Changeset 4a7776a


Ignore:
Timestamp:
Oct 12, 2009, 10:30:02 AM (15 years ago)
Author:
Frederik Heber <heber@…>
Branches:
Action_Thermostats, Add_AtomRandomPerturbation, Add_FitFragmentPartialChargesAction, Add_RotateAroundBondAction, Add_SelectAtomByNameAction, Added_ParseSaveFragmentResults, AddingActions_SaveParseParticleParameters, Adding_Graph_to_ChangeBondActions, Adding_MD_integration_tests, Adding_ParticleName_to_Atom, Adding_StructOpt_integration_tests, AtomFragments, Automaking_mpqc_open, AutomationFragmentation_failures, Candidate_v1.5.4, Candidate_v1.6.0, Candidate_v1.6.1, ChangeBugEmailaddress, ChangingTestPorts, ChemicalSpaceEvaluator, CombiningParticlePotentialParsing, Combining_Subpackages, Debian_Package_split, Debian_package_split_molecuildergui_only, Disabling_MemDebug, Docu_Python_wait, EmpiricalPotential_contain_HomologyGraph, EmpiricalPotential_contain_HomologyGraph_documentation, Enable_parallel_make_install, Enhance_userguide, Enhanced_StructuralOptimization, Enhanced_StructuralOptimization_continued, Example_ManyWaysToTranslateAtom, Exclude_Hydrogens_annealWithBondGraph, FitPartialCharges_GlobalError, Fix_BoundInBox_CenterInBox_MoleculeActions, Fix_ChargeSampling_PBC, Fix_ChronosMutex, Fix_FitPartialCharges, Fix_FitPotential_needs_atomicnumbers, Fix_ForceAnnealing, Fix_IndependentFragmentGrids, Fix_ParseParticles, Fix_ParseParticles_split_forward_backward_Actions, Fix_PopActions, Fix_QtFragmentList_sorted_selection, Fix_Restrictedkeyset_FragmentMolecule, Fix_StatusMsg, Fix_StepWorldTime_single_argument, Fix_Verbose_Codepatterns, Fix_fitting_potentials, Fixes, ForceAnnealing_goodresults, ForceAnnealing_oldresults, ForceAnnealing_tocheck, ForceAnnealing_with_BondGraph, ForceAnnealing_with_BondGraph_continued, ForceAnnealing_with_BondGraph_continued_betteresults, ForceAnnealing_with_BondGraph_contraction-expansion, FragmentAction_writes_AtomFragments, FragmentMolecule_checks_bonddegrees, GeometryObjects, Gui_Fixes, Gui_displays_atomic_force_velocity, ImplicitCharges, IndependentFragmentGrids, IndependentFragmentGrids_IndividualZeroInstances, IndependentFragmentGrids_IntegrationTest, IndependentFragmentGrids_Sole_NN_Calculation, JobMarket_RobustOnKillsSegFaults, JobMarket_StableWorkerPool, JobMarket_unresolvable_hostname_fix, MoreRobust_FragmentAutomation, ODR_violation_mpqc_open, PartialCharges_OrthogonalSummation, PdbParser_setsAtomName, PythonUI_with_named_parameters, QtGui_reactivate_TimeChanged_changes, Recreated_GuiChecks, Rewrite_FitPartialCharges, RotateToPrincipalAxisSystem_UndoRedo, SaturateAtoms_findBestMatching, SaturateAtoms_singleDegree, StoppableMakroAction, Subpackage_CodePatterns, Subpackage_JobMarket, Subpackage_LinearAlgebra, Subpackage_levmar, Subpackage_mpqc_open, Subpackage_vmg, Switchable_LogView, ThirdParty_MPQC_rebuilt_buildsystem, TrajectoryDependenant_MaxOrder, TremoloParser_IncreasedPrecision, TremoloParser_MultipleTimesteps, TremoloParser_setsAtomName, Ubuntu_1604_changes, stable
Children:
5034e1
Parents:
ccd9f5
Message:

Complete refactoring of molecule_dynamics.cpp

Location:
src
Files:
6 edited

Legend:

Unmodified
Added
Removed
  • src/atom.cpp

    rccd9f5 r4a7776a  
    77#include "atom.hpp"
    88#include "bond.hpp"
     9#include "config.hpp"
    910#include "element.hpp"
    1011#include "memoryallocator.hpp"
     
