.at(MDSteps).x[d] << " "; // next step 1562 // out << ")\t("; 1563 // for (int d=0;d<NDIM;d++) 1564 // cout << Trajectories[walker].U.at(MDSteps).x[d] << " "; // next step 1565 // out << ")" << endl; 1566 // next atom 1567 } 1568 } 1569 // correct velocities (rather momenta) so that center of mass remains motionless 1570 for(int d=0;d<NDIM;d++) 1571 Vector[d] = 0.; 1572 IonMass = 0.; 1573 walker = start; 1574 while (walker->next != end) { // go through every atom 1575 walker = walker->next; 1576 IonMass += walker->type->mass; // sum up total mass 1577 for(int d=0;d<NDIM;d++) { 1578 Vector[d] += Trajectories[walker].U.at(MDSteps).x[d]*walker->type->mass; 1579 } 1580 } 1581 // correct velocities (rather momenta) so that center of mass remains motionless 1582 for(int d=0;d<NDIM;d++) 1583 Vector[d] /= IonMass; 1584 ActualTemp = 0.; 1585 walker = start; 1586 while (walker->next != end) { // go through every atom of this element 1587 walker = walker->next; 1588 for(int d=0;d<NDIM;d++) { 1589 Trajectories[walker].U.at(MDSteps).x[d] -= Vector[d]; 1590 ActualTemp += 0.5 * walker->type->mass * Trajectories[walker].U.at(MDSteps).x[d] * Trajectories[walker].U.at(MDSteps).x[d]; 1591 } 1592 } 1593 Thermostats(configuration, ActualTemp, Berendsen); 1594 MDSteps++; 1595 1596 1597 // exit 1598 return true; 1599 }; 1600 1601 /** Implementation of various thermostats. 1602 * All these thermostats apply an additional force which has the following forms: 1603 * -# Woodcock 1604 * \f$p_i \rightarrow \sqrt{\frac{T_0}{T}} \cdot p_i\f$ 1605 * -# Gaussian 1606 * \f$ \frac{ \sum_i \frac{p_i}{m_i} \frac{\partial V}{\partial q_i}} {\sum_i \frac{p^2_i}{m_i}} \cdot p_i\f$ 1607 * -# Langevin 1608 * \f$p_{i,n} \rightarrow \sqrt{1-\alpha^2} p_{i,0} + \alpha p_r\f$ 1609 * -# Berendsen 1610 * \f$p_i \rightarrow \left [ 1+ \frac{\delta t}{\tau_T} \left ( \frac{T_0}{T} \right ) \right ]^{\frac{1}{2}} \cdot p_i\f$ 1611 * -# Nose-Hoover 1612 * \f$\zeta p_i \f$ with \f$\frac{\partial \zeta}{\partial t} = \frac{1}{M_s} \left ( \sum^N_{i=1} \frac{p_i^2}{m_i} - g k_B T \right )\f$ 1613 * These Thermostats either simply rescale the velocities, thus this function should be called after ion velocities have been updated, and/or 1614 * have a constraint force acting additionally on the ions. In the latter case, the ion speeds have to be modified 1615 * belatedly and the constraint force set. 1616 * \param *P Problem at hand 1617 * \param i which of the thermostats to take: 0 - none, 1 - Woodcock, 2 - Gaussian, 3 - Langevin, 4 - Berendsen, 5 - Nose-Hoover 1618 * \sa InitThermostat() 1619 */ 1620 void molecule::Thermostats(config &configuration, double ActualTemp, int Thermostat) 1621 { 1622 double ekin = 0.; 1623 double E = 0., G = 0.; 1624 double delta_alpha = 0.; 1625 double ScaleTempFactor; 1626 double sigma; 1627 double IonMass; 1628 int d; 1629 gsl_rng * r; 1630 const gsl_rng_type * T; 1631 double *U = NULL, *F = NULL, FConstraint[NDIM]; 1632 atom *walker = NULL; 1633 1634 // calculate scale configuration 1635 ScaleTempFactor = configuration.TargetTemp/ActualTemp; 1636 1637 // differentating between the various thermostats 1638 switch(Thermostat) { 1639 case None: 1640 cout << Verbose(2) << "Applying no thermostat..." << endl; 1641 break; 1642 case Woodcock: 1643 if ((configuration.ScaleTempStep > 0) && ((MDSteps-1) % configuration.ScaleTempStep == 0)) { 1644 cout << Verbose(2) << "Applying Woodcock thermostat..." << endl; 1082 1645 walker = start; 1083 1646 while (walker->next != end) { // go through every atom of this element 1084 1647 walker = walker->next; 1085 if (walker->type == runner) { // if this atom fits to element 1086 // check size of vectors 1087 if (Trajectories[walker].R.size() <= (unsigned int)(MDSteps)) { 1088 //cout << "Increasing size for trajectory array of " << *walker << " to " << (size+10) << "." << endl; 1089 Trajectories[walker].R.resize(MDSteps+10); 1090 Trajectories[walker].U.resize(MDSteps+10); 1091 Trajectories[walker].F.resize(MDSteps+10); 1648 IonMass = walker->type->mass; 1649 U = Trajectories[walker].U.at(MDSteps).x; 1650 if (walker->FixedIon == 0) // even FixedIon moves, only not by other's forces 1651 for (d=0; d<NDIM; d++) { 1652 U[d] *= sqrt(ScaleTempFactor); 1653 ekin += 