    265266};
    266267
     268/** Extends the trajectory STL vector to the new size.
     269 * Does nothing if \a MaxSteps is smaller than current size.
     270 * \param MaxSteps
     271 */
     272void atom::ResizeTrajectory(int MaxSteps)
     273{
     274  if (Trajectory.R.size() <= (unsigned int)(MaxSteps)) {
     275    //cout << "Increasing size for trajectory array of " << keyword << " to " << (MaxSteps+1) << "." << endl;
     276    Trajectory.R.resize(MaxSteps+1);
     277    Trajectory.U.resize(MaxSteps+1);
     278    Trajectory.F.resize(MaxSteps+1);
     279  }
     280};
     281
     282/** Copies a given trajectory step \a src onto another \a dest
     283 * \param dest index of destination step
     284 * \param src index of source step
     285 */
     286void atom::CopyStepOnStep(int dest, int src)
     287{
     288  if (dest == src)  // self assignment check
     289    return;
     290
     291  for (int n=NDIM;n--;) {
     292    Trajectory.R.at(dest).x[n] = Trajectory.R.at(src).x[n];
     293    Trajectory.U.at(dest).x[n] = Trajectory.U.at(src).x[n];
     294    Trajectory.F.at(dest).x[n] = Trajectory.F.at(src).x[n];
     295  }
     296};
     297
     298/** Performs a velocity verlet update of the trajectory.
     299 * Parameters are according to those in configuration class.
     300 * \param NextStep index of sequential step to set
     301 * \param *configuration pointer to configuration with parameters
     302 * \param *Force matrix with forces
     303 */
     304void atom::VelocityVerletUpdate(int NextStep, config *configuration, ForceMatrix *Force)
     305{
     306  //a = configuration.Deltat*0.5/walker->type->mass;        // (F+F_old)/2m = a and thus: v = (F+F_old)/2m * t = (F + F_old) * a
     307  for (int d=0; d<NDIM; d++) {
     308    Trajectory.F.at(NextStep).x[d] = -Force->Matrix[0][nr][d+5]*(configuration->GetIsAngstroem() ? AtomicLengthToAngstroem : 1.);
     309    Trajectory.R.at(NextStep).x[d] = Trajectory.R.at(NextStep-1).x[d];
     310    Trajectory.R.at(NextStep).x[d] += configuration->Deltat*(Trajectory.U.at(NextStep-1).x[d]);     // s(t) = s(0) + v * deltat + 1/2 a * deltat^2
     311    Trajectory.R.at(NextStep).x[d] += 0.5*configuration->Deltat*configuration->Deltat*(Trajectory.F.at(NextStep).x[d]/type->mass);     // F = m * a and s = 0.5 * F/m * t^2 = F * a * t
     312  }
     313  // Update U
     314  for (int d=0; d<NDIM; d++) {
     315    Trajectory.U.at(NextStep).x[d] = Trajectory.U.at(NextStep-1).x[d];
     316    Trajectory.U.at(NextStep).x[d] += configuration->Deltat * (Trajectory.F.at(NextStep).x[d]+Trajectory.F.at(NextStep-1).x[d]/type->mass); // v = F/m * t
     317  }
     318  // Update R (and F)
     319//      out << "Integrated position&velocity of step " << (NextStep) << ": (";
     320//      for (int d=0;d<NDIM;d++)
     321//        out << Trajectory.R.at(NextStep).x[d] << " ";          // next step
     322//      out << ")\t(";
     323//      for (int d=0;d<NDIM;d++)
     324//        cout << Trajectory.U.at(NextStep).x[d] << " ";          // next step
     325//      out << ")" << endl;
     326};
     327
     328/** Sums up mass and kinetics.
     329 * \param Step step to sum for
     330 * \param *TotalMass pointer to total mass sum
     331 * \param *TotalVelocity pointer to tota velocity sum
     332 */
     333void atom::SumUpKineticEnergy( int Step, double *TotalMass, Vector *TotalVelocity )
     334{
     335  *TotalMass += type->mass;  // sum up total mass
     336  for(int d=0;d<NDIM;d++) {
     337    TotalVelocity->x[d] += Trajectory.U.at(Step).x[d]*type->mass;
     338  }
     339};
     340
    267341/** Returns squared distance to a given vector.
    268342 * \param origin vector to calculate distance to
     
    312386    Force->Matrix[0][nr][5+i] += 2.*constant*sqrt(Trajectory.R.at(startstep).Distance(&Sprinter->Trajectory.R.at(endstep)));
    313387};
     388
     389/** Correct velocity against the summed \a CoGVelocity for \a step.
     390 * \param *ActualTemp sum up actual temperature meanwhile
     391 * \param Step MD step in atom::Tracjetory
     392 * \param *CoGVelocity remnant velocity (i.e. vector sum of all atom velocities)
     393 */
     394void atom::CorrectVelocity(double *ActualTemp, int Step, Vector *CoGVelocity)
     395{
     396  for(int d=0;d<NDIM;d++) {
     397    Trajectory.U.at(Step).x[d] -= CoGVelocity->x[d];
     398    *ActualTemp += 0.5 * type->mass * Trajectory.U.at(Step).x[d] * Trajectory.U.at(Step).x[d];
     399  }
     400};
     401
     402/** Scales velocity of atom according to Woodcock thermostat.
     403 * \param ScaleTempFactor factor to scale the velocities with (i.e. sqrt of energy scale factor)
     404 * \param Step MD step to scale
     405 * \param *ekin sum of kinetic energy
     406 */
     407void atom::Thermostat_Woodcock(double ScaleTempFactor, int Step, double *ekin)
     408{
     409  double *U = Trajectory.U.at(Step).x;
     410  if (FixedIon == 0) // even FixedIon moves, only not by other's forces
     411    for (int d=0; d<NDIM; d++) {
     412      U[d] *= ScaleTempFactor;
     413      *ekin += 0.5*type->mass * U[d]*U[d];
     414    }
     415};
     416
     417/** Scales velocity of atom according to Gaussian thermostat.
     418 * \param Step MD step to scale
     419 * \param *G
     420 * \param *E
     421 */
     422void atom::Thermostat_Gaussian_init(int Step, double *G, double *E)
     423{
     424  double *U = Trajectory.U.at(Step).x;
     425  double *F = Trajectory.F.at(Step).x;
     426  if (FixedIon == 0) // even FixedIon moves, only not by other's forces
     427    for (int d=0; d<NDIM; d++) {
     428      *G += U[d] * F[d];
     429      *E += U[d]*U[d]*type->mass;
     430    }
     431};
     432
     433/** Determines scale factors according to Gaussian thermostat.
     434 * \param Step MD step to scale
     435 * \param GE G over E ratio
     436 * \param *ekin sum of kinetic energy
     437 * \param *configuration configuration class with TempFrequency and TargetTemp
     438 */
     439void atom::Thermostat_Gaussian_least_constraint(int Step, double G_over_E, double *ekin, config *configuration)
     440{
     441  double *U = Trajectory.U.at(Step).x;
     442  if (FixedIon == 0) // even FixedIon moves, only not by other's forces
     443    for (int d=0; d<NDIM; d++) {
     444      U[d] += configuration->Deltat/type->mass * ( (G_over_E) * (U[d]*type->mass) );
     445      *ekin += type->mass * U[d]*U[d];
     446    }
     447};
     448
     449/** Scales velocity of atom according to Langevin thermostat.
     450 * \param Step MD step to scale
     451 * \param *r random number generator
     452 * \param *ekin sum of kinetic energy
     453 * \param *configuration configuration class with TempFrequency and TargetTemp
     454 */
     455void atom::Thermostat_Langevin(int Step, gsl_rng * r, double *ekin, config *configuration)
     456{
     457  double sigma  = sqrt(configuration->TargetTemp/type->mass); // sigma = (k_b T)/m (Hartree/atomicmass = atomiclength/atomictime)
     458  double *U = Trajectory.U.at(Step).x;
     459  if (FixedIon == 0) { // even FixedIon moves, only not by other's forces
     460    // throw a dice to determine whether it gets hit by a heat bath particle
     461    if (((((rand()/(double)RAND_MAX))*configuration->TempFrequency) < 1.)) {
     462      cout << Verbose(3) << "Particle " << *this << " was hit (sigma " << sigma << "): " << sqrt(U[0]*U[0]+U[1]*U[1]+U[2]*U[2]) << " -> ";
     463      // pick three random numbers from a Boltzmann distribution around the desired temperature T for each momenta axis
     464      for (int d=0; d<NDIM; d++) {
     465        U[d] = gsl_ran_gaussian (r, sigma);
     466      }
     467      cout << sqrt(U[0]*U[0]+U[1]*U[1]+U[2]*U[2]) << endl;
     468    }
     469    for (int d=0; d<NDIM; d++)
     470      *ekin += 0.5*type->mass * U[d]*U[d];
     471  }
     472};
     473
     474/** Scales velocity of atom according to Berendsen thermostat.
     475 * \param Step MD step to scale
     476 * \param ScaleTempFactor factor to scale energy (not velocity!) with
     477 * \param *ekin sum of kinetic energy
     478 * \param *configuration configuration class with TempFrequency and Deltat
     479 */
     480void atom::Thermostat_Berendsen(int Step, double ScaleTempFactor, double *ekin, config *configuration)
     481{
     482  double *U = Trajectory.U.at(Step).x;
     483  if (FixedIon == 0) { // even FixedIon moves, only not by other's forces
     484    for (int d=0; d<NDIM; d++) {
     485      U[d] *= sqrt(1+(configuration->Deltat/configuration->TempFrequency)*(ScaleTempFactor-1));
     486      *ekin += 0.5*type->mass * U[d]*U[d];
     487    }
     488  }
     489};
     490
     491/** Initializes current run of NoseHoover thermostat.
     492 * \param Step MD step to scale
     493 * \param *delta_alpha additional sum of kinetic energy on return
     494 */
     495void atom::Thermostat_NoseHoover_init(int Step, double *delta_alpha)
     496{
     497  double *U = Trajectory.U.at(Step).x;
     498  if (FixedIon == 0) { // even FixedIon moves, only not by other's forces
     499    for (int d=0; d<NDIM; d++) {
     500      *delta_alpha += U[d]*U[d]*type->mass;
     501    }
     502  }
     503};
     504
     505/** Initializes current run of NoseHoover thermostat.
     506 * \param Step MD step to scale
     507 * \param *ekin sum of kinetic energy
     508 * \param *configuration configuration class with TempFrequency and Deltat
     509 */
     510void atom::Thermostat_NoseHoover_scale(int Step, double *ekin, config *configuration)
     511{
     512  double *U = Trajectory.U.at(Step).x;
     513  if (FixedIon == 0) { // even FixedIon moves, only not by other's forces
     514    for (int d=0; d<NDIM; d++) {
     515        U[d] += configuration->Deltat/type->mass * (configuration->alpha * (U[d] * type->mass));
     516        *ekin += (0.5*type->mass) * U[d]*U[d];
     517      }
     518  }
     519};
  • src/atom.hpp