0.5*IonMass * U[d]*U[d]; 1092 1654 } 1093 // 1. calculate x(t+\delta t) 1094 for (int d=0; d<NDIM; d++) { 1095 Trajectories[walker].F.at(MDSteps).x[d] = -Force.Matrix[0][AtomNo][d+5]; 1096 Trajectories[walker].R.at(MDSteps).x[d] = Trajectories[walker].R.at(MDSteps-1).x[d]; 1097 Trajectories[walker].R.at(MDSteps).x[d] += delta_t*(Trajectories[walker].U.at(MDSteps-1).x[d]); 1098 Trajectories[walker].R.at(MDSteps).x[d] += 0.5*delta_t*delta_t*(Trajectories[walker].F.at(MDSteps-1).x[d])/IonMass; // F = m * a and s = 0.5 * F/m * t^2 = F * a * t 1655 } 1656 } 1657 break; 1658 case Gaussian: 1659 cout << Verbose(2) << "Applying Gaussian thermostat..." << endl; 1660 walker = start; 1661 while (walker->next != end) { // go through every atom of this element 1662 walker = walker->next; 1663 IonMass = walker->type->mass; 1664 U = Trajectories[walker].U.at(MDSteps).x; 1665 F = Trajectories[walker].F.at(MDSteps).x; 1666 if (walker->FixedIon == 0) // even FixedIon moves, only not by other's forces 1667 for (d=0; d<NDIM; d++) { 1668 G += U[d] * F[d]; 1669 E += U[d]*U[d]*IonMass; 1670 } 1671 } 1672 cout << Verbose(1) << "Gaussian Least Constraint constant is " << G/E << "." << endl; 1673 walker = start; 1674 while (walker->next != end) { // go through every atom of this element 1675 walker = walker->next; 1676 IonMass = walker->type->mass; 1677 U = Trajectories[walker].U.at(MDSteps).x; 1678 F = Trajectories[walker].F.at(MDSteps).x; 1679 if (walker->FixedIon == 0) // even FixedIon moves, only not by other's forces 1680 for (d=0; d<NDIM; d++) { 1681 FConstraint[d] = (G/E) * (U[d]*IonMass); 1682 U[d] += configuration.Deltat/IonMass * (FConstraint[d]); 1683 ekin += IonMass * U[d]*U[d]; 1684 } 1685 } 1686 break; 1687 case Langevin: 1688 cout << Verbose(2) << "Applying Langevin thermostat..." << endl; 1689 // init random number generator 1690 gsl_rng_env_setup(); 1691 T = gsl_rng_default; 1692 r = gsl_rng_alloc (T); 1693 // Go through each ion 1694 walker = start; 1695 while (walker->next != end) { // go through every atom of this element 1696 walker = walker->next; 1697 IonMass = walker->type->mass; 1698 sigma = sqrt(configuration.TargetTemp/IonMass); // sigma = (k_b T)/m (Hartree/atomicmass = atomiclength/atomictime) 1699 U = Trajectories[walker].U.at(MDSteps).x; 1700 F = Trajectories[walker].F.at(MDSteps).x; 1701 if (walker->FixedIon == 0) { // even FixedIon moves, only not by other's forces 1702 // throw a dice to determine whether it gets hit by a heat bath particle 1703 if (((((rand()/(double)RAND_MAX))*configuration.TempFrequency) < 1.)) { 1704 cout << Verbose(3) << "Particle " << *walker << " was hit (sigma " << sigma << "): " << sqrt(U[0]*U[0]+U[1]*U[1]+U[2]*U[2]) << " -> "; 1705 // pick three random numbers from a Boltzmann distribution around the desired temperature T for each momenta axis 1706 for (d=0; d<NDIM; d++) { 1707 U[d] = gsl_ran_gaussian (r, sigma); 1099 1708 } 1100 // 2. Calculate v(t+\delta t) 1101 for (int d=0; d<NDIM; d++) { 1102 Trajectories[walker].U.at(MDSteps).x[d] = Trajectories[walker].U.at(MDSteps-1).x[d]; 1103 Trajectories[walker].U.at(MDSteps).x[d] += 0.5*delta_t*(Trajectories[walker].F.at(MDSteps-1).x[d]+Trajectories[walker].F.at(MDSteps).x[d])/IonMass; 1104 } 1105 // cout << "Integrated position&velocity of step " << (MDSteps) << ": ("; 1106 // for (int d=0;d<NDIM;d++) 1107 // cout << Trajectories[walker].R.at(MDSteps).x[d] << " "; // next step 1108 // cout << ")\t("; 1109 // for (int d=0;d<NDIM;d++) 1110 // cout << Trajectories[walker].U.at(MDSteps).x[d] << " "; // next step 1111 // cout << ")" << endl; 1112 // next atom 1113 AtomNo++; 1709 cout << sqrt(U[0]*U[0]+U[1]*U[1]+U[2]*U[2]) << endl; 1710 } 1711 for (d=0; d<NDIM; d++) 1712 ekin += 0.5*IonMass * U[d]*U[d]; 1713 } 1714 } 1715 break; 1716 case Berendsen: 1717 cout << Verbose(2) << "Applying Berendsen-VanGunsteren thermostat..." << endl; 1718 walker = start; 1719 while (walker->next != end) { // go through every atom of this element 1720 walker = walker->next; 1721 IonMass = walker->type->mass; 1722 U = Trajectories[walker].U.at(MDSteps).x; 1723 F = Trajectories[walker].F.at(MDSteps).x; 1724 if (walker->FixedIon == 0) { // even FixedIon moves, only not by other's forces 1725 for (d=0; d<NDIM; d++) { 1726 U[d] *= sqrt(1+(configuration.Deltat/configuration.TempFrequency)*(ScaleTempFactor-1)); 1727 ekin += 0.5*IonMass * U[d]*U[d]; 1114 1728 } 1115 1729 } 1116 1730 } 1117 } 1118 } 1119 // // correct velocities (rather momenta) so that center of mass remains motionless 1120 // tmpvector.zero() 1121 // IonMass = 0.; 1122 // walker = start; 1123 // while (walker->next != end) { // go through every atom 1124 // walker = walker->next; 1125 // IonMass += walker->type->mass; // sum up total mass 1126 // for(int d=0;d<NDIM;d++) { 1127 // tmpvector.x[d] += Trajectories[walker].U.at(MDSteps).x[d]*walker->type->mass; 1128 // } 1129 // } 1130 // walker = start; 1131 // while (walker->next != end) { // go through every atom of this element 1132 // walker = walker->next; 1133 // for(int d=0;d<NDIM;d++) { 1134 // Trajectories[walker].U.at(MDSteps).x[d] -= tmpvector.x[d]*walker->type->mass/IonMass; 1135 // } 1136 // } 1137 MDSteps++; 1138 1139 1140 // exit 1141 return true; 1142 }; 1143 1144 /** Align all atoms in such a manner that given vector \a *n is along z axis. 1731 break; 1732 case NoseHoover: 1733 cout << Verbose(2) << "Applying Nose-Hoover thermostat..." << endl; 1734 // dynamically evolve alpha (the additional degree of freedom) 1735 delta_alpha = 0.; 1736 walker = start; 1737 while (walker->next != end) { // go through every atom of this element 1738 walker = walker->next; 1739 IonMass = walker->type->mass; 1740 U = Trajectories[walker].U.at(MDSteps).x; 1741 if (walker->FixedIon == 0) { // even FixedIon moves, only not by other's forces 1742 for (d=0; d<NDIM; d++) { 1743 delta_alpha += U[d]*U[d]*IonMass; 1744 } 1745 } 1746 } 1747 delta_alpha = (delta_alpha - (3.*AtomCount+1.) * configuration.TargetTemp)/(configuration.HooverMass*Units2Electronmass); 1748 configuration.alpha += delta_alpha*configuration.Deltat; 1749 cout << Verbose(3) << "alpha = " << delta_alpha << " * " << configuration.Deltat << " = " << configuration.alpha << "." << endl; 1750 // apply updated alpha as additional force 1751 walker = start; 1752 while (walker->next != end) { // go through every atom of this element 1753 walker = walker->next; 1754 IonMass = walker->type->mass; 1755 U = Trajectories[walker].U.at(MDSteps).x; 1756 if (walker->FixedIon == 0) { // even FixedIon moves, only not by other's forces 1757 for (d=0; d<NDIM; d++) { 1758 FConstraint[d] = - configuration.alpha * (U[d] * IonMass); 1759 U[d] += configuration.Deltat/IonMass * (FConstraint[d]); 1760 ekin += (0.5*IonMass) * U[d]*U[d]; 1761 } 1762 } 1763 } 1764 break; 1765 } 1766 cout << Verbose(1) << "Kinetic energy is " << ekin << "." << endl; 1767 }; 1768 1769 /** Align all atoms in such a manner that given vector \a *n is along z axis. 1145 1770 * \param n[] alignment vector. 1146 1771 */ … … 1203 1828 }; 1204 1829 1205 /** Removes atom from molecule list and deletes it.1830 /** Removes atom from molecule list. 1206 1831 * \param *pointer atom to be removed 1207 1832 * \return true - succeeded, false - atom not found in list … … 1209 1834 bool molecule::RemoveAtom(atom *pointer) 1210 1835 { 1211 if (ElementsInMolecule[pointer->type->Z] != 0) {// this would indicate an error1836 if (ElementsInMolecule[pointer->type->Z] != 0) // this would indicate an error 1212 1837 ElementsInMolecule[pointer->type->Z]--; // decrease number of atom of this element 1213 AtomCount--; 1214 } else 1838 else 1215 1839 cerr << "ERROR: Atom " << pointer->Name << " is of element " << pointer->type->Z << " but the entry in the table of the molecule is 0!" << endl; 1216 1840 if (ElementsInMolecule[pointer->type->Z] == 0) // was last atom of this element? … … 1218 1842 Trajectories.erase(pointer); 1219 1843 return remove(pointer, start, end); 1220 };1221 1222 /** Removes atom from molecule list, but does not delete it.1223 * \param *pointer atom to be removed1224 * \return true - succeeded, false - atom not found in list1225 */1226 bool molecule::UnlinkAtom(atom *pointer)1227 {1228 if (pointer == NULL)1229 return false;1230 if (ElementsInMolecule[pointer->type->Z] != 0) // this would indicate an error1231 ElementsInMolecule[pointer->type->Z]--; // decrease number of atom of this element1232 else1233 cerr << "ERROR: Atom " << pointer->Name << " is of element " << pointer->type->Z << " but the entry in the table of the molecule is 0!" << endl;1234 if (ElementsInMolecule[pointer->type->Z] == 0) // was last atom of this element?1235 ElementCount--;1236 Trajectories.erase(pointer);1237 unlink(pointer);1238 return true;1239 1844 }; 1240 1845 … … 1763 2368 }; 1764 2369 AddBond(Walker, OtherWalker); //Add the bond between the two atoms with respective indices. 