    rccd9f5 r4a7776a  
    2121#include <vector>
    2222
     23#include <gsl/gsl_randist.h>
     24
    2325#include "tesselation.hpp"
    2426
     
    2628
    2729class bond;
     30class config;
    2831class element;
    2932class ForceMatrix;
     
    8083  bool Compare(const atom &ptr);
    8184
     85  // trajectory stuff
     86  void ResizeTrajectory(int MaxSteps);
     87  void CopyStepOnStep(int dest, int src);
     88  void VelocityVerletUpdate(int MDSteps, config *configuration, ForceMatrix *Force);
     89  void SumUpKineticEnergy( int Step, double *TotalMass, Vector *TotalVelocity );
     90
    8291  double DistanceToVector(Vector &origin);
    8392  double DistanceSquaredToVector(Vector &origin);
    8493
     94  bool IsInParallelepiped(Vector offset, double *parallelepiped);
     95
     96  // constraint potential and dynamics stuff
    8597  void AddKineticToTemperature(double *temperature, int step) const;
    8698  void EvaluateConstrainedForce(int startstep, int endstep, atom **PermutationMap, ForceMatrix *Force);
     99  void CorrectVelocity(double *ActualTemp, int Step, Vector *CoGVelocity);
    87100
    88   bool IsInParallelepiped(Vector offset, double *parallelepiped);
     101  // thermostats
     102  void Thermostat_Woodcock(double ScaleTempFactor, int Step, double *ekin);
     103  void Thermostat_Gaussian_init(int Step, double *G, double *E);
     104  void Thermostat_Gaussian_least_constraint(int Step, double G_over_E, double *ekin, config *configuration);
     105  void Thermostat_Langevin(int Step, gsl_rng * r, double *ekin, config *configuration);
     106  void Thermostat_Berendsen(int Step, double ScaleTempFactor, double *ekin, config *configuration);
     107  void Thermostat_NoseHoover_init(int Step, double *delta_alpha);
     108  void Thermostat_NoseHoover_scale(int Step, double *ekin, config *configuration);
     109
    89110
    90111  ostream & operator << (ostream &ost);
  • src/molecule.cpp