1765 2370 1766 2371 } 1767 2372 … … 1800 2405 Vector x; 1801 2406 int FalseBondDegree = 0; 1802 2407 1803 2408 BondDistance = bonddistance; // * ((IsAngstroem) ? 1. : 1./AtomicLengthToAngstroem); 1804 2409 *out << Verbose(0) << "Begin of CreateAdjacencyList." << endl; … … 1879 2484 //*out << Verbose(0) << "Current comparison atom is " << *OtherWalker << "." << endl; 1880 2485 /// \todo periodic check is missing here! 1881 //*out << Verbose(1) << "Checking distance " << OtherWalker->x.PeriodicDistance Squared(&(Walker->x), cell_size) << " against typical bond length of " << bonddistance*bonddistance << "." << endl;2486 //*out << Verbose(1) << "Checking distance " << OtherWalker->x.PeriodicDistance(&(Walker->x), cell_size) << " against typical bond length of " << bonddistance*bonddistance << "." << endl; 1882 2487 MinDistance = OtherWalker->type->CovalentRadius + Walker->type->CovalentRadius; 1883 2488 MinDistance *= (IsAngstroem) ? 1. : 1./AtomicLengthToAngstroem; 1884 2489 MaxDistance = MinDistance + BONDTHRESHOLD; 1885 2490 MinDistance -= BONDTHRESHOLD; 1886 distance = OtherWalker->x.PeriodicDistanceSquared(&(Walker->x), cell_size);2491 distance = OtherWalker->x.PeriodicDistance(&(Walker->x), cell_size); 1887 2492 if ((OtherWalker->father->nr > Walker->father->nr) && (distance <= MaxDistance*MaxDistance) && (distance >= MinDistance*MinDistance)) { // create bond if distance is smaller 1888 //*out << Verbose( 1) << "Adding Bond between " << *Walker << " and " << *OtherWalker << " in distance " << sqrt(distance)<< "." << endl;2493 //*out << Verbose(0) << "Adding Bond between " << *Walker << " and " << *OtherWalker << "." << endl; 1889 2494 AddBond(Walker->father, OtherWalker->father, 1); // also increases molecule::BondCount 2495 BondCount++; 1890 2496 } else { 1891 2497 //*out << Verbose(1) << "Not Adding: Wrong label order or distance too great." << endl; … … 1958 2564 *out << Verbose(1) << "BondCount is " << BondCount << ", no bonds between any of the " << AtomCount << " atoms." << endl; 1959 2565 *out << Verbose(1) << "I detected " << BondCount << " bonds in the molecule with distance " << bonddistance << ", " << FalseBondDegree << " bonds could not be corrected." << endl; 1960 2566 1961 2567 // output bonds for debugging (if bond chain list was correctly installed) 1962 2568 *out << Verbose(1) << endl << "From contents of bond chain list:"; … … 2195 2801 ColorList[i] = white; 2196 2802 } 2197 2803 2198 2804 *out << Verbose(1) << "Back edge list - "; 2199 2805 BackEdgeStack->Output(out); … … 2565 3171 cerr << "KeySet file must be corrupt as there are two equal key sets therein!" << endl; 2566 3172 } 3173 //FragmentList->ListOfMolecules[NumberOfFragments++] = StoreFragmentFromKeySet(out, CurrentSet, IsAngstroem); 2567 3174 } 2568 3175 } … … 3043 3650 while (MolecularWalker->next != NULL) { 3044 3651 MolecularWalker = MolecularWalker->next; 3652 *out << Verbose(0) << "Analysing the cycles of subgraph " << MolecularWalker->Leaf << " with nr. " << FragmentCounter << "." << endl; 3045 3653 LocalBackEdgeStack = new StackClass<bond *> (MolecularWalker->Leaf->BondCount); 3046 3654 // // check the list of local atoms for debugging … … 3058 3666 delete(LocalBackEdgeStack); 3059 3667 } 3060 3668 3061 3669 // ===== 3. if structure still valid, parse key set file and others ===== 3062 3670 FragmentationToDo = FragmentationToDo && ParseKeySetFile(out, configuration->configpath, ParsedFragmentList); … … 3064 3672 // ===== 4. check globally whether there's something to do actually (first adaptivity check) 3065 3673 FragmentationToDo = FragmentationToDo && ParseOrderAtSiteFromFile(out, configuration->configpath); 3066 3067 // =================================== Begin of FRAGMENTATION =============================== 3068 // ===== 6a. assign each keyset to its respective subgraph ===== 3674 3675 // =================================== Begin of FRAGMENTATION =============================== 3676 // ===== 6a. assign each keyset to its respective subgraph ===== 3069 3677 Subgraphs->next->AssignKeySetsToFragment(out, this, ParsedFragmentList, ListOfLocalAtoms, FragmentList, (FragmentCounter = 0), true); 3070 3678 … … 3101 3709 delete(ParsedFragmentList); 3102 3710 delete[](MinimumRingSize); 3103 3711 3104 3712 3105 3713 // ==================================== End of FRAGMENTATION ============================================ … … 3123 3731 //if (FragmentationToDo) { // we should always store the fragments again as coordination might have changed slightly without changing bond structure 3124 3732 // allocate memory for the pointer array and transmorph graphs into full molecular fragments 3125 BondFragments = new MoleculeListClass( );3733 BondFragments = new MoleculeListClass(TotalGraph.size(), AtomCount); 3126 3734 int k=0; 3127 3735 for(Graph::iterator runner = TotalGraph.begin(); runner != TotalGraph.end(); runner++) { 3128 3736 KeySet test = (*runner).first; 3129 3737 *out << "Fragment No." << (*runner).second.first << " with TEFactor " << (*runner).second.second << "." << endl; 3130 BondFragments-> insert(StoreFragmentFromKeySet(out, test, configuration));3738 BondFragments->ListOfMolecules[k] = StoreFragmentFromKeySet(out, test, configuration); 3131 3739 k++; 3132 3740 } 3133 *out << k << "/" << BondFragments-> ListOfMolecules.size()<< " fragments generated from the keysets." << endl;3741 *out << k << "/" << BondFragments->NumberOfMolecules << " fragments generated from the keysets." << endl; 3134 3742 3135 3743 // ===== 9. Save fragments' configuration and keyset files et al to disk === 3136 if (BondFragments-> ListOfMolecules.size()!= 0) {3744 if (BondFragments->NumberOfMolecules != 0) { 3137 3745 // create the SortIndex from BFS labels to order in the config file 3138 3746 CreateMappingLabelsToConfigSequence(out, SortIndex); 3139 3747 3140 *out << Verbose(1) << "Writing " << BondFragments-> ListOfMolecules.size()<< " possible bond fragmentation configs" << endl;3141 if (BondFragments->OutputConfigForListOfFragments(out, configuration, SortIndex))3748 *out << Verbose(1) << "Writing " << BondFragments->NumberOfMolecules << " possible bond fragmentation configs" << endl; 3749 if (BondFragments->OutputConfigForListOfFragments(out, FRAGMENTPREFIX, configuration, SortIndex, true, true)) 3142 3750 *out << Verbose(1) << "All configs written." << endl; 3143 3751 else … … 3194 3802 atom *Walker = NULL, *OtherAtom = NULL; 3195 3803 ReferenceStack->Push(Binder); 3196 3804 3197 3805 do { // go through all bonds and push local ones 3198 3806 Walker = ListOfLocalAtoms[Binder->leftatom->nr]; // get one atom in the reference molecule … … 3201 3809 OtherAtom = ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker); 3202 3810 if (OtherAtom == ListOfLocalAtoms[Binder->rightatom->nr]) { // found the bond 3203 LocalStack->Push(ListOfBondsPerAtom[Walker->nr][i]);3204 *out << Verbose(3) << "Found local edge " << *(ListOfBondsPerAtom[Walker->nr][i]) << "." << endl;3811 LocalStack->Push(ListOfBondsPerAtom[Walker->nr][i]); 3812 *out << Verbose(3) << "Found local edge " << *(ListOfBondsPerAtom[Walker->nr][i]) << "." << endl; 3205 3813 break; 3206 3814 } … … 3210 3818 ReferenceStack->Push(Binder); 3211 3819 } while (FirstBond != Binder); 3212 3820 3213 3821 return status; 3214 3822 }; … … 3355 3963 Walker = start; 3356 3964 while (Walker->next != end) { 3357 Walker = Walker->next; 3965 Walker = Walker->next; 3358 3966 *out << Verbose(4) << "Atom " << Walker->Name << "/" << Walker->nr << " with " << NumberOfBondsPerAtom[Walker->nr] << " bonds: "; 3359 3967 TotalDegree = 0; … … 3664 4272 }; 3665 4273 4274 /** Creates \a MoleculeListClass of all unique fragments of the \a molecule containing \a Order atoms or vertices. 4275 * The picture to have in mind is that of a DFS "snake" of a certain length \a Order, i.e. as in the infamous 4276 * computer game, that winds through the connected graph representing the molecule. Color (white, 4277 * lightgray, darkgray, black) indicates whether a vertex has been discovered so far or not. Labels will help in 4278 * creating only unique fragments and not additional ones with vertices simply in different sequence. 