    rccd9f5 r4a7776a  
    11401140  return true;
    11411141};
     1142
     1143void molecule::SetIndexedArrayForEachAtomTo ( atom **array, int TesselPoint::*index)
     1144{
     1145  atom *Walker = start;
     1146  while (Walker->next != end) {
     1147    Walker = Walker->next;
     1148    array[(Walker->*index)] = Walker;
     1149  }
     1150};
  • src/molecule.hpp

    rccd9f5 r4a7776a  
    176176
    177177  // templates for allowing global manipulation of an array with one entry per atom
     178  void SetIndexedArrayForEachAtomTo ( atom **array, int TesselPoint::* index);
    178179  template <typename T> void SetIndexedArrayForEachAtomTo ( T *array, int TesselPoint::* index, void (*Setor)(T *, T));
    179180  template <typename T> void SetIndexedArrayForEachAtomTo ( T *array, int TesselPoint::* index, void (*Setor)(T *, T), T t);
  • src/molecule_dynamics.cpp

    rccd9f5 r4a7776a  
    497497  else {
    498498    PermutationMap = Malloc<atom *>(AtomCount, "molecule::LinearInterpolationBetweenConfiguration: **PermutationMap");
    499     Walker = start;
    500     while (Walker->next != end) {
    501       Walker = Walker->next;
    502       PermutationMap[Walker->nr] = Walker;   // always pick target with the smallest distance
    503     }
     499    SetIndexedArrayForEachAtomTo( PermutationMap, &atom::nr );
    504500  }
    505501
    506502  // check whether we have sufficient space in Trajectories for each atom
    507   Walker = start;
    508   while (Walker->next != end) {
    509     Walker = Walker->next;
    510     if (Walker->Trajectory.R.size() <= (unsigned int)(MaxSteps)) {
    511       //cout << "Increasing size for trajectory array of " << keyword << " to " << (MaxSteps+1) << "." << endl;
    512       Walker->Trajectory.R.resize(MaxSteps+1);
    513       Walker->Trajectory.U.resize(MaxSteps+1);
    514       Walker->Trajectory.F.resize(MaxSteps+1);
    515     }
    516   }
     503  ActOnAllAtoms( &atom::ResizeTrajectory, MaxSteps );
    517504  // push endstep to last one
    518   Walker = start;
    519   while (Walker->next != end) { // remove the endstep (is now the very last one)
    520     Walker = Walker->next;
    521     for (int n=NDIM;n--;) {
    522       Walker->Trajectory.R.at(MaxSteps).x[n] = Walker->Trajectory.R.at(endstep).x[n];
    523       Walker->Trajectory.U.at(MaxSteps).x[n] = Walker->Trajectory.U.at(endstep).x[n];
    524       Walker->Trajectory.F.at(MaxSteps).x[n] = Walker->Trajectory.F.at(endstep).x[n];
    525     }
    526   }
     505  ActOnAllAtoms( &atom::CopyStepOnStep, MaxSteps, endstep );
    527506  endstep = MaxSteps;
    528507
     
    578557bool molecule::VerletForceIntegration(ofstream *out, char *file, config &configuration)
    579558{
    580   atom *walker = NULL;
    581559  ifstream input(file);
    582560  string token;
    583561  stringstream item;
    584   double IonMass, Vector[NDIM], ConstrainedPotentialEnergy, ActualTemp;
     562  double IonMass, ConstrainedPotentialEnergy, ActualTemp;
     563  Vector Velocity;
    585564  ForceMatrix Force;
    586565
     
    601580    }
    602581    // correct Forces
    603     for(int d=0;d<NDIM;d++)
    604       Vector[d] = 0.;
     582    Velocity.Zero();
    605583    for(int i=0;i<AtomCount;i++)
    606584      for(int d=0;d<NDIM;d++) {
    607         Vector[d] += Force.Matrix[0][i][d+5];
     585        Velocity.x[d] += Force.Matrix[0][i][d+5];
    608586      }
    609587    for(int i=0;i<AtomCount;i++)
    610588      for(int d=0;d<NDIM;d++) {
    611         Force.Matrix[0][i][d+5] -= Vector[d]/(double)AtomCount;
     589        Force.Matrix[0][i][d+5] -= Velocity.x[d]/(double)AtomCount;
    612590      }
    613591    // solve a constrained potential if we are meant to
     