4279 * The Predecessor is always the one that came before in discovering, needed on backstepping. And 4280 * finally, the ShortestPath is needed for removing vertices from the snake stack during the back- 4281 * stepping. 4282 * \param *out output stream for debugging 4283 * \param Order number of atoms in each fragment 4284 * \param *configuration configuration for writing config files for each fragment 4285 * \return List of all unique fragments with \a Order atoms 4286 */ 4287 /* 4288 MoleculeListClass * molecule::CreateListOfUniqueFragmentsOfOrder(ofstream *out, int Order, config *configuration) 4289 { 4290 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: **PredecessorList"); 4291 int *ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ShortestPathList"); 4292 int *Labels = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *Labels"); 4293 enum Shading *ColorVertexList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorList"); 4294 enum Shading *ColorEdgeList = (enum Shading *) Malloc(sizeof(enum Shading)*BondCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorBondList"); 4295 StackClass<atom *> *RootStack = new StackClass<atom *>(AtomCount); 4296 StackClass<atom *> *TouchedStack = new StackClass<atom *>((int)pow(4,Order)+2); // number of atoms reached from one with maximal 4 bonds plus Root itself 4297 StackClass<atom *> *SnakeStack = new StackClass<atom *>(Order+1); // equal to Order is not possible, as then the StackClass<atom *> cannot discern between full and empty stack! 4298 MoleculeLeafClass *Leaflet = NULL, *TempLeaf = NULL; 4299 MoleculeListClass *FragmentList = NULL; 4300 atom *Walker = NULL, *OtherAtom = NULL, *Root = NULL, *Removal = NULL; 4301 bond *Binder = NULL; 4302 int RunningIndex = 0, FragmentCounter = 0; 4303 4304 *out << Verbose(1) << "Begin of CreateListOfUniqueFragmentsOfOrder." << endl; 4305 4306 // reset parent list 4307 *out << Verbose(3) << "Resetting labels, parent, predecessor, color and shortest path lists." << endl; 4308 for (int i=0;i<AtomCount;i++) { // reset all atom labels 4309 // initialise each vertex as white with no predecessor, empty queue, color lightgray, not labelled, no sons 4310 Labels[i] = -1; 4311 SonList[i] = NULL; 4312 PredecessorList[i] = NULL; 4313 ColorVertexList[i] = white; 4314 ShortestPathList[i] = -1; 4315 } 4316 for (int i=0;i<BondCount;i++) 4317 ColorEdgeList[i] = white; 4318 RootStack->ClearStack(); // clearstack and push first atom if exists 4319 TouchedStack->ClearStack(); 4320 Walker = start->next; 4321 while ((Walker != end) 4322 #ifdef ADDHYDROGEN 4323 && (Walker->type->Z == 1) 4324 #endif 4325 ) { // search for first non-hydrogen atom 4326 *out << Verbose(4) << "Current Root candidate is " << Walker->Name << "." << endl; 4327 Walker = Walker->next; 4328 } 4329 if (Walker != end) 4330 RootStack->Push(Walker); 4331 else 4332 *out << Verbose(0) << "ERROR: Could not find an appropriate Root atom!" << endl; 4333 *out << Verbose(3) << "Root " << Walker->Name << " is on AtomStack, beginning loop through all vertices ..." << endl; 4334 4335 ///// OUTER LOOP //////////// 4336 while (!RootStack->IsEmpty()) { 4337 // get new root vertex from atom stack 4338 Root = RootStack->PopFirst(); 4339 ShortestPathList[Root->nr] = 0; 4340 if (Labels[Root->nr] == -1) 4341 Labels[Root->nr] = RunningIndex++; // prevent it from getting again on AtomStack 4342 PredecessorList[Root->nr] = Root; 4343 TouchedStack->Push(Root); 4344 *out << Verbose(0) << "Root for this loop is: " << Root->Name << ".\n"; 4345 4346 // clear snake stack 4347 SnakeStack->ClearStack(); 4348 //SnakeStack->TestImplementation(out, start->next); 4349 4350 ///// INNER LOOP //////////// 4351 // Problems: 4352 // - what about cyclic bonds? 4353 Walker = Root; 4354 do { 4355 *out << Verbose(1) << "Current Walker is: " << Walker->Name; 4356 // initial setting of the new Walker: label, color, shortest path and put on stacks 4357 if (Labels[Walker->nr] == -1) { // give atom a unique, monotonely increasing number 4358 Labels[Walker->nr] = RunningIndex++; 4359 RootStack->Push(Walker); 4360 } 4361 *out << ", has label " << Labels[Walker->nr]; 4362 if ((ColorVertexList[Walker->nr] == white) || ((Binder != NULL) && (ColorEdgeList[Binder->nr] == white))) { // color it if newly discovered and push on stacks (and if within reach!) 