    621599
    622600    // and perform Verlet integration for each atom with position, velocity and force vector
    623     walker = start;
    624     while (walker->next != end) { // go through every atom of this element
    625       walker = walker->next;
    626       //a = configuration.Deltat*0.5/walker->type->mass;        // (F+F_old)/2m = a and thus: v = (F+F_old)/2m * t = (F + F_old) * a
    627       // check size of vectors
    628       if (walker->Trajectory.R.size() <= (unsigned int)(MDSteps)) {
    629         //out << "Increasing size for trajectory array of " << *walker << " to " << (size+10) << "." << endl;
    630         walker->Trajectory.R.resize(MDSteps+10);
    631         walker->Trajectory.U.resize(MDSteps+10);
    632         walker->Trajectory.F.resize(MDSteps+10);
    633       }
    634 
    635       // Update R (and F)
    636       for (int d=0; d<NDIM; d++) {
    637         walker->Trajectory.F.at(MDSteps).x[d] = -Force.Matrix[0][walker->nr][d+5]*(configuration.GetIsAngstroem() ? AtomicLengthToAngstroem : 1.);
    638         walker->Trajectory.R.at(MDSteps).x[d] = walker->Trajectory.R.at(MDSteps-1).x[d];
    639         walker->Trajectory.R.at(MDSteps).x[d] += configuration.Deltat*(walker->Trajectory.U.at(MDSteps-1).x[d]);     // s(t) = s(0) + v * deltat + 1/2 a * deltat^2
    640         walker->Trajectory.R.at(MDSteps).x[d] += 0.5*configuration.Deltat*configuration.Deltat*(walker->Trajectory.F.at(MDSteps).x[d]/walker->type->mass);     // F = m * a and s = 0.5 * F/m * t^2 = F * a * t
    641       }
    642       // Update U
    643       for (int d=0; d<NDIM; d++) {
    644         walker->Trajectory.U.at(MDSteps).x[d] = walker->Trajectory.U.at(MDSteps-1).x[d];
    645         walker->Trajectory.U.at(MDSteps).x[d] += configuration.Deltat * (walker->Trajectory.F.at(MDSteps).x[d]+walker->Trajectory.F.at(MDSteps-1).x[d]/walker->type->mass); // v = F/m * t
    646       }
    647 //      out << "Integrated position&velocity of step " << (MDSteps) << ": (";
    648 //      for (int d=0;d<NDIM;d++)
    649 //        out << walker->Trajectory.R.at(MDSteps).x[d] << " ";          // next step
    650 //      out << ")\t(";
    651 //      for (int d=0;d<NDIM;d++)
    652 //        cout << walker->Trajectory.U.at(MDSteps).x[d] << " ";          // next step
    653 //      out << ")" << endl;
    654             // next atom
    655     }
     601    // check size of vectors
     602    ActOnAllAtoms( &atom::ResizeTrajectory, MDSteps+10 );
     603
     604    ActOnAllAtoms( &atom::VelocityVerletUpdate, MDSteps, &configuration, &Force);
    656605  }
    657606  // correct velocities (rather momenta) so that center of mass remains motionless
    658   for(int d=0;d<NDIM;d++)
    659     Vector[d] = 0.;
     607  Velocity.Zero();
    660608  IonMass = 0.;
    661   walker = start;
    662   while (walker->next != end) { // go through every atom
    663     walker = walker->next;
    664     IonMass += walker->type->mass;  // sum up total mass
    665     for(int d=0;d<NDIM;d++) {
    666       Vector[d] += walker->Trajectory.U.at(MDSteps).x[d]*walker->type->mass;
    667     }
    668   }
     609  ActOnAllAtoms ( &atom::SumUpKineticEnergy, MDSteps, &IonMass, &Velocity );
     610
    669611  // correct velocities (rather momenta) so that center of mass remains motionless
    670   for(int d=0;d<NDIM;d++)
    671     Vector[d] /= IonMass;
     612  Velocity.Scale(1./IonMass);
    672613  ActualTemp = 0.;
    673   walker = start;
    674   while (walker->next != end) { // go through every atom of this element
    675     walker = walker->next;
    676     for(int d=0;d<NDIM;d++) {
    677       walker->Trajectory.U.at(MDSteps).x[d] -= Vector[d];
    678       ActualTemp += 0.5 * walker->type->mass * walker->Trajectory.U.at(MDSteps).x[d] * walker->Trajectory.U.at(MDSteps).x[d];
    679     }
    680   }
     614  ActOnAllAtoms ( &atom::CorrectVelocity, &ActualTemp, MDSteps, &Velocity );
    681615  Thermostats(configuration, ActualTemp, Berendsen);
    682616  MDSteps++;
    683 
    684617
    685618  // exit
     