4363 if ((Binder != NULL) && (ColorEdgeList[Binder->nr] == white)) { 4364 // Binder ought to be set still from last neighbour search 4365 *out << ", coloring bond " << *Binder << " black"; 4366 ColorEdgeList[Binder->nr] = black; // mark this bond as used 4367 } 4368 if (ShortestPathList[Walker->nr] == -1) { 4369 ShortestPathList[Walker->nr] = ShortestPathList[PredecessorList[Walker->nr]->nr]+1; 4370 TouchedStack->Push(Walker); // mark every atom for lists cleanup later, whose shortest path has been changed 4371 } 4372 if ((ShortestPathList[Walker->nr] < Order) && (ColorVertexList[Walker->nr] != darkgray)) { // if not already on snake stack 4373 SnakeStack->Push(Walker); 4374 ColorVertexList[Walker->nr] = darkgray; // mark as dark gray of on snake stack 4375 } 4376 } 4377 *out << ", SP of " << ShortestPathList[Walker->nr] << " and its color is " << GetColor(ColorVertexList[Walker->nr]) << "." << endl; 4378 4379 // then check the stack for a newly stumbled upon fragment 4380 if (SnakeStack->ItemCount() == Order) { // is stack full? 4381 // store the fragment if it is one and get a removal candidate 4382 Removal = StoreFragmentFromStack(out, Root, Walker, Leaflet, SnakeStack, ShortestPathList, SonList, Labels, &FragmentCounter, configuration); 4383 // remove the candidate if one was found 4384 if (Removal != NULL) { 4385 *out << Verbose(2) << "Removing item " << Removal->Name << " with SP of " << ShortestPathList[Removal->nr] << " from snake stack." << endl; 4386 SnakeStack->RemoveItem(Removal); 4387 ColorVertexList[Removal->nr] = lightgray; // return back to not on snake stack but explored marking 4388 if (Walker == Removal) { // if the current atom is to be removed, we also have to take a step back 4389 Walker = PredecessorList[Removal->nr]; 4390 *out << Verbose(2) << "Stepping back to " << Walker->Name << "." << endl; 4391 } 4392 } 4393 } else 4394 Removal = NULL; 4395 4396 // finally, look for a white neighbour as the next Walker 4397 Binder = NULL; 4398 if ((Removal == NULL) || (Walker != PredecessorList[Removal->nr])) { // don't look, if a new walker has been set above 4399 *out << Verbose(2) << "Snake has currently " << SnakeStack->ItemCount() << " item(s)." << endl; 4400 OtherAtom = NULL; // this is actually not needed, every atom has at least one neighbour 4401 if (ShortestPathList[Walker->nr] < Order) { 4402 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) { 4403 Binder = ListOfBondsPerAtom[Walker->nr][i]; 4404 *out << Verbose(2) << "Current bond is " << *Binder << ": "; 4405 OtherAtom = Binder->GetOtherAtom(Walker); 4406 if ((Labels[OtherAtom->nr] != -1) && (Labels[OtherAtom->nr] < Labels[Root->nr])) { // we don't step up to labels bigger than us 4407 *out << "Label " << Labels[OtherAtom->nr] << " is smaller than Root's " << Labels[Root->nr] << "." << endl; 4408 //ColorVertexList[OtherAtom->nr] = lightgray; // mark as explored 4409 } else { // otherwise check its colour and element 4410 if ( 4411 #ifdef ADDHYDROGEN 4412 (OtherAtom->type->Z != 1) && 4413 #endif 4414 (ColorEdgeList[Binder->nr] == white)) { // skip hydrogen, look for unexplored vertices 4415 *out << "Moving along " << GetColor(ColorEdgeList[Binder->nr]) << " bond " << Binder << " to " << ((ColorVertexList[OtherAtom->nr] == white) ? "unexplored" : "explored") << " item: " << OtherAtom->Name << "." << endl; 4416 // i find it currently rather sensible to always set the predecessor in order to find one's way back 4417 //if (PredecessorList[OtherAtom->nr] == NULL) { 4418 PredecessorList[OtherAtom->nr] = Walker; 4419 *out << Verbose(3) << "Setting Predecessor of " << OtherAtom->Name << " to " << PredecessorList[OtherAtom->nr]->Name << "." << endl; 4420 //} else { 4421 // *out << Verbose(3) << "Predecessor of " << OtherAtom->Name << " is " << PredecessorList[OtherAtom->nr]->Name << "." << endl; 4422 //} 4423 Walker = OtherAtom; 4424 break; 4425 } else { 4426 if (OtherAtom->type->Z == 1) 4427 *out << "Links to a hydrogen atom." << endl; 4428 else 4429 *out << "Bond has not white but " << GetColor(ColorEdgeList[Binder->nr]) << " color." << endl; 4430 } 4431 } 4432 } 4433 } else { // means we have stepped beyond the horizon: Return! 