    712645  double delta_alpha = 0.;
    713646  double ScaleTempFactor;
    714   double sigma;
    715   double IonMass;
    716   int d;
    717647  gsl_rng * r;
    718648  const gsl_rng_type * T;
    719   double *U = NULL, *F = NULL, FConstraint[NDIM];
    720   atom *walker = NULL;
    721649
    722650  // calculate scale configuration
     
    731659      if ((configuration.ScaleTempStep > 0) && ((MDSteps-1) % configuration.ScaleTempStep == 0)) {
    732660        cout << Verbose(2) <<  "Applying Woodcock thermostat..." << endl;
    733         walker = start;
    734         while (walker->next != end) { // go through every atom of this element
    735           walker = walker->next;
    736           IonMass = walker->type->mass;
    737           U = walker->Trajectory.U.at(MDSteps).x;
    738           if (walker->FixedIon == 0) // even FixedIon moves, only not by other's forces
    739             for (d=0; d<NDIM; d++) {
    740               U[d] *= sqrt(ScaleTempFactor);
    741               ekin += 0.5*IonMass * U[d]*U[d];
    742             }
    743         }
     661        ActOnAllAtoms( &atom::Thermostat_Woodcock, sqrt(ScaleTempFactor), MDSteps, &ekin );
    744662      }
    745663      break;
    746664     case Gaussian:
    747665      cout << Verbose(2) <<  "Applying Gaussian thermostat..." << endl;
    748       walker = start;
    749       while (walker->next != end) { // go through every atom of this element
    750         walker = walker->next;
    751         IonMass = walker->type->mass;
    752         U = walker->Trajectory.U.at(MDSteps).x;
    753         F = walker->Trajectory.F.at(MDSteps).x;
    754         if (walker->FixedIon == 0) // even FixedIon moves, only not by other's forces
    755           for (d=0; d<NDIM; d++) {
    756             G += U[d] * F[d];
    757             E += U[d]*U[d]*IonMass;
    758           }
    759       }
     666      ActOnAllAtoms( &atom::Thermostat_Gaussian_init, MDSteps, &G, &E );
     667
    760668      cout << Verbose(1) << "Gaussian Least Constraint constant is " << G/E << "." << endl;
    761       walker = start;
    762       while (walker->next != end) { // go through every atom of this element
    763         walker = walker->next;
    764         IonMass = walker->type->mass;
    765         U = walker->Trajectory.U.at(MDSteps).x;
    766         F = walker->Trajectory.F.at(MDSteps).x;
    767         if (walker->FixedIon == 0) // even FixedIon moves, only not by other's forces
    768           for (d=0; d<NDIM; d++) {
    769             FConstraint[d] = (G/E) * (U[d]*IonMass);
    770             U[d] += configuration.Deltat/IonMass * (FConstraint[d]);
    771             ekin += IonMass * U[d]*U[d];
    772           }
    773       }
     669      ActOnAllAtoms( &atom::Thermostat_Gaussian_least_constraint, MDSteps, G/E, &ekin, &configuration);
     670
    774671      break;
    775672     case Langevin:
     