4434 Walker = PredecessorList[Walker->nr]; 4435 OtherAtom = Walker; 4436 *out << Verbose(3) << "We have gone too far, stepping back to " << Walker->Name << "." << endl; 4437 } 4438 if (Walker != OtherAtom) { // if no white neighbours anymore, color it black 4439 *out << Verbose(2) << "Coloring " << Walker->Name << " black." << endl; 4440 ColorVertexList[Walker->nr] = black; 4441 Walker = PredecessorList[Walker->nr]; 4442 } 4443 } 4444 } while ((Walker != Root) || (ColorVertexList[Root->nr] != black)); 4445 *out << Verbose(2) << "Inner Looping is finished." << endl; 4446 4447 // if we reset all AtomCount atoms, we have again technically O(N^2) ... 4448 *out << Verbose(2) << "Resetting lists." << endl; 4449 Walker = NULL; 4450 Binder = NULL; 4451 while (!TouchedStack->IsEmpty()) { 4452 Walker = TouchedStack->PopLast(); 4453 *out << Verbose(3) << "Re-initialising entries of " << *Walker << "." << endl; 4454 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) 4455 ColorEdgeList[ListOfBondsPerAtom[Walker->nr][i]->nr] = white; 4456 PredecessorList[Walker->nr] = NULL; 4457 ColorVertexList[Walker->nr] = white; 4458 ShortestPathList[Walker->nr] = -1; 4459 } 4460 } 4461 *out << Verbose(1) << "Outer Looping over all vertices is done." << endl; 4462 4463 // copy together 4464 *out << Verbose(1) << "Copying all fragments into MoleculeList structure." << endl; 4465 FragmentList = new MoleculeListClass(FragmentCounter, AtomCount); 4466 RunningIndex = 0; 4467 while ((Leaflet != NULL) && (RunningIndex < FragmentCounter)) { 4468 FragmentList->ListOfMolecules[RunningIndex++] = Leaflet->Leaf; 4469 Leaflet->Leaf = NULL; // prevent molecule from being removed 4470 TempLeaf = Leaflet; 4471 Leaflet = Leaflet->previous; 4472 delete(TempLeaf); 4473 }; 4474 4475 // free memory and exit 4476 Free((void **)&PredecessorList, "molecule::CreateListOfUniqueFragmentsOfOrder: **PredecessorList"); 4477 Free((void **)&ShortestPathList, "molecule::CreateListOfUniqueFragmentsOfOrder: *ShortestPathList"); 4478 Free((void **)&Labels, "molecule::CreateListOfUniqueFragmentsOfOrder: *Labels"); 4479 Free((void **)&ColorVertexList, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorList"); 4480 delete(RootStack); 4481 delete(TouchedStack); 4482 delete(SnakeStack); 4483 4484 *out << Verbose(1) << "End of CreateListOfUniqueFragmentsOfOrder." << endl; 4485 return FragmentList; 4486 }; 4487 */ 4488 3666 4489 /** Structure containing all values in power set combination generation. 3667 4490 */ … … 4502 5325 OtherCenterOfGravity.Output(out); 4503 5326 *out << endl; 4504 if (CenterOfGravity.Distance Squared(&OtherCenterOfGravity) > threshold*threshold) {5327 if (CenterOfGravity.Distance(&OtherCenterOfGravity) > threshold) { 4505 5328 *out << Verbose(4) << "Centers of gravity don't match." << endl; 4506 5329 result = false; … … 4516 5339 while (Walker->next != end) { 4517 5340 Walker = Walker->next; 4518 Distances[Walker->nr] = CenterOfGravity.Distance Squared(&Walker->x);5341 Distances[Walker->nr] = CenterOfGravity.Distance(&Walker->x); 4519 5342 } 4520 5343 Walker = OtherMolecule->start; 4521 5344 while (Walker->next != OtherMolecule->end) { 4522 5345 Walker = Walker->next; 4523 OtherDistances[Walker->nr] = OtherCenterOfGravity.Distance Squared(&Walker->x);5346 OtherDistances[Walker->nr] = OtherCenterOfGravity.Distance(&Walker->x); 4524 5347 } 4525 5348 … … 4539 5362 flag = 0; 4540 5363 for (int i=0;i<AtomCount;i++) { 4541 *out << Verbose(5) << "Distances squared: |" << Distances[PermMap[i]] << " - " << OtherDistances[OtherPermMap[i]] << "| = " << fabs(Distances[PermMap[i]] - OtherDistances[OtherPermMap[i]]) << " ?<? " << threshold << endl;4542 if (fabs(Distances[PermMap[i]] - OtherDistances[OtherPermMap[i]]) > threshold *threshold)5364 *out << Verbose(5) << "Distances: |" << Distances[PermMap[i]] << " - " << OtherDistances[OtherPermMap[i]] << "| = " << fabs(Distances[PermMap[i]] - OtherDistances[OtherPermMap[i]]) << " ?<? " << threshold << endl; 5365 if (fabs(Distances[PermMap[i]] - OtherDistances[OtherPermMap[i]]) > threshold) 4543 5366 flag = 1; 4544 5367 }
Note:
See TracChangeset
for help on using the changeset viewer.