    780677      r = gsl_rng_alloc (T);
    781678      // Go through each ion
    782       walker = start;
    783       while (walker->next != end) { // go through every atom of this element
    784         walker = walker->next;
    785         IonMass = walker->type->mass;
    786         sigma  = sqrt(configuration.TargetTemp/IonMass); // sigma = (k_b T)/m (Hartree/atomicmass = atomiclength/atomictime)
    787         U = walker->Trajectory.U.at(MDSteps).x;
    788         F = walker->Trajectory.F.at(MDSteps).x;
    789         if (walker->FixedIon == 0) { // even FixedIon moves, only not by other's forces
    790           // throw a dice to determine whether it gets hit by a heat bath particle
    791           if (((((rand()/(double)RAND_MAX))*configuration.TempFrequency) < 1.)) {
    792             cout << Verbose(3) << "Particle " << *walker << " was hit (sigma " << sigma << "): " << sqrt(U[0]*U[0]+U[1]*U[1]+U[2]*U[2]) << " -> ";
    793             // pick three random numbers from a Boltzmann distribution around the desired temperature T for each momenta axis
    794             for (d=0; d<NDIM; d++) {
    795               U[d] = gsl_ran_gaussian (r, sigma);
    796             }
    797             cout << sqrt(U[0]*U[0]+U[1]*U[1]+U[2]*U[2]) << endl;
    798           }
    799           for (d=0; d<NDIM; d++)
    800             ekin += 0.5*IonMass * U[d]*U[d];
    801         }
    802       }
     679      ActOnAllAtoms( &atom::Thermostat_Langevin, MDSteps, r, &ekin, &configuration );
    803680      break;
     681
    804682     case Berendsen:
    805683      cout << Verbose(2) <<  "Applying Berendsen-VanGunsteren thermostat..." << endl;
    806       walker = start;
    807       while (walker->next != end) { // go through every atom of this element
    808         walker = walker->next;
    809         IonMass = walker->type->mass;
    810         U = walker->Trajectory.U.at(MDSteps).x;
    811         F = walker->Trajectory.F.at(MDSteps).x;
    812         if (walker->FixedIon == 0) { // even FixedIon moves, only not by other's forces
    813           for (d=0; d<NDIM; d++) {
    814             U[d] *= sqrt(1+(configuration.Deltat/configuration.TempFrequency)*(ScaleTempFactor-1));
    815             ekin += 0.5*IonMass * U[d]*U[d];
    816           }
    817         }
    818       }
     684      ActOnAllAtoms( &atom::Thermostat_Berendsen, MDSteps, ScaleTempFactor, &ekin, &configuration );
    819685      break;
     686
    820687     case NoseHoover:
    821688      cout << Verbose(2) <<  "Applying Nose-Hoover thermostat..." << endl;
    822689      // dynamically evolve alpha (the additional degree of freedom)
    823690      delta_alpha = 0.;
    824       walker = start;
    825       while (walker->next != end) { // go through every atom of this element
    826         walker = walker->next;
    827         IonMass = walker->type->mass;
    828         U = walker->Trajectory.U.at(MDSteps).x;
    829         if (walker->FixedIon == 0) { // even FixedIon moves, only not by other's forces
    830           for (d=0; d<NDIM; d++) {
    831             delta_alpha += U[d]*U[d]*IonMass;
    832           }
    833         }
    834       }
     691      ActOnAllAtoms( &atom::Thermostat_NoseHoover_init, MDSteps, &delta_alpha );
    835692      delta_alpha = (delta_alpha - (3.*AtomCount+1.) * configuration.TargetTemp)/(configuration.HooverMass*Units2Electronmass);
    836693      configuration.alpha += delta_alpha*configuration.Deltat;
    837694      cout << Verbose(3) << "alpha = " << delta_alpha << " * " << configuration.Deltat << " = " << configuration.alpha << "." << endl;
    838695      // apply updated alpha as additional force
    839       walker = start;
    840       while (walker->next != end) { // go through every atom of this element
    841         walker = walker->next;
    842         IonMass = walker->type->mass;
    843         U = walker->Trajectory.U.at(MDSteps).x;
    844         if (walker->FixedIon == 0) { // even FixedIon moves, only not by other's forces
    845           for (d=0; d<NDIM; d++) {
    846               FConstraint[d] = - configuration.alpha * (U[d] * IonMass);
    847               U[d] += configuration.Deltat/IonMass * (FConstraint[d]);
    848               ekin += (0.5*IonMass) * U[d]*U[d];
    849             }
    850         }
    851       }
     696      ActOnAllAtoms( &atom::Thermostat_NoseHoover_scale, MDSteps, &ekin, &configuration );
    852697      break;
    853698  }
  • src/molecule_template.hpp

    rccd9f5 r4a7776a  
    436436};
    437437
    438 // ===================== Accesssing arrays indexed by some integer for each atom ======================
     438// ===================== Accessing arrays indexed by some integer for each atom ======================
    439439
    440440// for atom ints
Note: See TracChangeset for help on using the changeset viewer.